高考数学考点04分段函数试题解读与变式

合集下载

高中数学分段函数解析式及其图像作法练习题含答案

高中数学分段函数解析式及其图像作法练习题含答案

高中数学分段函数解析式及其图像作法练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 若函数f (x )={x +1, x ≥0,f (x +2), x <0则f (−3)的值为 ( ) A.5B.−1C.−7D.22. 已知函数f(x)的图象是两条线段(如图所示,不含端点),则f[f(13)]=( )A.−13B.13C.−23D.233. 已知f(x)={x +2(x ≤−1)x 2(−1<x <2)2x(x ≥2),若f(x)=3,则x 的值是( )A.1B.1或32C.1,32或±√3D.√34. 已知函数{x 2+1,x ≤0−2x,x >0,f(x)=5,则x 的值为( ) A.−2B.2或−2C.2或−52D.2或−2或−525. 已知函数f(x)={x 2+4x +3,x ≤03−x,x >0则f (f(5))=( ) A.0B.−2C.−1D.16. 函数f(x)={|3x −4|(x ≤2)2x−1(x >2),则当f(x)≥1时,自变量x 的取值范围为( ) A.[1,53]B.[53,3] C.(−∞,1)∪[53,+∞)D.(−∞,1]∪[53,3]7. 函数f(x)=ln1的大致图象是( )(2−x)2A.B.C.D.的部分图象大致为() 8. 函数y=1+x+sin xx2A. B.C.D.9. 若函数f(x)={e x e ,x ≥0,x 2+5x +4,x <0,(其中e 为自然对数的底数),则函数ℎ(x)=f(f(x))−f(x) 的零点个数为( )A.2B.3C.4D.510. 已知f(x)={1,x ≥0,−1,x <0,则不等式x +(x +2)⋅f(x +2)≤5的解集是( ) A.[−2, 1]B.(−∞, −2]C.[−2,32]D.(−∞,32]11. 设函数f(x)={x 2+2x ,x <0,−x 2,x ≥0,f(f(a))≤3,则实数a 的取值范围是________.12. f(x)={(12)x −2,x ≤0,2x −2,x >0,则f(x)−x 的零点个数是________.13. 若函数f(x)={2x(x ≥10)f(x +1)(0<x <10),则f(5)=________. 14. 已知函数满足,则函数的解析式为________.15. 定义a ⊗b ={a 2+b ,a >b a +b 2,a ≤b ,若a ⊗(−2)=4,则a =________.16. 已知函数f(x)={ax 2+2x +1,(−2<x ≤0)ax −3,(x >0)有3个零点,则实数a 的取值范围是________.17. 若函数f(x)=,则f(2020)=________.18. 已知函数f(x)={(12)x ,x ≥4f(x +1),x <4,则f(log 23)=________.19. 函数f(x)={e x −a ,x ≤1x 2−3ax +2a 2+1,x >1,若函数y =f(x)图象与直线y =1有两个不同的交点,求a 的取值范围________.20. 已知f (x )是定义在R 上的偶函数,且当x ≥0时, f (x )=x 2+2x −3 .(1)求f (x )的解析式;(2)若f (m +1)<f (2m −1),求实数m 的取值范围.21. 已知函数f(x)的解析式为f(x)={3x +5,(x ≤0),x +5,(0<x ≤1),−2x +8,(x >1).(1)画出这个函数的图象;(2)求函数f(x)的最大值;22. 已知函数f (x )=|2x −1|+|x +2|.(1)在给定的坐标系中画出函数f(x)的图象;(2)设函数g(x)=ax+a,若对任意x∈R,不等式g(x)≤f(x)恒成立,求实数a的取值范围.23. (1)用定义法证明函数f(x)=x2−1x在(0,+∞)上单调递增;(2)已知g(x)是定义在R上的奇函数,且当x<0时,g(x)=x3+3x2+1,求g(x)的解析式.24. 已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=13x3+12x2.(1)求f(x)的解析式,并补全f(x)的图象;(2)求使不等式f(m)−f(1−2m)>0成立的实数m的取值范围.参考答案与试题解析高中数学分段函数解析式及其图像作法练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】D【考点】分段函数的解析式求法及其图象的作法【解析】此题暂无解析【解答】解:因为−3<0,所以f(−3)=f(−3+2)=f(−1).因为−1<0,所以f(−1)=f(−1+2)=f(1).因为1>0,所以f(1)=1+1=2.故选D .2.【答案】B【考点】函数的图象与图象的变换分段函数的解析式求法及其图象的作法函数单调性的性质与判断【解析】先根据函数的图象利用分段函数写出函数的解析式,再根据所求由内向外逐一去掉括号,从而求出函数值.【解答】由图象知f(x)={x +1(−1<x <0)x −1(0<x <1)∴ f(13)=13−1=−23,∴ f(f(13))=f(−23)=−23+1=13.3.【答案】D【考点】分段函数的解析式求法及其图象的作法函数的零点与方程根的关系【解析】利用分段函数的解析式,根据自变量所在的区间进行讨论表示出含字母x 的方程,通过求解相应的方程得出所求的字母x 的值.或者求出该分段函数在每一段的值域,根据所给的函数值可能属于哪一段确定出字母x 的值.【解答】该分段函数的三段各自的值域为(−∞, 1],[O, 4).[4, +∞),而3∈[0, 4),故所求的字母x 只能位于第二段.∴ f(x)=x 2=3,x =±√3,而−1<x <2,∴ x =√3.4.【答案】【考点】分段函数的解析式求法及其图象的作法【解析】此题暂无解析【解答】此题暂无解答5.【答案】C【考点】求函数的值函数的求值分段函数的解析式求法及其图象的作法【解析】分段函数是指在定义域的不同阶段上对应法则不同,因此分段函数求函数值时,一定要看清楚自变量所处阶段,例如本题中,5∈{x|x >0},而f(5)=−2∈{x|x ≤0},分别代入不同的对应法则求值即可得结果【解答】因为5>0,代入函数解析式f(x)={x 2+4x +3,x ≤03−x,x >0得f(5)=3−5=−2, 所以f (f(5))=f(−2),因为−2<0,代入函数解析式f(x)={x 2+4x +3,x ≤03−x,x >0得f(−2)=(−2)2+4×(−2)+3=−16.【答案】D【考点】分段函数的解析式求法及其图象的作法【解析】根据题意分两种情况x >2和x ≤2,代入对应的解析式列出不等式求解,最后必须解集和x 的范围求交集.【解答】解:∵ f(x)={|3x −4|(x ≤2)2x−1(x >2),∴ 分两种情况: ①当x >2时,由f(x)≥1得,{x >22x−1≥1,解得2<x ≤3,②当x≤2时,由f(x)≥1得,|3x−4|≥1,即3x−4≥1或3x−4≤−1,解得,x≤1或x≥53,则x≤1或53≤x≤2.综上,所求的范围是(−∞,1]∪[53,3].故选D.7.【答案】D【考点】分段函数的解析式求法及其图象的作法【解析】此题暂无解析【解答】解:函数f(x)=ln1(2−x)2的定义域为:x≠2,函数图像关于x=2对称,当x=0时,f(0)=ln1(2−0)2=−ln4<0,因为ln4∈(1,2).故选D.8.【答案】B【考点】奇函数分段函数的解析式求法及其图象的作法函数的图象【解析】通过函数的解析式,利用函数的奇偶性的性质,函数的图象经过的特殊点判断函数的图象即可.【解答】解:函数y=1+x+sin xx2,可知:f(x)=x+sin xx2是奇函数,所以函数的图象关于原点对称,则函数y=1+x+sin xx2的图象关于(0, 1)对称,当x>0时,f(x)>0,当x=π时,y=1+π.故选B.9.【答案】D【考点】函数零点的判定定理分段函数的解析式求法及其图象的作法【解析】此题暂无解析【解答】解:根据分段函数解析式作出函数的图像,如图所示:, 0)和(0, +∞)上为增函数,由图可知,函数f(x)在(−52且f(f(x))=f(x)解的个数等价于f(x)=x解的个数.作出图像可知,函数y=f(x)与y=x有(−2, −2)和(e, e)两个公共点,作出f(x)=e的图像,由图可知,f(x)=e有三个解;作出f(x)=−2的图像,由图可知,f(x)=−2有两个解.综上可知,函数ℎ(x)=f(f(x))−f(x)的零点的个数为5. 故选D.【答案】D【考点】分段函数的解析式求法及其图象的作法【解析】由题意可得,①当x+2≥0时,f(x+2)=1,代入所求不等式可求x,②当x+2< 0即x<−2时,f(x+2)=−1,代入所求不等式可求x,从而可得原不等式的解集【解答】解:①当x+2≥0,即x≥−2时,f(x+2)=1,由x+(x+2)⋅f(x+2)≤5可得x+x+2≤5,∴x≤32,即−2≤x≤32;②当x+2<0即x<−2时,f(x+2)=−1,由x+(x+2)⋅f(x+2)≤5可得x−(x+2)≤5,即−2≤5,∴x<−2.综上,不等式的解集为{x|x≤32}.故选D.二、填空题(本题共计 9 小题,每题 3 分,共计27分)11.【答案】(−∞, √3]【考点】分段函数的应用分段函数的解析式求法及其图象的作法函数的求值【解析】先讨论f(a)的正负,代入求出f(a)≥−3,再讨论a的正负,求实数a的取值范围.【解答】解:①若f(a)<0,则f2(a)+2f(a)≤3,解得,−3≤f(a)≤1,即−3≤f(a)<0;②若f(a)≥0,则−f2(a)≤3,显然成立;则f(a)≥0;③若a<0,则a2+2a≥−3,解得,a∈R,即a<0;④若a≥0,则−a2≥−3,解得,0≤a≤√3;综上所述,实数a的取值范围是:(−∞, √3].故答案为:(−∞, √3].12.【答案】【考点】函数零点的判定定理分段函数的解析式求法及其图象的作法【解析】本题考查分段函数图象的作图及函数零点区间的判断问题.【解答】解:函数f(x)={(12)x−2,x ≤0,2x −2,x >0的图象如图所示, 由图示可得直线y =x 与该函数的图象有两个交点,由此可得f(x)−x 有2个零点.故答案为:2.13.【答案】20【考点】分段函数的解析式求法及其图象的作法【解析】根据自变量的值代入分段函数求值.【解答】解:由f(x)={2x(x ≥10)f(x +1)(0<x <10)得, f(5)=f(6)=f(7)=f(8)=f(9)=f(10)=2×10=20.故答案为:20.14.【答案】千(x )=三.________3′3x【考点】函数解析式的求解及常用方法函数的图象分段函数的解析式求法及其图象的作法【解析】令f (1x )+2f (x )=1x .联立f (x )+2f (1x )=x 消去f (1x )即可I 加加加因为f (x )+2f (1x )=x ,所以f (1x )+2f (x )=1x由{f (x )+2f (1x )=x f (1x )+2f (x )=1x,消去f (1x ),得f (x )=−x 3+23x 故答案为:f (x )=−x 3+23【解答】此题暂无解答15.【答案】 √6【考点】函数新定义问题分段函数的解析式求法及其图象的作法函数的求值【解析】分类讨论,利用新定义即可得出.【解答】解:①当a >−2时,由已知可得4=a ⊗(−2)=a 2−2,解得a =√6.②当a ≤−2时,由已知可得4=a ⊗(−2)=a +(−2)2,解得a =0,应舍去. 综上可知:a =√6.故答案为:√6.16.【答案】(34, 1) 【考点】分段函数的解析式求法及其图象的作法函数零点的判定定理【解析】由题意可得,a >0 且 y =ax 2+2x +1在(−2, 0)上有2个零点,再利用二次函数的性质求得a 的范围.【解答】∵ 函数f(x)={ax 2+2x +1,(−2<x ≤0)ax −3,(x >0)有3个零点, ∴ a >0 且 y =ax 2+2x +1在(−2, 0)上有2个零点,∴ { a >0a(−2)2+2(−2)+1>0−2<−1a <0△=4−4a >0, 解得 34<a <1,17.【答案】1【考点】分段函数的解析式求法及其图象的作法【解析】先判断当x>0时,f(x+6)=f(x),可得x>0时,f(x)是周期为6的周期函数,再由周期性及分段函数解析式求解.【解答】当x>0时,由f(x)=f(x−1)−f(x−2),可得f(x+1)=f(x)−f(x−1),两式相加得f(x+1)=−f(x−2),则f(x+3)=−f(x),∴当x>0时,f(x+6)=−f(x+3)=−[−f(x)]=f(x),即x>0时,f(x)是周期为6的周期函数,又f(x)=,∴f(2020)=f(4)=−f(1)=f(−1)−f(0)=2−1=1,故答案为:1.18.【答案】124【考点】函数的求值求函数的值分段函数的解析式求法及其图象的作法【解析】先判断出log23的范围,代入对应的解析式求解,根据解析式需要代入同一个式子三次,再把所得的值代入另一个式子求值,需要对底数进行转化,利用a log a N=N进行求解.【解答】由已知得,f(x)={(12)x,x≥4f(x+1),x<4,且1<log23<2,∴f(log23)=f(log23+1)=f(log23+2)=f(log23+3)=f(log224)=(12)log224=2log2(24)−1=124.19.【答案】【考点】分段函数的解析式求法及其图象的作法【解析】此题暂无解析【解答】此题暂无解答三、解答题(本题共计 5 小题,每题 10 分,共计50分)20.【答案】解:(1)当x <0时, f (x )=f (−x )=(−x )2+2⋅(−x )−3=x 2−2x −3,所以f (x )={x 2+2x −3,x ≥0,x 2−2x −3,x <0.(2)当x ≥0时, f (x )=x 2+2x −3=(x +1)2−4,因此当x ≥0时,该函数单调递增,因为f (x )是定义在R 上的偶函数,且当x ≥0时,该函数单调递增,所以由f(m +1)<f(2m −1)⇒f(|m +1|)<f(|2m −1|)⇒|m +1|<|2m −1|因此(m +1)2<(2m −1)2⇒m 2−2m >0⇒m >2或m <0,所以实数m 的取值范围是{m|m <0或m >2}.【考点】分段函数的解析式求法及其图象的作法奇偶性与单调性的综合函数单调性的性质【解析】此题暂无解析【解答】解:(1)当x <0时, f (x )=f (−x )=(−x )2+2⋅(−x )−3=x 2−2x −3,所以f (x )={x 2+2x −3,x ≥0,x 2−2x −3,x <0.(2)当x ≥0时, f (x )=x 2+2x −3=(x +1)2−4,因此当x ≥0时,该函数单调递增,因为f (x )是定义在R 上的偶函数,且当x ≥0时,该函数单调递增,所以由f(m +1)<f(2m −1)⇒f(|m +1|)<f(|2m −1|)⇒|m +1|<|2m −1|因此(m +1)2<(2m −1)2⇒m 2−2m >0⇒m >2或m <0,所以实数m 的取值范围是{m|m <0或m >2}.21.【答案】解:(1)函数f(x)的图象由三段构成,每段都为一次函数图象的一部分,其图象如图:(2)由函数图象,数形结合可知当x =1时,函数f(x)取得最大值6,∴ 函数f(x)的最大值为6;【考点】函数的最值及其几何意义分段函数的解析式求法及其图象的作法【解析】(1)分段函数的图象要分段画,本题中分三段,每段都为一次函数图象的一部分,利用一次函数图象的画法即可画出f(x)的图象;(2)由图象,数形结合即可求得函数f(x)的最大值【解答】解:(1)函数f(x)的图象由三段构成,每段都为一次函数图象的一部分,其图象如图:(2)由函数图象,数形结合可知当x=1时,函数f(x)取得最大值6,∴函数f(x)的最大值为6;22.【答案】【考点】分段函数的解析式求法及其图象的作法绝对值不等式的解法与证明不等式恒成立问题【解析】此题暂无解析【解答】此题暂无解答23.【答案】(1)证明:任取x1,x2∈(0,+∞),令x1<x2,则f(x1)−f(x2)=x12−1x1−x22+1x2=(x1+x2)(x1−x2)+x1−x2 x1x2=(x1+x2+1x1x2)(x1−x2).因为0<x1<x2,所以x1−x2<0,x1+x2+1x1x2>0,即f(x1)<f(x2),故函数f(x)=x2−1x在(0,+∞)上单调递增.(2)解:当x>0时,−x<0,g(−x)=(−x)3+3×(−x)2+1=−x3+3x2+1,因为g(x)是定义在R上的奇函数,所以g(x)=−g(−x)=x3−3x2−1,且g(0)=0,故g(x)={x3+3x2+1,x<0,0,x=0,x3−3x2−1,x>0.【考点】函数单调性的判断与证明分段函数的解析式求法及其图象的作法函数解析式的求解及常用方法【解析】此题暂无解析【解答】(1)证明:任取x1,x2∈(0,+∞),令x1<x2,则f(x1)−f(x2)=x12−1x1−x22+1x2=(x1+x2)(x1−x2)+x1−x2 x1x2=(x1+x2+1x1x2)(x1−x2).因为0<x1<x2,所以x1−x2<0,x1+x2+1x1x2>0,即f(x1)<f(x2),故函数f(x)=x2−1x在(0,+∞)上单调递增.(2)解:当x>0时,−x<0,g(−x)=(−x)3+3×(−x)2+1=−x3+3x2+1,因为g(x)是定义在R上的奇函数,所以g(x)=−g(−x)=x3−3x2−1,且g(0)=0,故g(x)={x3+3x2+1,x<0,0,x=0,x3−3x2−1,x>0.24.【答案】解:(1)设x<0,则−x>0,于是f(−x)=−13x3+12x2,又因为f(x)是偶函数,所以f(x)=f(−x)=−13x3+12x2,所以 f (x )={−13x 3+12x 2,x <0,13x 3+12x 2,x ≥0, 补充图象如图,(2)因为f (x )是偶函数,所以原不等式等价于f (|m|)>f (|1−2m|). 又由(1)的图象知,f (x )在[0,+∞)上单调递增, 所以|m|>|1−2m|,两边平方得m 2>1−4m +4m 2,即3m 2−4m +1<0, 解得13<m <1, 所以实数m 的取值范围是{m|13<m <1}.【考点】分段函数的解析式求法及其图象的作法 函数奇偶性的性质奇偶性与单调性的综合【解析】【解答】解:(1)设x <0,则−x >0,于是f (−x )=−13x 3+12x 2, 又因为f (x )是偶函数,所以f (x )=f (−x )=−13x 3+12x 2,所以 f (x )={−13x 3+12x 2,x <0,13x 3+12x 2,x ≥0, 补充图象如图,(2)因为f(x)是偶函数,所以原不等式等价于f(|m|)>f(|1−2m|).又由(1)的图象知,f(x)在[0,+∞)上单调递增,所以|m|>|1−2m|,两边平方得m2>1−4m+4m2,即3m2−4m+1<0,解得13<m<1,所以实数m的取值范围是{m|13<m<1}.。

高三艺术生数学一轮复习-分段函数解析式讲义

高三艺术生数学一轮复习-分段函数解析式讲义

【例】(1)已知函数⎩⎨⎧-≥+=0),4(0),4()(<x x x x x x x f ,求)3()1(-f f ,的值. 【解析】5411)1(=+⨯=)(f ,21433)3(=--⨯-=-)()(f (2)函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,若f (x )=3,则x 的值是________. 【解析】 当x ≤-1时,x +2=3,得x =1舍去,当-1<x <2时,x 2=3得x =3或x =-3(舍去)【变式探究】(1)若函数234(0)()(0)0(0)x xf x x x π⎧->⎪==⎨⎪<⎩,则((0))f f = .(2)设则的值为( )A .10B .11C .12D .13(3)已知f (x )=⎩⎪⎨⎪⎧ 10,x <0,10x ,x ≥0,则f (f (-7))的值为( )A .100B .10C .-10D .-100(4)设f (x )=⎪⎩⎪⎨⎧≥--≤--)2(3)21()1(32x x x x x x <<,若f (x )=9,则x=( )A.-12B.±3C.-12或±3D.-12或3(5)已知函数y =⎩⎪⎨⎪⎧ x 2+1,x ≤0,-2x ,x >0,使函数值为5的x 的值是( )A .-2B .2或-52C .2或-2D .2或-2或-52(6)设f (x )=()⎩⎨⎧≥-1,1210,x x x x <<,若f (a )=f (a+1),则f (a 1)=( )A.2B.4C.6D.8⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f )5(f1、设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A .2 B .4 C .6 D .8 2、设1,0()2,0x x x f x x ⎧≥⎪=⎨<⎪⎩,则((2))f f -=( ) A .1- B .14 C .12 D .32 3、设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f ,则)5(f 的值为( ) A .10 B .11 C .12 D .134、设f (x )=⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,g (x )=⎩⎨⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( ) A .1 B .0 C .-1 D .π5、已知函数232(1)()(1)x x f x x ax x +<⎧=⎨+≥⎩,若((0))4f f a =,则实数a =_______. 6、已知函数)(x f = ,则 )1()0(-+f f =( ) A . 9 B . C . 3 D .7、24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 若00()8,f x x ==则( ) A .23 B. 2 C .4 D .18、已知函数f (x )=⎩⎨⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( ) A .-3 B .-1 C .1 D .39、设函数则不等式的解集是( ) A . B . C .D .267,0,100,,x x x x x ++<≥⎧⎪⎨⎪⎩71101110⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f )1()(f x f >),3()1,3(+∞⋃-),2()1,3(+∞⋃-),3()1,1(+∞⋃-)3,1()3,(⋃--∞10、设函数10221,0,()()1,0x x f x f x x x -⎧-≤⎪=>⎨⎪>⎩若,则0x 的取值范围是( ) A .)1,1(- B .),1-(+∞C .),0()2,(+∞--∞D .),1()1,(+∞--∞11、设函数224,0()4,0x x x f x x x x ⎧+≥=⎨-<⎩,若2(2)()f a f a ->,则实数a 的取值范围是( ) A .(,1)(2,)-∞-+∞ B .(1,2)- C .(2,1)- D .(,2)(1,,)-∞-+∞12、已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为( ) A 、-32 B 、-34 C 、-32或-34 D 、32或-34。

高考数学《分段函数的性质与应用》基础知识与专项练习题(含答案)

高考数学《分段函数的性质与应用》基础知识与专项练习题(含答案)

高考数学《分段函数的性质与应用》基础知识与专项练习题(含答案)分段函数是函数中比较复杂的一种函数,其要点在于自变量取不同范围的值时所使用的解析式不同,所以在解决分段函数的问题时要时刻盯着自变量的范围是否在发生变化。

即“分段函数——分段看” 一、基础知识:1、分段函数的定义域与值域——各段的并集2、分段函数单调性的判断:先判断每段的单调性,如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起。

3、分段函数对称性的判断:如果能够将每段的图像作出,则优先采用图像法,通过观察图像判断分段函数奇偶性。

如果不便作出,则只能通过代数方法比较()(),f x f x −的关系,要注意,x x −的范围以代入到正确的解析式。

4、分段函数分析要注意的几个问题(1)分段函数在图像上分为两类,连续型与断开型,判断的方法为将边界值代入每一段函数(其中一段是函数值,另外一段是临界值),若两个值相等,那么分段函数是连续的。

否则是断开的。

例如:()221,34,3x x f x x x −≤⎧=⎨−>⎩,将3x =代入两段解析式,计算结果相同,那么此分段函数图像即为一条连续的曲线,其性质便于分析。

再比如 ()221,31,3x x f x x x −≤⎧=⎨−>⎩中,两段解析式结果不同,进而分段函数的图像是断开的两段。

(2)每一个含绝对值的函数,都可以通过绝对值内部的符号讨论,将其转化为分段函数。

例如:()13f x x =−+,可转化为:()13,113,1x x f x x x −+≥⎧=⎨−+<⎩5、遇到分段函数要时刻盯住变量的范围,并根据变量的范围选择合适的解析式代入,若变量的范围并不完全在某一段中,要注意进行分类讨论6、如果分段函数每一段的解析式便于作图,则在解题时建议将分段函数的图像作出,以便必要时进行数形结合。

微专题18分段函数10种常考题型总结(解析版)-人教A版2019必修第一册高一数学习题

微专题18分段函数10种常考题型总结(解析版)-人教A版2019必修第一册高一数学习题

微专题18 分段函数10种常考题型总结题型1 分段函数求函数值题型2 已知函数值求参数题型3 解分段函数不等式题型4 分段函数的图象题型5 分段函数的单调性题型6 分段函数的奇偶性题型7 分段函数的值域或最值题型8 分段函数与零点问题题型9 max/min 型分段函数题型10 新定义题一、分段函数1、分段函数的定义函数y x =与函数,0,0x x y x x ³ì=í-<î是同一函数,但在表达方式上有所区别,前者在定义域内有一个表达式,而后者的定义域被分成两部分,而在不同的部分有不同的解析式.在函数的定义域内,对于自变量x 在不同取值范围内,函数有着不同的对应关系,这样的函数通常叫作分段函数.2、对分段函数的理解(1)分段函数是一个函数而不是几个函数。

处理分段函数问题时,首先要确定自变量的取值属于哪一个范围,从而选择相应的对应关系;(2)分段函数的定义域是各段自变量取值范围的并集,各段定义域的交集是空集;(3)分段函数的值域是各段函数在对应自变量的取值范围内值域的并集.3、分段函数常见的几种类型(1)取整函数:()[]f x x =([]x 表示不大于x 的最大整数).(2)1,()(1)1,x x f x x -ì=-=íî为正奇数为非负偶数.(3)含绝对值符号的函数.如2,2()|2|(2),2x x f x x x x +³-ì=+=í-+<-î.(4)自定义函数.如21,1(),122,2x x f x x x x x x--£-ìï=--<£íï->î二、有关分段函数的求解问题1、分段函数的表达式因其特点可以分解成两个或两个以上的不同表达式,所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也可以是一些孤立的点或线段,而分段函数的值域,也就是各部分的函数值集合的并集,最好的求解方法是“图象法”。

高考数学 热点题型和提分秘籍 专题04 函数及其表示 理(含解析)新人教A版-新人教A版高三全册数

高考数学 热点题型和提分秘籍 专题04  函数及其表示 理(含解析)新人教A版-新人教A版高三全册数

2016年高考数学 热点题型和提分秘籍 专题04 函数及其表示 理(含解析)新人教A 版【高频考点解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. 【热点题型】题型一 考查函数的定义域 例 1.(1)(函数f (x )= 1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)函数y =ln ⎝⎛⎭⎪⎫1+1x + 1-x 2的定义域为________.【答案】(1)A (2)(0,1] 【解析】【提分秘籍】1.函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,归纳起来常见的命题角度有:(1)求给定函数解析式的定义域.(2)已知f (x )的定义域,求f (g (x ))的定义域. (3)已知定义域确定参数问题. 2.简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.【举一反三】已知f (x )的定义域为⎣⎢⎡⎦⎥⎤-12,12,求函数y =f ⎝⎛⎭⎪⎫x 2-x -12的定义域.题型二 考查函数的解析式例2、(1)已知f (1-cos x )=sin 2x ,求f (x )的解析式;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(3)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x=x (x ≠0),求f (x )的解析式.【解析】 (1)f (1-cos x )=sin 2x =1-cos 2x , 令t =1-cos x ,则cos x =1-t ,t ∈[0,2], ∴f (t )=1-(1-t )2=2t -t 2,t ∈[0,2], 即f (x )=2x -x 2,x ∈[0,2].(2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.∴f (x )=12x 2-32x +2.(3)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.解方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,得f (x )=23x -x3(x ≠0).【提分秘籍】求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值X 围.(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).【举一反三】已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6C .f (x )=6x +9D .f (x )=2x +3 【答案】B题型三 考查分段函数例3、如图,点P 从点O 出发,分别按逆时针方向沿周长均为12的正三角形、正方形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系分别记为y =f (x ),y =g (x ),定义函数h (x )=⎩⎪⎨⎪⎧fx ,f x ≤g x ,g x ,f x >g x .对于函数y =h (x ),下列结论正确的个数是( )①h (4)=10;②函数h (x )的图象关于直线x =6对称;③函数h (x )的值域为[0,13 ];④函数h (x )的递增区间为(0,5).A .1B .2C .3D .4 【答案】 C 【解析】【提分秘籍】(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的X 围求的变量值或自变量的取值X 围,应根据每一段的解析式分别求解.但要注意检验,是否符合相应段的自变量的取值X 围.【举一反三】已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f x +1,x ≤0,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43等于________.【答案】4【解析】f ⎝ ⎛⎭⎪⎫43=2×43=83, f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫23=2×23=43,f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=83+43=4. 【高考风向标】【2015高考某某,理7】存在函数()f x 满足,对任意x R ∈都有( ) A. (sin 2)sin f x x = B. 2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D. 2(2)1f x x x +=+ 【答案】D. 【解析】(2014·某某卷)设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎪⎫23π6=( )A.12B.32 C .0 D .-12【答案】A【解析】由已知可得,f ⎝⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6=f ⎝ ⎛⎭⎪⎫11π6+sin 11π6+sin 17π6 =f ⎝⎛⎭⎪⎫5π6+sin 5π6+sin 11π6+sin 17π6=2sin 5π6+sin ⎝ ⎛⎭⎪⎫-π6=sin 5π6=12.(2014·卷)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1) 【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.(2014·某某卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 【答案】D(2014·某某卷)函数f (x )=ln(x 2-x )的定义域为( )A .(0,1]B .[0,1]C .(-∞,0)∪(1,+∞) D.(-∞,0]∪[1,+∞) 【答案】C【解析】由x 2-x >0,得x >1或x <0. (2014·某某卷)函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞) C. ⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D. ⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 【答案】C【解析】根据题意得,⎩⎪⎨⎪⎧x >0,(log 2)2-1>0,解得⎩⎪⎨⎪⎧x >0,x >2或x <12.故选C. (2013·某某卷)已知函数f(x)=a ⎝ ⎛⎭⎪⎫1-2⎪⎪⎪⎪⎪⎪x -12,a 为常数且a>0. (1)证明:函数f(x)的图像关于直线x =12对称;(2)若x 0满足f(f(x 0))=x 0,但f(x 0)≠x 0,则称x 0为函数f(x)的二阶周期点.如果f(x)有两个二阶周期点x 1,x 2,试确定a 的取值X 围;(3)对于(2)中的x 1,x 2和a ,设x 3为函数 f(f(x))的最大值点,A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(x 3,0).记△A BC 的面积为S(a),讨论S(a)的单调性.【解析】当a>12时,有f(f(x))=⎩⎪⎪⎨⎪⎪⎧4a 2x ,x ≤14a,2a -4a 2x ,14a <x ≤12,2a (1-2a )+4a 2x ,12<x ≤4a -14a ,4a 2-4a 2x ,x>4a -14a.所以f(f(x))=x 有四个解0,2a 1+4a 2,2a 1+2a ,4a 21+4a 2,又f(0)=0,f ⎝ ⎛⎭⎪⎫2a 1+2a =2a 1+2a,f ⎝ ⎛⎭⎪⎫2a 1+4a 2≠2a 1+4a 2,f ⎝ ⎛⎭⎪⎫4a 21+4a 2≠4a 21+4a 2,故只有2a 1+4a 2,4a 21+4a 2是f(x)的二阶周期点. 综上所述,所求a 的取值X 围为a>12.(2013·某某卷)设函数f(x)在(0,+∞)内可导,且f(e x)=x +e x,则f′(1)=________. 【答案】2【解析】f(e x )=x +e x,利用换元法可得f(x)=ln x +x ,f′(x)=1x +1,所以f′(1)=2.(2013·某某卷)如图1-3所示,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为x(0<x<π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f(x)的图像大致是( )图1-3图1-4 【答案】D 【解析】(2013·某某卷)函数y =xln(1-x)的定义域为( )A .(0,1)B .[0,1)C .(0,1]D .[0,1] 【答案】B【解析】x≥0且1-x>0,得x∈[0,1),故选B.(2013·某某卷)已知函数f(x)=x 2-2(a +2)x +a 2,g(x)=-x 2+2(a -2)x -a 2+8.设H 1(x)=max {}f (x ),g (x ),H 2(x)=min {}f (x ),g (x )(max {}p ,q 表示p ,q 中的较大值,min {}p ,q 表示p ,q 中的较小值).记H 1(x)的最小值为A , H 2(x)的最大值为B ,则A -B =( )A .16B .-16C .a 2-2a -16 D .a 2+2a -16【答案】B【解析】由题意知当f(x)=g(x)时,即x 2-2(a +2)x +a 2=-x 2+2(a -2)x -a 2+8, 整理得x 2-2ax +a 2-4=0,所以x =a +2或x =a -2,所以H 1(x)=max{f(x),g(x)}=⎩⎪⎨⎪⎧x 2-2(a +2)x +a 2(x≤a-2),-x 2+2(a -2)x -a 2+8(a -2<x<a +2),x 2-2(a +2)x +a 2(x≥a+2),H 2(x)=min{f(x),g(x)}=⎩⎪⎨⎪⎧-x 2+2(a -2)x -a 2+8(x≤a-2),x 2-2(a +2)x +a 2(a -2<x<a +2),-x 2+2(a -2)x -a 2+8(x≥a+2).由图形(图形略)可知,A =H 1(x)min =-4a -4,B =H 2(x)max =12-4a ,则A -B =-16. 故选B.(2013·全国卷)已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎪⎫-1,-12C .(-1,0) D.⎝ ⎛⎭⎪⎫12,1【答案】B【解析】对于f(2x +1),-1<2x +1<0,解得-1<x<-12,即函数f(2x +1)的定义域为⎝⎛⎭⎪⎫-1,-12. (2013·某某卷)设函数f(x)=⎩⎨⎧⎝ ⎛⎭⎪⎫x -1x 6,x<0,-x ,x≥0,则当x>0时,f[f(x)]表达式的展开式中常数项为( )A .-20B .20C .-15D .15 【答案】A(2013·某某卷)函数y =x33x -1的图像大致是( )图1-5【答案】C【解析】函数的定义域是{x∈R|x≠0},排除选项A;当x<0时,x3<0,3x-1<0,故y>0,排除选项B;当x→+∞时,y>0且y→0,故为选项C中的图像.(2013·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-4所示,经销商为下一个销售季度购进了130 t该农产品,以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率),求T的数学期望.【解析】(3)依题意可得T 的分布列为T 45 000 53 000 61 000 65 000 P0.10.20.30.4所以E(T)=45 000×0.1+53 000×0.2+61 000×0.3+65 000×0.4=59 400. 【高考押题】1. 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )【答案】B【解析】注意定义域和值域的限制,只有B 正确.2.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于 ( )A. 12 B. 45C. 2D. 9【答案】C3. 函数f (x )=2x -1log 3x 的定义域为 ( )A. (0,+∞)B. (1,+∞)C. (0,1)D. (0,1)∪(1,+∞)【答案】D【解析】由log 3x ≠0得x >0且x ≠1,因此,函数f (x )=2x -1log 3x 的定义域是(0,1)∪(1,+∞),选D.4.已知映射f :A →B ,其中A =B =R ,对应法则f :x →y =|x |12,若对实数k ∈B ,在集合A 中不存在元素x 使得f :x →k ,则k 的取值X 围是( )A. k ≤0B. k >0C. k ≥0D. k <0【答案】D【解析】由题易知y =|x |12的值域为[0,+∞),要使集合A 中不存在元素x 使得f :x →k ,只需k 不在此值域中,即k <0.5.如右图,是X 大爷晨练时所走的离家距离(y )与行走时间(x )之间的函数关系的图象.若用黑点表示X 大爷家的位置,则X 大爷散步行走的路线可能是( )【答案】D【解析】6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A. x -1B. x +1C. 2x +1D. 3x +3【答案】B【解析】在2f (x )-f (-x )=3x +1① 将①中x 换为-x ,则有 2f (-x )-f (x )=-3x +1② ①×2+②得3f (x )=3x +3, ∴f (x )=x +1. 7. 已知函数f (x )=1x +1,则函数f [f (x )]的定义域是________. 【答案】{x |x ≠-1,且x ≠-2} 【解析】由x +1≠0且1x +1+1≠0,得x ≠-1,且x ≠-2. ∴定义域为{x |x ≠-1,且x ≠-2}. 8.若函数f (x )=⎩⎪⎨⎪⎧2x x <3,3x -m x ≥3,且f (f (2))>7,则实数m 的取值X 围为________.【答案】m <5【解析】因为f (2)=4,所以f (f (2))=f (4)=12-m >7,解得m <5. 9.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =________.【答案】±1【解析】若a ≥0,则a +1=2,得a =1;若a <0,则-a +1=2,得a =-1.故a =±1. 10. 根据下列条件分别求出函数f (x )的解析式: (1)f (x +1)=x +2x ;(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ).解:(1)令t =x +1,∴t ≥1,x =(t -1)2. 则f (t )=(t -1)2+2(t -1)=t 2-1, 即f (x )=x 2-1,x ∈[1,+∞). (2)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17, ∴a =2,b =7,故f (x )=2x +7.11. 已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0,(1)求f [g (2)]与g [f (2)]. (2)求f [g (x )]与g [f (x )]的表达式.12.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (分)的关系.试写出y =f (x )的函数解析式.。

考点04 分段函数典型高考数学试题解读与变式(解析版)

考点04 分段函数典型高考数学试题解读与变式(解析版)

考点4 分段函数以及应用一、 知识储备汇总与命题规律展望 1.知识储备汇总:(1)分段函数概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数定义域与值域:分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.(3)分段函数的图像:分段函数有几段它的图像就由几条曲线组成,作图的关键就是根据每段函数的定义区间和表达式在同一坐标系中作出其图像,作图时要注意每段曲线端点的虚实,而且横坐标相同之处不可有两个以上的点。

(4)分段函数的求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(5)分段函数的奇偶性:先看定义域是否关于原点对称,不对称就不是奇(偶)函数,再由x >0,x -<0 ,分别代入各段函数式计算)(x f 与)(x f -的值,若有)(x f =)(x f --,当x =0有定义时0)0(=f ,则)(x f 是奇函数;若有f(x)=)(x f -,则)(x f 是偶函数.(6)分段函数的单调性:分别判断出各段函数在其定义区间的单调性结合图象处理分段函数的问题. (7)分段函数的周期性:对分段函数的周期性问题,利用周期函数定义、性质或图像进行判定或解决. (8)分段函数求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(9)分段函数的最值:先求出每段函数的最值,再求这几个最值的最值,或利用图像求最值.(10)求分段函数某条件下自变量的范围:先假设所求的解在分段函数定义域的各段上,然后相应求出在各段定义域上的范围,再求它们并集即可.(11)分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.(12)分段函数的解析式:利用待定系数法,求出各段对应函数的解析式,写成分段函数形式,每个解析式后边标上对应的范围.2.命题规律展望:分段函数是高考考查的重点和热点,主要考查分段函数求值、分段函数值域与最值、分段函数的图像与性质、分段函数方程、分段函数不等式等,考查分类整合、转化与化归、函数与方程、数形结合等数学思想与方法,考题多为选择填空题,难度为容易或中档题.将本考点近五年内的命题规律从题型、考题类型、难度、分值等方面作以总结,对今后考题规律作以展望. 二、题型与相关高考题解读 1.分段函数求值 1.1考题展示与解读例1 【2017山东,文9】设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭A. 2B. 4C. 6D. 8【命题意图探究】本题考查了分段函数求值及分类整合思想是中档试题. 【答案】C【解题能力要求】分析问题能力、分类整合思想【方法技巧归纳】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围. 1.2【典型考题变式】1.【变式1:改编条件】已知函数)(x f =⎩⎨⎧≥+-<<+2,8220,2x x x x x ,若)2()(+=a f a f ,则)1(a f =( )A.165 B. 2 C.6 D.217【答案】B【解析】由2x ≥时()28f x x =-+是减函数可知,若2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭,故选B.2. 【变式2:改编结论】设()(),0121,1x x f x x x <<=-≥⎪⎩,若()12f a =,则a = ( )B.41 B. 45 C. 41或45D. 2 【答案】C【解析】由题意知,⎪⎩⎪⎨⎧=<<2110a a 或⎪⎩⎪⎨⎧=-≥21)1(21a a ,解得14a =或45=a ,故选C 3.【变式3:改编问法】已知)(x f 是定义域为R 的奇函数,⎪⎩⎪⎨⎧>-≤≤2)4(2120,sin x x x x ,π,则)431(f =( )A44 .B.82 C.44- D.82- 【答案】D 【解析】由题意知)41(41)41(41)415(21)431(f f f f -=-===4sin 41π-=82-,故选D. 2.分段函数的最值与值域 2.1考题展示与解读例2【2016年高考北京理数】设函数33,()2,x x x af x x x a ⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________.【命题意图探究】本题主要考查分段函数的最值及分类整合思想、数形结合思想. 【答案】2,(,1)-∞-.【解题能力要求】分类整合思想、数形结合思想、运算求解能力.【方法技巧归纳】先根据各段函数的图象与性质求出各段函数在相应区段上的值域,这些值域的并集就是函数的值域. 2.2【典型考题变式】【变式1:改编条件】已知函数)(x f =⎩⎨⎧>+-≤-+a x ax ax x x ,4,242.(1)当1-=a 时,求)(x f 的最小值.(2)若函数)(x f 无最小值,求实数a 的取值范围. 【答案】(1)-6;(2)),0()3,(+∞⋃-∞.【解析】(1)当1-=a 时,)(x f =⎩⎨⎧->+-≤-+1,41,242x x x x x ,当1-≤x 时,)(in x f m =)2(-f =-6,当1->x 时,3)1()(=->f x f ,所以)(x f 的最小值为-6.(2)当2-≤a 时,要使)(x f 无最小值,由)(x f 的图象知,42422+->-+a a a ,解得3-<a ; 当02<<-a 时,要使)(x f 无最小值,由)(x f 的图象知,462+->-a ,无解; 当0=a 时,由)(x f 的图象知,min )(x f =-6; 当0>a 时,由)(x f 的图象知,)(x f 无最小值; 综上所述,实数a 的取值范围为),0()3,(+∞⋃-∞.【变式2:改编结论】设函数33,()2,x x x af x x x a⎧-≤=⎨->⎩,b x f x g -=)()(,若存在实数b ,使得函数)(x g 恰有3个零点,则实数a 的取值范围为______________. 【答案】(0,1).【变式3:改编问法】设函数33,()2,x x x af x x x a ⎧-≤=⎨->⎩,讨论)(x f 的值域.【答案】当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【解析】如图作出函数3()3h x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33h x x =-,知1x =-是函数()h x 的极大值点,1=x 是函数()h x 的极小值点,当1-<a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为)2(33a a a ---=0)1)(1(<-+a a a ,所以a a a 233-<-,所以函数)(x f 的值域为)2,(a --∞;当21≤≤-a 时,函数x x y 33-=在],(a -∞上的值域为]2,(-∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为22≤-a ,所以函数)(x f 的值域为]2,(-∞;当2>a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为a a a 323-<-,所以函数)(x f 的值域为]3,(3a a --∞;综上所述,当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.3.分段函数的解析式 3.1考题展示与解读例3【2015高考天津,理8】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( ) (A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭【解题能力要求】本题主要考查分段函数、函数零点、数形结合思想、转化与化归思想,是难题. 【答案】D【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b<<.【方法技巧归纳】较复杂的函数零点个数问题,常转化为对应方程解得个数问题,再通过移项、局部分离等方法转化为两边都是熟悉函数的方程解得个数问题,再转化为这两个函数的交点个数问题,画出对应函数的函数的图象,利用数形结合思想求解.3.2【典型考题变式】【变式1:改编条件】已知)(xf=⎩⎨⎧<-+≥-,1|1|,22xxxxx,函数)(xg=)1(+-xfb,若函数)()(xgxfy-=恰有2个零点,则实数b的取值范围为()A),1(+∞-.B.)1,23(-- C.),1(}23{+∞-⋃- D.]23,(--∞【答案】C【解析】由题知,)1(+xf=⎩⎨⎧-<-+-≥-1,1|2|1,12xxxx,所以)1()(++=xfxfy=⎪⎪⎩⎪⎪⎨⎧-<---<≤--<≤--+≥--2,5212,11,1,12222xxxxxxxxx,函数)()(xgxfy-=恰有2个零点,即方程bxfxf-++)1()(=0恰有两个不同的解,即函数)1()(++=xfxfy与by=恰有两个交点,)1()(++=xfxfy的图象如图所示,由图知,1->b或23-=b,故选C.【变式2:改编结论】已知函数()()22,2,2,2,x xf xx x⎧-≤⎪=⎨->⎪⎩函数()()2g x b f x=--,其中b R∈,若方程()()=0f x g x - 恰有2个不同的解,则b 的取值范围是( )(A )()72,{}4+∞⋃ (B )()2,+∞ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫ ⎪⎝⎭【答案】A【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩,即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()(2)0f x f x b +--=有2个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知2b >或47=b ,故选.A.【变式3:改编问法】已知)(x f 是定义在R 上的奇函数,当0≥x 时,)(x f =x x 42-,则方程2)(-=x x f 解的个数为 . 【答案】3【解析】当0<x 时,0>-x ,所以x x x f 4)()(2+-=-,因为)(x f 是定义在R 上的奇函数,所以)()(x f x f -=-=x x 42+, 所以x x x f 4)(2--=,所以⎪⎩⎪⎨⎧≥-<--=0,404)(22x x x x x x x f ,,所以2)()(+-=x x f x g =⎪⎩⎪⎨⎧≥+-<+--0,250,2522x x x x x x ,由)(x g y =的图象知,)(x g y =有3个零点, 所以方程2)(-=x x f 解的个数为3.4.分段函数图像 4.1考题展示与解读例4【2017天津,文8】已知函数||2,1,()2, 1.x x fx x x x +<⎧⎪=⎨+≥⎪⎩,设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是( )(A )[2,2]-(B )[23,2]-(C )[2,23]-(D )[23,23]-【命题意图探究】本题主要考查利用分段函数图像解含参数不等式恒成立问题,是难题. 【答案】A【解题能力要求】数形结合思想、转化思想、分类整合思想、运算求解能力【方法技巧归纳】一般不等式恒成立求参数1.可以选择参变分离的方法,转化为求函数最值的问题;2.也可以画出两边的函数图象,根据临界值求参数取值范围;3.也可转化为()0F x >的问题,转化讨论求函数的最值求参数的取值范围. 4.2【典型考题变式】【变式1:改编条件】已知函数()22,0,{ ,0x x f x x x ≤=>,若函数()()()1g x f x k x =--恰有两个零点,则实数k 的取值范围是A. ()(),14,-∞-⋃+∞B. ][(),14,-∞-⋃+∞ C. [)()1,04,-⋃+∞ D. [)[)1,04,-⋃+∞【答案】C【解析】()()()1g x f x k x =--恰有两个零点,等价于()y f x =与()1y k x =-有两个交点,同一坐标系,画出()y f x =与()1y k x =-的图象,直线过()0,1时, 1k =-,直线与()20y xx =≥,相切时4k =,由图知, [)()1,04,k ∈-⋃+∞时,两图象有两交点,即k 的取值范围是[)()1,04,-⋃+∞,故选C.【变式2:改编结论】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩,则函数||)(x x f y -=零点个数为 ( ) (A )0 (B )1 (C )2 (D )3【答案】A【解析】函数||)(x x f y -=零点个数,即为方程||)(x x f =解得个数,即为函数)(x f y =与函数||x y =交点个数,画出函数()f x 的图象与函数||x y =,由图像知,函数)(x f y =与函数||x y =交点个数0, 所以函数||)(x x f y -=零点个数为0,故选A.【变式3:改编问法】定义在1,ππ⎡⎤⎢⎥⎣⎦上的函数()f x ,满足()1f x f x ⎛⎫= ⎪⎝⎭,且当1,1x π⎡⎤∈⎢⎥⎣⎦时,()ln f x x =,若函数()()g x f x ax =-在1,ππ⎡⎤⎢⎥⎣⎦上有零点,则实数a 的取值范围是( )A. ln ,0ππ⎡⎤-⎢⎥⎣⎦ B. []ln ,0ππ- C. 1ln ,e ππ⎡⎤-⎢⎥⎣⎦ D. 1,2e π⎡⎤--⎢⎥⎣⎦【答案】B【解析】设[]1,x π∈,则11,1x π⎡⎤∈⎢⎥⎣⎦, 因为()1f x f x ⎛⎫=⎪⎝⎭且当1,1x π⎡⎤∈⎢⎥⎣⎦时,()ln f x x =, 所以()1ln f x f x x ⎛⎫==- ⎪⎝⎭,则()[]1ln ,,1ln ,1,{x x x x f x ππ⎡⎤∈⎢⎥⎣⎦-∈= ,在坐标系中画出函数()f x 的图象如图: 因为函数()()g x f x ax =- 与x 轴有交点, 所以直线y ax = 与函数()f x 的图象有交点, 由图得,直线y ax =与()f x 的图象相交于点1,ln ππ⎛⎫-⎪⎝⎭,即有ln lnaa ππππ-=⇒=- ,由图象可得,实数a 的取值范围是: []ln ,0ππ- 故选:B.5.分段函数性质 5.1考题展示与解读例5【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( ) (A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34} 【命题意图探究】本题主要考查分段函数的性质及函数方程解的个数问题,考查数形结合思想、运算求解能力,是中档题. 【答案】C【解题能力要求】数形结合思想、分类整合思想、运算求解能力. 【方法技巧归纳】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.5.2【典型考题变式】【变式1:改编条件】已知函数()()21(1)21ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是A.[]0,1 B. (]0,1 C. []1,1- D. (]1,1- 【答案】C【解析】当x ⩽1时,f (x )=−(x −1)2+1⩽1,当x >1时, ()()21,'10a af x x f x x x=++=-在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立,故a ⩽1,而1+a +1⩾1,即a ⩾−1,综上,a ∈[−1,1],故选C.【变式2:改编结论】已知()2243,0,23,0,x x x f x x x x ⎧-+≤=⎨--+>⎩不等式()()2f x a f a x +>-在上恒成立,则实数的取值范围是( ) A. B.C.D.【答案】A【变式3:改编问法】已知函数是定义在上的偶函数,当时, ,则函数的零点个数为( )个A. 6B. 2C. 4D. 8 【答案】A【解析】∵函数)(x f 是定义在上的偶函数,当时,,函数的零点就是函数)(x f 的图象与直线的交点的横坐标,作出函数在的图象,如图,由图可得:函数)(x f 图象与直线 有6个交点,故答案为:6.6.分段函数的综合应用 6.1考题展示与解读例6 【2017课标3,理15】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.【命题意图探究】本题主要考查分段函数不等式及分类整合思想,是中档题. 【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解题能力要求】分类整合思想、运算求解能力.【方法技巧归纳】分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集. 6.2【典型考题变式】【变式1:改编条件】已知函数()21,0,{1,0,x x f x x +≥=<则满足不等式()()212f x f x ->的x 的范围是( )A. ()0,21-B. ()1,21-+C. ()0,21-D. ()1,21-- 【答案】D【解析】()210{10x x f x x +≥=<,,,的图象如下图所示,不等式()()212f x f x ->等价于210{20x x ->≤,或2210{2012x x x x ->>->,,,解得121x -<<-,故选D .【变式2:改编结论】.已知函数(),0 {2,lnx x ef xlnx x e<≤=->,若正实数,,a b c互不相等,且()()()f a f b f c==,则abc的取值范围为()A. ()2,e eB. ()21,eC. 1,e e⎛⎫⎪⎝⎭D. 21,ee⎛⎫⎪⎝⎭【答案】A【解析】作出)(xf的图像,不妨设cba<<,由图知,201a b e c e<<<<<<,由题知,|ln||ln|ba=,即ba lnln=-,所以0)ln(lnln==+abba,所以ab=1,则cabc=),(2ee∈,故选A.【变式3:改编问法】已知定义在R上的函数()f x满足()()22f x f x+=,且当[]2,4x∈时,()224,232,34x x xf x xxx-+≤≤=+<≤⎧⎪⎨⎪⎩,()1g x ax=+,对[][]122,0,2,1x x∀∈-∃∈-,使得()()21g x f x=,则实数a的取值范围为()A.11,,88⎛⎫⎡⎫-∞-⋃+∞⎪⎪⎢⎝⎭⎣⎭B.11,00,48⎡⎫⎛⎤-⋃⎪⎢⎥⎣⎭⎝⎦C. (]0,8 D. ][11,,48⎛⎫-∞-⋃+∞⎪⎝⎭【答案】D【解析】因为[]()224,232,4,2,34x x xx f x xxx-+≤≤∈=+<≤⎧⎪⎨⎪⎩,23x≤≤时,()34f x≤≤,34x<≤时,()11932f x<≤,所以[]()92,4,32x f x∈≤≤()()22f x f x+=,20x∴-≤≤时,()[]39,2,148f x x≤≤∈--时,若0a>,则()211a g x a-+≤≤+,因为对[][]122,0,2,1x x ∀∈-∃∈-,使得()()21g x f x =, , ()()2g x f x = ,3214918a a ⎧-+≤⎪⎪∴⎨⎪+≥⎪⎩,解得18a ≥,若0a < ,则()121a g x a +≤≤-+ ,[]12,0x ∀∈- , []22,1x ∃∈-,使得()()21g x f x =, ∴9218918a a ⎧-+≥⎪⎪⎨⎪+≤⎪⎩,解得14a ≤-,所以a 取值范围是][11,,48⎛⎫-∞-⋃+∞ ⎪⎝⎭.三、课本试题探源必修1 P39页习题1.3 A 第6题:已知函数)(x f 是定义域在R 上的奇函数,当0≥x 时,)(x f =)1(x x +.画出函数)(x f 的图象,并求出函数的解析式.【解析】当0<x 时,0>-x ,所以)1()(x x x f --=-, 因为函数)(x f 是定义域在R 上的奇函数, 所以)1()()(x x x f x f --=-=-, 所以)1()(x x x f -=,所以函数的解析式⎩⎨⎧≥+<-=0),1(0),1()(x x x x x x x f ,函数图象如下图所示:四.典例高考试题演练1.【2017届湖北枣阳市3模】设函数()()121{ 1(1)x x f x lnx x -≤=->,则满足()2f x ≤的x 的取值范围是( )A.,2] B. [0,2] C. [1,+ ∞ ) D. [0,+ ∞)【答案】D【解析】1x >时, ()2f x ≤成立; 1x ≤时, 122x-≤,即1o x ≤≤,则[)0,x ∈+∞.选D.2.【2017届重庆市涪陵区二模】已知函数().若,则( )A.B.C. 2D. 1【答案】A 【解析】()()()10,12,1241f f f f a ⎡⎤-<∴-=-===⎣⎦ ,可得14a = ,故选 A. 3.【2017届辽宁省庄河市高级中学四模】已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( )A. 11,4⎡⎤-⎢⎥⎣⎦B. 1,14⎡⎤⎢⎥⎣⎦C. 12,4⎡⎤-⎢⎥⎣⎦D. 1,13⎡⎤⎢⎥⎣⎦【答案】B【解析】由函数的解析式可得函数的最小值为: ()11f =,则要考查的不等式转化为: 2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦,故选B. 4.【2018届湖南省长沙市长郡中学高三实验班选拔考试】若函数的图象上存在关于直线对称的点,则实数的取值范围是 A.B.C.D.【答案】D5.【2017届陕西省黄陵中学高考前模拟(一)】设定义域为R 的函数(),11||{,10x lg x f x x ≠-==,则关于x 的方程()()20fx bf x c ++=有7个不同实数解的充要条件是( )A. 0b <且0c >B. 0b >且0c <C. 0b <且0c =D. 0b ≥且0c = 【答案】C【解析】因为()0f x ≥,所以由题设可知0c <不成立,排除答案B ;当0,0b c 时,如取1,1b c =-=,则()()20fx bf x c ++=无解,故应排除答案A ;若0,0b c ==,也不合题意,所以应排除答案D ;当0b <且0c =时,方程()()20fx bf x c ++=可化为()()f 0,x f x b ==-符合题意,应选答案C 。

高中常见分段函数题型归纳.doc

高中常见分段函数题型归纳.doc

匕5(osxia(小,求 f{f[f(a)]} (avO)的值.分析:求此函数值关键是由内到外逐一求值,即由a<0, f(a)=2a,又0<2a<l,怎又声〉所以,分段函数常见题型及解法分段函数是指口变量在两个或两个以上不同的范围內,有不同的对应法则的函数,它是一个函数, 非儿个函数;它的定义域是各段函数定义域的并集,其值域也是各段函数值域的并集.与分段函数有关的类型题的求解,在教材小只出现了由分段函数作出其图象的题型,并未作深入说明, 因此,对于分段函数类型的求解不少同学感到困难较多,现举例说明其求解方法.1.求分段函数的定义域和值域= xw (o,2);例1・求函数xw[2,+oo);的定义域、值域. 解析:作图,利用“数形结合”易知门兀)的定义域为[一1,+°°),值 域为(-1, 2JU {3}.例2.求函数X®的值或解析:因为当沦0时,x 2+l>l ;当x<0时,-x 2<0.所以,原函数的值域M[1,4-OO )U(-oo,0).2.求分段函数的函数值例1.已知函数(I 兀 1> 1)/[/({)]解析:因为 /(i )=li-i|-2 = -14I 所以皿处心例2.(2知函数注:求分段函数值的关键是根据口变量的取值代入相应的函数段.g(x) = 练1 •设e\x<0. Inx, x > 0.练2.设2广Sv 2), log3(x2-i)3.求分段函数的最值4x + 3 (x<0)/(%) = * x-t-3(0<x< 1)例1.求函数卜小(X>1)的最大值.解析:当兀<° 吋,人ax (X )= /(°)= 3,当° VxWl 时,ZnaxS) = '(」)= ",当 X > 1 吋,~x + 5<-1 + 5 = 4综 |-有 f nax (") — °例2.设a 为实数,函数f(x)=x 2+|x ・a|+l,xWR,求f(x)的最小值. 分析:因为原函数可化为所以,只要分别求出其最小值,再取两者较小者即可.1+<!*■ —解:当 x<a 吋,函数 f(x)=x 2-x+a+l 才4,a < —所以若 S 则函数f(x)在(ga ]上单调递减,从而f(x)在(・oo,a ]上的最小值为f(a)=a 2+l.<i > —/(^ ■三*a若 2,贝ij 函数f (x )^(-oo,a ]上的最小值为24<ji-lJ(-!)---« b _若 2 ,则函数f (x )在[a,+s)上的最小值为 丫 4 ,且 2*若 2 ,则函数f(x)^E [a,+co)±的最小值为f(a)=a2+1.*丄综上,当 3时,函数f(x)的最小值是';当2 2时,函数f(x)的最小值是a'+l ;当 2时,函数f(x)的最小值是 4.注:分段函数最值求解方法是先分别求出各段函数的最值,再进行大小比鮫,从I 何达到求解的冃的.4.求分段函数的解析式当x>a 时, 函数例1.在同一平面直角坐标系中,函数y = 和y = 的图彖关于直线>, = x对称,现将-v =巩兀)的图彖沿兀轴向左平移2个单位,再沿y 轴向上平移1个单位,所得的图彖是由两条线段组成的折线(如图所示),则函数/(X )的表达式为()解析:当"[-2,0]时, 尸和+ 1,将其图象沿兀轴向右平移2个单位,再沿y 轴向下平移1个 单位,得解析式为)=+(兀-2) + 1-1 = *兀-1,所以 f(x) = 2x + 2 (XG [-1,0])?当"[0,1]时, y = 2x + l,将其图彖沿x 轴向右平移2个单位,再沿)'轴向下平移1个单位,得解析式y = 2(x-2) +1 -1 = 2x-4所以 /(x) = y% + 2 (尢c[0,2]),综上可得故选A.例2•某蔬菜基地种植西红柿,由历年市场行情得知,从2刀1 H 起的300天内,西红柿售价与上市时 间的关系用图1的一•条折线表示;西红柿的种植成木与上市时间的关系用图2的抛物线段表示: ⑴写出图1表示的市场售价与时间的函数关系式P=f(t),写出图2表示的种植成本与上市时间的函数关系 式Q=g(t); (II)认定市面上售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?解析:⑴由图I 可得市场售价与时间的关系为300 r (0£/£200))B. C.f(x) =fM =2x + 2 于+ 2 2x-2 7-2[2x-2D. f(x) =2x-6 f-3(-l<x<0)(0 < x < 2)(-l<x<0) (0<x<2) (l<x<2) (2<x<4)(l<x< 2) (2 < x < 4)-• 333 、・ 、 、--- JI/' ■ / i:: ・200 300°图1V23工 153 1 、■、 』1 1 11- •十: 1 11 1 • • 1 ill 0】53 :刃 300 t图22«-300 C200<«<?iJO) 山图2可得种植成本与吋间的函数关系为(0<t<300)o(II)设t 吋间的纯收益为h(t),由题意得丄尸丄“直(pit^2Da ).200 2 2-1^5(200 <Zi300X 2002 2再求h(t)的最大值即可。

专题2.17 分段函数(解析版)-2020年新课标高考数学题型(考点)全解密

专题2.17 分段函数(解析版)-2020年新课标高考数学题型(考点)全解密

秒杀题型:分段函数①分段函数求函数值:秒杀思路:按自变量所在区间代入到对应的解析式。

1.(2015年新课标全国卷II5)设函数⎩⎨⎧≥<-+=-,1,2,1),2(log 1)(12x x x x f x ,则)12(log )2(2f f +-= ( )A.3B.6C.9D.12 【解析】:3)2(=-f ,62)12(log 112log 22==-f ,所以选C 。

2.(高考题)设2lg 0()30ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰,若((1))1f f =,则a = .【解析】:0)1(=f Θ,13)0(320===⎰a dt t f a ,1=∴a 。

3.(高考题)设⎩⎨⎧≤>=)0(10)0(lg )(x x x x f x ,则((2))f f -= .【解析】:210lg )10())2((22-===---f f f 。

4.(高考题)设⎪⎩⎪⎨⎧<-=>=)0( 1)0( 0)0( 1)(x x x x f ,1()()0(x g x x ⎧=⎨⎩为有理数为无理数),则(())f g π的值为 ( )A.1B.0C.-1D.π 【解析】:0)0())((==f g f π,选B 。

5.(高考题)已知函数⎪⎩⎪⎨⎧<≤-<=20,tan 0,2)(3πx x x x x f ,则=))4((πf f . 【解析】:2)1())4((-=-=f f f π。

②已知函数值求自变量:秒杀思路:代入每一段求自变量,然后验证求出的自变量是否在对应的区间内,不在应舍去。

1.(2015年新课标全国卷I)已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩,且()3f a =-,则(6)f a -=( )A.74-B.54-C.34-D.14-【解析】:代入得7=a ,47)1(-=-f ,选A 。

分段函数常见题型解法-含答案

分段函数常见题型解法-含答案

【知识要点】分段函数问题是高中数学中常见的题型之一,也是高考经常考查的问题.主要考查分段函数的解析式、求值、解不等式、奇偶性、值域(最值)、单调性和零点等问题.1、 求分段函数的解析式,一般一段一段地求,最后综合.即先分后总.注意分段函数的书写格式为:1122()()()()n n n f x x D f x x D f x x D f x x D ∈⎧⎪∈⎪=⎨∈⎪⎪∈⎩,不要写成1122()()()()n n ny f x x D y f x x D f x x D y f x x D =∈⎧⎪=∈⎪=⎨∈⎪⎪=∈⎩.注意分段函数的每一段的自变量的取值范围的交集为空集,并集为函数的定义域D .一般左边的区域写在上面,右边的区域写在下面.2、分段函数求值,先要看自变量在哪一段,再代入那一段的解析式计算.如果不能确定在哪一段,就要分类讨论.注意小分类要求交,大综合要求并.3、分段函数解不等式和分段函数求值的方法类似,注意小分类要求交,大综合要求并.4、分段函数的奇偶性的判断,方法一:定义法.方法二:数形结合.5、分段函数的值域(最值),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.6、分段函数的单调性的判断,方法一:数形结合,方法二:先求每一段的单调性,再写出整个函数的单调性.7、分段函数的零点问题,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的.虽然分段函数是一种特殊的函数,在处理这些问题时,方法其实和一般的函数大体是一致的. 【方法讲评】【例1】已知函数)(x f 对实数R x ∈满足)1()1(,0)()(+=-=-+x f x f x f x f ,若当[)1,0∈x 时,21)23(),1,0()(-=≠>+=f a a b a x f x .(1)求[]1,1-∈x 时,)(x f 的解析式;(2)求方程0log )(4=-x x f 的实数解的个数.(2) )()2()1()1(,0)()(x f x f x f x f x f x f =+∴+=-=-+ )(x f ∴是奇函数,且以2为周期.方程0log )(4=-x x f 的实数解的个数也就是函数x y x f y 4log )(==和的交点的个数.在同一直角坐标系中作出这俩个函数的图像,由图像得交点个数为2,所以方程0log )(4=-x x f 的实数解的个数为2.【点评】(1)本题的第一问,根据题意要把[1,1]-分成三个部分,即(1,0),1,(0,1)x x x ∈-=±∈,再一段一段地求. 在求函数的解析式时,要充分利用函数的奇偶性、对称性等. (2)本题第2问解的个数,一般利用数形结合解答.【检测1】已知定义在R 上的函数()()22f x x =-.(Ⅰ)若不等式()()223f x t f x +-<+对一切[]0,2x ∈恒成立,求实数t 的取值范围;(Ⅱ)设()g x =,求函数()g x 在[]0,(0)m m >上的最大值()m ϕ的表达式.【例2】已知函数()()22log 3,2{21,2x x x f x x ---<=-≥ ,若()21f a -= ,则()f a = ( )A. 2-B. 0C. 2D. 9【解析】当22a -< 即0a >时, ()()211log 3211,22a a a ---=⇒+==- (舍); 当22a -≥ 即0a ≤时, ()2222111log 42a a f a ---=⇒=-⇒=-=- ,故选A.【点评】(1)要计算(2)f a -的值,就要看自变量2a -在分段函数的哪一段,但是由于无法确定,所以要就2222a a -<-≥和分类讨论. (2)分类讨论时,注意数学逻辑,小分类要求交,大综合要求并.当0a >时 ,解得12a =-,要舍去.【例3】【2017山东,文9】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫=⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【点评】(1)要化简()()1f a f a =+,必须要讨论a 的范围,要分1a ≥和01a <<讨论.当1a≥时,可以解方程2(1)2(11)a a -=+-,得方程没有解.也可以直接由2(1)y x =-单调性得到()()1f a f a ≠+.【检测2】已知函数210()0xx f x x -⎧-≤⎪=>,若0[()]1f f x =,则0x = .【例3】已知函数则的解集为( )A.B.C.D.【点评】(1)本题中()f x 的自变量x 不确定它在函数的哪一段,所以要分类讨论. (2)当20x -<<时,计算()f x -要注意确定x -的范围,02x <-<,所以求()f x -要代入第一段的解析式.数学思维一定要注意逻辑和严谨. (3)分类讨论时,一定要注意数学逻辑,小分类要求交,大综合要求并.【检测3】已知函数()()()22log 2,02,{2,20,x x f x f x x --+≤<=---<<则()2f x ≤的解集为__________.【检测4】【2017课标3,理15】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.【例4】判断函数⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f 的奇偶性 【解析】由题得函数的定义域关于原点对称.设0,x <2()f x x x =+,则0x ->,222()()()()f x x x x x x x f x -=---=--=-+=- 设0,x >2()f x x x =-+则0x -<,222()()()()f x x x x x x x f x -=--=-=--+=- 所以函数()f x 是奇函数.【点评】(1)对于分段函数奇偶性的判断,也是要先看函数的定义域,再考虑定义,由于它是分段函数,所以要分类讨论. (2)注意,当0x <时,求()f x -要代入下面的解析式,因为0x ->,不是还代入上面一段的解析式.【检测5】已知函数()f x 是定义在R 上的奇函数,且当0x ≥时22)(+=x xx f . (1)求()f x 的解析式;(2)判断()f x 的单调性(不必证明);(3) 若对任意的t R ∈,不等式0)2()3(22≤++-t t f t k f 恒成立,求k 的取值范围.【例5】若函数62()3log 2a x x f x x x -+≤⎧=⎨+>⎩(01)a a >≠且的值域是[4,)+∞,则实数a 的取值范围是 .【点评】(1)分段函数求最值(值域),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.(2)本题既可以用方法一,也可以利用数形结合分析解答. (3)对于对数函数log a y x =,如果没有说明a 与1的大小关系,一般要分类讨论.【检测6】设()()2,014,0x a x f x x a x x ⎧-≤⎪=⎨+++⎪⎩,>若()0f 是()f x 的最小值,则a 的取值范围为( ) A. []2,3- B. []2,0- C. []1,3 D. []0,3【检测7】已知函数()()222log 23,1{1,1x ax a x f x x x -+≥=-<的值域为R ,则常数a 的取值范围是( )A. ][()1123-,,B. ][()12-∞+∞,,C. ()[)1123-,,D. (,0]-∞{}[)123,【例6】若()()3,1{log ,1a a x a x f x x x --<=> 是(),-∞+∞上的增函数,那么a 的取值范围是( ).A. ()1,+∞B. 3,32⎡⎫⎪⎢⎣⎭C. (),3-∞D. ()1,3【点评】(1)函数是一个分段函数是增函数必须满足两个条件,条件一:分段函数的每一段必须是增函数;条件二:左边一段的最大值必须小于等于右边一段的最小值. 函数是一个分段函数是减函数必须满足两个条件,条件一:分段函数的每一段必须是减函数;条件二:左边一段的最小值必须大于等于右边一段的最大值. (3)一个分段函数是增函数,不能理解为只需每一段是增函数. 这是一个必要不充分条件.【检测8】已知函数()[)()232,0,32,,0x x f x x a a x ⎧∈+∞⎪=⎨+-+∈-∞⎪⎩在区间(),-∞+∞上是增函数,则常数a 的取值范围是 ( )A .()1,2B .(][),12,-∞+∞C .[]1,2D .()(),12,-∞+∞【例7】已知函数()21,0,{log ,0,x x f x x x +≤=>则函数()()1y ff x =+的所有零点构成的集合为__________.【点评】(1)分段函数的零点问题,一般有三种方法,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的. (2)本题由于函数()()1y f f x =+的图像不方便作出,所以选择解方程的方法解答. (3)在函数()()1y f f x =+中,由于没有确定x 的取值范围,所以要分类讨论.【例8()()g x f x k =-仅有一个零点,则k 的取值范围是________.【解析】函数()()22,1{91,1x xf x x x x >=-≤ ,若函数()()g x f x k =- 仅有一个零点,即()f x k = ,只有一个解,在平面直角坐标系中画出, ()y f x =的图象,结合函数图象可知,方程只有一个解时,)4,23⎛⎫ ⎪⎝⎭ )4,23⎛⎫⎪⎝⎭.【点评】(1)直接画()()g x f x k =-的图像比较困难,所以可以利用方程+图像的方法. 分离参数得到()f x k =,再画图数形结合分析. 学.科.网【例9】已知函数关于的方程,有不同的实数解,则的取值范围是( )A. B.C. D.【解析】【点评】本题考查了类二次方程实数根的相关问题,以及数形结合思想方法的体现,这种嵌入式的方程形式也是高考考查的热点,这种嵌入式的方程首先从二次方程的实数根入手,一般因式分解后都能求实根,得到和,然后再根据导数判断函数的单调性和极值等性质,画出函数的图象,若直线和函数的交点个数得到参数的取值范围.【检测9】已知函数()()1114{(1)x x f x lnx x +≤=>,则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是( )(注: e 为自然对数的底数)A. 10,e ⎛⎫ ⎪⎝⎭B. 10,4⎛⎫ ⎪⎝⎭C. 11,4e ⎡⎫⎪⎢⎣⎭D. 1,e 4⎡⎫⎪⎢⎣⎭高中数学常见题型解法归纳及反馈检测第15讲:分段函数中常见题型解法参考答案【反馈检测1答案】(Ⅰ)11t -<<(Ⅱ)()222,011,112,1m m m m m m m m ϕ⎧-+<≤⎪⎪=<≤+⎨⎪->⎪⎩方法二:不等式恒成立等价于恒成立 .即等价于对一切恒成立,即恒成立,得恒成立, 当时,,,因此,实数t 的取值范围是11t -<<.【反馈检测2答案】或1【反馈检测2详细解析】当时,,则,即 ;当时,,则,即。

备战2021高考理数热点题型和提分秘籍 专题04 函数及其表示(原卷版)

备战2021高考理数热点题型和提分秘籍 专题04 函数及其表示(原卷版)

专题四 函数及其表示【高频考点解读】1.了解构成函数的要素,会求一些简洁函数的定义域和值域;了解映射的概念.2.在实际情境中,会依据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简洁的分段函数,并能简洁的应用.通过对近几年高考试题的分析看出,本课时内容也是高考考查的重点之一,题型是选择题、填空题.主要考查函数的概念、解析式及分段函数等,试题难度较小.【热点题型】 题型一 函数定义域例1、(2021年高考安徽卷)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 【提分秘籍】求函数的定义域时,应留意(1)不要对解析式进行化简变形,以免定义域变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应当用并集符号“∪”连接.【举一反三】 求函数f (x )=lgx 2-2x 9-x 2的定义域;(2)已知函数f (2x )的定义域是[-1,1],求f (x )的定义域. 【热点题型】题型二 函数解析式的求法【例2】 (1)已知f (x +1)=x 2+4x +1,求f (x )的解析式. (2)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x ). 【提分秘籍】求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要留意新元的取值范围;(4)解方程组法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可依据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).【举一反三】已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6C .f (x )=6x +9D .f (x )=2x +3【热点题型】题型三 分段函数求值例3、已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f x +1,x <4,则f (2+log 23)的值为A.124B.112C.16D.13【举一反三】已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12 B.45 C .2D .9【热点题型】题型四 分类争辩思想在分段函数中的应用例4、已知函数f (x )=⎩⎪⎨⎪⎧log 2x +1,x >32x -3+1,x ≤3满足f (a )=3,则f (a -5)的值为( )A .log 23 B.1716 C.32 D .1【提分秘籍】由于分段函数在不同定义区间上具有不同的解析式,在处理分段函数问题时应对不同的区间进行分类求解,然后整合,这恰好是分类争辩的一种体现.1.解决本题时,由于a 的取值不同限制了f (a )的表达,从而对a 进行分类争辩. 2.运用分类争辩的思想解题的基本步骤 (1)确定争辩对象和确定争辩的区域;(2)对所争辩的问题进行合理的分类(分类时需要做到不重不漏,标准统一、分层不越级); 【举一反三】设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈-∞,1x 2,x ∈[1,+∞若f (x )>4,则x 的取值范围是________.【高考风向标】1.(2022·安徽卷)设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( ) A.12 B.32 C .0 D .-122.(2022·北京卷)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2 C .y =2-x D .y =log 0.5(x +1)3.(2022·福建卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)4.(2022·江西卷)函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1] B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞) 5.(2022·山东卷)函数f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12 B .(2,+∞) C. ⎝⎛⎭⎫0,12∪(2,+∞) D. ⎝⎛⎦⎤0,12∪[2,+∞) 6.(2021·江西卷)已知函数f(x)=a ⎝⎛⎭⎫1-2⎪⎪⎪⎪x -12,a 为常数且a>0. (1)证明:函数f(x)的图像关于直线x =12对称;(2)若x 0满足f(f(x 0))=x 0,但f(x 0)≠x 0,则称x 0为函数f(x)的二阶周期点.假如f (x)有两个二阶周期点x 1,x 2,试确定a 的取值范围;(3)对于(2)中的x 1,x 2和a ,设x 3为函数 f(f(x))的最大值点,A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(x 3,0).记△ABC 的面积为S(a),争辩S(a)的单调性.7.(2021·江西卷)设函数f(x)在(0,+∞)内可导,且f(e x )=x +e x ,则f′(1)=________.10.(2021·江西卷)如图1-3所示,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为x(0<x<π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f(x)的图像大致是( )图1-3图1-48.(2021·江西卷)函数y =xln(1-x)的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1]9.(2021·辽宁卷)已知函数f(x)=x 2-2(a +2)x +a 2,g(x)=-x 2+2(a -2)x -a 2+8.设H 1(x)=max {}f (x ),g (x ),H 2(x)=min {}f (x ),g (x )(max {}p ,q 表示p ,q 中的较大值,min {}p ,q 表示p ,q 中的较小值).记H 1(x)的最小值为A ,H 2(x)的最大值为B ,则A -B =( )A .16B .-16C .a 2-2a -16D .a 2+2a -1610.(2021·全国卷)已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0) D.⎝⎛⎭⎫12,111. (2021·陕西卷)设函数f(x)=⎩⎪⎨⎪⎧⎝⎛⎭⎫x -1x 6,x<0,-x ,x≥0,则当x>0时,f[f(x)]表达式的开放式中常数项为( )A .-20B .20C .-15D .15 12. (2021·四川卷)函数y =x 33x -1的图像大致是( )图1-513. (2021·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.依据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-4所示,经销商为下一个销售季度购进了130 t 该农产品,以X(单位:t ,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)依据直方图估量利润T 不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望.图1-4【随堂巩固】1.下列函数中,与函数y =13x定义域相同的函数为( ) A .y =1sin x B .y =ln xxC .y =x e xD .y =sin xx2.下列函数中,不满足f (2x )=2f (x )的是( )A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x3.已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f x +1+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .1 C .2D .34.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )5.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A .x -1B .x +1C .2x +1D .3x +36.依据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,167.具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①8.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________.9.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.10.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.11.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.12.若函数的定义域为{x |-3≤x ≤6,且x ≠4},值域为{y |-2≤y ≤4,且y ≠0},试在下图中画出满足条件的一个函数的图象.13.已知定义域为R 的函数f (x )满足f (f (x )-x 2+x )=f (x )-x 2+x . (1)若f (2)=3,求f (1);又若f (0)=a ,求f (a );(2)设有且仅有一个实数x 0,使得f (x 0)=x 0,求函数f (x )的解析式.14.若函数f (x )=xax +b(a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.15.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km ,甲10时动身前往乙家.如图所示,表示甲从家动身到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y=f (x )的函数解析式.16.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能依据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?17.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.。

高中数学函数的解析式与分段函数知识点题目答案

高中数学函数的解析式与分段函数知识点题目答案

专题二 函数的解析式与分段函数1.函数的表示方法函数的表示方法有三种,分别为解析法、列表法和图象法.同一个函数可以用不同的方法表示. 2.应用三种方法表示函数的注意事项(1)解析法:一般情况下,必须注明函数的定义域;(2)列表法:选取的自变量要有代表性,应能反映定义域的特征;(3)图象法:注意定义域对图象的影响.与x 轴垂直的直线与其最多有一个公共点. 3.函数的三种表示方法的优缺点4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.5.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. (3)各段函数的定义域不可以相交. 考点一 求函数的解析式 【方法总结】函数解析式的常见求法(1)配凑法:已知f (h (x ))=g (x ),求f (x )的问题,往往把右边的g (x )整理或配凑成只含h (x )的式子,然后用x 将h (x )代换.(2)换元法:已知f (h (x ))=g (x ),求f (x )时,往往可设h (x )=t ,从中解出x ,代入g (x )进行换元.应用换元法时要注意新元的取值范围.(3)待定系数法:已知函数的类型(如一次函数、二次函数)可用待定系数法,比如二次函数f (x )可设为f (x )=ax 2+bx +c (a ≠0),其中a ,b ,c 是待定系数,根据题设条件,列出方程组,解出a ,b ,c 即可.(4)解方程组法:已知f (x )满足某个等式,这个等式除f (x )是未知量外,还有其他未知量,如f ⎝⎛⎭⎫1x (或f (-x ))等,可根据已知等式再构造其他等式组成方程组,通过解方程组求出f (x ).【例题选讲】[例1] (1) 已知1()xf x +=x 2+1x 2+1x ,则f (x )=__________;答案x 2-x +1解析 (配凑法)1()x f x+=x 2+1x 2+1x =⎝ ⎛⎭⎪⎫x +1x 2-x +1x +1.令x +1x =t (t ≠1),得f (t )=t 2-t +1,即f (x )=x 2-x +1.(2) 已知2(1)f x +=lg x ,则f (x )=__________;答案 lg 2x -1(x >1) 解析 (换元法)令2x +1=t ,得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1,x ∈(1,+∞).(3) 已知f (x )是二次函数,且f (0)=2,f (x +1)=f (x )+x +3,则f (x )=__________;答案 12x 2+52x +2 解析 (待定系数法)设f (x )=ax 2+bx +c (a ≠0),由f (0)=c =2,得f (x )=ax 2+bx +2,则f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=2ax +a +b =x +3,所以2a =1,且a +b =3,解得a =12,b =52,故f (x )=12x 2+52x +2. (4) 已知函数f (x )满足f (-x )+2f (x )=2x ,则f (x )=__________;答案 2x +1-2-x 3 解析 (解方程组法)由f (-x )+2f (x )=2x ,①.得f (x )+2f (-x )=2-x ,②.①×2-②,得3f (x )=2x +1-2-x .即f (x )=2x +1-2-x 3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R ).(5) 若函数f (x )满足方程af (x )+f ⎝⎛⎭⎫1x =ax ,x ∈R ,且x ≠0,a 为常数,a ≠±1,且a ≠0,则f (x )=________. 答案 a (ax 2-1)(a 2-1)x 解析 (解方程组法)因为af (x )+f ⎝⎛⎭⎫1x =ax ,所以af ⎝⎛⎭⎫1x +f (x )=a x ,两方程联立解得f (x )=a (ax 2-1)(a 2-1)x. 【对点训练】1.已知f (x +1)=x +2x ,则f (x )=________________.1.答案 x 2-1(x ≥1) 解析 设t =x +1,则x =(t -1)2,t ≥1,代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1,x ≥1.2.已知函数f (x -1)=xx +1,则函数f (x )的解析式为( )A .f (x )=x +1x +2B .f (x )=x x +1C .f (x )=x -1xD .f (x )=1x +22.答案 A 解析 令x -1=t ,则x =t +1,∴f (t )=t +1t +2,即f (x )=x +1x +2.故选A .3.已知1()f x x+=x 2+1x 2,则f (x )=________________.3.答案 x 2-2(x ≥2或x ≤-2) 解析 由于1()f x x +=x 2+1x 2=⎝⎛⎭⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤- 2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.4.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x4.答案 B 解析 二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,可设二次函数g (x )的解析式 为g (x )=ax 2+bx (a ≠0),可得⎩⎪⎨⎪⎧a +b =1,a -b =5,解得a =3,b =-2,所以二次函数g (x )的解析式为g (x )=3x 2-2x .故选B .5.定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )=________________.5.答案 23lg(x +1)+13lg(1-x )(-1<x <1) 解析 当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).①,将x 换成-x ,则-x 换成x ,得2f (-x )-f (x )=lg(-x +1).②,由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x )(-1<x <1).6.已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________.6.答案 2x -1x (x ≠0) 解析 ∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①.把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.②.联立①② 可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x(x ≠0).7.定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=_____. 7.答案 -12x (x +1) 解析 ∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x +1).考点二 分段函数求值 【方法总结】求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值,直到求出具体值为止;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点; (4)求值时注意函数奇偶性、周期性的应用. 【例题选讲】[例2] (1) 已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f [f (1)]=( )A .-12 B .2 C .4 D .11答案 C 解析∵函数f (x )=⎩⎨⎧x +1x -2,x >2,x 2+2,x ≤2,∴f (1)=12+2=3,∴f [f (1)]=f (3)=3+13-2=4.故选C .(2) (2015·全国Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12答案 C 解析 ∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3.∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.(3) 已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3答案 B 解析 由题意得,f (-2)=a -2+b =5,①.f (-1)=a -1+b =3,②.联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2.(4) 已知f (x )=⎩⎪⎨⎪⎧x -3,x ≥9,f (f (x +4)),x <9,则f (7)=_______.答案 6 解析 ∵7<9,∴f (7)=f (f (7+4))=f (f (11))=f (11-3)=f (8).又∵8<9,∴f (8)=f (f (12))=f (9)=9-3=6.即f (7)=6.(5) (2017·山东)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6 D .8答案 C 解析 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a ,因为f (a )=f (a +1),所以a =2a ,解得a =14或a =0(舍去),所以f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6;当a ≥1时,a +1≥2,所以f (a )=2(a -1),f (a +1)=2(a +1-1)=2a ,所以2(a -1)=2a ,无解;综上,f ⎝⎛⎭⎫1a =6.故选C .【对点训练】8.设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1B .14C .12D .328.答案 C 解析 因为f (-2)=2-2=14,所以f (f (-2))=f ⎝⎛⎭⎫14=1-14=12,故选C . 9.已知函数f (x )=⎩⎨⎧3sin πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫23的值为( ) A .12 B .-12 C .1 D .-19.答案 B 解析 f ⎝⎛⎭⎫23=f ⎝⎛⎭⎫-13+1=3sin ⎝⎛⎭⎫-π3+1=-12. 10.已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f (x +1),x <4,则f (1+log 25)的值为( )A .14B .⎝⎛⎭⎫12 21log 5+C .12D .12010.答案 D 解析 因为2<log 25<3,所以3<1+log 25<4,则4<2+log 25<5,则f (1+log 25)=f (1+log 25+1)=f (2+log 25)=⎝⎛⎭⎫12 22log 5+=14×⎝⎛⎭⎫12 2log 5=14×15=120,故选D . 11.已知函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,则f (-2 019)=( )A .e 2B .eC .1D .1e11.答案 D 解析 当x <-2时,f (-2 019)=f (2 019),当x >2时,函数周期为4,f (2 019)=f (-1)=1e.考点三 求参数或自变量的值或范围 【方法总结】已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解. 【例题选讲】[例3] (1) 已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,|log 2x |,x >0,则使f (x )=2的x 的集合是( )A .⎩⎨⎧⎭⎬⎫14,4 B .{1,4} C .⎩⎨⎧⎭⎬⎫1,14 D .⎩⎨⎧⎭⎬⎫1,14,4答案 A 解析 由题意可知f (x )=2,即⎩⎨⎧2x =2,x ≤0或⎩⎪⎨⎪⎧|log 2x |=2,x >0,解得x =14或4.故选A .(2) 函数f (x )=⎩⎪⎨⎪⎧sin πx2,-1<x <0,e x -1,x ≥0满足f (1)+f (a )=2,则a 的所有可能取值为( )A .1或-2 2 B .- 2 2 C .1 D .1或22答案 A 解析 因为f (1)=e 1-1=1且f (1)+f (a )=2,所以f (a )=1,当-1<a <0时,f (a )=sin(πa 2)=1,因为0<a 2<1,所以0<πa 2<π,所以πa 2=π2⇒a =-22;当a ≥0时,f (a )=e a -1=1⇒a =1.故a =-22或1.(3) (2017·全国Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________. 答案 ⎝⎛⎭⎫-14,+∞ 解析 由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. (4) (2018·全国Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0) 答案 D 解析 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x ,即-(x +1)<-2x ,解得x <1.因此不等式的解集为(-∞,-1].②当⎩⎨⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x ,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0).法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示.结合图象知,要使f (x +1)<f (2x ),则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,∴x <0,故选D .(5) 设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x , x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A .⎣⎡⎦⎤23,1B .[0,1]C .⎣⎡⎭⎫23,+∞ D .[1,+∞) 答案 C 解析 由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.综上,a ≥23,故选C .【对点训练】12.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0,3x 2,x <0,且f (x 0)=3,则实数x 0的值为________.12.答案 -1或1 解析 由条件可知,当x 0≥0时,f (x 0)=2x 0+1=3,所以x 0=1;当x 0<0时,f (x 0)=3x 20=3,所以x 0=-1.所以实数x 0的值为-1或1.13.已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或313.答案 A 解析 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516. 14.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x <0.若a [f (a )-f (-a )]>0,则实数a 的取值范围为( )A .(1,+∞)B .(2,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-2)∪(2,+∞) 14.答案 D 解析 根据题意,当a >0时,f (a )-f (-a )>0,即a 2+a -[-3(-a )]>0,∴a 2-2a >0,解得a >2;当a <0时,f (a )-f (-a )<0,即-3a -[(-a )2+(-a )]<0,∴a 2+2a >0,解得a <-2.综上,实数a 的取值范围为(-∞,-2)∪(2,+∞).故选D .15.已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥1,1,x <1,则满足f (2x +1)<f (3x -2)的实数x 的取值范围是( )A .(-∞,0]B .(3,+∞)C .[1,3)D .(0,1)15.答案 B 解析 法一:由f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥1,1,x <1可得当x <1时,f (x )=1,当x ≥1时,函数f (x )在[1,+∞)上单调递增,且f (1)=log 22=1,要使得f (2x +1)<f (3x -2),则⎩⎪⎨⎪⎧2x +1<3x -2,3x -2>1,解得x >3,即不等式f (2x +1)<f (3x -2)的解集为(3,+∞),故选B .法二:当x ≥1时,函数f (x )在[1,+∞)上单调递增,且f (x )≥f (1)=1,要使f (2x +1)<f (3x -2)成立,需⎩⎪⎨⎪⎧2x +1≥1,2x +1<3x -2或⎩⎪⎨⎪⎧2x +1<1,3x -2>1,解得x >3.故选B . 16.(2013·全国Ⅱ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln(x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]16.答案 D 解析 当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a+2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=ln(x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,选择D .。

分段函数的几种常见题型及解法好

分段函数的几种常见题型及解法好

分段函数的几种常见题型及解法分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 笔者就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数122[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.(05年浙江理)已知函数2|1|2,(||1)()1,(||1)1x x f x x x--≤⎧⎪=⎨>⎪+⎩求1[()]f f . 【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-.3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==,当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 22(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 【解析】当[2,0]x ∈-时, 11y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)xx x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )yxACD6.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.7.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x x x ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为1(,]-∞-.8.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】 若142x -=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =, 则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.9.解分段函数的不等式例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x -->, 解得01x <-, 当00x >时,xxy1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()141310f x x ≥⇔⇔⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.。

最全分段函数概念专题(讲义)完整版.doc

最全分段函数概念专题(讲义)完整版.doc

分段函数专题(讲义)题型一:分段函数的求值1、(辽宁理)设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________2、设函数,,,,)2()2(22)(2>≤+=⎪⎩⎪⎨⎧x x x x x f 则f (-4)=________,又已知f (x 0)=8,则x 0=3、已知,,,,,)0()0()0(10)(>=<=⎪⎪⎩⎪⎪⎨⎧+x x x x x f π则f {f [f (-1)]}的值是( ) A .π+1 B .0 C .1 D .π4、已知函数,,,,,,)2()21()1(22)(2≥<<--≤+=⎪⎪⎩⎪⎪⎨⎧x x x x x x x f 若f (a )=3,则a =_______ 5、(2006山东)设1232(2),()(1)(2).log x x f x x e x -⎧<⎪=⎨-≥⎪⎩则[(2)]f f =6、设222(1),()1(1).1x x f x x x⎧--≤⎪=⎨>⎪+⎩ 则1[()]2f f = ( )7、已知函数f (x )=⎩⎨⎧2x , x >0x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于题型二、递推式求值1、 已知sin (0),()(1)1(0).x x f x f x x π<⎧=⎨-->⎩则1111()()66f f -+的值为2、定义在R 上的函数f (x )满足f (x )=,则f (3)的值为( )A . ﹣1B . ﹣2C . 1D . 23.给出函数f (x )=则f (log 23)等于( ) A .﹣B .C .D .4、设函数,则f (5)= ____题型三、分段函数的单调性 1、已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是(A )(0,1) (B )1(0,)3(C )11[,)73(D )1[,1)72、若f (x )=⎩⎪⎨⎪⎧a x (x >1),⎝ ⎛⎭⎪⎫4-a 2x +2(x ≤1)是R 上的单调递增..函数,则实数a 的取值范围为3、下列区间中,函数()f x =ln(2)x ∣-∣在其上为增函数的是 (A )(-,1∞] (B )41,3⎡⎤-⎢⎥⎣⎦ (C ))30,2⎡⎢⎣(D )[)1,24、已知函数⎩⎨⎧+∞∈-∞∈--=),1[(log ]1,(()1)(5.0()(x xx x a x f a 在区间(+∞∞-,)内是减函数,则a 的取值范围是A (0,1)B (0,0.5 )C ( 5.0,∞-)D (0,1)5、写出函数()|12||2|f x x x =++-的单调减区间 题型四、解不等式问题1、设函数2(1).(1)()4 1.(1)x x f x x x ⎧+<⎪=⎨--≥⎪⎩,则使得()1f x ≥的自变量x 的取值范围是__________2已知1(0)()1(0)x f x x ≥⎧=⎨-<⎩ ,则不等式(2)(2)5x x f x +++≤的解集是________3、(山东理)设f(x)= 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式f(x)>2的解集为 4、若函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是5、设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是6、设函数⎪⎩⎪⎨⎧>≤-=-0012)(21x xx x f x ,若1)(0>x f 则x 0的取值范围是7、设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( )8、设f (x)=1()0x x ⎧⎨⎩为有理数(为无理数),使所有x 均满足x ·f (x)≤g (x)的函数g(x)是( )A .g (x)=sinxB .g (x)=xC .g (x)=x 2D .g (x)=|x| 题型五:方程根的问题1、已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为2、已知函数若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( ) A . (1,10) B . (5,6) C . (10,12) D . (20,24)3、函数的零点个数为( ) A . 3 B . 2C .1 D . 04、函数的图象和函数g (x )=log 2x 的图象的交点个数是( )A . 4B . 3C .2 D . 15、设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为6、直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是7、已知函数f(x)= 22111xx x ax x ⎧+<⎪⎨+≥⎪⎩,,若f (f (0))=4a ,则实数a 等于8、.已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是________.9、设⎪⎩⎪⎨⎧>≤-=111)(2x xx x x f ,若a x f =)(有且仅有一个实数解,则实数a 的取值范围是10、设定义为R 的函数lg 1,1,()0,0.x x f x x ⎧-≠⎪=⎨=⎪⎩则关于x 的方程2()()0f x bf x c ++=有7个不同的实数解的充要条件是 ( )A. 0b <且0c >B. 0b >且0c <C. 0b <且0c =D. 0b ≥且0c = 题型六:解析式1、(10山东4)设f(x)为定义在R 上的奇函数,当x ≥0时,f(x)=2x +2x+b(b 为常数),则f(-1)=(A) 3 (B) 1 (C)-1 (D)-3 2、已知f(x)是奇函数.当x >0时.f(x)=2x +lg(1+x).则x <0时,f(x)=3、已知函数)(x f 是定义在),(∞+∞-上的偶函数. 当)0,(∞-∈x 时,4)(x x x f -=,则当),0(∞+∈x 时,=)(x f .4、已知函数)(x f 是定义在R 上的奇函数,且当20,()2 3.x f x x x>=-+时求f(x)的解析式.题型七:值域问题1、求函数y =|x +1|+|x -2|的值域.2、已知函数f (x )的解析式为求函数f (x )的最大值.3、设函数()22g x x =-()x ∈R ,()()()()()4,,,,g x x x g x f x g x x x g x ++<⎧⎪=⎨-≥⎪⎩则()f x 的值域是( ).A.()9,01,4⎡⎤-+∞⎢⎥⎣⎦U B.[)0,+∞,C.9,4⎡⎫+∞⎪⎢⎣⎭ D.()9,02,4⎡⎤-+∞⎢⎥⎣⎦U赠送以下资料《二次函数的应用》中考题集锦10题已知抛物线222(0)y x mx m m =+-≠.(1)求证:该抛物线与x 轴有两个不同的交点;(2)过点(0)P n ,作y 轴的垂线交该抛物线于点A 和点B (点A 在点P 的左边),是否存在实数m n ,,使得2AP PB =?若存在,则求出m n ,满足的条件;若不存在,请说明理由.答案:解:(1)证法1:22229224m y x mx m x m ⎛⎫=+-=+- ⎪⎝⎭,当0m ≠时,抛物线顶点的纵坐标为2904m -<, ∴顶点总在x 轴的下方.而该抛物线的开口向上,∴该抛物线与x 轴有两个不同的交点.(或者,当0m ≠时,抛物线与y 轴的交点2(02)m -,在x 轴下方,而该抛物线的开口向上,∴该抛物线与x 轴有两个不同的交点.)证法2 :22241(2)9m m m ∆=-⨯⨯-=,当0m ≠时,290m >,∴该抛物线与x 轴有两个不同的交点. (2)存在实数m n ,,使得2AP PB =.设点B 的坐标为()t n ,,由2AP PB =知,①当点B 在点P 的右边时,0t >,点A 的坐标为(2)t n -,, 且2t t -,是关于x 的方程222x mx m n +-=的两个实数根.2224(2)940m m n m n ∴∆=---=+>,即294n m >-.且(2)t t m +-=-(I ),2(2)t t m n -=--(II )由(I )得,t m =,即0m >.将t m =代入(II )得,0n =.∴当0m >且0n =时,有2AP PB =.②当点B 在点P 的左边时,0t <,点A 的坐标为(2)t n ,, 且2t t ,是关于x 的方程222x mx m n +-=的两个实数根.2224(2)940m m n m n ∴∆=---=+>,即 294n m >-.且2t t m +=-(I ),222t t m n =--(II )由(I )得,3mt =-,即0m >. 将3m t =-代入(II )得,2209n m =-且满足294n m >-.∴当0m >且2209n m =-时,有2AP PB =第11题一人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系式为210S t t =+,若滑到坡底的时间为2秒,则此人下滑的高度为( )A.24米 B.12米C.123米 D.6米答案:B第12题我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用如图(1)中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用如图(2)的抛物线表示. ABxyP OAB xyPO6080 100 120 140 160 y (天)60 z (元) 5040 853(180,92)(1)直接写出图(1)中表示的市场销售单价y (元)与上市时间t (天)(0t >)的函数关系式;(2)求出图(2)中表示的种植成本单价z (元)与上市时间t (天)(0t >)的函数关系式;(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500克.)答案:解:(1)依题意,可建立的函数关系式为:2160(0120)380(120150)220(150180)5t t y t t t ⎧-+<<⎪⎪=<⎨⎪⎪+⎩,,. ≤ ≤≤ (2)由题目已知条件可设2(110)20z a t =-+. 图象过点85(60)3,,2851(60110)203300a a ∴=-+∴=.. 21(110)20300z t ∴=-+ (0)t >. (3)设纯收益单价为W 元,则W =销售单价-成本单价. 故22221160(110)20(0120)3300180(110)20(120150)3002120(110)20(150180)5300t t t W t t t t t ⎧-+---<<⎪⎪⎪=---<⎨⎪⎪+---⎪⎩,,. ≤ ≤≤ 化简得2221(10)100(0120)3001(110)60(120150)3001(170)56(150180)300t t W t t t t ⎧--+<<⎪⎪⎪=-+<⎨⎪⎪--+⎪⎩,,. ≤ ≤≤①当21(10)100(0120)300W t t =--+<<时,有10t =时,W 最大,最大值为100; ②当21(110)60(120150)300W t t =--+<≤时,由图象知,有120t =时,W 最大,最大值为2593;③当21(170)56(150180)300W t t =--+≤≤时,有170t =时,W 最大,最大值为56.综上所述,在10t =时,纯收益单价有最大值,最大值为100元.第13题如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C 距守门员多少米?(取437=)(3)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取265=)答案:解:(1)(3分)如图,设第一次落地时, 抛物线的表达式为2(6)4y a x =-+.由已知:当0x =时1y =.即1136412a a =+∴=-,. y O BCD 1 M x2 4AyOBCD 1 Mx2 4 A E FN∴表达式为21(6)412y x =--+.(或21112y x x =-++) (2)(3分)令210(6)4012y x =--+=,.212(6)48436134360x x x ∴-==+=-+<.≈,(舍去). ∴足球第一次落地距守门员约13米.(3)(4分)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得12626626x x =-=+,.124610CD x x ∴=-=≈. 1361017BD ∴=-+=(米). 解法二:令21(6)4012x --+=.解得1643x =-(舍),264313x =+≈.∴点C 坐标为(13,0).设抛物线CND 为21()212y x k =--+.将C 点坐标代入得:21(13)2012k --+=.解得:1132613k =-<(舍去), 26432667518k =++++=≈.21(18)212y x =--+ 令210(18)212y x ==--+,0.11826x =-(舍去),2182623x =+≈. 23617BD ∴=-=(米). 解法三:由解法二知,18k =, 所以2(1813)10CD =-=, 所以(136)1017BD =-+=. 答:他应再向前跑17米.第14题荆州市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为0.9;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元. (1)基地的菜农共修建大棚x (公顷),当年收益(扣除修建和种植成本后)为y (万元),写出y 关于x 的函数关系式.(2)若某菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公项大棚.(用分数表示即可)(3)除种子、化肥、农药投资只能当年受益外,其它设施3年内不需增加投资仍可继续使用.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.答案:(1)()227.5 2.70.90.30.9 4.5y x x x x x x =-++=-+. (2)当20.9 4.55x x -+=时,即2945500x x -+=,153x =,2103x =从投入、占地与当年收益三方面权衡,应建议修建53公顷大棚. (3)设3年内每年的平均收益为Z (万元)()()2227.50.90.30.30.3 6.30.310.533.075Z x x x x x x x =-++=-+=--+(10分)不是面积越大收益越大.当大棚面积为10.5公顷时可以得到最大收益.建议:①在大棚面积不超过10.5公顷时,可以扩大修建面积,这样会增加收益. ②大棚面积超过10.5公顷时,扩大面积会使收益下降.修建面积不宜盲目扩大.③当20.3 6.30x x -+=时,10x =,221x =.大棚面积超过21公顷时,不但不能收益,反而会亏本.(说其中一条即可)第15题一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.(1)求出月销售量y (万件)与销售单价x (元)之间的函数关系式(不必写x 的取值范围);(2)求出月销售利润z (万元)(利润=售价-成本价)与销售单价x (元)之间的函数关系式(不必写x 的取值范围);(3)请你通过(2)中的函数关系式及其大致图象帮助公司确定产品的销售单价范围,使月销售利润不低于480万元.答案:略.第16题一座隧道的截面由抛物线和长方形构成,长方形的长为8m ,宽为2m ,隧道最高点P 位于AB 的中央且距地面6m ,建立如图所示的坐标系(1)求抛物线的解析式;(2)一辆货车高4m ,宽2m ,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?答案:(1)由题意可知抛物线经过点()()()024682A P B ,,,,,设抛物线的方程为2y ax bx c =++ 将A P D ,,三点的坐标代入抛物线方程. 解得抛物线方程为21224y x x =-++ (2)令4y =,则有212244x x -++= 解得12422422x x =+=-,21422x x -=>∴货车可以通过.(3)由(2)可知2112222x x -=>∴货车可以通过.第17题如图,在矩形ABCD 中,2AB AD =,线段10EF =.在EF 上取一点M ,分别以EM MF ,为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN x =,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?答案:解:矩形MFGN ∽矩形ABCD ,MN MFAD AB∴=. 2AB AD MN x ==,,2MF x ∴=.102EM EF MF x ∴=-=-. (102)S x x ∴=-P y B AOC xCB A DH ENM GF2210x x =-+ 2525222x ⎛⎫=--+ ⎪⎝⎭.∴当52x =时,S 有最大值为252.第18题某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间存在正比例函数关系:A y kx =,并且当投资5万元时,可获利润2万元.信息二:如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间存在二次函数关系:2B y ax bx =+,并且当投资2万元时,可获利润2.4万元;当投资4万元时,可获利润3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式; (2)如果企业同时对A B ,两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?答案:解:(1)当5x =时,12250.4y k k ===,,, 0.4A y x ∴=,当2x =时, 2.4B y =;当4x =时, 3.2B y =.2.4423.2164a ba b =+⎧∴⎨=+⎩解得0.21.6a b =-⎧⎨=⎩∴20.2 1.6B y x x =-+.(2)设投资B 种商品x 万元,则投资A 种商品(10)x -万元,获得利润W 万元,根据题意可得220.2 1.60.4(10)0.2 1.24W x x x x x =-++-=-++ 20.2(3) 5.8W x ∴=--+当投资B 种商品3万元时,可以获得最大利润5.8万元,所以投资A 种商品7万元,B 种商品3万元,这样投资可以获得最大利润5.8万元.第19题如图所示,图(1)是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m ,支柱3350m A B =,5根支柱1122334455A B A B A B A B A B ,,,,之间的距离均为15m ,1515B B A A ∥,将抛物线放在图(2)所示的直角坐标系中. (1)直接写出图(2)中点135B B B ,,的坐标; (2)求图(2)中抛物线的函数表达式; (3)求图(1)中支柱2244A B A B ,的长度.答案:(1)1(30)B -,0,3(030)B ,,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+,把3(030)B ,代入得(030)(030)30y a =-+=. 130a =-∴. ∵所求抛物线的表达式为:1(30)(30)30y x x =--+. (3)4B ∵点的横坐标为15, 4B ∴的纵坐标4145(1530)(1530)302y =--+=. 3350A B =∵,拱高为30,∴立柱44458520(m)22A B =+=. 由对称性知:224485(m)2A B A B ==。

高考数学压轴必刷题 专题04 分段函数及其应用A卷(第二篇)(原卷版)

高考数学压轴必刷题       专题04 分段函数及其应用A卷(第二篇)(原卷版)

f
x 的零点个数为
log3 x 4, x 5
A. 6
B. 7
C. 9
D.10
14.已知函数
f
(x)
x2 2x, | log2 x ,
x x
0 0
,若
x1<
x2
<
x3
<
x4
,且
f
(x1)
f
(x2 )
f (x3 )
f
(x4 ) ,则下列结论:

x1
x2
1 ,②
x3x4
1,③ 0
x1
x2
存在
x1

x2
,当
x1
x2 时,
f
x1
f
x2 ,则实数 m 的取值范围
是( ).
A. , 2 [0, )
B. , 2 0,
C. 0,
D. , 2
19)
x2
x 2mx
4m
(x m) (x m) ,若存在实数 b ,使得函数
y
f
(x) 与 y b的
6.设函数
f
(x)
|
x 1,x log4 x , x
0,
若关于
0,
x
的方程
f
(x)
a
有四个不同的解
x1,
x2 ,
x3 ,
x4 , 且
x1
x2
x3
x4 , 则 x3 (x1
x2 )
1 x32 x4
的取值范围是
A. (1, 7 ] 2
B. (1, 7 ) 2
C. (1, )
D. (, 7] 2
7.已知函数

解读分段函数

解读分段函数

解读分段函数分段函数是一类特殊的函数,有着广泛的应用,课本中并没有进行大篇幅的介绍,但是它是高考的必考内容,下面就分段函数的有关知识进行拓展,供同学们学习时参考.一、分段函数解读在定义域中,对于自变量x 的不同取值范围,相应的对应关系不同,这样的函数称之为分段函数.分段函数是一个函数,而不是几个函数,它只是各段上的解析式(或对应关系)不同而已.二、常见的题型及其求解策略1.求分段函数的定义域、值域例1 求函数f (x )=⎩⎨⎧x 2+4x ,x ≤-2,x 2,x >-2的值域.解 当x ≤-2时,y =x 2+4x =(x +2)2-4,∴y ≥-4;当x >-2时,y =x 2,∴y >-22=-1.∴函数f (x )的值域是{y |y ≥-4}.解题策略 分段函数的定义域是各段函数解析式中自变量取值集合的并集;分段函数的值域是各段函数值集合的并集.2.求分段函数的函数值例2 已知f (x )=⎩⎪⎨⎪⎧x -2,x >10,f [f (x +6)],x <10,求f (5)的值. 解 ∵5<10,∴f (5)=f [f (5+6)]=f [f (11)],∵11>10,∴f [f (11)]=f (9),又∵9<10,∴f (9)=f [f (15)]=f (13)=11.即f (5)=11.解题策略 求分段函数的函数值时,关键是判断所给出的自变量所处的区间,再代入相应的解析式;另一方面,如果题目中含有多个分层的形式,则需要由里到外层层处理.3.画出分段函数的图象例3 已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥0,x 2,x <0,作出此函数的图象. 解 由于分段函数有两段,所以这个函数的图象应该由两条线组成,一条是抛物线的左侧,另一条是射线,画出图象如图所示.解题策略 分段函数有几段,其图象就由几条曲线组成,作图的关键是根据定义域的不同分别由表达式作出其图象,作图时一要注意每段自变量的取值范围,二要注意判断函数图象每段端点的虚实.4.求解分段函数的解析式例4 某移动公司采用分段计费的方法来计算话费,月通话时间x (分钟)与相应话费y (元)之间的函数图象如图所示.则:(1)月通话为50分钟时,应交话费多少元;(2)求y 与x 之间的函数关系式.解 (1)由题意可知当0<x ≤100时,设函数的解析式y =kx ,又因过点(100,40),得解析式为y =25x ,当月通话为50分钟时,0<50<100,所以应交话费y =25×50=20元.(2)当x >100时,设y 与x 之间的函数关系式为y =kx +b ,由图知x =100时,y =40;x =200时,y =60.则有⎩⎨⎧ 40=100k +b ,60=200k +b ,解得⎩⎪⎨⎪⎧ k =15,b =20,所以解析式为y =15x +20,故所求函数关系式为y =⎩⎨⎧25x ,0<x ≤100,15x +20,x >100.解题策略 以收费为题材的数学问题多以分段函数的形式出现在高考试题中,解决此类问题的关键是正确的理解题目(或图象)给出的信息,确定合适的数学模型及准确的自变量的分界点.。

分段函数的几种常见题型及解法

分段函数的几种常见题型及解法

函数的概念和性质考点 分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f .3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)x x x C f x x -≤≤⎧=⎨+<≤⎩226(12).()3(24)x x x D f x x -≤≤⎧=⎨-<≤⎩5.作分段函数的图像-12131o-2y x例5.函数|ln ||1|x y ex =--的图像大致是( )A11oyxByx11OCyxO11DyxO116.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.例9.写出函数()|12||2|f x x x =++-的单调减区间.9.解分段函数的方程例10.设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x x x -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞例12.设函数2(1)(1)()41(1)x x f x x x ⎧+<⎪=⎨--≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0] B.(-∞,1] C .[-2,1]D .[-2,0]2.(2013福建,4分)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.3.(2013北京,5分)函数f (x )=⎩⎪⎨⎪⎧log 12x , x ≥1,2x , x <1的值域为________.4.(2012江西,5分)若函数f (x )=⎩⎨⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .05.(2011北京,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,166.(2012江苏,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________.7.(2011江苏,5分)已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.函数的概念和性质考点一 分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 本文就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数1222[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域. 【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.已知函数2|1|2,(||1)()1,(||1)1x x f x x x --≤⎧⎪=⎨>⎪+⎩求12[()]f f .【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-.3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==,11o 322-1y x-1当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 【解析】当[2,0]x ∈-时, 121y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)x x x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )-12131o-2y xA11oyxByx11OCyxO11DyxO11解析:在定义范围讨论,当0<x<1时,11y x x=+-;当x>1时1y =,故选D 6.求分段函数得反函数例6已知()y f x =是定义在R 上的奇函数, 且当0x >时, ()31xf x =-, 设()f x 的反函数为()y g x =, 求()g x 的表达式.【解析】设0x <, 则0x ->, 所以()31xf x --=-, 又因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-, 且(0)0f =, 所以()13xf x -=-, 因此31(0)()0(0)13(0)x x x f x x x -⎧->⎪==⎨⎪-<⎩, 从而可得33log (1)(0)()0(0)log (1)(0)x x g x x x x +>⎧⎪==⎨⎪--<⎩.7.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.8.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x xx ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R 上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为12(,]-∞-.9.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】 若142x-=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =,则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.10.解分段函数的不等式例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( )yx52o -1252.(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x -->, 解得01x <-, 当00x >时,1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()41(1)x x f x x x ⎧+<⎪=⎨--≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()14111310f x x x x ≥⇔--≥⇔-≤⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.反馈练习1.(2013新课标全国Ⅰ,5分)已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln x +1,x >0.若|f (x )|≥ax ,则xy1-11a 的取值范围是( )A .(-∞,0]B.(-∞,1] C .[-2,1] D .[-2,0]解析:本题考查一次函数、二次函数、对数函数、分段函数及由不等式恒成立求参数的取值范围问题,意在考查考生的转化能力和利用数形结合思想解答问题的能力.当x ≤0时,f (x )=-x 2+2x =-(x -1)2+1≤0,所以|f (x )|≥ax 化简为x 2-2x ≥ax ,即x 2≥(a +2)x ,因为x ≤0,所以a +2≥x 恒成立,所以a ≥-2;当x >0时,f (x )=ln(x +1)>0,所以|f (x )|≥ax 化简为ln(x +1)>ax 恒成立,由函数图象可知a ≤0,综上,当-2≤a ≤0时,不等式|f (x )|≥ax 恒成立,选择D.答案:D2.(2013福建,4分)已知函数f (x )=⎩⎪⎨⎪⎧ 2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________. 解析:本题主要考查分段函数的求值,意在考查考生的应用能力和运算求解能力.∵f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案:-23.(2013北京,5分)函数f (x )=⎩⎪⎨⎪⎧ log 12x , x ≥1,2x , x <1的值域为________.解析:本题主要考查分段函数的概念、性质以及指数函数、对数函数的性质,意在考查考生对函数定义域、值域掌握的熟练程度.分段函数是一个函数,其定义域是各段函数定义域的并集,值域是各段函数值域的并集.当x ≥1时,log 12x ≤0,当x <1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2).答案:(-∞,2)4.(2012江西,5分)若函数f (x )=⎩⎨⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( ) A .lg 101B .2C .1D .0 解析:f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2.答案:B5.(2011北京,5分)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧ c x ,x <A ,c A ,x ≥A (A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16 解析:因为组装第A 件产品用时15分钟,所以c A =15(1),所以必有4<A ,且c 4=c 2=30(2),联立(1)(2)解得c =60,A =16.答案:D 6.(2012江苏,5分)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f (12)=f (32),则a +3b 的值为________. 解析:因为f (x )是定义在R 上且周期为2的函数,所以f (32)=f (-12),且f (-1)=f (1),故f (12)=f (-12),从而12b +212+1=-12a +1,3a +2b =-2. ① 由f (-1)=f (1),得-a +1=b +22,故b =-2a . ②由①②得a =2,b =-4,从而a +3b =-10.答案:-107.(2011江苏,5分)已知实数a ≠0,函数f (x )=⎩⎨⎧ 2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________. 解析:①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34. 答案:-34。

高中常见分段函数题型归纳

高中常见分段函数题型归纳

题规范答增强自信对接高考分层教学总结规律提高兴趣分段函数常见题型及解法分段函数是指自变量在两个或两个以上不同的范围内,有不同的对应法则的函数,它是一个函数,非几个函数;它的定义域是各段函数定义域的并集,其值域也是各段函数值域的并集.与分段函数有关的类型题的求解,在教材中只出现了由分段函数作出其图象的题型,并未作深入说明,法.因此,对于分段函数类型的求解不少同学感到困难较多,现举例说明其求解方1.求分段函数的定义域和值域2x 2 x [ 1,0];1f (x) x x (0, 2);23 x [2, );例1.求函数的定义域、值域.f (x) [ 1, )解析:作图, 利用“数形结合”易知的定义域为, 值-1,2]U {3}.域为(例2.求函数的值域.2+1≥1;当x<0 时,-x2<0.所以,原函数的值域是[1,+ ∞∪)(-∞,0).解析:因为当x≥0时,x2.求分段函数的函数值| x 1| 2, (| x|1)f x( ) 1, (| x|1)2 f[ f (1 )]1 x例1.已知函数求.21 4 1 3f [ f ( )] f ( )2 23 21 1 3f ( ) | 1| 2 1 ( ) 13解析:因为, 所以.2 2 2 2例2.已知函数,求f{f[f(a)]} (a<0) 的值.分析: 求此函数值关键是由内到外逐一求值,即由a<0, f(a)=2a,又0<2a<1, ,,所以,.注:求分段函数值的关键是根据自变量的取值代入相应的函数段.xe , x 0.1g( x)g( g( ))lnx , x 0.2则__________练1.设x 12e (x2),f (x)2log练2.设则__________31提高兴趣总结规律规范答题增强自信对接高考分层教学3.求分段函数的最值4x 3 ( x 0)f (x) x 3 (0 x 1)x 5 ( x 1)例1.求函数的最大值.x f max (x) f (0) 3 0 x 1 f max (x) f (1) 4 x 1 0解析:当时, , 当时, , 当时, x f max (x) 45 1 5 4, 综上有.2+|x-a|+1,x ∈R,求f(x) 的最小值.例2.设a为实数,函数f(x)=x为分析:因为原函数可化所以,只要分别求出其最小值,再取两者较小者即可.解:当x<a 时,函数f(x)=x 2-x+a+1 ,2+1. 所以若,则函数f(x) 在(-∞,a]上单调递减,从而f(x) 在(-∞,a]上的最小值为f(a)=a若,则函数f(x) 在(-∞,a]上的最小值为,且;当x≥a时,函数;若,则函数f(x) 在[a,+ ∞上)的最小值为,且.若,则函数f(x) 在[a,+ ∞上)的最小值为f(a)=a2+1.综上,当时,函数f(x) 的最小值是;2+1;当时,函数f(x)的最小值是 a当时,函数f(x) 的最小值是.注:分段函数最值求解方法是先分别求出各段函数的最值,再进行大小比较,从而达到求解的目的.4.求分段函数的解析式y f (x) y g( x) y x,现将,函数和的图象关于直线对称例1.在同一平面直角坐标系中2提高兴趣增强自信对接高考分层教学总结规律规范答题y g x x y( )的图象沿轴向左平移 2 个单位, 再沿轴向上平移 1 个单位, 所得的图象是由两条线段组成f (x)的折线(如图所示), 则函数的表达式为()A. f (x) 2x 2 ( 1 x 0) x2 (0 x 2) 2B. f (x) 2x 2 ( 1 x 0) x22 (0 x 2)C. f (x) 2x 2 (1 x 2) x21 (2 x 4)D. f (x) 2x 6 (1 x 2)x23 (2 x 4)1x[ 2,0] y 2 x 1 x y解析:当时, , 将其图象沿轴向右平移 2 个单位, 再沿轴向下平移 1 个1 1y 2 (x2) 1 1 2 x 1 f (x) 2x 2 (x[ 1,0]) x [0,1]单位, 得解析式为, 所以, 当时 ,y x x y2 1, 将其图象沿轴向右平移 2 个单位, 再沿轴向下平移 1 个单位, 得解析式y 2(x 2) 1 1 2x 4 1f (x) x 2 (x[0,2]), 所以, 综上可得2f (x) 2x 2 ( 1 x 0)x2 (0 x 2)2, 故选 A.例2.某蔬菜基地种植西红柿,由历年市场行情得知,从 2 月1 日起的300 天内,西红柿售价与上市时间的关系用图 1 的一条折线表示;西红柿的种植成本与上市时间的关系用图 2 的抛物线段表示:(I) 写出图l 表示的市场售价与时间的函数关系式P=f(t),写出图 2 表示的种植成本与上市时间的函数关系式Q=g(t) ;(II) 认定市面上售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?解析:(I) 由图l 可得市场售价与时间的关系为由图 2 可得种植成本与时间的函数关系为3提高兴趣规范答题增强自信对接高考分层教学总结规律(0≤t ≤30)0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点4 分段函数以及应用一、 知识储备汇总与命题规律展望 1.知识储备汇总:(1)分段函数概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数定义域与值域:分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. (3)分段函数的图像:分段函数有几段它的图像就由几条曲线组成,作图的关键就是根据每段函数的定义区间和表达式在同一坐标系中作出其图像,作图时要注意每段曲线端点的虚实,而且横坐标相同之处不可有两个以上的点。

(4)分段函数的求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(5)分段函数的奇偶性:先看定义域是否关于原点对称,不对称就不是奇(偶)函数,再由x >0,x -<0 ,分别代入各段函数式计算)(x f 与)(x f -的值,若有)(x f =)(x f --,当x =0有定义时0)0(=f ,则)(x f 是奇函数;若有f(x)=)(x f -,则)(x f 是偶函数.(6)分段函数的单调性:分别判断出各段函数在其定义区间的单调性结合图象处理分段函数的问题.(7)分段函数的周期性:对分段函数的周期性问题,利用周期函数定义、性质或图像进行判定或解决.(8)分段函数求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(9)分段函数的最值:先求出每段函数的最值,再求这几个最值的最值,或利用图像求最值.(10)求分段函数某条件下自变量的范围:先假设所求的解在分段函数定义域的各段上,然后相应求出在各段定义域上的范围,再求它们并集即可.(11)分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.(12)分段函数的解析式:利用待定系数法,求出各段对应函数的解析式,写成分段函数形式,每个解析式后边标上对应的范围.2.命题规律展望:分段函数是高考考查的重点和热点,主要考查分段函数求值、分段函数值域与最值、分段函数的图像与性质、分段函数方程、分段函数不等式等,考查分类整合、转化与化归、函数与方程、数形结合等数学思想与方法,考题多为选择填空题,难度为容易或中档题.将本考点近五年内的命题规律从题型、考题类型、难度、分值等方面作以总结,对今后考题规律作以展望.二、题型与相关高考题解读 1.分段函数求值 1.1考题展示与解读例1 【2017山东,文9】设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭A. 2B. 4C. 6D. 8【命题意图探究】本题考查了分段函数求值及分类整合思想是中档试题. 【答案】C【解题能力要求】分析问题能力、分类整合思想【方法技巧归纳】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围. 1.2【典型考题变式】1.【变式1:改编条件】已知函数)(x f =⎩⎨⎧≥+-<<+2,8220,2x x x x x ,若)2()(+=a f a f ,则)1(a f =( ) A.165 B. 2 C.6 D.217【答案】B【解析】由2x ≥时()28f x x =-+是减函数可知,若2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭,故选B. 2. 【变式2:改编结论】设()(),0121,1x x f x x x <<=-≥⎪⎩,若()12f a =,则a = ( )B.41 B. 45 C. 41或45D. 2 【答案】C【解析】由题意知,⎪⎩⎪⎨⎧=<<2110a a 或⎪⎩⎪⎨⎧=-≥21)1(21a a ,解得14a =或45=a ,故选C 3.【变式3:改编问法】已知)(x f 是定义域为R 的奇函数,⎪⎩⎪⎨⎧>-≤≤2)4(2120,sin x x x x ,π,则)431(f =( ) A44 .B.82 C.44- D.82- 【答案】D 【解析】由题意知)41(41)41(41)415(21)431(f f f f -=-===4sin 41π-=82-,故选D. 2.分段函数的最值与值域 2.1考题展示与解读例2【2016年高考北京理数】设函数33,()2,x x x af x x x a⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________.【命题意图探究】本题主要考查分段函数的最值及分类整合思想、数形结合思想. 【答案】2,(,1)-∞-.【解题能力要求】分类整合思想、数形结合思想、运算求解能力.【方法技巧归纳】先根据各段函数的图象与性质求出各段函数在相应区段上的值域,这些值域的并集就是函数的值域. 2.2【典型考题变式】【变式1:改编条件】已知函数)(x f =⎩⎨⎧>+-≤-+ax ax a x x x ,4,242.(1)当1-=a 时,求)(x f 的最小值.(2)若函数)(x f 无最小值,求实数a 的取值范围. 【答案】(1)-6;(2)),0()3,(+∞⋃-∞.【解析】(1)当1-=a 时,)(x f =⎩⎨⎧->+-≤-+1,41,242x x x x x ,当1-≤x 时,)(in x f m =)2(-f =-6,当1->x 时,3)1()(=->f x f ,所以)(x f 的最小值为-6.(2)当2-≤a 时,要使)(x f 无最小值,由)(x f 的图象知,42422+->-+a a a ,解得3-<a ;当02<<-a 时,要使)(x f 无最小值,由)(x f 的图象知,462+->-a ,无解; 当0=a 时,由)(x f 的图象知,min )(x f =-6; 当0>a 时,由)(x f 的图象知,)(x f 无最小值; 综上所述,实数a 的取值范围为),0()3,(+∞⋃-∞.【变式2:改编结论】设函数33,()2,x x x af x x x a⎧-≤=⎨->⎩,b x f x g -=)()(,若存在实数b ,使得函数)(x g 恰有3个零点,则实数a 的取值范围为______________. 【答案】(0,1).【变式3:改编问法】设函数33,()2,x x x af x x x a⎧-≤=⎨->⎩,讨论)(x f 的值域.【答案】当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【解析】如图作出函数3()3h x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33h x x =-,知1x =-是函数()h x 的极大值点,1=x 是函数()h x 的极小值点,当1-<a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为)2(33a a a ---=0)1)(1(<-+a a a ,所以a a a 233-<-,所以函数)(x f 的值域为)2,(a --∞;当21≤≤-a 时,函数x x y 33-=在],(a -∞上的值域为]2,(-∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为22≤-a ,所以函数)(x f 的值域为]2,(-∞;当2>a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为a a a 323-<-,所以函数)(x f 的值域为]3,(3a a --∞;综上所述,当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.3.分段函数的解析式 3.1考题展示与解读例3【2015高考天津,理8】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( ) (A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭【解题能力要求】本题主要考查分段函数、函数零点、数形结合思想、转化与化归思想,是难题. 【答案】D【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩,所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<.【方法技巧归纳】较复杂的函数零点个数问题,常转化为对应方程解得个数问题,再通过移项、局部分离等方法转化为两边都是熟悉函数的方程解得个数问题,再转化为这两个函数的交点个数问题,画出对应函数的函数的图象,利用数形结合思想求解. 3.2【典型考题变式】【变式1:改编条件】已知)(x f =⎩⎨⎧<-+≥-0,1|1|0,22x x x x x ,函数)(x g =)1(+-x f b ,若函数)()(x g x f y -=恰有2个零点,则实数b 的取值范围为( )A ),1(+∞- .B.)1,23(-- C.),1(}23{+∞-⋃- D.]23,(--∞ 【答案】C【解析】由题知,)1(+x f =⎩⎨⎧-<-+-≥-1,1|2|1,12x x x x ,所以)1()(++=x f x f y =⎪⎪⎩⎪⎪⎨⎧-<---<≤--<≤--+≥--2,5212,101,10,12222x x x x x x x x x ,函数)()(x g x f y -=恰有2个零点,即方程b x f x f -++)1()(=0恰有两个不同的解,即函数)1()(++=x f x f y 与b y =恰有两个交点,)1()(++=x f x f y 的图象如图所示,由图知,1->b 或23-=b ,故选C.【变式2:改编结论】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若方程()()=0f x g x - 恰有2个不同的解,则b 的取值范围是( ) (A )()72,{}4+∞⋃ (B )()2,+∞ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫ ⎪⎝⎭【答案】A【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()(2)0f x f x b +--=有2个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知2b >或47=b ,故选.A.【变式3:改编问法】已知)(x f 是定义在R 上的奇函数,当0≥x 时,)(x f =x x 42-,则方程2)(-=x x f解的个数为 . 【答案】3【解析】当0<x 时,0>-x ,所以x x x f 4)()(2+-=-, 因为)(x f 是定义在R 上的奇函数,所以)()(x f x f -=-=x x 42+, 所以x x x f 4)(2--=,所以⎪⎩⎪⎨⎧≥-<--=0,404)(22x x x x x x x f ,,所以2)()(+-=x x f x g =⎪⎩⎪⎨⎧≥+-<+--0,250,2522x x x x x x ,由)(x g y =的图象知,)(x g y =有3个零点, 所以方程2)(-=x x f 解的个数为3.4.分段函数图像 4.1考题展示与解读例4【2017天津,文8】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩,设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是( ) (A )[2,2]-(B )[23,2]-(C )[2,23]-(D )[23,23]-【命题意图探究】本题主要考查利用分段函数图像解含参数不等式恒成立问题,是难题.【答案】A【解题能力要求】数形结合思想、转化思想、分类整合思想、运算求解能力【方法技巧归纳】一般不等式恒成立求参数1.可以选择参变分离的方法,转化为求函数最值的问题;2.也可以画出两边的函数图象,根据临界值求参数取值范围;3.也可转化为()0F x >的问题,转化讨论求函数的最值求参数的取值范围.4.2【典型考题变式】【变式1:改编条件】已知函数()22,0,{ ,0x x f x x x ≤=>,若函数()()()1g x f x k x =--恰有两个零点,则实数k 的取值范围是A. ()(),14,-∞-⋃+∞B. ][(),14,-∞-⋃+∞C. [)()1,04,-⋃+∞D.[)[)1,04,-⋃+∞【答案】C【解析】()()()1g x f x k x =--恰有两个零点,等价于()y f x =与()1y k x =-有两个交点,同一坐标系,画出()y f x =与()1y k x =-的图象,直线过()0,1时, 1k =-,直线与()20y xx =≥,相切时4k =,由图知, [)()1,04,k ∈-⋃+∞时,两图象有两交点,即k 的取值范围是[)()1,04,-⋃+∞,故选C.【变式2:改编结论】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩,则函数||)(x x f y -=零点个数为 ( )(A )0 (B )1 (C )2 (D )3 【答案】A【解析】函数||)(x x f y -=零点个数,即为方程||)(x x f =解得个数,即为函数)(x f y =与函数||x y =交点个数,画出函数()f x 的图象与函数||x y =,由图像知,函数)(x f y =与函数||x y =交点个数0, 所以函数||)(x x f y -=零点个数为0,故选A.【变式3:改编问法】定义在1,ππ⎡⎤⎢⎥⎣⎦上的函数()f x ,满足()1f x f x ⎛⎫= ⎪⎝⎭,且当1,1x π⎡⎤∈⎢⎥⎣⎦时, ()ln f x x =,若函数()()g x f x ax =-在1,ππ⎡⎤⎢⎥⎣⎦上有零点,则实数a 的取值范围是( )A.ln,0ππ⎡⎤-⎢⎥⎣⎦B. []ln,0ππ- C.1ln,eππ⎡⎤-⎢⎥⎣⎦D.1,2eπ⎡⎤--⎢⎥⎣⎦【答案】B【解析】设[]1,xπ∈,则11,1xπ⎡⎤∈⎢⎥⎣⎦,因为()1f x fx⎛⎫= ⎪⎝⎭且当1,1xπ⎡⎤∈⎢⎥⎣⎦时,()lnf x x=,所以()1lnf x f xx⎛⎫==-⎪⎝⎭,则()[]1ln,,1ln,1,{x xx xf xππ⎡⎤∈⎢⎥⎣⎦-∈=,在坐标系中画出函数()f x的图象如图:因为函数()()g x f x ax=-与x轴有交点,所以直线y ax=与函数()f x的图象有交点,由图得,直线y ax=与()f x的图象相交于点1,lnππ⎛⎫-⎪⎝⎭,即有ln lnaaππππ-=⇒=-,由图象可得,实数a的取值范围是:[]ln,0ππ-故选:B.5.分段函数性质5.1考题展示与解读例5【2016高考天津理数】已知函数f(x)=2(4,0,log(1)13,03)ax a xax xx⎧+<⎨++≥-+⎩(a>0,且a≠1)在R上单调递减,且关于x的方程|()|2f x x=-恰好有两个不相等的实数解,则a的取值范围是()(A)(0,23] (B)[23,34] (C)[13,23]{34}(D)[13,23){34}【命题意图探究】本题主要考查分段函数的性质及函数方程解的个数问题,考查数形结合思想、运算求解能力,是中档题. 【答案】C【解题能力要求】数形结合思想、分类整合思想、运算求解能力. 【方法技巧归纳】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.5.2【典型考题变式】【变式1:改编条件】已知函数()()21(1)21ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是A. []0,1B. (]0,1C. []1,1-D. (]1,1- 【答案】C【解析】当x ⩽1时,f (x )=−(x −1)2+1⩽1,当x >1时, ()()21,'10a af x x f x x x=++=-在(1,+∞)恒成立,故a ⩽x 2在(1,+∞)恒成立,故a ⩽1,而1+a +1⩾1,即a ⩾−1,综上,a ∈,故选C.【变式2:改编结论】已知()2243,0,23,0,x x x f x x x x ⎧-+≤=⎨--+>⎩不等式()()2f x a f a x +>-在上恒成立,则实数的取值范围是( )A. B.C.D.【答案】A【变式3:改编问法】已知函数是定义在上的偶函数,当时,,则函数的零点个数为( )个A. 6B. 2C. 4D. 8 【答案】A【解析】∵函数)(x f 是定义在上的偶函数,当 时,,函数的零点就是函数)(x f 的图象与直线的交点的横坐标,作出函数在的图象,如图,由图可得:函数)(x f 图象与直线 有6个交点,故答案为:6.6.分段函数的综合应用 6.1考题展示与解读例6 【2017课标3,理15】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.【命题意图探究】本题主要考查分段函数不等式及分类整合思想,是中档题. 【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解题能力要求】分类整合思想、运算求解能力.【方法技巧归纳】分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集. 6.2【典型考题变式】【变式1:改编条件】已知函数()21,0,{1,0,x x f x x +≥=<则满足不等式()()212f x f x ->的x的范围是( )A. ()0,21-B. ()1,21-+C. ()0,21-D. ()1,21-- 【答案】D【解析】()210{10x x f x x +≥=<,,,的图象如下图所示,不等式()()212f x f x ->等价于210{20x x ->≤,或2210{2012x x x x ->>->,,,解得121x -<<-,故选D .【变式2:改编结论】.已知函数(),0{2,lnx x e f x lnx x e<≤=->,若正实数,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围为( )A. ()2,e e B. ()21,e C. 1,e e ⎛⎫ ⎪⎝⎭ D. 21,e e ⎛⎫ ⎪⎝⎭【答案】A【解析】作出)(x f 的图像,不妨设c b a <<,由图知,201a b e c e <<<<<<,由题知,|ln ||ln |b a =,即b a ln ln =-,所以0)ln(ln ln ==+ab b a ,所以ab =1,则c abc =),(2e e ∈,故选A.【变式3:改编问法】已知定义在R 上的函数()f x 满足()()22f x f x +=,且当[]2,4x ∈时, ()224,232,34x x x f x x x x-+≤≤=+<≤⎧⎪⎨⎪⎩,()1g x ax =+,对[][]122,0,2,1x x ∀∈-∃∈-,使得()()21g x f x =,则实数a 的取值范围为( )A. 11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B. 11,00,48⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦ C.(]0,8 D.][11,,48⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】D【解析】因为[]()224,232,4,2,34x x x x f x x x x-+≤≤∈=+<≤⎧⎪⎨⎪⎩ , 23x ≤≤ 时, ()34f x ≤≤ ,34x <≤ 时,()11932f x <≤ ,所以[]()92,4,32x f x ∈≤≤()()22f x f x +=,20x ∴-≤≤ 时, ()[]39,2,148f x x ≤≤∈-- 时,若0a > ,则()211a g x a -+≤≤+ ,因为对 [][]122,0,2,1x x ∀∈-∃∈-,使得()()21g x f x =, ,()()2g x f x = ,3214918a a ⎧-+≤⎪⎪∴⎨⎪+≥⎪⎩,解得18a ≥,若0a < ,则()121a g x a +≤≤-+ ,[]12,0x ∀∈- ,[]22,1x ∃∈-,使得()()21g x f x =, ∴9218918a a ⎧-+≥⎪⎪⎨⎪+≤⎪⎩,解得14a ≤-,所以a 取值范围是][11,,48⎛⎫-∞-⋃+∞ ⎪⎝⎭. 三、课本试题探源必修1 P39页习题1.3 A 第6题:已知函数)(x f 是定义域在R 上的奇函数,当0≥x 时,)(x f =)1(x x +.画出函数)(x f 的图象,并求出函数的解析式.【解析】当0<x 时,0>-x ,所以)1()(x x x f --=-, 因为函数)(x f 是定义域在R 上的奇函数, 所以)1()()(x x x f x f --=-=-, 所以)1()(x x x f -=, 所以函数的解析式⎩⎨⎧≥+<-=0),1(0),1()(x x x x x x x f ,函数图象如下图所示:四.典例高考试题演练1.【2017届湖北枣阳市3模】设函数()()121{ 1(1)x x f x lnx x -≤=->,则满足()2f x ≤的x 的取值范围是( ) A.,2] B. C.【答案】B9.【2017届江西省赣中南五校下学期期中联考】已知函数关于的方程,有不同的实数解,则的取值范围是A. B. C. D.【答案】C【解析】设,,解得,当时,,函数单调递增,,,函数单调递减,当时函数取得最大值,方程化简为,解得:或,如图画出函数的图象,当时,方程有5个实根,故选C.10.【2017届湖南省岳阳市三模】已知函数是定义在上的偶函数,当时,,则函数的零点个数为()个A. 6B. 2C. 4D. 8【答案】A【解析】∵函数是定义在上的偶函数,当时,,函数的零点就是函数的图象与直线的交点的横坐标,作出函数在的图象,如图,由图可得:函数图象与直线有6个交点,故答案为:6.11.【2017届天津市十二重点中学二联考】已知函数()()()2101,{1(1)x x f x f x m x -≤≤=-+>在定义域[)0,+∞上单调递增,且对于任意0a ≥,方程()f x a =有且只有一个实数解,则函数()()g x f x x =-在区间0,2n⎡⎤⎣⎦(*n N ∈)上的所有零点的和为( ) A.()12n n + B. 21122n n +-+ C.()2122n+ D. 21n -【答案】B【解析】函数()()()2101,{1(1)x x f x f x m x -≤≤=-+>在定义域[)0,+∞上单调递增,且对于任意0a ≥,方程()f x a =有且只有一个实数解,则()f x 是连续函数,可得1m = ,画出()y f x = 与y x = 的图象,图象交点横坐标就是函数()()g x f x x =-的零点,由图知,在区间0,2n⎡⎤⎣⎦(*n N ∈)上的所有零点的和为()2111+2+3...21222n n n n +-+-+=+ ,故选B.12.【2017届四川外语学院重庆第二外国语学校3月考】已知函数()()1,0{11,02ln x x f x x x +>=+≤,若m n <,且()()f m f n =,则n m -的取值范围是( ) A. [)32ln2,2- B. []32ln2,2- C. []1,2e - D. [)1,2e - 【答案】A【解析】作出函数f (x )的图象如图, 若m <n ,且f (m )=f (n ),则当ln (x +1)=1时,得x +1=e ,即x =e −1, 则满足0<n ⩽e −1,−2<m ⩽0,则ln(n+1)= 12m+1,即m=2ln(n+1)−2,则n−m=n+2−2ln(n+1),设h(n)=n+2−2ln(n+1),0<n⩽e−1则()2121'1111n nh nn n n+--=-==+++,当h′(x)>0得1<n⩽e−1,当h′(x)<0得0<n<1,即当n=1时,函数h(n)取得最小值h(1)=1+2−2ln2=3−2ln2,当n=0时,h(0)=2−2ln1=2,当n=e−1时,h(e−1)=e−1+2−2ln(e−1+1)=1+e−2=e−1<2,则3−2ln2⩽h(n)<2,即n−m的取值范围是,值域为,则实数a的取值范围是_____.【答案】a≥1【解析】仅考虑函数f(x)在x>0时的情况,可知()3312,23{12,23x x xf xx x x-<=-≥函数f(x)在x =2时,取得极大值16.令x3-12x=16,解得,x=4.作出函数的图象(如右图所示).函数f(x)的定义域为,值域为,分为以下情况考虑:①当0<m<2时,函数的值域为,有m(12-m2)=am2,所以a=12m-m,因为0<m<2,所以a>4;②当2≤m≤4时,函数的值域为,有am2=16,所以a=216m,因为2≤m≤4,所以1≤a≤4;③当m>4时,函数的值域为,有m(m2-12)=am2,所以a=m-12m,因为m>4,所以a>1. 综上所述,实数a的取值范围是a≥1.。

相关文档
最新文档