最新人教版七年级数学绝对值 ppt

合集下载

1.2.4《绝对值》课件-2024-2025学年人教版(2024)数学 七年级上册

1.2.4《绝对值》课件-2024-2025学年人教版(2024)数学 七年级上册
-5.25
(3)绝对值等于5.25的负数是______;
2或-2
(4)绝对值等于2的数是_______。
【点睛】注意绝对值等于某个正数的数有两个,他们互为相反数,解题时不要遗
漏负值。
课堂练习
3. 如果| a |+| b-1 |=0,那么a = 0 ,b = 1

4. 已知x =30,y =-4,则| x | - 3 | y |= 18 。
B
-10
10
O
0
10
A
10
-10与10在数轴上所表示的点到原点的距离是 10个单位长度 ,它们
的 符号 不同。我们把这个距离10叫做+10和-10的 绝对值 。
新知探究
定义
距离不能是负数,所以任何
数的绝对值一定是非负数
( |a| ≥ 0)
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,
记作|a|.
1. 求下列各数的绝对值.
12, - 3 , -7.5 , 0
5
解: | 12 | =12;
|- 3 |= 3
5
5
正数的绝对值等于它本身
负数的绝对值等于它的相反数
| -7.5 | = 7.5;
| 0 | = 0。
0的绝对值是0
随堂检测
2. 填一填:
0
(1)绝对值等于0的数是___;
5.25
(2)绝对值等于5.25的正数是_____;
(5) 绝对值等于同一个正数的数有两个,且这两个数互为相反数.(

)
新知探究
我们知道,互为相反数的两
个数(除0之外)只有符号不同,
这两个数的相同部分在数轴上表
示什么?

人教版七年级数学上册1.2.4《绝对值》课件 (13张PPT)

人教版七年级数学上册1.2.4《绝对值》课件  (13张PPT)
人民教育出版社七年级上册
1.2.4(1) 绝对值
1、数轴三要素
2、什么是互为相反数
谁离乒乓球网架远呢?
20 20
-20 -15 -10 -5 5 10 0 15 20 -20与+20在数轴上所表示的点到原点的距离都是 20个单位,距离20是-20和20的绝对值.
-20的绝对值表示-20的点到原点的距离,它的绝对值是20. -3的绝对值表示什么呢?它的绝对值是多少呢?
数轴原点表示的是0,0绝对值是0
绝对值性质:对于任意一个有理数a都有, 1、当a>0 时, |a|= _____ a ;
0 ; 2、当a=0 时, |a|= _____
3、当a<0 时, |a|= _____. -a
绝对值的代 数意义
1.填空:
1.7 |-1.7|_____ ; -4 ; -|-4|=____
-7 7
绝 对 值 发 生 器
7 7
、数轴原点右边表示的是什么数?该数的绝对值与这个数有什 么关系?
数轴原点右边表示的是正数,正数的绝对值是它本身
、数轴原点左边表示的是什么数?该数的绝对值与这个数有 什么关系?
数轴原点左边表示的是负数,负数的绝对值是它的相反数
、数轴原点表示的是什么数?该数的绝对值是多少?
1、绝对值的几何意义及表示方法 2、绝对值的代数意义 (1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数;
1、必做题:习题1.2 第5、8题 2、选做题:绝对值评测训练
2的绝对值表示什么呢?它的绝对值是多少呢? 2 3 的绝对值表示什么呢?它的绝对值是多少呢?
2 3
-3 -2 -1
0

新人教版七年级上册数学1.2.4绝对值——绝对值的定义及性质优质课件

新人教版七年级上册数学1.2.4绝对值——绝对值的定义及性质优质课件

| b-1 | 0,又 | a-2 |+| b-1 |=0 ,所以a -2 =0 ,
b-1=0.
解:根据题意可知:a-2=0,b-1=0 ,
所以:a=2 ,b=1.
第二十一页,共二十五页。
总结
若几个非负数的和为0,则这几个数都为0.
知3-讲
第二十二页,共二十五页。
1 绝对值最小的数是______0__;绝对值最小的负整数
第七页,共二十五页。
1 (中考·连云港)数轴上表示-2的点与原点的距离是
____2____.
知1-练
第八页,共二十五页。
知识点 2 绝对值的求法
1.几何定义:一般地,数轴上表示数a的点与原点的距
离叫做数a的绝对值,记作 a .
2.代数定义:一个正数的绝对值是它本身;一个负数
的绝对值是它的相反数;0的绝对值是0;任意一个
所以x 的相反数为-4,y 的相反数为2.
第十九页,共二十五页。
总结
知3-讲
本题运用了巧用非负性技巧,考查了非负数的性质,
该性质可巧记为“0+0=0”,可以推广为:如果几个非 负数的和为0,那么这几个非负数均为0.
第二十页,共二十五页。
知3-练
例 5
已知
a-2 + b-,1 求=0a、b的值.
导引:因为 | a-2 | 和 | b-1 | 都是非负数,所以 | a-2 | 0 ,
=
__2._5__,-
2
=

2 (中考·东营)

1 3的相反数是(
A. 1 B.- 1 C.3
3
3
)B
D.-3
第十六页,共二十五页。
知2-练
知识点 3 绝对值的性质

1.2.4 绝对值 课件 人教版七年级数学上册 (27)

1.2.4 绝对值 课件  人教版七年级数学上册 (27)

【示范题1】-|-2|的值为 ( )
A.-2
B.2
C.- 1
D.1
2
2
【教你解题】
【想一想】 有没有绝对值最大的有理数?有没有绝对值最小的有理数? 提示:没有绝对值最大的有理数;有绝对值最小的有理数,是0.
【备选例题】求下列各数的绝对值.
(1)3.2.(2) 1. (3)1 4 . (4)0.
3
5
【解析】(1)|3.2|=3.2.(2) | 1 | 1 .
33
(3) |1 4 | 1(44.)|0|=0.
55
【微点拨】正确理解绝对值的三个方面 1.若一个数的绝对值是正数,则这样的数有两个,它们互为相反 数. 2.只有0的绝对值是0,0是绝对值最小的有理数. 3.任何有理数的绝对值都不能是负数.
【思维诊断】(打“√”或“×”) 1.一个有理数的绝对值必是正数. ( × ) 2.绝对值最小的有理数是0. ( √ ) 3.如果两个数不相等,那么这两个数的绝对值也不相等.( × ) 4.如果两个数的绝对值相等,那么这两个数也相等. ( × ) 5.负数没有绝对值. ( × )
知识点一 求有理数的绝对值
【方法一点通】 求有理数绝对值的步骤 1.先判断有理数是正数、负数、还是0. 2.再根据正数、负数、0的绝对值的意义,化去绝对值符号,确定 最后结果.
知识点二 绝对值的性质及应用
【示范题2】某工厂生产一批零件,根据零件质量要求:零件的
长度可以有0.2厘米的误差,现抽查5个零件,检查数据记录如表
ቤተ መጻሕፍቲ ባይዱ
(超过规定长度的厘米数记为正数,不足规定长度的厘米数记为
负数):
零件号数
1
2
3
4

新版人教版七年级数学上册《绝对值》课件(17张)

新版人教版七年级数学上册《绝对值》课件(17张)
创设情境
两辆汽车从同一处O出发,分别向东、西方向行 驶了10千米,到达A、B两处.它们的行驶路线相同 吗? 行驶的路程分别是多少?
B
O
A
-10
0
10
10千米
10千米
做游戏
请两位同学分别站在老师的左右两边,两位同学 同时向东、西相反的方向走1米,把这两位同学所 站位置用数轴上的点表示出来.




是1
学生活动 2.互为相反数的两个数的绝对值有什么关系?
一对相反数虽然分别在原点两边,但它们 到原点的距离是相等的.所以互为相反数的两 个数的绝对值相等.
7 图1.2-7
学生活动
你能把14个气温从低到高排列吗?能把这14个数 用数轴上的点表示出来吗?观察这些点在数轴上的位 置,思考它们与温度的高低之间的关系,你觉得两个 有理数可以比较大小吗?
(B )
A.可以是负数 B.不可能是负数
C.必是正数
D.可以是正数也可以是负数
温馨提示: 认真完成作业是巩固知识的有效方法!!
12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/5/52022/5/5May 5, 2022 14、孩子在快乐的时候,他学习任何东西都比较容易。 15、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。
练习2:|-13 |的相反数是 ;若|a|=2,则a=±2 .
练习3:绝对值小于3.5的整数是-3,-2,-1,0,1,2,3 . 练习4:已知:x342y0,则x= -3 ,y= 2 .
课堂练习

人教版2024-2025学年七年级数学上册1.2.4 绝对值(课件)

人教版2024-2025学年七年级数学上册1.2.4  绝对值(课件)

易错提醒:注意绝对值等于某个正数的数有两个,它们互为 相反数,解题时不要遗漏负值.
归纳总结 绝对值的性质
(1)任何有理数都有绝对值,且只有一个. (2)由绝对值的几何定义可知,数的绝对值是两点间的距离,因此,任 何一个数的绝对值都是非负数;在数轴上,一个数离原点的越近,绝 对值越小,离原点越远,绝对值越大. (3)互为相反数的两个数的绝对值相等. (4)绝对值相等的两个数相等或互为相反数.
若|x|=5,则x的值是( C )
A. 5
B. -5
C. ±5
1
D.
5
解析:|x|=5,即数x到原点的距离是5,而到原点 的距离是5的数有5和-5,所以x的值是5和-5.
素养考点 3 利用绝对值求字母的值
例3 已知|x–4|+|y–3|=0,求x+y的值.
分析:一个数的绝对值总是大于或等于0,即为非负数, 如果两个非负数的和为0,那么这两个数同时为0.
第一章 有理数
1.2 有理数及其大小比较 1.2.4 绝对值
1.理解绝对值的概念及其几何意义. 2.会求一个数(不涉及字母)的绝对值. 3.会求绝对值已知的数. 4.了解绝对值的非负性,并能用其非负性解决相关问题.
两辆汽车从同一处O出发分别向东、西方向行驶10km,到 达A、B两处.
B 10 O 10 A
例1 求下列各数的绝对值. 12, - 3 , -7.5, 0.
5
解: |12|=12; 正数的绝对值等于它本身.
-3 3;
55
负数的绝对值等于它的相反数.
|-7.5|=7.5;
|0|=0.
0的绝对值是0.
方法总结 求一个数的绝对值的步骤
判断下列说法是否正确.

人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)

人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)

课堂小结
3.不论有理数a取何值,它的绝对值总是正数或0(非负数), 即对任意有理数a,总有|a|≥0.
4.互为相反数的两个数的绝对值相等. 5.数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从 小到大的顺序,即左边的数小于右边的数.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课堂小结
6.有理数大小比较法则: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.

课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7


- 8 >- 3
21
7

(3)化简,得:-(-0.3)=0.3,-
1 3

1 3
.
1 ∵0.3< 3 ,
∴-(-0.3)<
-1 3
.
课堂练习
1.比较大小:
(1)-2_<__5,
-7 2
_>__

3 8

-0.01_>__-1;
4 (2)- 5
合作探究
一个正数的绝对值是什么?0的绝对值是什么?负数呢?
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0.

绝对值PPT课件

绝对值PPT课件
-6 -5 -4 -3 -2
│4│=4
0 1 2 3 4
B
5 6
-1
-5的绝对值应该记作│-5︱=? 4的绝对值应该记作 │4︱ =? 0的绝对值应该如何表示呢? │0︱ =?
练习:
-6 -5 -4 -3 -2
-1
0
1
2
3
4
5
6
1.表示+7的点与原点的距离是 7 , 即+7的绝对值是 7 ,记作 7 7 ; 表示2.8的点与原点的距离是 2.8 , 即2.8的绝对值是 2.8 ,记作 2.8 2.8 ; 2.表示0的点与原点的距离是 0 , 即0的绝对值是 0 ,记作 0 0 ;
0 0
7 7
1、(1)正数的绝对值是它的本身;
(2)0的绝对值是0;
(3)负数的绝对值是它的相反数。
2、非负性 由绝对值的定义可知绝对值 具有非负性,即|a|≥0。
练习:
1、判断下列各题: (1)负数没有绝对值。 × (2)有些数的绝对值有两个。× (3)正数和零的绝对值是它的本身。√ (4)负数和零的绝对值是它的相反数。√ √ (5)任何有理数的绝对值一定不是负数。
答:记为-8的足球质量好一些。
因为 │-20│= 20, │-8│ = 8, │+10│=10, │+12│=12, │-11│=11;
所以│-8│ < │+10│ < │-11│ < │+12│ < │-20│
也就是说记为-8的足球与规定的质量相差比较小, 因此其质量比较好。
思考:

1.计算:|–(+3.6)| + |–(–1.2)| – |–[+(–4)]| 2.已知 |x–2| + |y–3| + |z–4| = 0, 求x+y–z的值。

1.2.4 绝对值 课件-人教版(2024)数学七年级上册

1.2.4 绝对值 课件-人教版(2024)数学七年级上册

应 记作 |a| . (这里的数a可以是正数、负数和0). 用
0到原点的距
-5到原点的距 离是5,所以-5的 绝对值是5,记 做|-5|=5
离是0,所以0 的绝对值是0, 记做|0|=0
4到原点的距离是4, 所以4的绝对值是4, 记做|4|=4
│-5│=5 │4│=4 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
第一章 有理数 1.2.4 绝对值
回顾
知 1、什么是数轴? 识
数轴的三 要素
关 数轴是规定了原点、正方向、单位长度的直线

-2 -1 0 1 2
2、什么是相反数? 只有符号不同的两个数叫做互为相反数. 规定:0的相反数是0.探情究来自1 导绝入对值的概念探

甲、乙两辆出租车在一条东西走向的街道上行驶,
(2)原式=4.2-4.2=0
拓展
探 例4 下列关系一定成立的是
()
究 A.若|m|=|n|,则m=n
B.若|m|=n,则m=n
与 应 C.若|m|=-n,则m=n
D.若m=-n,则|m|=|n|
用 例5 如图 数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中四
个点表示的数的绝对值最大的是 ( )
;绝对值最小的数是 .
5.绝对值小于2的整数有 个,它们分别是
.
检测

堂 1.直接填写结果:︱+6︱= 6
,︱-1.5︱= 1.5
,|-
小 |= 结
32,︱0︱=32 0
, -︱-12︱= -12 .
与 2.如果一个数的绝对值等于10,那么这个数等于 10或-10.
检 3.如果一个数的绝对值是它本身,那么这个数一定是 非负数 测

〖数 学〗绝对值+课件 +2024--2025学年人教版七年级数学上册

〖数 学〗绝对值+课件 +2024--2025学年人教版七年级数学上册
问题2:它们的行驶路程相等吗?
相等,都是10km
2
2
0
9
9
B
O
A
-10
0
10
情境2:在所给数轴上画出表示下列各数的点,并说出各点到原点的距离.
5,-1.5,0,1.5,-5
0
-5




-4
1.5
-1
0
1
2
3
解:点如图所示,
5到原点的距离为5,-1.5到原点的距离是1.5,
2
2
0
9
9
比较有理数绝对值大小时,可以利用数轴分析,离原点越近,
绝对值越大,反之越小.
练一练
1.判断下列说法是否正确:
(1)一个数的绝对值越大,表示它的点在数轴上越靠右.(× )
(2)一个数的绝对值越大,表示它的点在数轴上离原点越 远.( √ )
(3)当a≠0,│a│总大于0 .(
√ )
2
2
0
9
9
3.比较有理数绝对值大小时,可以利用数轴分析,离原点越近,绝对
值越大,反之越小.
2
2
0
9
9
(× )
(4)有理数的绝对值一定是正数
(× )
(5)若a=-b,则|a|=|b|
(√ )
(6)若|a|=|b|,则a=b
(× )
(7)若|a|=-a,则a必为负数
(× )
(8)互为相反数的两个数的绝对值相等 ( √ )
2
2
0
9
9
3.已知││ = 2,求的值.
解:因为││ = 2,根据绝对值的定义,可知是数轴上
在数轴上表示3和-3的点与原点的距离都是3.

2024年秋人教版七年级数学上册 《专题:绝对值与分类讨论》精品课件

2024年秋人教版七年级数学上册 《专题:绝对值与分类讨论》精品课件

知识点3 解绝对值方程 【例3】阅读下列材料. 解方程:|x+3|=5,我们可以将x+3视为一个整体,由于绝对值 为5的数有两个,所以x+3=5或x+3=-5,解得x=2或x=-8. 请按照上面的解法解方程:|x-1|=3. 解:由题意,得x-1=3或x-1=-3, 解得x=4或x=-2.
【变式3】 同学们都知道,|3-(-1)|表示3与-1之差的绝对 值,实际上也可理解为3与-1两数在数轴上所对的两点之间的距离, 试探索: (1)求|3-(-1)|= 4 ; (2)找出所有符合条件的整数x,使得|x-3|=4. 解:(2)|x-1.
同学们,再见!
最新人教版七年级数学上册
专题:绝对值与分类讨论
解题思路:需要去绝对值,但无法确定绝对值内的正负时,则需分类 讨论. 知识储备:1.若|x|=3,则x= ±3 . 2.若|-x|=5,则x= ±5 .
知识点1 绝对值与有理数的运算 【例1】已知|a|=4,|b|=5,且ab<0,求a-b的值. 解:因为|a|=4,|b|=5,所以a=±4,b=±5. 因为ab<0,所以a=4时,b=-5;a=-4时,b=5. 所以a-b=4-(-5)=9或a-b=-4-5=-9. 即a-b的值为±9.
【变式1】已知|a|=2,|b|=3,且a>b,求a+b的值. 解:因为|a|=2,|b|=3,所以a=±2,b=±3. 因为a>b, 所以当a=2时,b=-3,则a+b=-1; 当a=-2时,b=-3,则a+b=-5. 即a+b的值为-1或-5.
知识点2 绝对值与约分 【例2】已知ab>0,则|aa|+|bb|= ±2 . 【变式2】已知abc<0,则|aa|+|bb|+|cc|= 1或-3 .

人教版(2024)数学七年级上册1.2.4绝对值课件(共15张PPT)

人教版(2024)数学七年级上册1.2.4绝对值课件(共15张PPT)

一般地,数轴上表示数a的点与原点的距离 叫作数a的绝对值,记作|a| .
这里的数a可以是 正数、负数和0
例1 借助数轴求出2,4,-5,-1,-2.5,0的绝对值.
0
5
2.5 1
4 2
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
解: 表示2的点到原点的距离是2,所以2的绝对值是2; 表示4的点到原点的距离是4,所以4的绝对值是4;
本节我们继续学习有理数的相关概念!
新知学习
如图,10和-10互为相反数,在数轴上分别用A、B两点表示,可以发现:点A、B与原
点的距离都是10
B
O
A
-10到原点的距离是10, 所以-10的绝对值是10, 记做|-10|=10
-10
0
10
0到原点的距离是0,所以0 的绝对值是0,记做|0|=0
10到原点的距离是 10,所以10的绝对值 是10,记做|10|=10
44
(2)如图,数轴上的点A,B,C,D分别表示有理数a,b,c,d,这四个数中, 绝对值最小的是哪个数?
A
B
C
D
-4 -3 -2 -1 0 1 2 3
解:因为在点A,B,C,D中,点C离原点最近, 所以在有理数a,b,c,d中,c的绝对值最小.
分析:一个数的绝对值越小, 数轴上表示它的点离原点越 近;反过来,数轴上的点离 原点越近,它所表示的数的 绝对值越小
1 2
1 2
2.5 3
-3 -2 -1 0 1 2 3
距离原点为
1
Hale Waihona Puke 3、2,2.5的点分别有2个(一个正数,一个负数),如上图所示.
2.这些数字之间有什么关系?

1.2.4 有理数 绝对值 课件(共13张PPT)2024—2025学年七年级上学期数学人教版

1.2.4 有理数 绝对值 课件(共13张PPT)2024—2025学年七年级上学期数学人教版
满足条件的所有x的值为
0,1,-1,2,-2,-3
.
同学们,再见!
的距离叫做a的绝对值,记
知识点1 绝对值的概念及符号的理解
【例1】(1)6的绝对值是

0
,-8的绝对值是
6
,0的绝对值
8

-4.5的绝对值
(2)(多维原创)|-4.5|读作
上表示-4.5的点与原点的距离
5
【变式1】(1)2的绝对值是
绝对值是
,其结果等于


,它表示
4.5
.
,-3.9的绝对值是
3.9
点之间的距离,那么|5+2|可以看作|5-(-2)|,表示5与-2
这两个数在数轴上所对应的两点之间的距离.
(1)数轴上,有理数4与-1所对应的点之间的距离为
5

(2)结合数轴找出符合条件的整数x,使|x+1|=3,则x=
2或
-4 ;
(3)利用数轴分析,若x是整数,且满足|x+3|+|x-2|=5,则
,反之,绝对值相等的两个
.
1.-3的绝对值是(
1
A.
3
C )
1
B.-
3
C.3
D.-3
2.(2023·深圳一模)下列各数中,绝对值最小的是(
A.-2
B.3
3.若|x|=9,则x的值是(
A.9
B.-9
C.0
C
D.-3

C.±9
D.0
C

4.(人教7上P11T2改编)判断下列说法,正确的是
③④
.
①符号相反的数互为相反数;
C
A.x=y
B.x与y互为相反数

人教版七年级上册数学.4绝对值课件

人教版七年级上册数学.4绝对值课件

( 1 )在数轴上表示下列各数,并比较它们的大小; - 1.5 , - 3 , - 1 , - 5
解:(1)●

●●
- 5 < - 3 <- 1.5 < - 1
(2)| -1.5 | = 1.5 ; | - 3 | = 3;
| -1 | = 1 ; | - 5 | = 5.
1 < 1.5 <3 <5
• |x-1|+ |x-3|=4, 在数轴上画出符合条件的所 有点来表示x
• |x-1|-|x-3|=4, 在数轴上画出符合条件的所有 点来表示x
复习:
1、什么是数轴?
数轴是规定了原点、正方向、单位长度的直线
-2 -1 0 1 2
2、数轴的三要素
原点、正方向、单位长度
做一做
3、画出数轴、并用数轴上的点表示 下列各数: -1.5 , 0 , -6 ,2 , +6 ,-3 ,3
解:




●●

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
(2)如果数 a 的绝对值大于 a ,那么 a 可能是正 数吗?可能是零吗?可能是负数吗? 解:a 不可能是正数,不可能是零,一定是负数. (3)一个数 的绝对值可能小于 它本身吗? 解:一个数的绝对值不可能小于它本身.
2、判断: 1)若一个数的绝对值是 2 , 则这个数是2 2)|5|=|-5| 3)|-0.3|=|0.3| 4)|3|>0 5)有理数的绝对值一定是正数 6)若a=b,则|a|=|b| 7)若|a|=|b|,则a=b 8)若|a|=a,则a必为正数 9)若|a|=-a,则a必为负数 10)互为相反数的两个数的绝对值相等
想一想
1) 绝对值是7的数有几个?各是什么?有 没有绝对值是-2的数?

1.2.4 绝对值 课件-人教版(2024)数学七年级上册 (2)

1.2.4 绝对值 课件-人教版(2024)数学七年级上册 (2)




+

÷ −
【解】 −





×|-9|= ×9=24.

.
÷ −
1


2


= ×
3
4


= .


5
6
7
6. 如图,在数轴上有两滴墨水将数污染,根据图中数值,你
能确定墨迹盖住的整数是哪几个吗?并求其绝对值的和.
1
2
3
4
5
6
7
【解】由数轴可知在-6.3与-1之间被盖住的整数有-
6,-5,-4,-3,-2共5个,在0与4.1之间被盖住的整
-25,-36,+55,-45,+47,+32,-54,+43,-23.
如果进出库的装卸费都是8元/吨,那么这8天中进出货品需要
付装卸费多少元?
1
2
3
4
5
6
7
【解】|+38|+|-25|+|-36|+|+55|+|-
45|+|+47|+|+32|+|-54|+|+43|+|-
23|=398(吨),398×8=3 184(元).
第一章 有理数
1.2.4 绝对值
知识点1 绝对值的定义
1.2的绝对值是

0
2 ,- 的绝对值是



,0的绝对值
.

变式1下列四个数中,绝对值最大的是(



A. -3
B.
C. 0
D. +2
1
2
3
4
5
6
7
A
)
知识点2 绝对值的意义

人教版(2024)数学七年级上册1.2 有理数及其大小比较 第4课时《绝对值》PPT教学课件

人教版(2024)数学七年级上册1.2 有理数及其大小比较 第4课时《绝对值》PPT教学课件
3.经历学习活动的过程,让学生充分感受数学与生活的密切 联系,使学生获得学习数学的信心和乐趣.
图片导入
三只动物在离家不远的地方玩耍.观察图片,并回答问题. (1)大象和两只小狗分别距离原点多远? (2)从图中你还能知道哪两只动物之间的距离?
情境导入
体育课上,你和同学在操场上玩扔沙包的 游戏,如果你向左扔一个沙包,落在离你 10 米的地方,向右扔了一个,落在离你 同样远的位置,规定向右为正. (1)两次的位置分别可以记作什么? (2)它们与你的距离都是多少米?
【发现】①绝对值是一个正数的数有_2__个,它们互为_相__反___数;
②根据上面的规律发现,不论正数、负数,还是0,它们的绝对 值一定是_非__负__数_____.
【应用】①若|x|=2,则x的值是( C )
A.2
B.-2
C.±2
D.都不对
②若|a-1|+|b-2|=0,则a=1____,b=2____.
人教版(2024)数学七年级上册
绝对值
1.2 有理数及其大小比较 第4课时
汇报人:XXX 时间:2024.
《目录》
1 新课导入 2 新知讲解
3 课堂练习 4 拓展延伸
《01》
新课导入
重点
难点
1. 通过实例,了解绝对值的概念,理解利用数轴表示绝对值 的意义,培养学生数形结合的பைடு நூலகம்想.
2.通过观察、思考、探究等学习活动,体会绝对值的几何意 义和代数意义,发展学生的形象思维和抽象思维能力.
问题导入
同学们,老师这里有几个问题,你们能帮老师解答一下吗? 早晨小明爸爸开车送小明去学校,东行3千米到学校,之后向西行6千米到图 书馆拿办公资料,如果规定向东为正,且小明家、学校、图书馆在同一条直 线上. (1)计算小明爸爸所行的总路程. (2)请你画一条数轴,原点表示小明家,在数轴上画出表示学校、图书馆的 点,学校和图书馆在数轴上表示的数是多少?到小明家的距离分别是多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-
9
回顾与小结
本节课里你学到了什么???
(1)绝对值的几何意义及代数意义。 (2)如何求一个数的绝对值。
:教材P15第4、10题。
-
10
练习1 化简
(1)|-0.1|=____; (2) |-101|=____; (3)| 3 |=______; (4) |-8|=_____;
100
(5) |+6|=____ ; (6) |0| ______;
(7) -|-7.5|=_____; (8 -|+8|=_____;
(9)如果|x|=2,则x=______
|8|=8, |-8|=8.
-
4
活动3:练一练,想一想
完成下列表格
数a 4 3 1.5 0
—1.5 —3 —4
数a的绝对值|a| |4|= 4 |3|= 3 |1.5|= 1.5 |0|= 0
|—1.5|= 1.5 |—3|= 3
|—4|=4
—1.5 O 1.5
-4 -3 -2 -1 0 1 2 3 4
1.2.4
-
1
活动1:想一想
问题1:小明的家与两个商店在同一直线上, 其中商店A在小明家东边1km处,商店B在小 明家西边2km。
(1)怎样用数轴表示两个商店与小明家的位置关系?
(2)如果小明要 买笔记本,你认为小明应该选择去哪个商 店呢?
B
2km
O 1km A
-2
-1
0
1
2
活动2:绝对值概念的学习和理解
-
7
练习2
(1)绝对值是3的数有几个?各是什 么?
(2)绝对值是0的数有几个?各是什 么?
(3)绝对值是-2的数是否存在?若 存在,请说出来?
-
8
练习3 判断
( 1 ) |-1.4|>0 ( 2 ) |-0.3|=|0.3| ( 3 ) 有理数的绝对值一定是正数。 ( 4 ) 绝对值最小的数是0。 ( 5 ) 如果数a的绝对值等于a,那么a一定为正数。 ( 6 ) 一个数的绝对值越大,表示它的点在数轴上越 靠 右。 ( 7) 一个数的绝对值越大,表示它的点在数轴上离原 点越远 ( 8 ) 若a=b,则|a|=|b| ( 9 ) 若|a|=|b|,则a=b。
-
5
1、一个正数的绝对值是它本身;一个负数的绝对值是 它的相反数是负数时,|a|=__-a; (3)当a=0时,|a|=___0。
a (a 0) | a| a (a 0)
0 (a 0)
2.互为相反数的两个数的绝对值相等
-
6
一般地,数轴上表示数a的点与原点 的距离叫做数a的绝对值,记作|a|。
B
O
A
-2
0
1
想一想:
根据上面的数轴表示,你能求出-2和1的绝对值吗?
-
3
思考:-8与8是相反数,把它们在数轴 上表示出来,那么它们的方向又有什么 关系?到原点的距离又有什么关系?
8
-8
8
0
8
-8与8虽然符号不同,但它们在数轴上所表示 的点到原点的距离都是是8个单位长度,我们把这 个距离8叫做+8和-8的绝对值。记为:
相关文档
最新文档