电工学(第七版上册)秦曾煌主编[优质ppt]
合集下载
电工学(第七版上册)秦曾煌主编ppt课件
A
B
(2)用正负极性: A +
U
B
(3)用双下标: A
UAB
B
参考方向
+U
–
+ 实际方向
U >0
参考方向
+U
–
实际方向 +
U <0
3.电位: 电路中为分析的方便,常在电路中选某
一点为参考点,任一点到参考点的电压称 为该点的电位。
用表示,单位与电压相同,也是V(伏)。
.
16
4.关联参考方向 i
+
1. 用箭头表示: 箭头的指向为电流的参考方向。
2.用双下标表示: 如iAB,电流的参考方向由A点指向B点。
i
A
B
.
11
2 .电压
两点之间的电位之差即是两点间的电压。从电场力做功概 念定义,电压就是将单位正电荷从电路中一点移至电路中另 一点电场力做功的大小,如图 所示。用数学式表示,即为
定义电压示意图
.
21
1.3 电功率和能量 一:电功率
单位时间做功大小称作功率,或者说做功的速率称为 功率。在电路问题中涉及的电功率即是电场力做功的速率, 以符号p(t)表示。功率的数学定义式可写为 :
p(t) dw(t) dt
式中dw为dt时间内电场力所做的功。功率的单位为瓦(W)。 1瓦功率就是每秒做功 1 焦耳,即1W = 1J/s 。
.
23
由 u dw 得 dw udq dq
再由 i dq 得 dt dq
dt
i
根据功率定义 p(t) = dw/dt, 得
P(t)=ui
根据功率的定义知道功率是能量对时间的导 数,反过来能量是功率对时间的积分。
电工学(第七版)上册秦曾煌第四章_图文
相位差
定义:
XL
感抗:
()
则:
O
f
XL与 f 的关系
直流:f = 0, XL =0,电感L视为短路
交流:f
XL
超前
电感L具有通直阻交的作用
相量式:
电感电路相量形式的欧姆定律
相量图
2. 功率关系 (1) 瞬时功率
(2) 平均功率
L是非耗 能元件
(3)无功功率Q 用以衡量电感电路中能量交换的规模。
阻抗模:
阻抗角:
由电路参数决定。
电路参数与电路性质的关系:
当 XL >XC 时, > 0 ,u 超前 i 呈感性 当 XL < XC 时 , < 0 , u 滞后 i 呈容性 当 XL = XC 时 , = 0 , u. i 同相 呈电阻性
2) 相量图
参考相量
XL > XC
XL < XC
用相量表示后,即可用直流电路的分析方法。
4.1 正弦电压与电流
I, U
o
t
直流电流和电压
正弦电流和电压
正弦交流电的优越性: 便于传输;易于变换 便于运算; 有利于电器设备的运行;
.....
_
正半周
_
负半周
4.1 正弦电压与电流
设正弦交流电流:
i
Im
O
T
初相角:决定正弦量起始位置 角频率:决定正弦量变化快慢 幅值:决定正弦量的大小 幅值、角频率、初相角成为正弦量的三要素。
2.4 电阻、电感与电容元件串联的交流电路
1. 电流、电压的关系 (1) 相量式
设
(参考相量)
则
如用相量表示电压与 电流关系,可把电路模型 改画为相量模型。 总电压与总电流
电工学(第七版)上册秦曾煌第一章ppt课件
(3) 根据计算结果确定实际方向: 若计算结果为正值,则实际方向与假设方向一致; 若计算结果为负值,则实际方向与假设方向相反。
.
章目录 上一页 下一页 返回 退出
例: 电路如图所示。
I = 0.28A I = – 0.28A
电动势为E =3V
+
方向由负极指向正极; E
3V
电压U的参考方向与实际方
向相同, U = 2.8V, 方向由
电动势 E
单位
A、 kA、 mA、 μA V、 kV、 mV、 μV
电 压 U V、 kV、 mV、 μV
实际正方向 正电荷移动的方向
电源驱动正电荷的 方向
(低 电 位 - 高 电 位 ) 电位降落的方向
(高 电 位 - 低 电 位 )
.
章目录 上一页 下一页 返回 退出
物理量正方向的表示方法
I
a
灯
U
R
池
泡 R0
导线
手电筒电路
干电池 导线 灯泡 手电筒的电路模型
电源或信号源的电压或电流称为激励,它推动电
路工作;由激励所产生的电压和电流称为响应。
电路分析是在已知电路结构和参数的条件下,讨
论激励与响应的关系。
.
章目录 上一页 下一页 返回 退出
1.3 电压和电流的参考方向
电流
电路中的物理量 电压
电功率和额定值的意义; 4. 会计算电路中各点的电位。
.
章目录 上一页 下一页 返回 退出
1.1 电路的作用与组成部分
电路是电流的通路,是为了某种需要由电工设备
或电路元件按一定方式组合而成。
1. 电路的作用 (1) 实现电能的传输、分配与转换
发电机
.
章目录 上一页 下一页 返回 退出
例: 电路如图所示。
I = 0.28A I = – 0.28A
电动势为E =3V
+
方向由负极指向正极; E
3V
电压U的参考方向与实际方
向相同, U = 2.8V, 方向由
电动势 E
单位
A、 kA、 mA、 μA V、 kV、 mV、 μV
电 压 U V、 kV、 mV、 μV
实际正方向 正电荷移动的方向
电源驱动正电荷的 方向
(低 电 位 - 高 电 位 ) 电位降落的方向
(高 电 位 - 低 电 位 )
.
章目录 上一页 下一页 返回 退出
物理量正方向的表示方法
I
a
灯
U
R
池
泡 R0
导线
手电筒电路
干电池 导线 灯泡 手电筒的电路模型
电源或信号源的电压或电流称为激励,它推动电
路工作;由激励所产生的电压和电流称为响应。
电路分析是在已知电路结构和参数的条件下,讨
论激励与响应的关系。
.
章目录 上一页 下一页 返回 退出
1.3 电压和电流的参考方向
电流
电路中的物理量 电压
电功率和额定值的意义; 4. 会计算电路中各点的电位。
.
章目录 上一页 下一页 返回 退出
1.1 电路的作用与组成部分
电路是电流的通路,是为了某种需要由电工设备
或电路元件按一定方式组合而成。
1. 电路的作用 (1) 实现电能的传输、分配与转换
发电机
电工学(第七版)_秦曾煌_全套课件_16.集成运算放大器-1
大器, 并掌握其基本分析方法;
3. 理解用集成运算放大器组成的比例、加减、微分和
积分运算电路的工作原理,了解有源滤波器的工作
原理; 4. 理解电压比较器的工作原理和应用。
章目录 上一页 下一页 返回 退出
16.1 集成运算放大器的简单介绍
集成运算放大器是一种具有很高放大倍数的多 级直接耦合放大电路。是发展最早、应用最广泛的 一种模拟集成电路。 集成电路 是把整个电路的各个元件以及相互之 间的联接同时制造在一块半导体芯片上, 组成一个不 可分的整体。 集成电路特点:体积小、重量轻、功耗低、可 靠性高、价格低。 按集成度 小、中、大和超大规模 集成电路分类 按导电类型 双、单极性和两种兼容 按功能 数字和模拟
章目录 上一页 下一页 返回 退出
16.1.2 电路的简单说明
输入级 中间级 偏置 电路 输出级
运算放大器方框图
输入级:输入电阻高,能减小零点漂移和抑制干 扰信号,都采用带恒流源的差分放大器 。 中间级:要求电压放大倍数高。常采用带恒流源 的共发射极放大电路构成。 输出级:与负载相接,要求输出电阻低,带负载 能力强,一般由互补功率放大电路或射极输出器构成。 偏置电路: 一般由各种恒流源等电路组成
因要求静态时u+、u对地 电阻相同, 所以平衡电阻R2 = R1//RF
u u u0 R1 RF RF uo (1 )ui R1 uo RF Auf 1 ui R1
章目录 上一页 下一页 返回
退出
结论:
(1) Auf 为正值,即 uo与 ui 极性相同。因为 ui 加
16.1.3 主要参数
1. 最大输出电压 UOM 能使输出和输入保持不失真关系的最大输出电压。 2. 开环差模电压增益 Auo 运算放大器没有接反馈电路时的差模电压放大倍数。 Auo愈高,所构成的运算电路越稳定,运算精度也越高。 3. 输入失调电压 UIO 愈小愈好 4. 输入失调电流 IIO 5. 输入偏置电流 IIB 6. 共模输入电压范围 UICM 运算放大器所能承受的共模输入电压最大值。超出此 值,运算放大器的共模抑制性能下降,甚至造成器件损坏。
电工学(第七版)_秦曾煌_全套课件_15.基本放大电路-2
RS eS – + + ui RB2 – RE
+UCC C2 + + RL + CE uo –
章目录 上一页 下一页 返回
退出
(2) 由微变等效电路求Au、 ri 、 ro。
Ii
I B b
Ic C
rbe
RS
+
+ ES -
U i
-
RB
βI b
E
+ RC
RL U o
-
26 26 __ rbe = 300 +(1+ ) =1.52k = 300+51 IE 1.09 RC//RL 4//4 = – 65.8 Au= – rbe = – 50 1.52k ri = RB1 // RB2 // rbe = 30//10//1.42=1.12 k
VE
RL + CE
+ uo –
在估算时一般选取:
从Q点稳定的角度来 看似乎I2、VB越大越好。 但 I2 越大,RB1、RB2 必须取得较小,将增加 损耗,降低输入电阻。 而VB 过高必使 VE 也 增高,在 UCC一定时, 势必使 UCE 减小,从而 减小放大电路输出电压 的动态范围。
I2= (5 ~10) IB,VB= (5 ~10) UBE
基极电位VB与晶体管的参数无关,不受温度的影响。
章目录 上一页 下一页 返回 退出
15.4.2 分压式偏置电路
1. 稳定Q点的原理
RB1 I1 RC IC C2 + +UCC
VB U BE IC IE RE
C1 V I B B + RS eS – + + ui RB2 – I2 RE
+UCC C2 + + RL + CE uo –
章目录 上一页 下一页 返回
退出
(2) 由微变等效电路求Au、 ri 、 ro。
Ii
I B b
Ic C
rbe
RS
+
+ ES -
U i
-
RB
βI b
E
+ RC
RL U o
-
26 26 __ rbe = 300 +(1+ ) =1.52k = 300+51 IE 1.09 RC//RL 4//4 = – 65.8 Au= – rbe = – 50 1.52k ri = RB1 // RB2 // rbe = 30//10//1.42=1.12 k
VE
RL + CE
+ uo –
在估算时一般选取:
从Q点稳定的角度来 看似乎I2、VB越大越好。 但 I2 越大,RB1、RB2 必须取得较小,将增加 损耗,降低输入电阻。 而VB 过高必使 VE 也 增高,在 UCC一定时, 势必使 UCE 减小,从而 减小放大电路输出电压 的动态范围。
I2= (5 ~10) IB,VB= (5 ~10) UBE
基极电位VB与晶体管的参数无关,不受温度的影响。
章目录 上一页 下一页 返回 退出
15.4.2 分压式偏置电路
1. 稳定Q点的原理
RB1 I1 RC IC C2 + +UCC
VB U BE IC IE RE
C1 V I B B + RS eS – + + ui RB2 – I2 RE
电工学(第七版)上册秦曾煌第五章_图文
负载 Y 联结带中性线时, 可将各相分别看作单相电路计算
(3) 对称负载Y 联结三相电路的计算 负载对称时, 只需计算一相电 流,其它两相电 流可根据对称性 直接写出。
所以负载对称时,三相电流也对称。
负载对称时,中性线无电流, 可省掉中性线。
例1:一星形联结的三相电路,电源电压对称。设电
源线电压
1) 每相负载的电阻和感抗;
2) S1合、S2断开时, 各电流表读数和有功功率P; 3) S 1断、S 2闭合时, 各电流表读数和有功功率P。
L1 L2
A
Z12 A S1
S2
Z31
Z23
L3
A
解:(1) 由已知条件可求得
L1
L2
L3
A
Z12 A S1
S2
Z31
Z23
A
或:P =I 2R P =UIcos tg =XL / R
P = P12+P23 = 3 kW
(3) S1断开、 S2闭合时 L1
I2 = 0A I1 仍为相电流 IP ,
L2
I2 变为 1/2 IP 。
L3
A
Z12 A S1
S2
Z31
Z23
A
I1=I3 =10 A+ 5 A= 15A
变为单相电路
I2 变为 1/2 IP,所以 L1L2、
L2L3 相的功率变为原来的1/4
单相负载:只需一相电源供电
照明负载、家用电器
对称三相负载:Z1=Z2= Z3
三相负载
如三相电动机
不对称三相负载:不满足 Z1 =Z2 = Z3 如单相负载组成的三相负载
三相负载的联接
三相负载也有 Y和 两种接法,至于采用哪种方
(3) 对称负载Y 联结三相电路的计算 负载对称时, 只需计算一相电 流,其它两相电 流可根据对称性 直接写出。
所以负载对称时,三相电流也对称。
负载对称时,中性线无电流, 可省掉中性线。
例1:一星形联结的三相电路,电源电压对称。设电
源线电压
1) 每相负载的电阻和感抗;
2) S1合、S2断开时, 各电流表读数和有功功率P; 3) S 1断、S 2闭合时, 各电流表读数和有功功率P。
L1 L2
A
Z12 A S1
S2
Z31
Z23
L3
A
解:(1) 由已知条件可求得
L1
L2
L3
A
Z12 A S1
S2
Z31
Z23
A
或:P =I 2R P =UIcos tg =XL / R
P = P12+P23 = 3 kW
(3) S1断开、 S2闭合时 L1
I2 = 0A I1 仍为相电流 IP ,
L2
I2 变为 1/2 IP 。
L3
A
Z12 A S1
S2
Z31
Z23
A
I1=I3 =10 A+ 5 A= 15A
变为单相电路
I2 变为 1/2 IP,所以 L1L2、
L2L3 相的功率变为原来的1/4
单相负载:只需一相电源供电
照明负载、家用电器
对称三相负载:Z1=Z2= Z3
三相负载
如三相电动机
不对称三相负载:不满足 Z1 =Z2 = Z3 如单相负载组成的三相负载
三相负载的联接
三相负载也有 Y和 两种接法,至于采用哪种方
电工学 秦曾煌第七 PPT课件
t
3-33
第33页/共57页
uC (t) E (U 0 E)e t RC U 0 e t RC (E Ee t RC )
暂态电路的叠加定理:
全响应=稳态分量+暂态分量 全响应=零输入响应+零状态响应
前者:由电路因果关系来看 后者:由电路的变化规律来看
3-34
第34页/共57页
R-L电路的全响应
一阶电路暂态过程的求解方法
1. 经典法: 用数学方法求解微分方程。
2. 三要素法: 求初始值、稳态值、时间常数。 ……………... 3-18 第18页/共57页
* 经典法
K
R
+
_E
C
例
i
一阶常系数 线性微分方程
uC
RC
duC dt
uC
E
由数学分析知此种微分方程的解由两部分组成:
u' 方程的特解 C
R
t=0
+
E
C
_
uC
E
uC
RC
duC dt
uC
E
uC (0 ) U0 0
uC
(t
)
E
(U0
E
t
)e
RC
t uC (t) E Ee t RC
3-32
第32页/共57页
R-C电路的全响应
K
R
t=0
+
E
C
_
uC
RC
duC dt
uC
E
uC
E
U0
uC (0 ) U 0
uC (t) E (U 0 E)e t RC (E Ee t RC ) U 0 e t RC
电工学上册(第七版)PPT 高等教育出版社,秦曾煌主编
应用基尔霍夫电流定律列出 I2-I1-IB=0
得 IB=-0.255mA
例: I1
a I2
I6
d
R6
c
R4 I3 b I4 I
应用 U = 0列方程 对网孔abda: I6 R6 – I3 R3 +I1 R1 = 0 对网孔acba: I2 R2 – I4 R4 – I6 R6 = 0 对网孔bcdb:
例1: I1
a I2
IG
dG
c
R4 I3 b I4 I
+E –
支路:ab、bc、ca、… (共6条)
结点:a、 b、c、d
(共4个)
回路:abda、abca、
adbca … (共7 个)
网孔:abd、 abc、bcd (共3 个)
1.6.1 基尔霍夫电流定律(KCL定律) (应用于节点)
1.定律
在任一瞬间,流入任一结点的电流等于流出该
结点的电流。
I1 a I2
+ R1
R2
E1
I3 R3
b
即: I入= I出 或: I= 0
+ 对结点 a: I1+I2 = I3
E2
或 I1+I2–I3= 0
实质: 节点不能存储电荷。
注意:上面的流入和流出都是指电路的参考方向。
2.推广:从节点到闭合面
电流定律可以推广应用于包围部分电路的任一假设的
闭合面。在任何一个时刻,流过任何一个闭合面的电流 的代数和为0。
例:
IA
A
广义结点
IB
IC B
C
IA + IB + IC = 0 (1)
左图式(1)可以用基尔霍夫节 点电流定理来证明。
电工学 电子技术( 第七版 秦增煌)课件共16页
干扰、噪声、漂移、非线性
模拟电 子技术
数字电 子技术
被 测
传 感 器
模拟 信号 处理
模数 数字 转换 接口
微
控
对 象
伺服 机构
功率 放大
数模 转换
数字 接口
机
电机
计算机检测控制系统原理框图
绪 课程 的 目的、任务和学习方法
论
••• ••
《 试 理 按电 课 解 要工 ) 基 求学 本 参概 加》念实课、验程基是本必培理修养论课良和(好分学的析校实方规验法定素为质考 大 学 注学 用 重工 结 实科 合 践各 , 技专举能业一的的反培技三养术,基融础会课贯通
• 1892年马可尼和波波夫分别进行了无线电 通讯实验
• 1883年爱迪生发现电子的热效应及1904年 佛莱明制成了电子二极管
• 1906年德福雷斯发明了电子三极管 • 1948年美国贝尔实验室发明了晶体三极管 • 1958子技术 的 发展概况
论 • 现状:
• 容量大型化
绪
论•••••
•
工械机加束测力交电地第…、业工加、械量通子促二采…—电长汽广••••金生矿、工流加与与技进次—镀度车播农医军国属产、超 等 量工 控 通 术 了 工电、 、 与 、业 疗 事 防冷中冶动声、…工制讯的社业电速火电加电金机波照…艺发会革焊度车视工力、加度展生命机、、、、机轧…………工和和产对—械械电温飞电钢…………、色机—广力社的、炉度机影床动电度电泛的会锻冶、、及等力造子等加应提生金时轮电设和束…工用 高产、间船话备铸和…技极力电、……造离术大的蚀压……机子
•
器件小型化
•
设计自动化
电子计算机 的 发展概况 绪 论
• 1943年英国制造了一台电子计算机
模拟电 子技术
数字电 子技术
被 测
传 感 器
模拟 信号 处理
模数 数字 转换 接口
微
控
对 象
伺服 机构
功率 放大
数模 转换
数字 接口
机
电机
计算机检测控制系统原理框图
绪 课程 的 目的、任务和学习方法
论
••• ••
《 试 理 按电 课 解 要工 ) 基 求学 本 参概 加》念实课、验程基是本必培理修养论课良和(好分学的析校实方规验法定素为质考 大 学 注学 用 重工 结 实科 合 践各 , 技专举能业一的的反培技三养术,基融础会课贯通
• 1892年马可尼和波波夫分别进行了无线电 通讯实验
• 1883年爱迪生发现电子的热效应及1904年 佛莱明制成了电子二极管
• 1906年德福雷斯发明了电子三极管 • 1948年美国贝尔实验室发明了晶体三极管 • 1958子技术 的 发展概况
论 • 现状:
• 容量大型化
绪
论•••••
•
工械机加束测力交电地第…、业工加、械量通子促二采…—电长汽广••••金生矿、工流加与与技进次—镀度车播农医军国属产、超 等 量工 控 通 术 了 工电、 、 与 、业 疗 事 防冷中冶动声、…工制讯的社业电速火电加电金机波照…艺发会革焊度车视工力、加度展生命机、、、、机轧…………工和和产对—械械电温飞电钢…………、色机—广力社的、炉度机影床动电度电泛的会锻冶、、及等力造子等加应提生金时轮电设和束…工用 高产、间船话备铸和…技极力电、……造离术大的蚀压……机子
•
器件小型化
•
设计自动化
电子计算机 的 发展概况 绪 论
• 1943年英国制造了一台电子计算机
07优质电工学课件秦曾煌
U1 4.44 f1 N1Φm
由此得电磁转矩公式
T
K
R22
sR2 (sX 20 )2
U12
总目录 章目录 返回 上一页 下一页
电磁转矩公式
T
K
R22
sR2 (sX 20 )2
U
2 1
由公式可知
1.
T
与定子每相绕组电压
U
2 1
成正比。U
1
T
2. 当电源电压 U1 一定时,T 是 s 的函数。
7. 2. 2 电动机的转动原理
1. 转动原理 定子三相绕组通入三相交流电流
v A n0
Y NZ
F
旋转磁场
n0
60 f1 p
(转/分)
C
F
S
B
方向: 顺时针
X
切割转子导体 Blv
右手定则
感应电动势 E20
感应电流 I2 旋转磁场
Bli
左手定则
电磁力F
电磁转矩T
n
总目录 章目录 返回 上一页 下一页
变压器: 变化 e U1 E1= 4.44 f N1
E2= 4.44 f N2
E1 、E2 频率相同,都等 于电源频率。
U1
4.44 f N1
i1
i2
+ u1
-
-
e1
e-+1
+
+
-e2
e+ 2
-
f1 f2
异步电动机每相电路
总目录 章目录 返回 上一页 下一页
7. 3. 1 定子电路
*7.11 直线异步电动机(略)
电工第七版上下册秦曾煌课件pptchapter21
总目录 章目录 返回 上一页 下一页
第21章 门电路和组合逻辑电路
本章要求:
1. 掌握基本门电路的逻辑功能、逻辑符号、真值 表和逻辑表达式。了解 TTL门电路、CMOS门 电路的特点。 2. 会用逻辑代数的基本运算法则化简逻辑函数。 3. 会分析和设计简单的组合逻辑电路。 4. 理解加法器、编码器、译码器等常用组合逻辑
Y 0 1 1 1 1 1 1 1
DB DC
R
Y 3V 0V
2. 工作原理
-U 12V
输入A、B、C有一个为“1‖,输出 Y 为“1‖。
输入A、B、C全为低电平“0‖,输出 Y 为“0‖。
总目录 章目录 返回 上一页 下一页
21.3.3 二极管“或” 门电 路 逻辑表达式: Y=A+B+C ―或” 门逻辑状态表
电路的工作原理和功能。 5. 学会数字集成电路的使用方法。
总目录 章目录 返回 上一页 下一页
21.1 脉冲信号
1. 模拟信号
电子电路中的信号
模拟信号
数字信号
模拟信号:随时间连续变化的信号 正弦波信号
t
三角波信号
t
总目录 章目录 返回 上一页 下一页
处理模拟信号的电路称为模拟电路。如整流 电路、放大电路等,注重研究的是输入和输出 信号间的大小及相位关系。 在模拟电路中,晶体管三极管通常工作在放 大区。 2. 脉冲信号 是一种跃变信号,并且持续时间短暂。 尖顶波
总目录 章目录 返回 上一页 下一页
定量说明门电路抗干扰能力
UO/V
4 A 3 2
B
输入 高电平 电压UIH
允许叠加干扰
1
0
D
E
高电平噪声容限 电压UNH—保证 输出低电平电压 的条件下所允许 叠加在输入高 电 平电压上的最大 噪声(或干扰) 电压。
第21章 门电路和组合逻辑电路
本章要求:
1. 掌握基本门电路的逻辑功能、逻辑符号、真值 表和逻辑表达式。了解 TTL门电路、CMOS门 电路的特点。 2. 会用逻辑代数的基本运算法则化简逻辑函数。 3. 会分析和设计简单的组合逻辑电路。 4. 理解加法器、编码器、译码器等常用组合逻辑
Y 0 1 1 1 1 1 1 1
DB DC
R
Y 3V 0V
2. 工作原理
-U 12V
输入A、B、C有一个为“1‖,输出 Y 为“1‖。
输入A、B、C全为低电平“0‖,输出 Y 为“0‖。
总目录 章目录 返回 上一页 下一页
21.3.3 二极管“或” 门电 路 逻辑表达式: Y=A+B+C ―或” 门逻辑状态表
电路的工作原理和功能。 5. 学会数字集成电路的使用方法。
总目录 章目录 返回 上一页 下一页
21.1 脉冲信号
1. 模拟信号
电子电路中的信号
模拟信号
数字信号
模拟信号:随时间连续变化的信号 正弦波信号
t
三角波信号
t
总目录 章目录 返回 上一页 下一页
处理模拟信号的电路称为模拟电路。如整流 电路、放大电路等,注重研究的是输入和输出 信号间的大小及相位关系。 在模拟电路中,晶体管三极管通常工作在放 大区。 2. 脉冲信号 是一种跃变信号,并且持续时间短暂。 尖顶波
总目录 章目录 返回 上一页 下一页
定量说明门电路抗干扰能力
UO/V
4 A 3 2
B
输入 高电平 电压UIH
允许叠加干扰
1
0
D
E
高电平噪声容限 电压UNH—保证 输出低电平电压 的条件下所允许 叠加在输入高 电 平电压上的最大 噪声(或干扰) 电压。
电工学(第七版)_秦曾煌_全套课件_14.半导体器件-2
跳转 章目录 上一页 下一页 返回 退出
当晶体管饱和时,UCE 0,发射极与集电极之 间如同一个开关的接通,其间电阻很小;当晶体管 截止时,IC 0 ,发射极与集电极之间如同一个开关 的断开,其间电阻很大,可见,晶体管除了有放大 作用外,还有开关作用。
晶体管三种工作状态的电压和电流
IB UBC < 0 + + UBE > 0 IC + UCE IB = 0 IB UBC > 0
IC C + IB B T UCE + UBE E IE
电流方向和发射结与集电结的极性 (a) NPN 型晶体管; (b) PNP 型晶体管
章目录 上一页 下一页 返回
退出
3.三极管内部载流子的运动规律
集电结反偏, 有少子形成的反 向电流ICBO。 基区空穴向 发射区的扩散 可忽略。
C N P N E
B
RB EB
RC EC
发射结正偏 集电结反偏
PNP VB<VE VC<VB
章目录 上一页 下一页 返回
退出
2. 各电极电流关系及电流放大作用
IB
A
IC
mA
B + V UBE
C
3DG100
RB
E
mA IE
+ V UCE
EC
EB
晶体管电流放大的实验电路
设 EC = 6 V,改变可变电阻 RB, 则基极电流 IB、 集电极电流 IC 和发射极电流 IE 都发生变化,测量结 果如下表:
作原理和特性曲线,理解主要参数的意义;
3. 会分析含有二极管的电路。
章目录 上一页 下一页 返回
当晶体管饱和时,UCE 0,发射极与集电极之 间如同一个开关的接通,其间电阻很小;当晶体管 截止时,IC 0 ,发射极与集电极之间如同一个开关 的断开,其间电阻很大,可见,晶体管除了有放大 作用外,还有开关作用。
晶体管三种工作状态的电压和电流
IB UBC < 0 + + UBE > 0 IC + UCE IB = 0 IB UBC > 0
IC C + IB B T UCE + UBE E IE
电流方向和发射结与集电结的极性 (a) NPN 型晶体管; (b) PNP 型晶体管
章目录 上一页 下一页 返回
退出
3.三极管内部载流子的运动规律
集电结反偏, 有少子形成的反 向电流ICBO。 基区空穴向 发射区的扩散 可忽略。
C N P N E
B
RB EB
RC EC
发射结正偏 集电结反偏
PNP VB<VE VC<VB
章目录 上一页 下一页 返回
退出
2. 各电极电流关系及电流放大作用
IB
A
IC
mA
B + V UBE
C
3DG100
RB
E
mA IE
+ V UCE
EC
EB
晶体管电流放大的实验电路
设 EC = 6 V,改变可变电阻 RB, 则基极电流 IB、 集电极电流 IC 和发射极电流 IE 都发生变化,测量结 果如下表:
作原理和特性曲线,理解主要参数的意义;
3. 会分析含有二极管的电路。
章目录 上一页 下一页 返回
2024版电工学(第七版上册)秦曾煌主编PPT课件
根据磁化曲线的不同特点, 铁磁性物质可分为软磁材 料、硬磁材料和矩磁材料 等。
26
铁心线圈电路模型和分析方法
铁心线圈电路模型
将铁心线圈等效为一个电阻和一个电 感的串联电路,其中电阻表示线圈的 铜损,电感表示线圈的磁损。
铁心线圈电路的特点
由于铁心的存在,铁心线圈电路具有 非线性、饱和性和磁滞性等特点,使 得电路的分析和计算变得复杂。
2024/1/28
无功功率
比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功 率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场, 就要消耗无功功率。
视在功率
在电工技术中是指将单口网络端钮电压和电流有效值的乘积。只有单口网络完全由电阻混联 而成时,视在功率才等于平均功率,否则,视在功率总是大于平均功率(即有功功率),也 就是说,视在功率不是单口网络实际所消耗的功率。
4
第七版上册内容结构
第七版上册主要包括电路的基本概念和基本定律、电阻电路的分析、动态电路的时域分析、正弦稳态电 路的分析、含有耦合电感的电路分析、三相电路、非正弦周期电流电路和信号的频谱分析等内容。
本册内容在编排上注重系统性、连贯性和实用性,通过大量的例题和习题帮助学生巩固所学知识,提高分 析问题和解决问题的能力。
在并联电路中,总电阻的倒数等于 各电阻倒数之和,即 1/R=1/R1+1/R2+…+1/Rn,同时 电压相等,电流分配与电阻成反比。
13
电源等效变换方法
电压源等效变换
将电压源转换为等效的电流源,使得二者在外部电路中具有相同的电压和电流 表现。具体方法是通过计算电压源的内阻和开路电压,得到等效电流源的电流 和内阻。
26
铁心线圈电路模型和分析方法
铁心线圈电路模型
将铁心线圈等效为一个电阻和一个电 感的串联电路,其中电阻表示线圈的 铜损,电感表示线圈的磁损。
铁心线圈电路的特点
由于铁心的存在,铁心线圈电路具有 非线性、饱和性和磁滞性等特点,使 得电路的分析和计算变得复杂。
2024/1/28
无功功率
比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功 率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场, 就要消耗无功功率。
视在功率
在电工技术中是指将单口网络端钮电压和电流有效值的乘积。只有单口网络完全由电阻混联 而成时,视在功率才等于平均功率,否则,视在功率总是大于平均功率(即有功功率),也 就是说,视在功率不是单口网络实际所消耗的功率。
4
第七版上册内容结构
第七版上册主要包括电路的基本概念和基本定律、电阻电路的分析、动态电路的时域分析、正弦稳态电 路的分析、含有耦合电感的电路分析、三相电路、非正弦周期电流电路和信号的频谱分析等内容。
本册内容在编排上注重系统性、连贯性和实用性,通过大量的例题和习题帮助学生巩固所学知识,提高分 析问题和解决问题的能力。
在并联电路中,总电阻的倒数等于 各电阻倒数之和,即 1/R=1/R1+1/R2+…+1/Rn,同时 电压相等,电流分配与电阻成反比。
13
电源等效变换方法
电压源等效变换
将电压源转换为等效的电流源,使得二者在外部电路中具有相同的电压和电流 表现。具体方法是通过计算电压源的内阻和开路电压,得到等效电流源的电流 和内阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 0 B A S E - T w a ll p la t e
开关
灯泡
电 池
导线 实际电路
开关 S
电
RS
池
US
导线
电路模型
灯泡 R
1.2 电流和电压的参考方向
一、电路中的主要物理量
主要有电压、电流、电荷、磁通、 电功率、电能量等。
它们分别用U、I、Q、 分别表示。
1.电流(current):
同电流一样,两点间电压数值的正与负是 在设定参考方向的条件下才有意义。
电位与电压的区别是什么?
要讨论电位,必须在电路中选择一个参 考点,令参考点电位为零,电位值是相对的, 参考点选取不同,各点电位会随之变化。电压 是电路中两点间电位差,电路中两点间电压是 固定的,不随参考点变化而变化。所以各点的 电位高低是相对的,而两点间的电压是绝对的。
由 u dw 得 dw udq dq
再由 i dq 得 dt dq
dt
i
根据功率定义 p(t) = dw/dt, 得
P(t)=ui
根据功率的定义知道功率是能量对时间的导 数,反过来能量是功率对时间的积分。
t
W u()i()dξ t0
二、功率的计算和判断 1.u,i 关联参考方向
章电路模型和电路定律
重点: 12..电电压功、率电 、流能的量参考方向
3.基本电路元件特性 4.基尔霍夫定律
1.1 电路和电路模型 一、电路:
由电路器件和电路部件相互连接而成,它为 电流的流通提供路径,具有传输电能、处理信 号、测量、控制、计算等功能。
主要由电源、负载、连接导线及开关等构成 电源:电池、发电机、信号源等
1. 用箭头表示: 箭头的指向为电流的参考方向。
2.用双下标表示: 如iAB,电流的参考方向由A点指向B点。
i
A
B
2 .电压
两点之间的电位之差即是两点间的电压。从电场力做功概 念定义,电压就是将单位正电荷从电路中一点移至电路中另 一点电场力做功的大小,如图 所示。用数学式表示,即为
定义电压示意图
+
i u
–
p = ui 表示元件吸收的功率 P>0 吸收正功率 (吸收) P<0 吸收负功率 (发出)
u(t) dw(t) dq(t)
式中dq为由a点移至b点的电荷量,单位为库仑(C); dw是 为移动电荷dq电场力所做的功,单位为焦耳(J)。电位、电压 的单位都是伏特(V), 1V电压相当于移动1C正电荷,电场力所 做的功为 1J。在电力系统中嫌伏特单位小,有时用千伏(kV)。 在无线电电路中嫌伏特单位太大,常用毫伏(mV)、微伏(μV) 作电压单位。
电路基本物理量的实际方向 物理中对基本物理量规定的方向
物理量 电流 I
电压 U
实际方向
正电荷运动的方向
高电位 低电位 (电位降低的方向)
单位
kA 、A、mA、 μA
kV 、V、mV、 μV
电动势E
低电位 高电位 (电位升高的方向)
kV 、V、mV、 μV
注意:它们是标量,规定方向是为了便于电路的计算。
1.3 电功率和能量 一:电功率
单位时间做功大小称作功率,或者说做功的速率称为 功率。在电路问题中涉及的电功率即是电场力做功的速率, 以符号p(t)表示。功率的数学定义式可写为 :
p(t) dw(t) dt
式中dw为dt时间内电场力所做的功。功率的单位为瓦(W)。 1瓦功率就是每秒做功 1 焦耳,即1W = 1J/s 。
A
B
(2)用正负极性: A +
U
B
(3)用双下标: A
UAB
B
参考方向
+U
–
+ 实际方向
U >0
参考方向
+U
–
实际方向 +
U <0
3.电位: 电路中为分析的方便,常在电路中选某
一点为参考点,任一点到参考点的电压称 为该点的电位。
用表示,单位与电压相同,也是V(伏)。
4.关联参考方向 i
+
U
-
负载:用电设备
二、电路模型 (circuit model) 1. 理想电路元件:
具有某种确定的电磁性质的假想元件;
其u、i关系可用数学式子表示(建模)。
几种基本的电路元件: 电源元件 电阻元件 电感元件 电容元件
2. 电路模型:
由理想电路元件互相连接的电路(而不是 实际的电路)。
本教材的主要内容是介绍电路理论的入 门知识并为后续课程打下基础,主要是计算 电路中器件的端子电流和端子间的电压,一 般不涉及器件内部发生的物理过程。
i(t)limΔqdq Δt0 Δt dt
电流强度定义说明图
单位:A(安培) kA、mA、A
1kA=103A 1mA=10-3A 1 A=10-6A
电流的参考方向与实际方向的关系:
规定:正电荷的运动方向为电流的实际方向
i 参考方向
i
A
实际方向 B A
i>0
参考方向 实际方向 B
i <0
关联参考方向
i
-
U
+
非关联参考方向
例:电压电流参考方向如图中所标, 问对A、 B两部分电路电压电流参考方向关联否?
i
+
AU B
-
答: A 电压、电流参考方向非关联; B 电压、电参考方向关联。
注意: (1)参考方向必须在图中相应位置标注, (2) 在计算过程中不得改变。
(2)参考方向不同时,其表达式相差一负 号,但实际方向不变。
电流的参考方向设成从a流向b, 电压的参考方向设成a 为高电位端,b为低电位端,这样所设的电流电压参考方向 称为参考方向关联。设在dt时间内在电场力作用下由a点移 动到b点的正电荷量为dq, a点至b点电压u意味着单位正电荷 从a移动到b点电场力所做的功,那么移动dq正电荷电场力 做的功为dw=udq。电场力做功说明电能损耗,损耗的这部 分电能被ab这段电路所吸收。
带电质点的有规则的定向运动。
电流:虽然人们看不见摸不着它,但可通过电流的各 种效应(譬如磁效应、热效应)来感觉它的客观存在,这 是人们所熟悉的常识。所以,毫无疑问,电流是客观存 在的物理现象。为了从量的方面量度电流的大小,引入 电流强度的概念。 单位时间内通过导体横截面的电荷 量定义为电流强度。电流强度用i(t)表示, 即:
从电位、电压定义可知它们都是代数量,因而就有参考 方向问题。电路中,规定电位真正降低的方向为电压的实际 方向。但在复杂的电路里或在交流电路里,两点间电压的实 际方向是经常改变的,这给实际电路问题的分析计算带来困 难,所以也要对电路中两点间电压设出参考方向。
电压参考方向有三种表示方式:
U
(1)用箭头: