1.一元一次方程及其相关概念PPT课件
合集下载
《一元一次方程》PPT优秀课件
列方程:方程是根据题中的等量关系列出的等式. 既可用已知数,又可用未知数,解决问题从比算较式方到便方.程是数
学的进步!
探究新知
观察下列方程,它们有什么共同点?
x x 1 60 70
70 y=60(y+1) 70(z-1)=60z
问题1:每个方程中,各含有几个未知数? 1个 问题2:说一说每个方程中未知数的次数. 1次 问题3:等号两边的式子有什么共同点? 都是整式
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其 是不是一元一次方程.
(1)环形跑道一周长400m,沿跑道跑多少周,可以 跑3000m?
一周长×周数=总路程 解:设沿跑道跑x周.
400x=3000, 是一元一次方程.
含有未知数的等式
方程
探究新知
一辆快车和一辆慢车同时从A地出发沿同一公路同方 向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是 60 km/h,快车比慢车早1 h经过B地,A,B两地间的路程 是多少?
60 km/h
1h
70 km/h
探究新知 (1) 上述问题中涉及到了哪些量? 路程:AB之间的路程. 速度:快车70 km/h,慢车60 km/h. 时间:快车比慢车早1h经过B地.
程,则 m= 1 .
加了限制条件,需进行取舍.
方法总结:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
巩固练习
方程3x5-2k -8=0是关于x的一元一次方程,则 k=___2__. 方程x|m| +4=0是关于x的一元一次方程,则 m=_1_或__-1_. 方程(m-1)x -2=0是关于x的一元一次方程,则 m__≠_1__.
学的进步!
探究新知
观察下列方程,它们有什么共同点?
x x 1 60 70
70 y=60(y+1) 70(z-1)=60z
问题1:每个方程中,各含有几个未知数? 1个 问题2:说一说每个方程中未知数的次数. 1次 问题3:等号两边的式子有什么共同点? 都是整式
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其 是不是一元一次方程.
(1)环形跑道一周长400m,沿跑道跑多少周,可以 跑3000m?
一周长×周数=总路程 解:设沿跑道跑x周.
400x=3000, 是一元一次方程.
含有未知数的等式
方程
探究新知
一辆快车和一辆慢车同时从A地出发沿同一公路同方 向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是 60 km/h,快车比慢车早1 h经过B地,A,B两地间的路程 是多少?
60 km/h
1h
70 km/h
探究新知 (1) 上述问题中涉及到了哪些量? 路程:AB之间的路程. 速度:快车70 km/h,慢车60 km/h. 时间:快车比慢车早1h经过B地.
程,则 m= 1 .
加了限制条件,需进行取舍.
方法总结:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
巩固练习
方程3x5-2k -8=0是关于x的一元一次方程,则 k=___2__. 方程x|m| +4=0是关于x的一元一次方程,则 m=_1_或__-1_. 方程(m-1)x -2=0是关于x的一元一次方程,则 m__≠_1__.
一元一次方程教学课件
意义的数。
解的实际意义
总结词
解的实际意义是指解在现实生活中的应用价 值。
详细描述
一元一次方程通常用于解决实际问题,如路 程、速度和时间的关系,商品价格和销售量 的关系等。因此,解必须具有实际意义,能 够解释现实生活中的现象和问题。同时,解 的实际意义也有助于学生更好地理解和应用
一元一次方程。
THANKS
总结词
解的唯一性是一元一次方程的重要特性,确 保方程只有一个解。
详细描述
一元一次方程只有一个解,这是由于方程中 的变量只受一个等式约束。解的唯一性是方 程的基本属性,也是判断方程解的标准。
解的合理性
总结词
解的合理性是指解必须符合实际情况和数学原理。
详细描述
在求解一元一次方程时,得到的解必须符合实际情况和数学原理。例如,如果方程涉及 到距离、速度或时间等物理量,解必须符合物理定律。此外,解不能是负数、分数或无
谢谢
试值法
总结词
通过尝试不同的数值代入方程,找到满 足方程的解。
VS
详细描述
对于一些特殊的一元一次方程,可以通过 尝试不同的数值代入方程,找到满足方程 的解。例如,对于形如 (ax + b = 0) 的方 程,可以尝试将不同的数值代入x,找到满 足方程的解。
05
CHAPTER
一元一次方程的注意事项
解的唯一性
详细描述
对于一些简单的一元一次方程,可以通过观察方程的形式,直接得出方程的解,无需进行复杂的计算。例如,对 于形如 (ax = b) 的方程,可以直接得出解为 (x = frac{b}{a})(当a≠0)。
代数法
总结词
通过对方程进行变形,将其转化为标准形式,然后求解。
详细描述
解的实际意义
总结词
解的实际意义是指解在现实生活中的应用价 值。
详细描述
一元一次方程通常用于解决实际问题,如路 程、速度和时间的关系,商品价格和销售量 的关系等。因此,解必须具有实际意义,能 够解释现实生活中的现象和问题。同时,解 的实际意义也有助于学生更好地理解和应用
一元一次方程。
THANKS
总结词
解的唯一性是一元一次方程的重要特性,确 保方程只有一个解。
详细描述
一元一次方程只有一个解,这是由于方程中 的变量只受一个等式约束。解的唯一性是方 程的基本属性,也是判断方程解的标准。
解的合理性
总结词
解的合理性是指解必须符合实际情况和数学原理。
详细描述
在求解一元一次方程时,得到的解必须符合实际情况和数学原理。例如,如果方程涉及 到距离、速度或时间等物理量,解必须符合物理定律。此外,解不能是负数、分数或无
谢谢
试值法
总结词
通过尝试不同的数值代入方程,找到满 足方程的解。
VS
详细描述
对于一些特殊的一元一次方程,可以通过 尝试不同的数值代入方程,找到满足方程 的解。例如,对于形如 (ax + b = 0) 的方 程,可以尝试将不同的数值代入x,找到满 足方程的解。
05
CHAPTER
一元一次方程的注意事项
解的唯一性
详细描述
对于一些简单的一元一次方程,可以通过观察方程的形式,直接得出方程的解,无需进行复杂的计算。例如,对 于形如 (ax = b) 的方程,可以直接得出解为 (x = frac{b}{a})(当a≠0)。
代数法
总结词
通过对方程进行变形,将其转化为标准形式,然后求解。
详细描述
一元一次方程教学课件PPT课件
的加深,帮助学生更加细腻的掌握一元一次方程,完成学 生对知识的巩固。
1.这节课同学们学到了哪些知识?
(1) 回顾了方程的概念 (2) 学习了一元一次方 程的概念
(3) 学习了什么是方程的解 (4) 学到了“尝试检验”的方法
2.通过这节课的学习,你有什么收获?
• 1.书本P193的1、2、3、4、6 • 2.编一个生活中的一元一次方程题目,使方
引例:1、 解: (板演详细过程)
…… 引例:2、 解: (板演详细过程)
……
数学趣题:
• 百羊问题:
•
我国明代数学家程大为曾提出过这样一个
有趣问题。有一个人赶着一群羊在前面走,另
一个人牵着一头羊跟在后面。后面的人问赶羊
的人说:“你这群羊有一百只吗?”赶羊的人
回答:“我再得这么一群羊,再得这么一群羊
的一半,再得这群羊的四分之一,把你牵的羊
也给我,我恰好有一百只。”请问这群羊有多
+
1 x +1=100
4
教师提示:可以.但是却很麻烦.让我们去寻找新的解决方法.
学生掌握了尝试、检验的方法以后。再面对百 羊问题,却发现用起来却非常的麻烦,马上让学生 明白,用尝试、检验的方法有局限性。由此我们就 得探索新的方法。学生的学习需要再次被激发,这 时引出等式的基本性质。
等式的基本性质:
一元一次方程
x
2
9
6.5
“做一做”判断下列t的值是不是方程2t+1=7-t的解
(1)t= -2
(2) t=2
(3) t=1
合作学习:
这种尝试检验的方法是解决问题的一种重要的思想方法
那么对于百羊问题我们是不是也 可以用这种方法呢?
1.这节课同学们学到了哪些知识?
(1) 回顾了方程的概念 (2) 学习了一元一次方 程的概念
(3) 学习了什么是方程的解 (4) 学到了“尝试检验”的方法
2.通过这节课的学习,你有什么收获?
• 1.书本P193的1、2、3、4、6 • 2.编一个生活中的一元一次方程题目,使方
引例:1、 解: (板演详细过程)
…… 引例:2、 解: (板演详细过程)
……
数学趣题:
• 百羊问题:
•
我国明代数学家程大为曾提出过这样一个
有趣问题。有一个人赶着一群羊在前面走,另
一个人牵着一头羊跟在后面。后面的人问赶羊
的人说:“你这群羊有一百只吗?”赶羊的人
回答:“我再得这么一群羊,再得这么一群羊
的一半,再得这群羊的四分之一,把你牵的羊
也给我,我恰好有一百只。”请问这群羊有多
+
1 x +1=100
4
教师提示:可以.但是却很麻烦.让我们去寻找新的解决方法.
学生掌握了尝试、检验的方法以后。再面对百 羊问题,却发现用起来却非常的麻烦,马上让学生 明白,用尝试、检验的方法有局限性。由此我们就 得探索新的方法。学生的学习需要再次被激发,这 时引出等式的基本性质。
等式的基本性质:
一元一次方程
x
2
9
6.5
“做一做”判断下列t的值是不是方程2t+1=7-t的解
(1)t= -2
(2) t=2
(3) t=1
合作学习:
这种尝试检验的方法是解决问题的一种重要的思想方法
那么对于百羊问题我们是不是也 可以用这种方法呢?
解一元一次方程课件PPT
概念和解题方法。
难度适中原则
根据学生实际水平,设置不同难 度的例题,以满足不同层次学生
的需求。
循序渐进原则
按照知识点难易程度,逐步增加 例题的复杂性和难度,帮助学生
逐步提升解题能力。
学生自主解答环节设计
独立思考
鼓励学生独立思考,自主分析问题,寻找解题思 路。
小组讨论
组织学生进行小组讨论,互相交流解题思路和方 法,拓展思维。
确定未知数的系数、将系数化为1、 求解化简后的方程。
03 实际应用问题建模
实际问题背景引入
商品打折销售
商店进行打折活动,原价与折扣 后价格的关系。
路程时间速度
物体运动中路程、时间和速度之间 的关系。
配套问题
不同物品之间的数量关系,如螺钉 和螺母等。
建立数学模型过程展示
定义变量
根据实际问题,选择合适 的未知数表示相关量。
下节课预告
提前预告下节课的教学内容,使学生 对学习有持续性和预见性。
作业布置
针对本节课的知识点,布置适当的练 习题,帮助学生巩固所学知识。
1.谢谢聆 听
方程解的应用
总结方程解在实际问题中的应用,如速度、时间、距离等问 题,强化方程解的实际意义。
学生自我评价报告收集
学生对本节课的掌握情况
收集学生对本节课知识点掌握情况的自我评价报告,便于教师了解学生的学习状况。
学生遇到的困难与问题
征集学生在学习过程中遇到的困难和问题,为下节课的教学提供参考。
下节课预告及作业布置
步骤
选定要移动的项、改变移 动项的符号、求解移动后 的方程。
示例
对于方程5x - 3 = 7,将3移至等号右侧得5x = 7 + 3,解得x = 2。
难度适中原则
根据学生实际水平,设置不同难 度的例题,以满足不同层次学生
的需求。
循序渐进原则
按照知识点难易程度,逐步增加 例题的复杂性和难度,帮助学生
逐步提升解题能力。
学生自主解答环节设计
独立思考
鼓励学生独立思考,自主分析问题,寻找解题思 路。
小组讨论
组织学生进行小组讨论,互相交流解题思路和方 法,拓展思维。
确定未知数的系数、将系数化为1、 求解化简后的方程。
03 实际应用问题建模
实际问题背景引入
商品打折销售
商店进行打折活动,原价与折扣 后价格的关系。
路程时间速度
物体运动中路程、时间和速度之间 的关系。
配套问题
不同物品之间的数量关系,如螺钉 和螺母等。
建立数学模型过程展示
定义变量
根据实际问题,选择合适 的未知数表示相关量。
下节课预告
提前预告下节课的教学内容,使学生 对学习有持续性和预见性。
作业布置
针对本节课的知识点,布置适当的练 习题,帮助学生巩固所学知识。
1.谢谢聆 听
方程解的应用
总结方程解在实际问题中的应用,如速度、时间、距离等问 题,强化方程解的实际意义。
学生自我评价报告收集
学生对本节课的掌握情况
收集学生对本节课知识点掌握情况的自我评价报告,便于教师了解学生的学习状况。
学生遇到的困难与问题
征集学生在学习过程中遇到的困难和问题,为下节课的教学提供参考。
下节课预告及作业布置
步骤
选定要移动的项、改变移 动项的符号、求解移动后 的方程。
示例
对于方程5x - 3 = 7,将3移至等号右侧得5x = 7 + 3,解得x = 2。
一元一次方程ppt课件
学生分享解题思路及经验
分享解题思路
学生分享自己在解题过程中的思 路和方法,帮助其他学生拓宽解
题思路。
交流解题经验
学生交流自己在解题过程中遇到 的困难和经验,促进彼此之间的
学习和进步。
互相评价
学生之间互相评价彼此的解题思 路和方法,提出改进意见和建议
,共同提高解题能力。
06
总结回顾与作业布置
关键知识点总结回顾
绝对值方程分类
根据未知数系数正负性, 将含绝对值一元一次方程 分为两类。
去除绝对值符号
分别探讨两类方程如何去 除绝对值符号,化为一般 形式一元一次方程求解。
含参数一元一次方程解法
参数方程概念
引入参数方程概念,解释 参数对方程解的影响。
参数分类讨论
针对不同参数取值情况, 对方程进行分类讨论,总 结各类情况下解的特点。
02
一元一次方程解法
等式性质法
等式性质
等式两边同时加上或减去同一个数,等式仍然成立。
解法步骤
通过运用等式性质,将方程中的未知数项移至等式一侧,常数项移至另一侧,从 而解出未知数。
移项法
移项原理
将方程中的未知数项和常数项分别移至等式两侧,使未知数 项系数化为1。
解法步骤
运用移项原理,逐步将方程中的未知数项和常数项分别移至 等式两侧,从而求解出未知数。
合并同类项法
合并同类项原理
将方程中相同未知数项的系数进行相加或相减,简化方程形式。
解法步骤
通过合并同类项,将方程中的未知数项系数化为1,常数项进行相应计算,从而解出未知数。
03
实际问题中一元一次方程应用
行程问题
路程=速度×时间
通过具体实例,展示如何用一元一次方 程解决行程问题,包括相遇问题、追及 问题等。
一元一次方程课件20张PPT
WENKU DESIGN
代数问题
代数式化简
通过一元一次方程,我们 可以对代数式进行化简, 简化计算过程。
解方程
一元一次方程是解代数方 程的基础,通过解一元一 次方程,我们可以找到代 数方程的解。
方程组求解
利用一元一次方程,我们 可以求解更复杂的方程组, 找到多个未知数的值。
实际问题
比例问题
利润和折扣问题
培养学生对数学的兴趣 和热爱,提高数学素养。
PART 02
一元一次方程的基本概念
REPORTING
WENKU DESIGN
定义与形式
定义
一元一次方程是只含有一个未知 数,且该未知数的次数为1的方程 。
形式
ax + b = 0,其中a和b是已知数, x是未知数。
方程的解与根
解的概念
满足方程的未知数的值称为方程的解。
移项法
总结词
通过将方程两边的同类项进行移动,使得未知数的系数为1,从 而求解未知数。
详细描述
移项法是一元一次方程中最常用的解法之一。具体操作是将含 有未知数的项移到等号的左边,常数项移到等号的右边,使得 未知数的系数为1,从而可以通过简单的除法计算得出未知数的 值。
合并同类项法
总结词
通过将方程两边的同类项进行合并,简化方程的形式,从而更容易求解未知数。
历史背景
一元一次方程是数学中一 个基础而重要的概念,起 源于古代数学,是代数和 数学分析的基础。
重要性
一元一次方程在日常生活 和科学研究中有着广泛的 应用,是解决实际问题的 重要工具。
课程目标
01
掌握一元一次方程的基 本概念和性质。
02
学会解一元一次方程的 方法。
一元一次方程-ppt课件
一元一次方程的应用
问题
方程
解
在10元的基础上,每增加一桶, x+10+(x-1)×2=29
x=9
油的成本增加2元,一共用了
29元,求一桶油的成本。
两列火车相向而行,第一列速
120t+80t=800
t=4
度是每小时120公里,第二列
是每小时80公里,相距800公
里,求两列火车相遇需要多久。
一元一次方程解法的归纳
一元一次方程-ppt课件
本次课程将介绍一元一次方程的基本知识、求解方法及其应用。
一元一次方程定义
定义
一元一次方程是形如ax+b=0的方程,其中a和b 是已知数,x是未知数。
基本形式
ax+b=0
解一元一次方程
1
步骤1 :移项
将b移到方程左侧,得到ax=-b。
2
步骤2 :消元
将a除到x的一侧,得到x=-b/a。
题目3
2(x-3)=4x+5 解:x=-7
结尾
本次课程为您介绍了一元一次方程的基本知识和实际应用,希望能够对您的 学习或工作有所帮助。
1
移项法
将未知量和常数移到一侧,化简成ax=b的形式,再求解。
2
消元法
将未知量消去,化简成k=b/a的形式,再求解。
课堂练习
难点分析
1 多步骤
解一元一次方程需要掌握多种方法,且需要多个步骤的计算。
2 容易出错
对未知数和常数的计算容易出现错误,需要细心。
3 应用难度大
将实际问题转化为一元一次方程需要较高的抽象和数学能力。
3
步骤3 :检验
将解代入原方程,检验是否正确。
一元一次方程ppt课件
计算精度要求
因式分解法和配方法相对公式法而言,计算过程较为简单,更适 合对计算精度要求较高的场合。
理解难度
因式分解法和配方法更易于理解,适合初学者学习。
解法的局限性
1 2
公式法的局限性
对于某些特殊形式的一元一次方程,公式法可能 无法求解或求解过程非常复杂。
因式分解法的局限性
对于没有公因子的一元一次方程,因式分解法无 法使用。
03
未知数
一元一次方程中的未知数可以是一个字母,通常表示为 x。
特点
01
02
03
只有一个未知数
一元一次方程只包含一个 未知数 x。
未知数的指数为1
一元一次方程中未知数的 最高次数为1。
方程的解是实数
一元一次方程的解是实数 ,因为它的形式简单,解 容易找到。
示例
2x + 5 = 0
输标02入题
01
总结词
根号的引入使得一元一次方程的解法 变得较为特殊。
详细描述
含根号的一元一次方程通常表示为 ax + b = c√x,其中 a、b、c 是常数。 根号的引入使得方程的解法变得较为 特殊,需要利用根式的性质进行化简 ,并采用特定的方法求解。
一元一次方程的解法总结与比
05
较
三种解法的比较
公式法
01
含绝对值的一元一次方程
总结词
绝对值的引入使得一元一次方程的解法变得相对复杂。
详细描述
含绝对值的一元一次方程通常表示为 f(x) = ax + b |x - c|,其中 a、b、c 是常数 。绝对值的引入使得方程的解法变得相对复杂,需要分情况讨论绝对值内部的正 负情况,从而得到不同的解。
含根号的一元一次方程
因式分解法和配方法相对公式法而言,计算过程较为简单,更适 合对计算精度要求较高的场合。
理解难度
因式分解法和配方法更易于理解,适合初学者学习。
解法的局限性
1 2
公式法的局限性
对于某些特殊形式的一元一次方程,公式法可能 无法求解或求解过程非常复杂。
因式分解法的局限性
对于没有公因子的一元一次方程,因式分解法无 法使用。
03
未知数
一元一次方程中的未知数可以是一个字母,通常表示为 x。
特点
01
02
03
只有一个未知数
一元一次方程只包含一个 未知数 x。
未知数的指数为1
一元一次方程中未知数的 最高次数为1。
方程的解是实数
一元一次方程的解是实数 ,因为它的形式简单,解 容易找到。
示例
2x + 5 = 0
输标02入题
01
总结词
根号的引入使得一元一次方程的解法 变得较为特殊。
详细描述
含根号的一元一次方程通常表示为 ax + b = c√x,其中 a、b、c 是常数。 根号的引入使得方程的解法变得较为 特殊,需要利用根式的性质进行化简 ,并采用特定的方法求解。
一元一次方程的解法总结与比
05
较
三种解法的比较
公式法
01
含绝对值的一元一次方程
总结词
绝对值的引入使得一元一次方程的解法变得相对复杂。
详细描述
含绝对值的一元一次方程通常表示为 f(x) = ax + b |x - c|,其中 a、b、c 是常数 。绝对值的引入使得方程的解法变得相对复杂,需要分情况讨论绝对值内部的正 负情况,从而得到不同的解。
含根号的一元一次方程
最新1.一元一次方程及其相关概念PPT课件
例1、根据下列问题,设未知数并列出方程 。
(1)用一根长为24cm的铁丝围成一个正 方形,正方形的边长是多少?
解:设正方形的边长为x cm.
列方程:4x=24
例1、根据下列问题,设未知数并列出方程 。
(2)用一根长为36cm的铁丝围成一个长 方形,其中长为10cm,宽为多少?
解:设长方形宽为x cm.
列方程:(10+x)×2=36
作业:根据下列问题,设未知数并列出方程 。
(1)环形跑道一周长为400m,沿跑道跑多少 周,可以跑3000m?
(2)一台计算机已使用1700h,预计每月再使 用150h,经过多少月这台计算机的使用时间达 到规定的检修时间2
员工车 辆停放 区
1.一元一次方程及其相关概 念
方程的定义: 含有未知数的等式叫方程
1、含有未知数 2、等式
练习: 1.判断下列式子是不是方程,正确 打“√ ”,错误打“× ”
(1) 1+2=3 (× ) (4) x+2≥1 (× )
(2) 1+2x=4 ( √ ) (5) x+y=2 (√ ) (3) x+1-3 ( × ) (6) x2-1=0 (√ )
自员工 通道进 入酒店 后勤区 域
更衣室 (分男、
女)
换洗制服 (制服房)
到员工餐厅 就餐(员工 后勤功能规划及后勤动线混乱,合理流程如下餐: 厅)
自员工通 道离开酒 店后勤区 域
通过员工 通道或内 部电梯回 到更衣室
为客人 服务
通过员 工通道 或内部 电梯抵 达工作 场所
使用员 工洗手 间(员 工洗手 间)
目前酒店后勤动线混乱,未能按上述流程设置员工设施, 以避免员工交通过多与可用区域交叉,提高工作效率,保障员 工工作条件,减少无谓成本。
一元一次方程 课件ppt
例子:例如,解方程 2x + 5 = 7,首先移项得 2x = 7 - 5,然后合并同类项得 2x = 2,最后系数化为1得 x = 1。
图像法
定义:图像法是一种通过绘制函数图像来解一元一次方 程的方法。 1. 确定函数:根据方程的形式确定表示该方程的函数。
3. 标记解:在图像上标记交点的坐标,即为方程的解。
型,例如成本、价格、利润等问题的计算。
物理问题的数学模型建立
03
在物理领域中,一元一次方程可以用于建立各种问题的数学模
型,例如速度、加速度、时间等问题的计算。
04
一元一次方程的变式
移项
概念
移项是将方程中的项改变符号后 移动到另一边的过程。
目的
通过移项,将方程中的未知数系 数变为正数,以便更容易求解。
步骤
2. 绘制图像:绘制函数的图像,将坐标轴上的交点作 为方程的解。
例子:例如,解方程 x + 2 = 5,确定函数为 y = x + 2,绘制图像后,交点为 (3,5),因此方程的解为 x = 3 。
实际应用法
定义:实际应用法是一种通过实际应用案例来解一元一次 方程的方法。
步骤
1. 分析问题:分析实际问题中涉及到的变量和关系。
2. 建立方程:根据实际问题建立一元一次方程。
3. 解方程:通过解方程得到未知数的值,解决实际问题 。
例子:例如,解方程 3x + 2 = 14,分析问题为求解 x 的 值使得 3x + 2 = 14,建立方程为 3x + 2 = 14,解方程 得 x = 4。因此,x 的值为4。
03
一元一次方程的应用
THANKS
感谢观看
06
一元一次方程的注意事项和易错点
图像法
定义:图像法是一种通过绘制函数图像来解一元一次方 程的方法。 1. 确定函数:根据方程的形式确定表示该方程的函数。
3. 标记解:在图像上标记交点的坐标,即为方程的解。
型,例如成本、价格、利润等问题的计算。
物理问题的数学模型建立
03
在物理领域中,一元一次方程可以用于建立各种问题的数学模
型,例如速度、加速度、时间等问题的计算。
04
一元一次方程的变式
移项
概念
移项是将方程中的项改变符号后 移动到另一边的过程。
目的
通过移项,将方程中的未知数系 数变为正数,以便更容易求解。
步骤
2. 绘制图像:绘制函数的图像,将坐标轴上的交点作 为方程的解。
例子:例如,解方程 x + 2 = 5,确定函数为 y = x + 2,绘制图像后,交点为 (3,5),因此方程的解为 x = 3 。
实际应用法
定义:实际应用法是一种通过实际应用案例来解一元一次 方程的方法。
步骤
1. 分析问题:分析实际问题中涉及到的变量和关系。
2. 建立方程:根据实际问题建立一元一次方程。
3. 解方程:通过解方程得到未知数的值,解决实际问题 。
例子:例如,解方程 3x + 2 = 14,分析问题为求解 x 的 值使得 3x + 2 = 14,建立方程为 3x + 2 = 14,解方程 得 x = 4。因此,x 的值为4。
03
一元一次方程的应用
THANKS
感谢观看
06
一元一次方程的注意事项和易错点
初一数学一元一次方程 演示文稿ppt课件
等式的性质2:等式两边都乘(或除)同一个 数(或式子),结果仍相等
;
3
NO.3解一元一次方程的一般步骤及 根据
① 去分母------等式的性质2 ② 去括号------分配律 ③ 移项------等式的性质1 ④ 合并------分配律 ⑤ 系数化为1------等式的性质2 ⑥ 验根------把根分别代入方程左右边看求得
;
5
NO.5列方程解应用题的一般步骤
I. 审题 II. 设未知数 III. 找相等关系 IV. 列方程 V. 解方程 VI. 检验 VII. 写出答案
;
6
的值是否相等
;
4
Байду номын сангаас
NO.4解一元一次方程的注意事项
✓ 分母是小数时,根据分数的基本性质,把分母转化为整数 ✓ 去分母时,方程两边各项都乘各分母的最小公倍数,此时
不含分母的项勿乘漏,分数线相当与括号,去分母后分子 各项应加括号 ✓ 去括号时,不要乘漏括号内的项,不要弄错符号 ✓ 移项时,切记要变号,不要丢项,又是先合并再移项,不 要弄错符号 ✓ 系数化为1时,方程两边同乘以系数的倒数或同除以系数, 不要弄错符号 ✓ 不要生搬硬套解方程的步骤,具体问题具体分析,找到最 佳解法
;
1
NO.1基本概念
➢ 方程:含有未知数的等式叫做方程 ➢ 一元一次方程:只含有一个未知数,未知
数的指数是1的方程叫做一元一次方程 ➢ 方程的解:使方程两边相等的未知数的值
叫做方程的解 ➢ 解方程:求方程的解的过 程叫做解方程
;
2
NO.2等式的性质
等式的性质1:等式两边都加(或减)同一个 数(或式子),结果仍相等
;
3
NO.3解一元一次方程的一般步骤及 根据
① 去分母------等式的性质2 ② 去括号------分配律 ③ 移项------等式的性质1 ④ 合并------分配律 ⑤ 系数化为1------等式的性质2 ⑥ 验根------把根分别代入方程左右边看求得
;
5
NO.5列方程解应用题的一般步骤
I. 审题 II. 设未知数 III. 找相等关系 IV. 列方程 V. 解方程 VI. 检验 VII. 写出答案
;
6
的值是否相等
;
4
Байду номын сангаас
NO.4解一元一次方程的注意事项
✓ 分母是小数时,根据分数的基本性质,把分母转化为整数 ✓ 去分母时,方程两边各项都乘各分母的最小公倍数,此时
不含分母的项勿乘漏,分数线相当与括号,去分母后分子 各项应加括号 ✓ 去括号时,不要乘漏括号内的项,不要弄错符号 ✓ 移项时,切记要变号,不要丢项,又是先合并再移项,不 要弄错符号 ✓ 系数化为1时,方程两边同乘以系数的倒数或同除以系数, 不要弄错符号 ✓ 不要生搬硬套解方程的步骤,具体问题具体分析,找到最 佳解法
;
1
NO.1基本概念
➢ 方程:含有未知数的等式叫做方程 ➢ 一元一次方程:只含有一个未知数,未知
数的指数是1的方程叫做一元一次方程 ➢ 方程的解:使方程两边相等的未知数的值
叫做方程的解 ➢ 解方程:求方程的解的过 程叫做解方程
;
2
NO.2等式的性质
等式的性质1:等式两边都加(或减)同一个 数(或式子),结果仍相等
北师大版数学七年级上册认识一元一次方程(第1课时一元一次方程及有关的概念)课件
(3)列方程.
解:(1)设正方形的边长为x cm. 等量关系:正方形的边长×4=周长. 列方程 4x=24. (2)设x个月后这台计算机的使用时间到达2 450 h. 等量关系已用时间+再用时间=2 450. 列方程1 700+150x=2 450.
知识讲授
【归纳总结】
大家刚才都已经自己列出了方程,哪个同学能 够说出你是怎样列出方程的,你在列方程的过程中 大体可以分为哪几步呢?
随堂训练
课后提升
某市对城区主干道路进行绿化,计划把某一段公路的一
侧全部栽上桂花树,要求路的两端各栽一棵并且每两棵
树的间隔相等.若每隔5米栽1棵,则树苗缺21棵;若每隔6
米栽1棵,则树苗正好用完.设有树苗x棵,则根据题意列
出方程,下列正确的是( A ) A.5(x+21-1)=6(x-1) B.5(x+21)=6(x-1)
解:方法一:设宽为x米,由题意,得 2 [ x+ (x+12) ]=200. 方法二:设长为y米,由题意,得 2 [ y+(y-12) ]=200.
知识讲授
问题4 大家视察,这四个式子有什么特点? (1) 2x 5 21. (2)2.5x+40=100. (3) 2[x+(x+12)]=200或 2 [ y+(y-12) ]=200.
知识讲授
B
解析:根据一元一次方程的定义判断.①中未知数的次数不都是 1,④中含有两个未知数且未知数的次数不都是1,⑥中含有两 个未知数.所以①④⑥都不是一元一次方程.
知识讲授
2. 方程的解概念
问题5 一个长方形,长比宽多2 cm,周长为20 cm,则这个长 方形的长和宽各是多少厘米?
《一元一次方程》课件
解释
一元代表方程中只有一个未知数 ,一次代表未知数的指数为1,即 未知数为线性关系。
方程形式
标准形式
ax + b = 0(a ≠ 0)
特殊形式
a = 0 或 b = 0 或 ax + b = c(c 为常数)
方程解的概念
01
02
03
解的概念
满足方程的未知数的值称 为方程的解。
解的求法
通过移项、合并同类项、 系数化为1等步骤求解。
PART 03
一元一次方程的应用
代数式与方程的关系
代数式
由数字、字母通过有限次加、减 、乘、乘方运算得到的数学表达
式。
方程
含有未知数的等式,通过等号连接 。
关系
方程是代数式的一种特殊形式,用 于表示未知数与已知数之间的关系 。
实际问题中的一元一次方程
购物问题
速度与时间问题
如“买x个苹果,每个苹果y元,共花 费z元”,可以建立一元一次方程 z = x × y。
a。
利润问题
某商品进价为p元,售价为q元, 利润为r元,可以建立一元一次
方程 r = q - p。
时间与速度问题
某人在路上行走,从起点到终点 需要的时间为t小时,行走的距 离为d公里,可以建立一元一次
方程 d = v × t。
PART 04
一元一次方程的解法技巧
观察法
总结词
通过观察方程的形式,直接得出解的方法。
图解法
总结词
通过绘制数轴上的点来表示方程的解的 方法。
VS
详细描述
对于一些一元一次方程,可以通过在数轴 上绘制点来表示方程的解。例如,对于形 如 (x - 3 = 0) 的方程,可以在数轴上找 到表示 (3) 的点,该点即为方程的解。这 种方法直观易懂,适用于一些简单的一元 一次方程。
一元代表方程中只有一个未知数 ,一次代表未知数的指数为1,即 未知数为线性关系。
方程形式
标准形式
ax + b = 0(a ≠ 0)
特殊形式
a = 0 或 b = 0 或 ax + b = c(c 为常数)
方程解的概念
01
02
03
解的概念
满足方程的未知数的值称 为方程的解。
解的求法
通过移项、合并同类项、 系数化为1等步骤求解。
PART 03
一元一次方程的应用
代数式与方程的关系
代数式
由数字、字母通过有限次加、减 、乘、乘方运算得到的数学表达
式。
方程
含有未知数的等式,通过等号连接 。
关系
方程是代数式的一种特殊形式,用 于表示未知数与已知数之间的关系 。
实际问题中的一元一次方程
购物问题
速度与时间问题
如“买x个苹果,每个苹果y元,共花 费z元”,可以建立一元一次方程 z = x × y。
a。
利润问题
某商品进价为p元,售价为q元, 利润为r元,可以建立一元一次
方程 r = q - p。
时间与速度问题
某人在路上行走,从起点到终点 需要的时间为t小时,行走的距 离为d公里,可以建立一元一次
方程 d = v × t。
PART 04
一元一次方程的解法技巧
观察法
总结词
通过观察方程的形式,直接得出解的方法。
图解法
总结词
通过绘制数轴上的点来表示方程的解的 方法。
VS
详细描述
对于一些一元一次方程,可以通过在数轴 上绘制点来表示方程的解。例如,对于形 如 (x - 3 = 0) 的方程,可以在数轴上找 到表示 (3) 的点,该点即为方程的解。这 种方法直观易懂,适用于一些简单的一元 一次方程。
一元一次方程ppt
应用场景
• 实际应用场景:一元一次方程广泛应用于各个领域,如物理学、化学、生物学、经济学等。在这些领域中,人们通常会 遇到各种需要求解未知数的问题,一元一次方程就是解决这些问题的有效工具之一。
03
解一元一次方程的步骤
去分母
总结词
消除分母,使方程变得简单易解。
详细描述
在去分母的过程中,将方程中的每一个分母用一个未知数表示出来,然后通 过交叉相乘的方法,将分母消掉,得到一系列的整式方程,大大简化了方程 的难度。
房屋的售价与面积 之间的关系
数学其他领域的应用
一元一次方程是求解其他方程决实际问题中的重要应用
06
一元一次方程的例题解析
追及问题
总结词
追及问题是研究两个物体的速度差和追及时间的关系。
详细描述
在追及问题中,两个物体的速度不同,一个物体追赶另一个物体,追及时间为t, 距离为d。根据速度差和追及时间的关系,可以列出方程。
未知数的基本概念
未知数是指在一元一次方程中,我们不知道其值的数或变量。
未知数的表示方法
通常用小写字母表示未知数,如x、y等。
方程式
方程式的基本概念
方程式是指在一元一次方程中,用数学符号和等号将已知数和未知数连接起来的 式子。
方程式的例子
例如,2x + 3 = 5是一个一元一次方程,其中x是未知数,2、3和5是已知数,等 号两边的部分称为方程的左右两边。
合并同类项
总结词
简化方程,降低未知数的数量。
详细描述
合并同类项就是将相同字母的系数相加,如果字母不同但是次数相同也可以合并 ,这样可以减少未知数的数量,简化方程。
化系数为1
总结词
将未知数的系数化为1,得到方程的解。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程
一元一次方程的一般形式是:
ax+b=0(a ≠0)
2021
1
方程的定义: 含有未知数的等式叫方程
1、含有未知数 2、等式
2021
2
练习: 1.判断下列式子是不是方程,正确 打“√ ”,错误打“× ”
(1) 1+2=3 (× ) (4) x+2≥1 (× )
(2) 1+2x=4 ( √ ) (5) x+y=2 (√ ) (3) x+1-3 ( × ) (6) x2-1=0 (√ )
2021
3
一元一次方程的定义:
只含一个未知数,并且未 知数的次数为1的整式方程叫 一元一次方程
一元一次方程的一般形式是:ax+b=0(a ≠0) (1)方程(含有未知数的等式) (2)含有一个未知数 (3)未知数最高次数为1 (4)整式
2021
4
1.下列各式中,哪些是一元一次方程?
⑴5x = 0;
2021
9
下课了!
祝同学们学习愉快
2021
10
(2)用一根长为36cm的铁丝围成一个长 方形,其中长为10cm,宽为多少?
解:设长方形宽为x cm.
列方程:(10+x)×2=36
2021
8
作业:根据下列问题,设未知数并列出方程。
(1)环形跑道一周长为400m,沿跑道跑多少 周,可以跑3000m?
(2)一台计算机已使用1700h,预计每月再使 用150h,经过多少月这台计算机的使用时间达 到规定的检修时间2450h?
2、若关关x的方程(a - 4)x3-3x 5 = 0是 一元一次方程, 则a ( 4 )。
2021
6
例1、根据下列问题,设未知数并列出方程。
(1)用一根长为24cm的铁丝围成一个正 方形,正方形的边长是多少?
解:设正方形的边长为x cm.
列方程:4x=24
2021
7Hale Waihona Puke 例1、根据下列问题,设未知数并列出方程。
⑵1+ 3x;
⑶y2 = 4 + y;
⑷x + y = 0;
⑸ 1 = x; x
⑹3m 2 m 1.
2.方程(a 6)x2 3x 8 7是关于
x的一元一次方程,则a _-_6__。
3.方程3xa1 2 6是一元一次方程,
则a _2__,3a 3 __3_。
2021
5
1、若关关x的方程3 xn-3-5 = 0是一元一次方程, 则n ( 4 )。
一元一次方程的一般形式是:
ax+b=0(a ≠0)
2021
1
方程的定义: 含有未知数的等式叫方程
1、含有未知数 2、等式
2021
2
练习: 1.判断下列式子是不是方程,正确 打“√ ”,错误打“× ”
(1) 1+2=3 (× ) (4) x+2≥1 (× )
(2) 1+2x=4 ( √ ) (5) x+y=2 (√ ) (3) x+1-3 ( × ) (6) x2-1=0 (√ )
2021
3
一元一次方程的定义:
只含一个未知数,并且未 知数的次数为1的整式方程叫 一元一次方程
一元一次方程的一般形式是:ax+b=0(a ≠0) (1)方程(含有未知数的等式) (2)含有一个未知数 (3)未知数最高次数为1 (4)整式
2021
4
1.下列各式中,哪些是一元一次方程?
⑴5x = 0;
2021
9
下课了!
祝同学们学习愉快
2021
10
(2)用一根长为36cm的铁丝围成一个长 方形,其中长为10cm,宽为多少?
解:设长方形宽为x cm.
列方程:(10+x)×2=36
2021
8
作业:根据下列问题,设未知数并列出方程。
(1)环形跑道一周长为400m,沿跑道跑多少 周,可以跑3000m?
(2)一台计算机已使用1700h,预计每月再使 用150h,经过多少月这台计算机的使用时间达 到规定的检修时间2450h?
2、若关关x的方程(a - 4)x3-3x 5 = 0是 一元一次方程, 则a ( 4 )。
2021
6
例1、根据下列问题,设未知数并列出方程。
(1)用一根长为24cm的铁丝围成一个正 方形,正方形的边长是多少?
解:设正方形的边长为x cm.
列方程:4x=24
2021
7Hale Waihona Puke 例1、根据下列问题,设未知数并列出方程。
⑵1+ 3x;
⑶y2 = 4 + y;
⑷x + y = 0;
⑸ 1 = x; x
⑹3m 2 m 1.
2.方程(a 6)x2 3x 8 7是关于
x的一元一次方程,则a _-_6__。
3.方程3xa1 2 6是一元一次方程,
则a _2__,3a 3 __3_。
2021
5
1、若关关x的方程3 xn-3-5 = 0是一元一次方程, 则n ( 4 )。