高中数学抛物线基础练习题(基础有梯度)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线基础练习题
一. 选择题
1.抛物线212y x =的准线方程是
A.3x =
B. 3x =-
C. 3y =
D. 3y =- 2. 若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = A.1 B.2 C. 1- D. 2- 3.抛物线22y x =-和22y x =-的焦点坐标分别是
A.1,08⎛⎫- ⎪⎝⎭ 和10,2⎛⎫- ⎪⎝⎭
B. 10,8⎛
⎫- ⎪⎝
⎭ 和1,02⎛⎫- ⎪⎝⎭ C. 1,02⎛⎫- ⎪⎝⎭和10,8⎛
⎫- ⎪⎝⎭ D. 10,2⎛⎫- ⎪⎝⎭和1,08⎛⎫
- ⎪⎝⎭
4.若抛物线2
2y px =的焦点与椭圆22
162
x y +
=的右焦点重合,则p 的值为 A .2- B .2 C .4- D .4
5.若双曲线22
21613x y p
-=的左焦点在抛物线22y px =的准线上,则p 的值为
A .2
B .3
C .4
D .6.设椭圆22221(00)x y m n m n +=>>,的右焦点与抛物线28y x =的焦点相同,离心率为1
2
,则此椭圆
的方程为
A .22
11216
x y +
=
B .22
11612x y +
= C .22
14864x y +
= D .22
16448
x y +
= 7.若点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为
A B .3 C D .92
8. 已知直线1:4360l x y -+=和2:1l x =-,抛物线24y x =上一动点P 到1l 和2l 的距离之和的最小值是 A .
115
B .3
C .2
D .
3716
9.已知点P 在24y x =上,那么点P 到点(21)Q -,的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为
A .114⎛⎫- ⎪⎝⎭,
B .114⎛⎫
⎪⎝⎭
, C .(12), D .(12)-,
10.已知22y px =的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132x x x =+,则 A.123FP FP FP +=
B.222
123FP FP FP +=
C.2132FP FP FP =+ D.2
213FP
FP FP =⋅ 11.连结抛物线24x y =的焦点F 与点(1,0)M 所得线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为
A .1-
B .
3
2
- C .1
D .3
2
12.已知直线(2)(0)y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为C 的焦点,若2FA FB =,则k =
A .13
B .
3
C .
23
D .
3
13.过点(1,0)-作抛物线21y x x =++的切线,则其中一条切线方程是
A .220x y ++=
B .330x y -+=
C .10x y ++=
D .10x y -+=
14.设P 为曲线2:23C y x x =++上一点,且曲线C 在点P 处切线倾斜角的范围是[0,]4
π
,则点P 横坐
标的取值范围是
A .1
[1,]2
--
B .[1,0]-
C .[0,1]
D .1
[,1]2
15. 抛物线2y x =-上的点到直线4380x y +-=距离的最小值为 A .
43
B .
75 C .8
5
D .3
16.设抛物线24x y =的焦点为F ,A 、B 、
C 为该抛物线上三点,若0FA FB FC ++=,则FA +FB +FC =
A .9
B .6
C .4
D .3
17.设O 是坐标原点,F 是22(0)y px p =>的焦点,A 是抛物线上的点,FA 与x 轴正向的夹角为60,则
OA =
A .
214
p
B .
2
C .
6
p D .
1336
p
18.已知抛物线的准线方程为20x y +-=,焦点是(5,5)F ,则抛物线的顶点坐标是
.(3,5)A B .(5,3)
C .(2,2)
D .(3,3)
二. 填空题
19.若抛物线顶点是坐标原点,焦点坐标是()2,0F -,则抛物线方程是 20. 若抛物线顶点是坐标原点,准线方程是()0y m m =≠,则抛物线方程是 21.若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹方程为
22. 已知动圆过定点,02p ⎛⎫
⎪⎝⎭
,且与直线2p x =-相切,其中0p >.则动圆圆心C 的轨迹的方程是
23. 与圆0422=-+x y x 外切且与y 轴相切的动圆的圆心的轨迹方程是 24.抛物线2y ax =的准线方程是2y =,则a =
25.在抛物线22y px =上,横坐标为4的点到焦点的距离为5,则p =
26. 已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为
27. 已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则
ABF =△S .
28.已知圆C 的圆心与抛物线24y x =的焦点关于直线y x =对称,直线4320x y --=与圆C 相交于
A B ,两点,若6AB =,则圆C 的方程为
三. 解答题
29. 在ABC ∆中,角C B A ,,所对边分别为c b a ,,,已知,2,32==c a b
c B A 2cot tan 1=⋅+,
求ABC ∆的面积S.