不完整曲线复核与曲率半径计算方法 两条缓和曲线相接计算方法
不完全缓和曲线测量公式(正确公式)
检修井及井盖施工方案概述本文档旨在提供一份针对检修井及井盖施工的完整方案。
该方案包括施工流程、安全措施以及质量保证措施,以确保施工顺利进行并达到预期目标。
施工流程1. 检查现场- 检查井盖的损坏情况,并评估是否需要更换- 清理井口周围的杂物和污垢2. 拆除井盖- 使用适当工具将井盖拆除,并确保拆除过程中不会对周围环境造成损害3. 检修井内设施- 检查井内设施的状态,如井壁、梯子等- 进行清理、维修或更换必要的设施4. 井盖安装- 使用适当的方法和工具进行井盖的安装- 确保井盖与井口紧密贴合,并能够承受相应的荷载5. 完善周围环境- 清理施工现场的杂物和垃圾- 修复可能因施工而造成的损坏安全措施1. 人员安全- 所有参与施工的人员必须接受必要的安全培训,并按照相关规定佩戴个人防护装备- 设置警示标志,确保他人不会误入施工区域2. 设备使用安全- 选用符合安全标准的工具和设备,确保其正常运转并避免事故发生- 定期检查和维护施工所需设备,确保其正常状态3. 施工环境安全- 清理施工区域的杂物和障碍物,确保安全通行- 避免在恶劣天气条件下进行施工质量保证措施1. 施工方案的制定- 精确制定详细的施工方案,涵盖施工流程、材料选用、质量验收标准等内容- 与相关专业人员进行讨论和审核,确保方案的科学性和可行性2. 材料质量控制- 选用符合国家标准的材料,并严格把关供应商的质量管理体系- 对进场材料进行检验和验收,确保其质量符合要求3. 施工质量监控- 设立专门的监控人员,对施工过程进行监控和记录- 定期进行质量检查,发现问题及时整改总结通过本方案的实施,我们可以保证检修井及井盖施工的质量和安全,提升施工效率,确保施工达到预期目标。
在施工过程中,我们将严格遵守安全措施,并严格把关施工质量,以确保项目的成功完成。
非完整缓和曲线起始点曲率半径问题
非完整缓和曲线起始点曲率半径问题
一、是否为非完整缓和曲线?
用A^2=R*Ls公式来验证
A为已知缓和曲线参数;
R为缓和曲线所接圆曲线的半径;
Ls为已知该段缓和曲线的长度;
当等式成立即为完整缓和曲线,否则即为非完整缓和曲线;
二、非完整缓和曲线起始点曲率半径计算(起点与终点计算方法相同):
1、计算第一线元终点对应的完整缓和曲线长度:
L=A^2/R
2、计算对应的第一线元完整缓和曲线舍弃段的长度L1:
L1=L-L S
3、计算得出第一线元缓和曲线(非完整)起点曲率半径R1:
R1=A^2/L1
A为已知缓和曲线参数;
R为已知缓和曲线所接圆曲线的半径;
Ls为已知该段缓和曲线的长度;
L为计算该段完整缓和曲线的长度;
L1该段完整缓和曲线舍弃段的长度;
R1第一线元缓和曲线起点(非完整)曲率半径。
缓和曲线的计算方法(三种)
2 s
0
距离:用曲线长l来代替弦长。放样出第1点后, 放样第2点时,用偏角和距离l交会得到。
(2)当点位于圆曲线上 方法:架仪HY (或YH),后视ZH(或HZ),拨角b0,即找
到了切线方向,再按单圆曲线偏角法进行。
b0 2 0
ls 3R
此外还有极坐标法、弦线支距法、长弦偏角 法。
3 ls 10 .00 m x0 l s 2 40 R 2 ls y 0 .17 m 0 6R
TH ( R p )tg
L H R ( 2 0 )
180
2l s 41 .96 m
E H ( R p ) sec
(2)当点位于圆曲线上,有:
x R sin q y R (1 cos ) p
2、偏角法(整桩距、短弦偏角法) 要注意:点是位于缓和曲线,还是位于圆曲线。
位于圆曲线
位于缓和曲线
2、偏角法(整桩距、短弦偏角法)
(1)当点位于缓和曲线上,有:
总偏角 (常量 ) 0 ls 6R
(3)缓和曲线的参数方程:
(4)圆曲线终点的坐标:
二.主点(major point)的测设
1、测设元素的计算
(1)内移距p 和切线增长q的计算:
24 R ls l s3 q 2 240 R 2
p
l s2
2、主点的测设
(1)里程的计算
ZH=JD-TH;HY=ZH+ls;
QZ=ZH+LH/2;HZ=ZH+LH;YH=HZ-ls
三、带有缓和曲线的圆曲线详细测设 1、切线支距法 (tangent off-set method)
匝道等不完整缓和曲线计算解释和说明
匝道等不完整缓和曲线坐标计算随着全站仪在道路工程施工测量中的普及,传统的中线放样方法逐渐被淘汰。
目前道路工程中线放样时,只要能计算出中线上任意一点的坐标,用全站仪或者GPS RTK的坐标放样功能就可很方便、快捷地完成实地放样。
道路线形是由直线、圆曲线、缓和曲线三种线形组合而成的,而直线与圆曲线组合的线形(见图一)中桩坐标计算比较简单,在此不作阐述。
下面就缓和曲线与其它两种线形组合的线形中桩坐标计算予以分析。
缓和曲线与其它两种线形组合构成的线形主要有缓和曲线的完整形(即基本形)(见图二)和非完整形(即卵形)(见图三)二种。
一、基本形曲线中桩坐标计算:1、对于第一缓和曲线及圆曲线段(ZH~YH)(如图四),建立以ZH为坐标原点,切线方向为X′轴,半径方向为Y′轴的曲线坐标系(X′O′Y′)。
先计算曲线各点在曲线坐标系下的坐标。
⑴对于第一缓和曲线段(ZH~HY)内任一点i(此时L=Ki-KZH)若圆曲线半径R≥100m时,则X i ′=L-L5/(40R2Ls12) 公式①Y i ′=L3/(6RLs1) 公式②若圆曲线半径R<100m时,则X′=L-L5÷[40(RLS )2]+L9÷[3456(RLS)4]–L13÷[599040(RLS)6]+L17÷[175472640(RLS )8]- L21÷[7.80337152×1010(RLS)10](公式③)Y′=L3÷[6(RLS )] - L7÷[336(RLS)3]+L11÷[42240(RLS)5] - L15÷[9676800(RLS )7]+L19÷[3530096640(RLS)9] - L23÷[1.8802409472×1012(RLS)11](公式④)⑵对于圆曲线段(HY~YH)上任一点iX i ′=q+Rsin¢iY i ′=R(1-cos¢i)+pL=Ki-KZH¢i=(L- Ls1)*180/(Rπ)+β内移值P=Ls12/(24R)切线增值q= Ls1/2- Ls13/(240R2)综合⑴、⑵,根据不同坐标系的相互转换,可得ZH~YH上任一点i的中桩测量坐标为:X i =XZH+cosA×Xi′-sinA×f×Yi′(公式⑤)Y i = YZH+sinA×Xi′+cosA×f×Yi′(公式⑥)式中f为线路的转向系数,右转时f=1,左转时f=-1 。
缓和曲线计算
缓和曲线计算方法如下:
1.确定两个直线或两条曲线的交点。
2.确定圆曲线的半径。
圆曲线的半径应该足够大,使车辆或列车
可以在转弯时平稳地行驶,同时也不能太大,以免影响道路或
铁路的设计。
3.确定过渡曲线的长度。
过渡曲线是圆曲线和直线之间的曲线,
用于将两者之间的变化平滑地连接起来。
过渡曲线的长度应该
足够长,以确保车辆或列车可以逐渐进入或离开圆曲线,从而
减少冲击和颠簸。
4.根据圆曲线和过渡曲线的参数,计算出缓和曲线的形状和尺寸。
需要注意的是,计算缓和曲线需要考虑多种因素,包括车辆或列车的速度、载重、惯性等因素,以及道路或铁路的设计标准和要求。
因此,在进行缓和曲线计算时,需要综合考虑各种因素,以确保计算结果的准确性和可行性。
缓和曲线半径计算公式
缓和曲线半径计算公式缓和曲线是指将两条直线或曲线段平滑地连接起来的过渡曲线。
在道路设计、铁路设计等领域中广泛应用。
计算缓和曲线半径的公式基于几何学原理和交通工程的需求。
在计算缓和曲线半径之前,首先需要了解以下几个关键参数:1.设计速度(Vd):即车辆在缓和曲线上行驶的目标速度。
2.过渡长度(L):即缓和曲线的总长度。
3.动摩擦因数(f):即车辆行驶过程中的轮胎与路面之间的摩擦系数。
4.允许超高(e):在垂直方向上,车辆离开水平线的最大允许值。
基于以上参数,可以通过以下公式计算缓和曲线半径:R=Vd^2/(127*f*e)其中,R表示缓和曲线半径。
需要注意的几点是:1.这个公式是根据欧拉公式推导得来的,适用于大多数情况。
但对于特定道路设计,如复杂弯道或高速公路等,可能需要采用更复杂的公式进行计算。
2.设计速度需要根据具体路段的要求进行选择。
一般来说,缓和曲线的设计速度应与前后道路的设计速度相匹配,以确保平稳过渡。
3.允许超高是指驶过缓和曲线过程中,车辆会偏离水平线的程度。
允许超高的值应根据实际需要进行确定。
4.确定缓和曲线总长度的计算需要根据具体情况进行。
一般来说,它被设定为车辆达到设计速度所需的时间内行驶的距离。
5.动摩擦因数是一个经验值,根据道路状况、车辆类型等因素进行选择。
一般来说,可以参考交通工程相关规范或手册中的推荐值。
需要注意的是,以上计算仅为基本公式,实际应用中还会受到其他因素的影响,如地形、道路条件、车辆特性等。
因此,在进行具体的设计和计算时,建议参考相关的交通工程规范和设计手册,确保计算结果符合实际需求。
不对称缓和曲线要数的计算方法
精心整理不对称缓和曲线要数的计算方法????????? 发布日期:2012-02-12??浏览次数:52圆曲线两端缓和曲线不等长的测设方法,圆曲线起始端缓和曲线的长度为L1终端的缓和曲线长度为L2圆曲线半径为R,所测转角为a切线角切线增量内移值切线长曲线长或者外矢距Goto 1 ↙(注:↙表示按EXE键即可)2. XLZBZB使用说明:K? 正算时所求点的里程:L(-Z+Y) 正算时所求点距该里程中线的边距(左侧取负值,右侧取正值,在中线上取零(即数字0))3. 正算子程序程序名:SUB14→DimZ ↙(注:↙表示按EXE键即可)↙(注:↙表示按EXE键即可)I+J(Acos(G+QCJ(1÷P+CJD)×180÷π)+Bcos(G+QEJ(1÷P+EJD)×180÷π)+Z[4]cos(G+QZ[1]J(1÷P+Z[1]JD)×180÷π)+Bcos(G+Q(1-E)J(1÷P+(1-E)JD)×180÷π)+A cos(G+Q(1-C)J(1÷P+(1-C)JD) ×180÷π)) →X ↙段线元起点切线方位角→G: 二段线元终点里程→H: 二段线元起点曲率半径→P:二段线元终点曲率半径→R:二段线元左右偏标志→Q:…………………(注:如有多个曲线元要素,还要继续添加到数据库DAT中)I= 线元起点的X坐标:S= 线元起点的Y坐标: O= 线元起点里程:G= 线元起点切线方位角: H= 线元终点里程P= 线元起点曲率半径R= 线元终点曲率半径Q= 线元左右偏标志(注:左偏为-1,右偏为+1 )(注:如有多个曲线元要素,还要继续添加到数据库DAT中,曲率半径直径输入半径值)5. 坐标反算程序名:ZBFS“U=”:S÷666.667→U ▲ 亩Goto 1(注:0表示数字零)说明:点位必须按顺序输入成封闭形图型!A B C D 为第一,二两点坐标(常量),X Y……为第三,四,五,六点坐标(变量)。
圆曲线、缓和曲线、竖曲线、非完整缓和曲线计算程序
圆曲线、缓和曲线、竖曲线、非完整缓和曲线计算培训1、圆曲线计算程序:“X0”?P 曲线起点X坐标“Y0”?Q 曲线起点Y坐标“X1”?X 曲线交点X坐标“Y1”?Y 曲线交点Y坐标“QDLC”?Z 曲线起点桩号“R”?R 曲线半径“L1R2”?O 曲线前进方向:左为1、右为2Lbl 0“1N-X,2X-N”?S 1为大转小、2为小转大Pol(P-X,Q-Y):ClsJ+180→K 曲线切线方位角计算If S=1:Then Goto 1:Else Goto 2:IfEndLbl 1“N”?U:“E”?V 测量的大坐标(U-P)cos(K)+(V-Q)sin(K)+Z→Z[1]:(V-Q)cos(K)-(U-P)sin(K)→Z[2] If O=1:Then -R→D:Else R→D:IfEndtan-1((Z[1]-Z)/Abs(D-Z[2]))→Z[3]Abs(D)sin(Z[3])+Z →Z[4]:Abs(D)(1-cos(Z[3])) →Z[5]If O=1:Then –Z[5]→Z[5]:Else Z[5]→Z[5]:IfEndPol(Z[4]-Z,Z[5]-D):ClsJ+180 →Z[6]Z+Z[3](Abs(D)π)/180→Z[7](Z[1]-Z[4])cos(Z[6])+(Z[2]-Z[5])sin(Z[6]) →Z[8]If O=1:Then –Z[8]→Z[8]:Else Z[8]→Z[8]:IfEnd“X=”:Z[7]◢计算后的X小坐标“Y=”:Z[8]◢计算后的X小坐标Goto 0Lbl 2“X”?U:“Y”?V 测量的小坐标180(U-Z)/(Rπ)→Z[1]:Rsin(Z[1])+Z→Z[2]:R(1-cos(Z[1]))→Z[3]If O=1:Then –Z[3]→Z[3]:–V→C:–R→D:Else Z[3]→Z[3]:V→C:R→D:IfEnd Pol(Z[2]-Z,Z[3]-D):ClsJ+180→Z[4]Z[2]+Ccos(Z[4])→Z[5]:Z[3]+Csin(Z[4])→Z[6]P+(Z[5]-Z)cos(K)-Z[6]sin(K)→Z[7]Q+(Z[5]-Z)sin(K)+Z[6]coc(K)→Z[8]“N=”:Z[7] ◢计算后的X大坐标“E=”:Z[8]◢计算后的Y大坐标Goto 02、缓和曲线计算程序:“X0”?P 曲线起点X坐标“Y0”?Q 曲线起点Y坐标“X1”?X 曲线交点X坐标“Y1”?Y 曲线交点Y坐标“ZHZH”?Z 曲线起点桩号“R”?R 圆曲线段半径“L”?L 缓和曲线单边曲线长度“L1R2”?O 曲线前进方向左为1右为2Lbl 0“LCZH”?F 测量里程Abs(F-Z)→BIf B<L:Then Goto 1:Else Goto 4:IfEnd 缓和段及圆曲线段计算转换Lbl 1180B2/(2RLπ)→A:RL/B→E:B-B5/(40R2L2)+B9/(3456R4L4)- B13/(599040R6L6)+ B17/(175472640R8L8)- B21/(7.80337152*1010R10L10)→C (红色的为计算小半径增加精度)B3/(6RL)-B7/(336R3L3)+B11/(42240R5L5)- B15/(9676800R7L7)+ B19/(3535596640R9L9)- B23/(1.8802409472*1012R11L11)→D:C-Esin(A) →G(红色的为计算小半径增加精度)If O=1:Then Goto 2:Else Goto3:IfEndLbl 2-D→D:D-Ecos(A) →HGoto 7D→D:D+Ecos(A) →HGoto 7Lbl 4180(B-L/2)/(Rπ)→A:L/2-L3/(240R2)→E:L2/(24R)-L4/(2688R3)→M E+Rsin(A) →C:C-Rsin(A) →GIf O=1:Then Goto 5:Else Goto 6:IfEndLbl 5-(M+R(1-cos(A)) →D:D-Rcos(A) →HGoto 7Lbl 6M+R(1-cos(A)) →D:D+Rcos(A) →HGoto 7Lbl 7Pol(P-X,Q-Y):ClsJ+180→KP+Ccos(K)-Dsin(K) →Z[2]:Q+Csin(K)+Dcos(K) →Z[3]P+Gcos(K)-Hsin(K) →Z[4]:Q+Gsin(K)+Hcos(K) →Z[5]Pol(Z[2]-Z[4],Z[3]-Z[5]):ClsJ+180→Z[1]“U”?U:“V”?V 测量所得大地坐标(U-Z[2])cos(Z[1])+(V-Z[3])sin(Z[1]) →Z[6](V-Z[3])cos(Z[1])-(U-Z[2])sin(Z[1]) →Z[7]If F>Z:Then Goto 9:Else Goto A:IfEndLbl 9If O=1:Then Z[7]→Z[7]:-Z[6]→Z[6]:Else –Z[7]→Z[7]:Z[6]→Z[6] IfEndGoto BLbl AIf O=1:Then –Z[7] →Z[7]:Z[6] →Z[6]:Else Z[7] →Z[7]:-Z[6] →Z[6] IfEndGoto BLbl B“X=”:Z[7] ◢计算后轴线X坐标“Y=”:Z[6] ◢计算后轴线X坐标“0→Goto 0,1→BZZB”?S 0为还回计算过程、1为进行轴线坐标计算大坐标If S=0:Then Goto 0Else Goto 8:IfEndLbl 8“X”?T:“Y”?WIf F>Z:Then Goto C:Else Goto D:IfEndLbl CIf O=1:Then T→Z[8]:-W→Z[11]:Else -T→Z[8]:W→Z[11]:IfEndGoto ELbl DIf O=1:Then -T→Z[8]:W→Z[11]:Else T→Z[8]:-W→Z[11]:IfEndGoto ELbl EZ[2]+Z[11]cos(Z[1])-Z[8]sin(Z[1]) →Z[9]Z[3]+Z[11]sin(Z[1])+Z[8]cos(Z[1]) →Z[10]“N=”:Z[9] ◢计算后X大坐标“E=”:Z[10] ◢计算后Y大坐标Goto 03、竖曲线计算程序:“ZH1”?A 交点1桩号“H1”?B 交点1高程“ZH2”?C 交点2桩号“H2”?D 交点2高程“ZH3”?E 交点3桩号“H3”?F 交点3高程“R”?R 曲线半径(D-B)/(C-A) →Z[1]:(F-D)/( E-C) →Z[2]:Z[2]-Z[1] →W:Abs(RW/2)→T Lbl 0“ZHC”?G:“HC”?H 测量桩号及高程If G≤(C-T):Then Goto 1:Else Goto 2:IfEndLbl 1H-(G-A) Z[1]-B →Z[3]“H+-”:Z[3] ◢计算值+为向下、-为向上Goto 0Lbl 2If G≥(C+T):Then Goto 3:Else Goto 4:IfEnd Lbl 3H-(G-C) Z[2]-D→Z[3]“H+-”:Z[3] ◢计算值+为向下、-为向上Goto 0Lbl 4(G-(C-T))2/(2R) →Z[4](G-A) Z[1]+B →Z[5]If W>0:Then Goto 5:Else Goto 6:IfEndLbl 5H-(Z[5]+Z[4]) →Z[3]“H+-”:Z[3] ◢计算值+为向下、-为向上Goto 0Lbl 6H-(Z[5]-Z[4]) →Z[3]“H+-”:Z[3] ◢计算值+为向下、-为向上Goto 0非完整缓和曲线计算起点和交点方向大坐标Lbl 0“X1”?A 非完整缓和曲线起点X坐标“Y1”?B 非完整缓和曲线起点Y坐标“X2”?C 非完整缓和曲线终点X坐标“Y2”?D 非完整缓和曲线终点Y坐标“A”?E 缓和曲线A值“R”?F 缓和曲线半径“L1”?G 图纸标注缓和曲线长度“L1R2”?R 方向左1右2E2÷F→H 缓和曲线完整计算长度H-G→K 缓和曲线打断长度K-K5÷(40×E4)+K9÷(3456×E8) -K13÷(599040×E12)+K17÷(175472640×E16)-K21÷(78033715200×E20) →LK3÷(6×E2)-K7÷(336×E6)+K11÷(42240×E10)-K15÷(9676800×E14)+K19÷(3530096640×E18)-K23÷(1880240947200×E22) →MH-H5÷(40×E4)+H9÷(3456×E8) -H13÷(599040×E12)+H17÷(175472640×E16)-H21÷(78033715200×E20) →NH3÷(6×E2)-H7÷(336×E6)+H11÷(42240×E10)-H15÷(9676800×E14)+H19÷(3530096640×E18)-H23÷(1880240947200×E22) →OTan-1((O-M)÷(N-L))→PPol(A-C,B-D)J+180→QIf R=1Then Q+P→SElse Q-P→SIfEndAbs(Lcos(S)-Msin(S)-A) →TAbs(Lsin(S)-Mcos(S)-B) →UT+100cos(S) →VU+100sin(S) →W“A0”:T◢完整缓和曲线原点X坐标计算值“B0”:U◢完整缓和曲线原点Y坐标计算值“A1”:V◢完整缓和曲线交点方向X坐标计算值“B1”:W◢完整缓和曲线交点方向Y坐标计算值Goto 0。
缓和坐标计算步骤
缓和坐标计算步骤
1.缓和曲线首先要判断缓和曲线是否为完整的缓和曲线判断公式为A^2=L*R 若果等式成立则缓和曲线为完整的缓和曲线。
2.如果A^2不等于l*r 则缓和曲线为不完整的缓和曲线。
3.算出隐藏的缓和曲线长度l=a2/r 。
并且要算出不完整曲线终点的曲率半径有公式l=a2(1/R 小-1/R 大)注l 为设计曲线长度。
缓和曲线∞<r>圆曲线半径。
4.算出β0=(90°L1)/(RL2π)注L1为所求长度L2为缓和曲线设计长度。
5.有公式X1=L-L1^5/40R^2L2
Y2=L^3/6RL2
6.当算出想X,Y 以后便可算出以下参数偏角α=acrtan (x/y )和弦长C=
7.再有X2=X (直缓或缓直)+C*COS α
Y2=Y (直缓或缓直)+C*SIN α
所求点的方位角α=设计+β0
8.特别注意如果不完整曲线没有给出ZH 或HZ,可以用以上公式进行反推算。
还要注意缓和曲线计算时都是从ZH 或HZ 起算的。
注意偏角的加减。
Y X 2
2。
不完全缓和曲线计算
切线长为 TJDΟO1 = 551868 , TJDΟO2 = 331426 外矢距为 E = 111091 ,曲线 O1 Q = 511994 则主点坐标 O1 (9 4641915 ,4 7711882) ,
意点切线与起点切线夹角 βP (这里称之为不完全缓
和曲线转角) 。如图 1 所示 。
ls1
+
l
=
A2 R
βO1
=
ls21 2A2
βO2
=
ls22 2A2
βO P
=
( ls1 + l) 2 2A2
βP =βOP - βO1
=
( ls1 + l) 2 2A2
-
ls21 2A2
βP
=
l R1
+
l2 2A2
P 在路线测量坐标系中的坐标为 XP = 9 4551162 YP = 4 7501869
上面都是通过电算程序计算所得 。
本文所讨论的内容对于互通立交匝道的设计和施
工放样有很大参考作用 。
通过计算得
图5
β= 63°48′47″4 R2 = 40 , ls = 81 ls1 = 9 , ls2 = 90
+
3
l10 840 R1
A8
-
l11 42 240A10
+
……
如以 R2 小半径建立切线支距坐标系( l 为 P 点到 O2 的曲线长) ,则
β=
l R2
公路工程测量放线圆曲线、缓和曲线(完整缓和曲线、非完整缓和曲线)计算解析
公路工程测量放线圆曲线、缓和曲线(包括完整缓和曲线、非完整缓和曲线)计算解析例:某道路桥梁中,A匝道线路。
已知交点桩号及坐标:SP,K9+000(2957714.490,485768.924);JD1,K9+154.745(2957811.298,485889.647);EP,K9+408.993(2957786.391,486158.713)。
SP—JD1方位角:51°16′25″;转角:右44°00′54.06″;JD1—EP方位角:95°17′20″。
由上面“A匝道直线、曲线及转角表”得知:K9+000—K9+116.282处于第一段圆曲线上,半径为385.75m;K9+116.282—K9+151.282处于第一段缓和曲线上,K9+151.282的半径为300m,缓和曲线要素A1=217.335,Ls1=35m;K9+151.282—K9+216.134处于第二段圆曲线上,半径为300m;K9+216.134—K9+251.134处于第二段缓和曲线上,K9+251.134的半径为1979.5,缓和曲线要素A2=111.245,Ls2=35m;1 / 11K9+251.134—K9+408.933处于第三段圆曲线上,半径为1979.5m。
求:K9+130、K9+200、K9+230、K9+300的中桩坐标,切线方位角,左5米边桩的坐标,右10米边桩的坐标。
解:首先,我们知道要求一个未知点的坐标,必须知道起算点坐标,起算点至未知点的方位角,起算点至未知点的直线距离,然后利用坐标正算的计算公式,就可以直接求出未知点的坐标。
那么,关于圆曲线和缓和曲线(包括完整缓和曲线和非完整缓和曲线)的计算,我们需要知道如何求出起算点至圆曲线或缓和曲线上某点的方位角和直线距离。
下面,先列出关于圆曲线和缓和曲线中角度和距离计算的相关公式。
2 / 113 / 11y 轴。
过圆曲线上任意点P 的切线与ZY —JD 相交,夹角(切线角)为β,ZY —P 与ZY —JD 的夹角(弦切角)为α,ZY —P 的弧长为L ,ZY —P 的直线距离为d ,圆曲线的半径为R 。
非完整缓和曲线参数与坐标计算
道路工程测量中非完整缓和曲线参数与坐标计算中建八局第三建设有限公司张涛摘要:在道路工程测量中,非完整缓和曲线的参数、坐标计算和测设是一个常见的难点和重点,掌握其特性及公式推导原理,对从业者非常重要和必要。
关键词:非完整缓和曲线曲线参数计算公式八匝道互通式立交一、概论工程测量学科是一门应用科学,它直接为国民经济建设和国防建设服务,紧密与生产实践相结合。
在大中型建设项目中,工程测量是一项极其重要的、专业性较强的基础性工作。
特别是在道路工程建设中,经常会遇到道路线形较为复杂,线元变化较多的情况,而测量成果的精度高低,直接影响到工程质量的好坏,测量工作的任何一次失误,都可能导致工程施工出现较大的偏差,从而引起工程局部返工甚至报废,并会延误工期,造成巨大地工程损失。
因此,在施工过程中,如何控制好工程测量的施作质量,从而使工程建设顺利优质地完成,是每一个工程测量工作者的首要职责。
当前,全国各地基础设施工程建设快速发展。
在一些高等级公路建设时,既要保证行车的安全性、便捷性和舒适性,保证道路线形平滑流畅,保证道路景观效果,同时又受到地形条件限制,必须最大限度地节约土地资源,所以设计者经常采用较为复杂的平曲线、竖曲线线形设计。
如在作者近期参建的重庆市渝中区环道隧道工程和机场专用快速路工程中,设计者就采用了多条非对称、非完整缓和曲线线形。
特别是机场专用快速路工程的桃子湾互通式立交桥八条匝道(匝道A---匝道H),包含多个非完整缓和曲线线元及小半径(最小半径R=55m)回头曲线。
在上述较为复杂的线形测设中,作者结合非完整缓和曲线特性和理论计算,利用LEICA TS06全站仪后处理软件系统及CASIO fx-5800P计算器,较为精确地进行了施测,计算坐标值与设计逐桩坐标表给定值互差小于2mm。
二、非完整缓和曲线特性及参数计算在直线与圆曲线之间插入的一段半径由∞逐渐变化到R的曲线称做缓和曲线,它的形式有螺旋线(又称回旋线,我国普遍采用)、三次抛物线和双纽线。
关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法
关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法(转)目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。
关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。
第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈.1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。
由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。
2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。
那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于不同类型缓和曲线的起点、终点曲率半径判断方法
目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。
关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。
第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈.
1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。
由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。
2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。
那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。
3.对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言),当两个缓和曲线长度相等时候则称之为对称缓和曲线,自然此时的切线长、缓和曲线参数A值都是相等的,反之不相等就称为不对称缓和曲线,自然切线长、缓和曲线是不相等的。
第二:由此可以看出对于缓和曲线而言,对称与否很容易分辨判断无需赘述,完整与否不易区分,也是这里重点要说的问题.
1.完整与不完整缓和曲线的区别判断方法:综上所述,完整缓和曲线与不完整缓和曲线的判断其实就在于验证完整缓和曲线参数方程A^2=R*Ls这个等式成立与否就可。
(A为已知的缓和曲线参数,R为缓和曲线所接圆曲线的半径,Ls为该段缓和曲线的长度)理论上,当该式子成立时候,那就是完整缓和曲线无疑,当不成立时候那就可判断为不完整缓和曲线了。
实际工作操作时候验证方法如下:先把R*Ls的乘积进行开平方然后看所得到的结果是否与所提供的缓和曲线参数A值相等。
2.完整缓和曲线与不完整缓和曲线起点终点的曲率半径的判断与计算:线路设计上的缓和曲线一般不会单独存在的,连续的缓和曲线起点或终点必定有一端都是要接圆曲线的,那么缓和曲线一端的半径值必定就是圆曲线的半径值了,求半径的问题就变成只需求出另外一端半径就可以了.上面说过首先判断出该缓和曲线是否是完整的办法,那么当是完整缓和曲线时候,起点或终点两端的半径,必定一端是无穷大,一端就是圆曲线半径了;那么当判断是不完整缓和曲线时,一端半径就是圆曲线半径,另一端的半径就绝对不能是无穷大了的,理论上应该是该端点的半径值要小于无穷大而大于所接圆曲线的半径值,那么该怎么求出来呢?此时就牵涉到了不完整缓和曲线的参数方程:
A^2=[(R大-R小)÷(R大*R小)]*Ls
由上方程可以看出,R大就是我们所需要求的这端半径了,R小自然就是该不完整缓和曲线所接的圆曲线半径了。
A为该不完整缓和曲线参数,R小为所接圆曲线半径,Ls为该不完整缓和曲线的长度,这些图纸都提供的有了,只需按照上面的不完整缓和曲线的参数方程进行解方程就可得到另一端的半径值了,只要是正值那就OK了!!!
2.很有必要再说说不完整缓和曲线中的一个特例------卵形曲线
卵形曲线是不完整缓和曲线中的一种特殊情况,对于卵形曲线的定义是:两端同转向圆曲线中间所夹的那段同转向不完整缓和曲线就叫卵形曲线,也就是指那段缓和曲线前后各有个圆曲线相接,并且三段曲线的转向相同用上述判断复核是那么这段缓和曲线一般都是不完整的那么符合这样特征的就是卵形曲线,那么此时卵形曲线必定要复核上述的不完整缓和曲线的参数方程:
A^2=[(R大-R小)÷(R大*R小)]*Ls
那么此时卵形曲线的两端半径就分别是所接两个圆曲线的半径值!也就是R大和R小.半径值就是无需求的,直接用卵形曲线所接前后两个圆曲线的半径值就可了.
其实关于不完整缓和曲线一端半径求算方法这点,在夏夜的“轻松测量系统软件电脑版”的菜单上也就有这个工具,懒得列方程解算的,不妨直接用软件计算也可嘛,我上述只是讲述了下手工计算的方法.
至此,对于缓和曲线的特征判断与半径计算应该有个清晰的眉目了吧,那么在使用程序计算线路坐标的时候,遇见缓和曲线就先判断是否完整,然后用上述方法很快就可判断到起点或终点的曲率半径了。
最后解释下,说曲率其实就是半径的倒数,程序中经常见到这个概念,千万不要把曲率和半径混为一谈导致程序计算错误了!
以上所述是本人愚见,欢迎各位不吝赐教,共同学习交流,将课本理论与现实实践相结合,正确顺利使用线元法(积木法)坐标计算程序,为坐标计算做好数据准备,从而正确快速的计算出线路坐标,当然也欢迎测友与本人联系共同进步!。