直角三角形的边角关系测试卷
直角三角形的边角关系单元测试
《直角三角形的边角关系》单元测试班级: 姓名: 学号: 分数:一、选择题(每小题4分,共32分) 1.已知△ABC 中,∠C=90°,tanA=( )A .AB AC B .AB BC C .BC AC D .ACBC2.在△ABC 中,∠C=90,若sinA=31,则cosB= ( )A. 1B. 3C. 31 D 2323.在Rt△ABC中,两直角的比为5:12,则最小角的余弦值( ) A .125 B .123 C .512 D .13124.在Rt△ABC中,如果各边长度都扩大2倍,那么锐角A的正切值( ) A .没有变化 B .扩大2倍 C .缩小2倍 D .不能确定5.如图,Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D,BC=3,AC=4,设∠BCD=α,则 tan α的值为( ) A.34; B.43; C.35; D.456. 若∠A 为锐角,且则∠A 的度数为( )A.30°B.45°C.60°D.90°7.在 Rt △ABC 中,∠C=900, a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列关系式错误的是( )A. b=c ·cosBB.b=a ·tanBC.a=c ·sinAD. a=b ·tanA 8. 等腰三角形底边长为1Ocm ,周长为36cm ,那么底角的余弦等于( ) A.513 B.1213 C. 1013 D. 512二.填空题:(每小题3分,共15分)1.在△ABC 中,∠C为直角,若3AC=BC 3,则∠A的度数是 ,cosB 的值是_ _ 。
2.已知ABC △中,90C ∠=,A B C ∠∠∠,,所对的边分别是a b c ,,,且3c a =,则cos A =________.3.已知:Rt △ABC 中,∠C=90°,sinA=513,则sinB=________.4.如图,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水平 距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m 。
直角三角形的边角关系测试题及答案
AD′直角三角形的边角关系测试题一、选择题(每小题3分,共计30分):1.在△ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 所对的两条直角边,c 是斜边,则有( )A 、sinA=a cB 、cosB=c bC 、cosB=a bD 、tanA=ba 2.在Rt △ABC 中,∠C=90°,sinA=21,则BC ∶AC ∶AB 等于( )A 、1∶2∶5B 、1∶3∶5C 、1∶3∶2D 、1∶2∶33.在△ABC 中,若tanA=1,sinB=22,你认为最确切的判断是( ) A.△ABC 是等腰三角形 B.△ABC 是等腰直角三角形 C.△ABC 是直角三角形 D.△ABC 是一般锐角三角形 4.已知在Rt △ABC 中,∠C=90°.若sinA=22,则sinB 等于( ) A 、21 B 、22 C 、23 D 、1 5.化简2)130(tan - =( )。
A 、331-B 、13-C 、133-D 、13-6.等腰三角形的一腰长为6cm ,底边长为63cm ,则其底角为( )。
A. 120° B. 90° C. 60° D. 30°7如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D′处,那么tan ∠BAD′等于( ) A. 22 B.22C. 2D. 18.当锐角A 的cosA >22时,∠A 的值为( )。
A. 小于45° B. 小于30° C. 大于45° D. 大于30°9.小刚在距某电信塔10 m 的地面上(人和塔底在同一水平面上),测得塔顶的仰角是 60°, 则塔高为( )BNACDMA 、103mB 、53mC 、102mD 、20m 10.如图,在△ABC 中,∠C=90°,AC=8cm,AB 的垂直平分线MN交AC 于D ,连结BD ,若cos ∠BDC=53,则BC 的长是( )A 、4cmB 、6cmC 、8cmD 、10cm二、填空题(每小题3分, 共计18分):11.在△ABC 中.∠C=90°,若tanA=1,则∠B= 度. 12.锐角A满足2sin(A-150)=3,则∠A=_____度. 13.如图,若某人沿坡度i =3:4的斜坡前进10米,则他所在 的位置比原来的位置升高________米.14.若︒<<︒900α,︒=60cos sin α,则_____tan =α 15.已知△ABC 中,∠A 、∠B 都是锐角,且(cosA-21)2+|tanB-1|=0,则∠C= 度。
直角三角形的边角关系专题复习
直角三角形的边角关系测试题1、在Rt △ABC 中,∠A=90º,AB=6,AC=8,则sinB= ,cosC=2、在△ABC 中,∠B=90º,21cos =C ,则∠C=】3、在△ABC 中,∠C=90º,∠A=60º,AC=34,则BC=4、在△ABC 中,∠C=90º,BC=3,AB=32,则∠A=5、在△ABC 中,∠C=90º,若tanA=21,则sinA= 6、在△ABC 中,若∠C=90º,∠A=45º,则tanA+sinB=7、如图1,在△ABC 中,∠C=90º,∠B=30º,AD 是∠BAC 的平分线。
已知AB=34,那么AD=#8、正方形ABCD 中,AM 平分∠BAC 交BC 于M ,AB=2,BM=1,则cos ∠MAC= 9、如果3)20tan(3=︒+α,那么锐角α=10、某校数学课外活动小组的同学测量英雄纪念碑的高,如图2所示,测得的数据为: BC=42m ,倾斜角º︒=30α,测得测角仪高CD=1.5m ,则AB= 。
(结果保留四位 有效数字)11、在△ABC 中,∠C=90º,BC=5,AC=12,则tanA=( ) A 、512 B 、125 C 、513 D 、135 12、在Rt △ABC 中,∠C=90º,53cos =A ,AC=6cm ,则BC=( )cm A 、8B 、C 、D 、 !13、菱形ABCD 的对角线AC=10cm ,BD=6cm ,那么=2tanA ( ) A 、53B 、54C 、34343 D 、3434514、已知:如图3,梯形ABCD 中,AD638642382423231,23-1,23--3253500)3sin 2(3tan 2=-+-A B 5米353103︒+︒+︒-︒45tan 30cos 230tan 330sin ︒-︒+︒-︒-︒60tan 45tan 30sin 160cos 45cos 2226—1为平地上一幢建筑物与铁塔图,题6-2图为其示意图.建筑物AB 与铁塔CD 都垂直于底面,BD=30m ,在A 点测得D 点的俯角为45°,测得C 点的仰角为60°.求铁塔CD 的高度.…图6-1 图6-2图2a CAE B)图1 BCDA图3图4 图524、如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路。
鲁教版(五四学制)九年级数学上册《第二章直角三角形的边角关系》单元测试卷及答案
鲁教版(五四学制)九年级数学上册《第二章直角三角形的边角关系》单元测试卷及答案一、单选题1.已知α,β是△ABC 的两个角,且sinα,tanβ是方程2x 2﹣3x+1=0的两根,则△ABC 是( )A .锐角三角形B .直角三角形或钝角三角形C .钝角三角形D .等边三角形2.若△A ,△B 都是锐角,且tanA=1,sinB=22,则△ABC 不可能是( ) A .等腰三角形 B .等腰直角三角形 C .锐角三角形D .直角三角形3.如果小丽在楼上点A 处看到楼下点B 处小明的俯角是35°,那么点B 处小明看点A 处小丽的仰角是( )A .35°B .45°C .55°D .65°4.如图,在正方形网格中,已知ΔABC 的三个顶点均在格点上,则ACB ∠的正切值为( )A .2B 25C 5D .125.春节期间,小澎陪妈妈去爬山,如图,两人从山脚下A 处沿坡前行,到达C 处时,发现C 处标语牌上写着“恭喜你已上升50米”,若此山坡的坡度1:2.4i =,爱思考的小澎很快告诉妈妈:“我们至少走坡路( )米了”.A .50B .120C .130D .1706.如图,点A 、B 、C 、D 在O 上,OA BC ⊥于点E .若30ADC ∠=︒,AE=2,则BC 的长为( )A .3B .3C .8D .47.如图,已知矩形ABCD 中,点E 是BC 边上的点AE BC DF AE =⊥, 21BE EC ==,垂足为F 下列结论:①ADF EAB ≌;②AF EB =;③DF 平分ADC ∠;④2.3sin CDF ∠=其中正确的结论有( )A .1个B .2个C .3个D .4个8.如图,在△ABC 中,△C=90°,△B=43°,BC=8,若用科学计算器求AC 的长,则下列按键顺序正确的是( )A .B .C .D .9.在Rt△ABC 中,△C=90°,若cosA=53,则tanB=( ) A .52B .255 C .53D .5310.如图,在正方形ABCD 中,AB=4,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF AB⊥于点F ,EG BC ⊥于点G ,连接,DE FG .下列结论:①DE FG =;②DE FG ⊥;③BFG ADE ∠=∠;④FG 的最小值为3.其中正确结论的个数有( )A .1个B .2个C .3个D .4个11.如图,在菱形ABCD 中,过顶点D 作DE AB ⊥,DF BC ⊥ 垂足分别为E ,F ,连接EF ,若2cos 3A =,BEF 的面积为2,则菱形ABCD 的面积为( )A .18B .24C .30D .3612.如图,矩形纸片ABCD ,AB=4,BC=3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O 、F ,且OP=OF ,则cos△ADF 的值为( )A .1113 B .1315C .1517D .1719二、填空题13.计算:sin30°-tan45°+3cos30°= .14.如图,在Rt ABC 90B ∠=︒ D 为AB 边上的一点,将BCD 沿CD 翻折,得到B CD '.连接AB AB BC '',,若18tan 2AB DCB =∠=',,则B '到AC 边上的距离为 .15.如图所示,某拦水大坝的横断面为梯形ABCD ,AE 、DF 为梯形的高,其中迎水坡AB 的坡角α=45°,坡长AB= 62 米,背水坡CD 的坡度i=1: 3(i 为DF 与FC 的比值),则背水坡CD 的坡长为 米.16.用一张直角三角形纸片玩折纸游戏,如图1,在Rt ABC 中90ACB ∠=︒ 30B ∠=︒ AC=2.第一步,在AB 边上找一点D (不与点A ,B 重合),将纸片沿CD 折叠,点A 落在A '处,如图2;第二步,将纸片沿CA '折叠,点D 落在D '处,如图3.当点D '恰好落在直角三角形纸片的边上时,线段A D ''的长为 .17.如图,在 Rt ABC 中90B ∠=︒ , AB=2 , BC=1 .将 ABC 绕点 A 按逆时针方向旋转 90︒ 得到 ''AB C ,连接 'B C ,则 tan 'ACB ∠= .三、解答题18.如图,在Rt ABC 中90C ∠=︒,AB=13,BC=12,求tan B 的值.19.为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD ,斜面坡度3:4i =是指坡面的铅直高度AF 与水平宽度BF 的比.已知斜坡CD 长度为20米 18C ∠=︒,求斜坡AB 的长.(结果精确到米)(参考数据:sin180.31,cos180.95,tan180.32︒≈︒≈︒≈)20.如图,AB 和CD 是同一地面上的两座相距39米的楼房,在楼AB 的楼顶A 点测得楼CD 的楼顶C 的仰角为45°,楼底D 的俯角为30°.求楼CD 的高(结果保留根号).21.如图,在一张矩形纸片ABCD 中,2AD =cm ,E ,F 分别是CD 和AB 的中点,现将这张纸片折叠,使点B 落在EF 上的点G 处,折痕为AH ,若HG 的延长线恰好经过点D .(1)求BAH ∠的度数.(2)设DH 与AC 交于点M ,求sin GAM ∠的值.22.如图1和图2,已知在四边形ABCD 中,AB=8 211BC =,CD=12,DA=6,90A ∠=︒点M 在AD边上,且2DM =,将线段MA 绕点M 顺时针旋转()0180n n ︒<≤到MA ',A MA ∠'的平分线MP 所在直线交折线AB BC-于点P(不与点A重合),设点P在该折线上运动的路径长为x,连接A P',连接BD.(1)求CBD∠的度数(2)当180n=︒时,请求出x的值(3)若点P到BD的距离为2,求cot A MP∠'的值(4)当点P在边AB上运动时,设点A'到直线AB距离为y,求y关于x的函数解析式并写出定义域参考答案与解析1.【答案】B【解析】【解答】解:由2x2﹣3x+1=0得:(2x﹣1)(x﹣1)=0,∴x= 12或x=1.∴sinα>0,tanβ>0若sinα= 12,tanβ=1,则α=30°,β=45°,γ=180°﹣30°﹣45°=105°∴△ABC为钝角三角形.若sinα=1,tanβ= 12,则α=90°,β<90°,△ABC为直角三角形.故答案为:B.【分析】先利用因式分解法求出方程2x2﹣3x+1=0的两个根,根据正弦函数及正切函数的性质可知:sinα>0,tanβ>0,然后分类讨论:①若sinα= 12,tanβ=1,②若sinα=1,tanβ=12分别根据特殊锐角三角函数值,求出α,β 的度数,再根据三角形的内角和和求出第三个内角的度数,根据三角形中最大内角的度数即可判断出该三角形是什么三角形。
直角三角形的边角关系测试题(含A组答案)
直角三角形的边角关系测试题一、选择题(每小题2分,共计24分):1.在△ABC 中,∠C =90°,下列式子一定能成立的是( ) A .sin a c B = B .cos a b B = C .tan c a B = D .tan a b A =2. 已知△ABC 中,∠A 、∠B 都是锐角,且(cosA-12 )2+|tanB-3 |=0,你认为最确切的判断是( )A.△ABC 是等腰三角形B.△ABC 是等腰直角三角形C.△ABC 是直角三角形D.△ABC 是等边三角形 3.已知在Rt △ABC 中,∠C=90°,若tanA=12,则sinB 等于( ) A 、15 B 、15 5 C 、25 5 D 、24. 当锐角A 的cosA >22时,∠A 的值为( )。
A. 小于45° B. 小于30° C. 大于45° D. 大于30°5.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D′处,那么tan ∠BAD′等于( ) A. 22 B.22C. 2D. 16.如图所示,在△ABC 中,AB =AC =5,BC =8,则tan C =( )A .53B .54C .34D .437.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足.若AC =4,BC =3,则sin ∠ACD的值为( )A .34 B .43 C .54 D .538.如图,从山顶A 望到地面C ,D 两点,测得它们的俯角分别是45°和30°,已知CD =100m ,点C 在BD 上,则山高AB 等于 ( )A .100 mB .350mC .250mD .50(13+)m9.如图,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B ,取∠ABD =145°,BD =500米,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )5题 6题7题 8题A .500sin55°米B .500cos55°米C .500tan55°米D .500tan35°米10.如图,两条宽度均为40 m 的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是( )。
直角三角形边角关系单元综合评价测试题
直角三角形边角关系单元综合评价测试题一、填空题 (每题3分,共27分) 1.cos81°25' = sin . 2.若sin(10)2α-︒=α为 .3.比较大小:sin48°______cos48°. 4.在△ABC ,AB =AC ,AD ⊥BC 于D ,若BC =10,∠BAC =120°,则AD = . 5.已知直角三角形中,较大直角边长为30,此边所对角的余弦值为817,则三角形的周长为 ,面积为 .6.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为1,大正方形面积为25,直角三角形中较小的锐角为θ,那么sin θ= . 7.在平行四边形ABCD 中,AD ∶AB =1∶2,∠A =60°,AB =4cm ,则四边形面积为 .8.AD 是Rt △ABC 斜边BC 上的高,若 BD =2,DC =8,则tan C 的值为 .9.已知在△ABC 中, 90=∠C ,3cos B =2,AC =52,则AB = . 二、选择题(每题3分,共18分)1.若α是锐角,sin αcos α=p ,则sin α+cos α的值是( )A .1+2pB.C .1-2pD2.若三角形三个内角的比是1∶2∶3,则它们正弦值的比为( )A .1∶B .1∶ 2 C .12D23.如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC 平分∠BAD ,∠B =60º,CD =2cm ,则梯形ABCD 的面积为( )cm 2.A.B .6C. D .124.因为1s i n 302︒=,1sin 2102︒=-,所以s i n 210s i n (18030)︒=︒+︒=-︒;因为s i n 452︒=sin 2252︒=-所以sin 225sin(18045)sin 45︒=︒+︒=-︒,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα︒+=-,由此可知:sin 240︒=( )A .12-B.2- C.2- D.5.如图,两根等高的电线杆的水平距离是50米,某人在杆的底部连结上E 处,测得一根杆顶的仰角是60°,另一根杆顶的仰角为30°,则电线杆顶距地面的高度是( )A .25米B .12.5米C .D .米(第6题图)EDCBA6.在△ABC中,∠A=30°,AC=4,BC=ABC为()A.45°B.60°或120°C.45°或135°D.30°三、解答题(共55分)1.(5分)计算:230116(2)(πtan60)303-⎛⎫--÷-+-︒-︒⎪⎝⎭.2.(6分)在Rt△ABC中,∠C=90°,如果sin A,cos B是方程2210x mx-+=的两实根,求m的值和∠A的度数是多少?3.(6分)如图,小强在江南岸选定建筑物A,并在江北岸的B处观察,此时,视线与江岸BE所成的夹角是30°,小强沿江岸BE向东走了500m,到C处,再观察A,此时视线AC 与江岸所成的夹角∠ACE=60°.根据小强提供的信息,你能测出江宽吗?若能,写出求解过程;若不能,请说明理由.B C E4.(7分)某海滨浴场的海岸线可以看作直线l(如图),有两位救生员在岸边的点A同时接到了海中的点B(该点视为定点)的呼救信号后,立即从不同的路径前往救助.其中1号救生员从点A先跑300米到离点B最近的点D,再跳入海中沿直线游到点B救助;2号救生员先从点A跑到点C,再跳入海中沿直线游到点B救助.如果两位救生员在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,且∠BAD=45°,∠BCD=60°,请问1号救生员与2号救生员谁先到达点B?5.(8分)在△ABC中∠C=90°,∠A、∠B、∠C对的边分别为a、b、c.(1)若∠A=60°,a+b=3a、b、c及S△ABC;(2)若△ABC的周长为30,面积为30,求a、b、c.6.(7分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.已知BC=11km,∠A=45°,∠B=37°.桥DC和AB平行,则现在从A地到达B地可比原来少走多少路程?(结果精确到0.1km1.41,sin37°≈0.60,cos37°≈0.80)7.(8分)如图,在A B C ∆中,90C ∠=︒,点E 是A C 上一点,ED ⊥AB 于D,cos A =,3cot 4BED CE ∠==,DE 的长.EDC BA8.(8分)如图,某堤坝的横截面是梯形ABCD ,背水坡AD 的坡度i (即tan α)为1︰1.2,坝高为5米.现为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD 加宽1米,形成新的背水坡EF ,其坡度为1︰1.4.已知堤坝总长度为4000米.(1)求完成该工程需要多少土方?(2)该工程由甲、乙两个工程队同时合作完成,按原计划需要20天.准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率.甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方?HG。
边角关系测试题及答案
边角关系测试题及答案一、选择题1. 在三角形ABC中,如果∠A = 50°,∠B = 70°,那么∠C的度数是多少?A. 40°B. 50°C. 60°D. 70°2. 如果一个三角形的内角和为180°,那么在三角形ABC中,如果∠A = 90°,∠B = 45°,∠C的度数是多少?A. 45°B. 90°C. 135°D. 180°3. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角的度数是多少?A. 30°B. 45°C. 60°D. 90°二、填空题4. 如果三角形的一个角是直角,那么这个三角形的另外两个角的和是______。
5. 在一个三角形中,如果两个内角的度数之和为90°,那么这个三角形被称为______三角形。
三、简答题6. 解释什么是补角,并给出一个补角的例子。
7. 解释什么是邻补角,并给出一个邻补角的例子。
四、计算题8. 在一个三角形中,已知∠A = 120°,求∠B和∠C的度数。
9. 如果一个三角形的三个内角的度数之和为180°,且已知∠A = 60°,∠B = 50°,求∠C的度数。
五、解答题10. 证明在一个三角形中,任意两个内角的和小于180°。
答案:一、选择题1. C2. A3. C二、填空题4. 90°5. 直角三、简答题6. 补角是指两个角的度数之和等于90°,例如,如果一个角是60°,那么它的补角是30°。
7. 邻补角是指两个角共享一条边,且它们的另一条边互为反向延长线,例如,在一个直角三角形中,两个锐角互为邻补角。
四、计算题8. ∠B = ∠C = (180° - 120°) / 2 =30°9. ∠C = 180° - 60° - 50° = 70°五、解答题10. 证明:设三角形ABC中,∠A和∠B为任意两个内角。
中考数学 直角三角形的边角关系综合试题及详细答案
中考数学直角三角形的边角关系综合试题及详细答案一、直角三角形的边角关系1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】6.4米【解析】解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°.∴DC=BC•cos30°=3==米,639∵CF=1米,∴DC=9+1=10米,∴GE=10米,∵∠AEG=45°,∴AG=EG=10米,在直角三角形BGF中,BG=GF•tan20°=10×0.36=3.6米,∴AB=AG-BG=10-3.6=6.4米,答:树高约为6.4米首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高2.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?【答案】(1)∠C AO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.【解析】试题分析:(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=,∴∠CAO′=30°;(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,∴显示屏的顶部B′比原来升高了(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,理由:∵显示屏O′B与水平线的夹角仍保持120°,∴∠EO′F=120°,∴∠FO′A=∠CAO′=30°,∵∠AO′B′=120°,∴∠EO′B′=∠FO′A=30°,∴显示屏O′B′应绕点O′按顺时针方向旋转30°.考点:解直角三角形的应用;旋转的性质.3.如图,某公园内有一座古塔AB ,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD .中午12时太阳光线与地面的夹角为45°,此时塔尖A 在地面上的影子E 与墙角C 的距离为15米(B 、E 、C 在一条直线上),求塔AB 的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249,2 1.4142≈.【答案】塔高AB 约为32.99米. 【解析】 【分析】过点D 作DH ⊥AB ,垂足为点H ,设AB =x ,则 AH =x ﹣3,解直角三角形即可得到结论. 【详解】解:过点D 作DH ⊥AB ,垂足为点H .由题意,得 HB = CD = 3,EC = 15,HD = BC ,∠ABC =∠AHD = 90°, ∠ADH = 32°.设AB = x ,则 AH = x – 3.在Rt △ABE 中,由 ∠AEB = 45°,得 tan tan451ABAEB EB∠=︒==. ∴ EB = AB = x .∴ HD = BC = BE + EC = x + 15.在Rt △AHD 中,由 ∠AHD = 90°,得 tan AHADH HD∠=. 即得 3tan3215x x -︒=+. 解得 15tan32332.991tan32x ⋅︒+=≈-︒.∴ 塔高AB 约为32.99米. 【点睛】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8. (1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y . 【解析】 【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BOPD MO=,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32. 【详解】解:(1)把0x =代入4y kx =+,4y =, ∴4BO =, 又∵4ABO S ∆=,∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+, 得044k =-+, 解得1k =. 故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒, ∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC , ∴90POC ∠=︒,OP OC =, ∴90POD EOC ∠+∠=︒, ∴OPD EOC ∠=∠, ∴POD OCE ∆≅∆, ∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒, ∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠, ∴BT TO =, ∵90BTO ∠=︒, ∴90TPO TOP ∠+∠=︒, ∵PO BM ⊥, ∴90BNO ∠=︒, ∴BQT TPO ∠=∠, ∴QTB PTO ∆≅∆, ∴QT TP =,PO BQ =, ∴PQT QPT ∠=∠, ∵PO PK KB =+,∴QB PK KB =+,QK KP =, ∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠, ∴KPB BPN ∠=∠, 设KPB x ∠=︒, ∴BPN x ∠=︒, ∵2PMB KPB ∠=∠, ∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠, ∴PO PM =,过点P 作PD x ⊥轴,垂足为点D , ∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,tan tan OPD BMO ∠=∠, OD BO PD MO =,442t t t =+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==, ∴CM y P 轴,∵90PNM POC ∠=∠=︒, ∴BM OC P ,∴四边形BOCM 是平行四边形, ∴4832BOCM S BO OM =⨯=⨯=Y . 故答案为32. 【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.5.如图,AB 是⊙O 的直径,E 是⊙O 上一点,C 在AB 的延长线上,AD ⊥CE 交CE 的延长线于点D ,且AE 平分∠DAC . (1)求证:CD 是⊙O 的切线;(2)若AB =6,∠ABE =60°,求AD 的长.【答案】(1)详见解析;(2)92【解析】 【分析】(1)利用角平分线的性质得到∠OAE =∠DAE ,再利用半径相等得∠AEO =∠OAE ,等量代换即可推出OE ∥AD ,即可解题,(2)根据30°的三角函数值分别在Rt △ABE 中,AE =AB·cos30°, 在Rt △ADE 中,AD=cos30°×AE 即可解题. 【详解】证明:如图,连接OE , ∵AE 平分∠DAC , ∴∠OAE =∠DAE . ∵OA =OE , ∴∠AEO =∠OAE .∴∠AEO=∠DAE.∴OE∥AD.∵DC⊥AC,∴OE⊥DC.∴CD是⊙O的切线.(2)解:∵AB是直径,∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,在Rt△ABE中,AE=AB·cos30°=6×3=33,在Rt△ADE中,∠DAE=∠BAE=30°,∴AD=cos30°×AE=3×33=9 2 .【点睛】本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.6.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x 的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)452;(2)详见解析;(3)使得△AA′B′成为等腰三角形的x的值有:0秒、32 秒、95- . 【解析】 【分析】(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′='''''=A B CEA D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤115时和当115<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可. 【详解】解:(1)∵AB =6cm ,AD =8cm , ∴BD =10cm ,根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm , ∵tan ∠B ′D ′A ′='''''=A B CE A D CD ∴682=CE ∴CE =32cm ,∴S ABCE =S ABD ′﹣S CED ′=8634522222⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =32(x +1), ∴S △CD ′E =32x 2+3x +32, ∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当115≤x ≤4时,B ′C =8﹣2x ,CE =43(8﹣2x ) ∴()214y 8223x =⨯-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒;②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AN 2+A ′N 2=36, ∴(6﹣245)2+(2x +185)2=36,解得:x=6695-,x=6695--(舍去);③如图2,当AB′=AA′时,A′N=BM=BB′+B′M=2x+185,A′M=NB=245,∵AB2+BB′2=AN2+A′N2∴36+4x2=(6﹣245)2+(2x+185)2解得:x=32.综上所述,使得△AA′B′成为等腰三角形的x的值有:0秒、32秒、6695-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.7.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)BE=【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=FG=DG=2GH=,得出DFDG=Rt△DCF中,由勾股定理得出CF=得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG⊥AC,∴∠EGC=90°,∴△CEG是等腰直角三角形,EG=GC,∴∠GEC=∠GCE=45°,∴∠BEG=∠GCF=135°,由平移的性质得:BE=CF,在△BEG和△GCF中,BE CFBEG GCF EG CG=⎧⎪∠=∠⎨⎪=⎩,∴△BEG≌△GCF(SAS),∴BG=GF,∵G在正方形ABCD对角线上,∴BG=DG,∴FG=DG,∵∠CGF=∠BGE,∠BGE+∠AGB=90°,∴∠CGF+∠AGB=90°,∴∠AGD+∠CGF=90°,∴∠DGF=90°,∴FG⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示,在Rt △ADG 中,∵∠DAC =45°,∴DH =AH =32, 在Rt △DHG 中,∵∠AGD =60°,∴GH =3=323=6,∴DG =2GH =26,∴DF =2DG =43,在Rt △DCF 中,CF =()22436-=23,∴BE =CF =23.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.8. 兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB 与水平桥面的夹角是31°,拉索AB 的长为152米,主塔处桥面距地面7.9米(CD 的长),试求出主塔BD 的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)【答案】主塔BD的高约为86.9米.【解析】【分析】根据直角三角形中由三角函数得出BC相应长度,再由BD=BC+CD可得出.【详解】在Rt△ABC中,∠ACB=90°,sin BCAAB=.∴sin152sin311520.5279.04BC AB A︒=⨯=⨯=⨯=.79.047.986.9486.9BD BC CD=+=+=≈(米)答:主塔BD的高约为86.9米.【点睛】本题考察了直角三角形与三角函数的结合,熟悉掌握是解决本题的关键.9.3米/秒 =65.88千米/小时>60千米/小时.∴此车超过限制速度.…4分10.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°,①如图1,∠DCB等于多少度;②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB =60°.②结论:CP =BF .理由见解析;(2)结论:BF ﹣BP =2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A =30°,只要证明△CDB 是等边三角形即可;②根据全等三角形的判定推出△DCP ≌△DBF ,根据全等的性质得出CP =BF ,(2)求出DC =DB =AD ,DE ∥AC ,求出∠FDB =∠CDP =2α+∠PDB ,DP =DF ,根据全等三角形的判定得出△DCP ≌△DBF ,求出CP =BF ,推出BF ﹣BP =BC ,解直角三角形求出CE =DEtanα即可.【详解】(1)①∵∠A =30°,∠ACB =90°,∴∠B =60°,∵AD =DB ,∴CD =AD =DB ,∴△CDB 是等边三角形,∴∠DCB =60°.②如图1,结论:CP =BF .理由如下:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠DCB =60°,∴△CDB 为等边三角形.∴∠CDB =60°∵线段DP 绕点D 逆时针旋转60°得到线段DF ,∵∠PDF =60°,DP =DF ,∴∠FDB =∠CDP ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,∴BF ﹣BP =BC ,在Rt △CDE 中,∠DEC =90°,∴tan ∠CDE =CE DE, ∴CE =DEtanα, ∴BC =2CE =2DEtanα,即BF ﹣BP =2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.11.小明坐于堤边垂钓,如图①,河堤AC 的坡角为30°,AC 长米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA 交BC 于点D .先由倾斜角定义及三角形内角和定理求出在Rt △ACD 中,米,CD =2AD =3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.12.如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,33),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).【答案】(1)D(032)C(12﹣33﹣18);(3)B'(13 0),(2130).【解析】【分析】(1)设OD 为x ,则x ,在RT △ODA 中应用勾股定理即可求解;(2)由题意易证△BDC ∽△BOA ,再利用A 、B 坐标及BD=AC 可求解出BD 长度,再由特殊角的三角函数即可求解;(3)过点C 作CE ⊥AO 于E ,由A 、B 坐标及C 的横坐标为2,利用相似可求解出BC 、CE 、OC 等长度;分点B’在A 点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C ,再利用特殊角的三角函数可逐一求解.【详解】(Ⅰ)设OD 为x ,∵点A (3,0),点B (0,),∴AO=3,BO=∴AB=6∵折叠∴BD=DA在Rt △ADO 中,OA2+OD2=DA2.∴9+OD2=(﹣OD )2.∴∴D (0)(Ⅱ)∵折叠∴∠BDC=∠CDO=90°∴CD ∥OA ∴BD BC BO AB=且BD=AC , ∴66BD -= ∴BD=18∴OD=﹣(18)=18﹣∵tan ∠ABO=OB AO = ∴∠ABC=30°,即∠BAO=60°∵tan ∠ABO=BD CD = ∴CD=12﹣∴D(12﹣18)(Ⅲ)如图:过点C 作CE ⊥AO 于E∵CE⊥AO∴OE=2,且AO=3∴AE=1,∵CE⊥AO,∠CAE=60°∴∠ACE=30°且CE⊥AO∴AC=2,3∵BC=AB﹣AC∴BC=6﹣2=4若点B'落在A点右边,∵折叠∴BC=B'C=4,3CE⊥OA∴22B C CE-='13∴13∴B'(130)若点B'落在A点左边,∵折叠∴BC=B'C=4,3CE⊥OA∴22-='13B C CE∴132∴B'(2130)综上所述:B'(130),(2130)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.。
直角三角形的边角关系练习题及答案
一、选择题(每小题3分,共36分)1.(2022河口模拟)在△ABC中,∠A=90°,∠A,∠B,∠C的对边分别为a,b,c,则下列选项中不正确的是( C )A.sin B=ba B.sin C=caC.cos B=bc D.tan B=bc2.在Rt△ABC中,∠C=90°,AC=4,tan A=12,则AB的长是( C )A.2B.8C.2√5D.4√53.若锐角A满足sin A=√32,则∠A的度数是( C )A.30°B.45°C.60°D.75°4.(2022张店模拟)在Rt△ABC中,∠C=90°,tan A=512,则cos A等于( D )A.512B.125C.513D.12135.在正方形网格中,△ABC的位置如图所示,则cos B的值为( B )第5题图A.12B.√22C.√32D.√336.(2022福山模拟)按如图所示的运算程序,能使输出y 值为12的是( C )第6题图A.α=60°,β=45°B.α=30°,β=45°C.α=30°,β=30°D.α=45°,β=30°7.在△ABC 中,∠A 和∠B 都是锐角,且sin A=12,cos B=√22,则△ABC 三个内角的大小关系为( D ) A.∠C>∠A>∠B B.∠B>∠C>∠A C.∠A>∠B>∠C D.∠C>∠B>∠A8.一辆小车沿着斜坡向上行驶了100 m,其铅直高度上升了15 m,在用科学计算器求坡角α的度数时,其按键顺序是( A )9.如图所示,一艘海轮位于灯塔P 的南偏东45°方向,距离灯塔 60 n mile 的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东30°方向上的B 处,这时,B 处与灯塔P 的距离为( B )A.60√3 n mileB.60√2 n mileC.30√3 n mileD.30√2 n mile10.如图所示,△ABC,△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的夹角为∠PBE=43°,视线PE与地面BE的夹角为∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE,若A点到B 点的距离AB=1.6 m,则盲区中DE的长度是(参考数据:sin 43°≈0.7,tan 43°≈0.9,sin 20°≈0.3,tan 20°≈0.4)( B )A.2.6 mB.2.8 mC.3.4 mD.4.5 m11.如图所示,在矩形ABCD中,点E在DC上,将矩形沿直线AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为( D )A.12B.920C.25D.1312.因为cos 60°=12,cos 240°=-12,所以cos 240°=cos(180°+60°)=-cos 60°;由此猜想、推理知:当α为锐角时有cos(180°+α)=-cos α,由此可知cos 210°的值为( C )A.-12B.-√22C.-√32D.-√3二、填空题(每小题3分,共18分)13.已知在Rt△ACB中,∠C=90°,AB=13,AC=12,则cos B 的值为5.1314.如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥,则AD的长度是10 .CD,若sin∠ACB=13第14题图15.平放在地面上的三角形铁板ABC的一部分被沙堆掩埋,其示意图如图所示,量得∠A为54°,∠B为36°,边AB的长为2.1 m,BC边上露出部分BD的长为0.9 m,则铁板BC边被掩埋部分CD的长为0.8 m.(结果精确到0.1 m.参考数据:sin 54°≈0.81,cos 54°≈0.59,tan 54°≈1.38)第15题图16.(2021东营期末)直角三角形纸片ABC的两直角边长分别为6,8,现将△ABC按如图所示方式折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值为7.24第16题图17.如图所示,小明在距离地面30 m 的P 处测得小山山顶A 处的俯角为15°,山脚B 处的俯角为60°.若山坡AB 的坡度为1∶√3,则小山的高度为 10√3 m.(结果保留根号)第17题图18.(2022任城模拟)规定:sin(-x)=-sin x,cos(-x)=cos x, sin(x+y)=sin x ·cos y+cos x ·sin y.据此判断下列等式成立的是 ②③④ .(写出所有正确的序号) ①cos(-60°)=-12;②sin 75°=√6+√24; ③sin 2x=2sin x ·cos x;④sin(x-y)=sin x ·cos y-cos x ·sin y. 三、解答题(共46分) 19.(6分)计算:(1)sin 60°-cos 60°·tan 45°+12√1-2tan30°+tan 230°; (2)sin 245°+cos 230°-tan 260°.解:(1)原式=√32-12×1+12√(1-tan30°)2=√32-12+12×(1-√33) =√33.(2)原式=(√22)2+(√32)2-(√3)2=12+34-3=-74.20.(8分)如图所示,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,sin B=13,AD=1.(1)求BC 的长; (2)求tan ∠DAE 的值. 解:(1)∵AD 是BC 边上的高, ∴AD ⊥BC.在Rt △ABD 中,sin B=AD AB =13,AD=1,∴AB=3,∴BD=√AB 2-AD 2=√32-12=2√2. 在Rt △ADC 中,∵∠C=45°,∴CD=AD=1. ∴BC=BD+CD=2√2+1. ∴BC 的长为2√2+1.(2)∵AE 是BC 边上的中线,∴CE=12BC=2√2+12, ∴DE=CE-CD=2√2+12-1=√2-12, ∴tan ∠DAE=DE AD=√2-121=√2-12.21.(10分)汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200 m 且横断面为梯形的大坝用土石进行加固.如图所示,加固前大坝背水坡坡面从A 至B 共有30级阶梯,平均每级阶梯高 30 cm,斜坡AB 的坡度为1∶1;加固后,坝顶宽度增加2 m,斜坡EF 的坡度为1∶√5,求BF 的长.(结果保留根号)解:如图所示,过点A作AH⊥BC于点H,过点E作EG⊥BC于点G,则四边形EGHA是矩形.∴EG=AH,GH=AE=2 m.∵斜坡AB的坡度为1∶1,∴AH=BH=30×30=900 cm=9 m.∴BG=BH-HG=9-2=7(m).∵斜坡EF的坡度为1∶√5,∴FG=9√5 m.∴BF=FG-BG=(9√5-7)m.∴BF的长为(9√5-7)m.22.(12分)(2020包头)如图所示,一个人骑自行车由A地到C地途经B地,当他由A地出发时,发现他的北偏东45°方向有一电视塔P.他由A地向正北方向骑行了3√2 km到达B地,发现电视塔P在他北偏东75°方向,然后他由B地向北偏东15°方向骑行了6 km到达C地.(1)求A地与电视塔P的距离;(2)求C地与电视塔P的距离.解:(1)如图所示,过点B 作BD ⊥AP 于点D. 在Rt △ABD 中,∠BAD=45°,AB=3√2 km,∴AD=BD=AB ×sin ∠BAD=3√2×sin 45°=3√2×√22=3(km). ∵∠PBN=75°,∴∠APB=∠PBN-∠PAB=75°-45°=30°. ∴在Rt △BDP 中,PD=BDtan∠APB =3tan30°=√33=3√3(km),PB=2BD=2×3=6(km). ∴AP=AD+PD=(3+3√3)km.∴A 地与电视塔P 的距离为(3+3√3)km. (2)∵∠PBN=75°,∠CBN=15°, ∴∠CBP=60°. ∵BP=BC=6 km, ∴△BPC 为等边三角形. ∴PC=6 km.∴C 地与电视塔P 的距离为6 km.23.(10分)(2022垦利模拟)数学活动课上,小明和小红要测量小河对岸大树BC 的高度,小红在点A 测得大树顶端B 的仰角为45°,小明从A点出发沿斜坡走3√5 m到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1∶2.(1)求小明从点A到点D的过程中,他上升的高度;(2)依据他们测量的数据能否求出大树BC的高度?若能,请计算;若不能,请说明理由.(参考数据:sin 31°≈0.52,cos 31°≈0.86, tan 31°≈0.60)解:(1)如图所示,过点D作DH⊥AE于H.在Rt△ADH中,∵DHAH =12,∴AH=2DH.∵AH2+DH2=AD2,∴(2DH)2+DH2=(3√5)2,解得DH=3,故小明从点A到点D的过程中,他上升的高度为3 m.(2)如图所示,延长BD交AE于点G,设BC=x m,由题意得∠G=31°,∴GH=DHtanG ≈30.60=5.∵AH=2DH=6,∴GA=GH+AH=5+6=11.在Rt△BGC中,tan G=BCGC ,∴CG=BCtanG≈x0.60=53x.在Rt△BAC中,∠BAC=45°,∴AC=BC=x.∵GC-AC=AG,∴53x-x=11,解得x=16.5.故大树的高度约为16.5 m.。
九年级数学下册《直角三角形的边角关系》单元测试卷(附答案)
九年级数学下册《直角三角形的边角关系》单元测试卷(附答案)一.选择题(共10小题,满分30分)1.已知在Rt△ABC中,∠C=90°,AC=3,BC=4,则tan A的值为()A.B.C.D.2.在Rt△ABC中,各边的长度都扩大2倍,那么锐角A的正切值()A.都扩大2倍B.都扩大4倍C.没有变化D.都缩小一半3.在直角坐标系中,P是第一象限内的点,OP与x轴正半轴的夹角α的正切值是,则cos α的值是()A.B.C.D.4.计算sin45°的值等于()A.B.C.D.5.在Rt△ABC中,∠C=90°,AB=5,BC=3,则tan A的值是()A.B.C.D.6.在Rt△ABC中,∠C=90°,若sin A=,则cos B的值是()A.B.C.D.7.已知tan A=0.85,用计算器求∠A的大小,下列按键顺序正确的是()A.B.C.D.8.若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是()A.B.C.D.9.在△ABC中,已知∠C=90°,AC=4,sin A=,那么BC边的长是()A.2B.8 C.4D.1210.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.0二.填空题(共10小题,满分30分)11.如图,在平面直角坐标系内有一点P(5,12),那么OP与x轴正半轴的夹角α的余弦值.12.若α为锐角,且,则m的取值范围是.13.用科学计算器计算: tan16°15′≈(结果精确到0.01)14.如果3sinα=+1,则∠α=.(精确到0.1度)15.计算:sin225°+cos225°﹣tan60°=.16.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且c=3a,则tan A 的值为.17.在Rt△ABC中,∠C=90°,如果AC=4,sin B=,那么AB=.18.已知∠A是锐角,且tan A=2,那么cos A=.19.已知∠A+∠B=90°,若,则cos B=.20.化简=.三.解答题(共7小题,满分60分)21.如图,在Rt△ABC中,∠C=90°,BC=6,tan A=.求AB的长和sin B的值.22.已知cos45°=,求cos21°+cos22°+…+cos289°的值.23.计算下列各题:(1);(2)sin60°•cos60°﹣tan30°tan60°+sin245°+cos245°.24.在△ABC中,∠C=90°,BC=3,AB=5,求sin A,cos B,tan A的值.25.如图,在所示的直角坐标系中,P是第一象限的点,其坐标是(6,y),且OP与x轴的正半轴的夹角α的正切值是,求角α的正弦值.26.如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求cos A的值.27.如图,已知∠ABC和射线BD上一点P(点P与点B不重合),且点P到BA、BC的距离为PE、PF.(1)若∠EBP=40°,∠FBP=20°,PB=m,试比较PE、PF的大小;(2)若∠EBP=α,∠FBP=β,α,β都是锐角,且α>β.试判断PE、PF的大小,并给出证明.参考答案与解析一.选择题1.解:如图所示:∵在Rt△ABC中,∠C=90°,AC=3,BC=4,∴tan A==.故选:B.2.解:根据锐角三角函数的定义,知各边的长度都扩大2倍,那么锐角A的大小不变,所以其正切值不变.故选:C.3.解:如图:过点P作PE⊥x轴于点E,∵tanα=,∴设PE=4x,OE=3x,在Rt△OPE中,由勾股定理得OP=,∴cosα=.故选:C.4.解:sin45°=故选:C.5.解:∵∠C=90°,AB=5,BC=3,∴AC===4,∴tan A==,故选:D.6.解:Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∴cos B=sin A=,故选:C.7.解:根据计算器功能键,先按反三角2ndF,再按正切值.故选:A.8.解:若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是.故选:C.9.解:由sin A==,不妨设BC=2k,则AB=3k,由勾股定理得,AC2+BC2=AB2,即(4)2+(2k)2=(3k)2,解得k=4(取正值),所以BC=2k=8,故选:B.10.解:∵sinα+cosα=,∴(sinα+cosα)2=2,即sin2α+cos2α+2sinαcosα=2.又∵sin2α+cos2α=1,∴2sinαcosα=1.∴(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣2sinαcosα=1﹣1=0.∴sinα﹣cosα=0.故选:D.二.填空题(共10小题,满分30分)11.解:过P作PA⊥OA,∵P点坐标为(5,12),∴OA=5,PA=12,由勾股定理得,OP===13.∴cosα==.故答案为:.12.解:∵0<cosα<1,∴0<<1,解得,故答案为:.13.解: tan16°15′≈0.71,故答案为:0.71.14.解:∵3sinα=+1,∴sinα=,解得,∠α≈65.5°,故答案为:65.5°.15.解:∵sin225°+cos225°=1,tan60°=,∴sin225°+cos225°﹣tan60°=1﹣,故答案为:1﹣.16.解:在Rt△ABC中,∠C=90°,c=3a,∴b===2a,∴tan A===,故答案为:.17.解:∵sin B=,∴AB===6.故答案是:6.18.解:设∠A所在的直角三角形为△ABC,∠C=90°,∠A、∠B、∠C所得的边为a,b,c,∵tan A=2,即=2,设b=k,则a=2k,∴c==k,∴cos A==,故答案为:.19.解:由∠A+∠B=90°,若,得cos B=,故答案为:.20.解:∵tan30°=<1,∴原式=1﹣tan30°=1﹣=.三.解答题(共7小题,满分60分)21.解:∵在Rt△ABC中,∠C=90°,BC=6,tan A==,∴AC=12,∴AB===6,∴sin B===.22.解:原式=(cos21°+cos289°)+(cos22°+cos288°)+…+(cos244°+cos246°)+cos245 =(sin21°+cos21°)+(sin22°+cos22°)+…+(sin244°+cos244°)+cos245=44+()2=44.23.解:(1)=(2×﹣)+=2﹣+=2;(2)sin60°•cos60°﹣tan30°tan60°+sin245°+cos245°.=×﹣×+()2+()2=﹣1++=.24.解:∵在△ABC中,∠C=90°,BC=3,AB=5,根据勾股定理可得:AC=4,∴sin A=,cos B==,tan A==.25.解:作PC⊥x轴于C.∵tanα=,OC=6∴PC=8.则OP=10.则sinα=.26.(1)证明:法一、连接AD、OD,∵AC是直径,∴AD⊥BC,∵AB=AC,∴D是BC的中点,又∵O是AC的中点,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE是⊙O的切线.法二、连接OD,∵OC=OD,∴∠OCD=∠ODC,∵AB=AC,∴∠OCD=∠B,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE是⊙O的切线.(2)解:由(1)知OD∥AE,∴∠FOD=∠FAE,∠FDO=∠FEA,∴△FOD∽△FAE,∴,∴,∴,解得FC=2,∴AF=6,∴Rt△AEF中,cos∠FAE====.27.解:(1)在Rt△BPE中,sin∠EBP==sin40°在Rt△BPF中,sin∠FBP==sin20°又sin40°>sin20°∴PE>PF;(2)根据(1)得sin∠EBP==sinα,sin∠FBP==sinβ又∵α>β∴sinα>sinβ∴PE>PF.。
直角三角形边角关系练习题及测试题
FED 60°AABC┐ 直角三角形的边角关系综合练习(1)一、选择题1. 60cos 的值等于( ) A .21 B .22 C .23 D .12.如图所示,Rt △ABC ∽Rt △DEF ,则cosE 的值等于( ) A.123.已知α为锐角,且2 cos (90°-α)=3,则α的度数为( ) A .30° B .60° C .45° D .75°4.已知在Rt ABC △中,90C ∠=,1sin 2A =,AC =BC 的值为( ) A .2B .4C.D .65.在Rt ABC △中,90C ∠=,BC=,AC =A ∠=() A .90B .60C .45D .306. 在Rt ABC △中,ACB ∠为90,CD AB ⊥,2cos 3BCD ∠=,1BD =,则边AB 的长是( ) A .910B .109C .2D .957.在Rt △ABC 中,∠C =90°,AB =5,AC =2,则cos A 的值是( ) A .215 B .25 C .212 D .52 8.在ABC △中,90C ∠=°,2B A ∠=∠,则cos A 等于( ) AB .12C D9.如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =,3AC =,则sin B 的值是( )A .23B .32C .34D .4310.在△ABC 中,∠C =90°,tan A =31,则sin B = ( ) A .1010B .32C .43D .1010311.正方形网格中,AOB ∠如图放置,则cos AOB ∠的值为( )C.12D.212.如图,AC 是电杆AB 的一根拉线,测得BC =6米,∠ACB =52°,则拉线AC 的长为( )C AB DA B CA .6sin 52︒米 B .6tan 52︒米 C . 6·cos52°米 D .6cos52︒米二、填空题13.若等腰梯形下底长为4cm ,高是2cm ,下底角的正弦值是45, 则上底长为 cm ,腰长是 cm .14.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处 测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示).15.如图,小明在楼顶A 处测得对面大楼楼顶点C 处的仰角为52°,楼底点D 处的俯角为13°.若两座楼AB 与CD 相距60米,则楼CD 的高度约为 米.(结果保留三个有效数字)(sin130.2250︒≈,cos130.9744≈,tan130.2309≈,sin520.7880≈,cos520.6157≈,tan 52 1.2799≈三.解答题16.计算:0)151(30sin 2273--︒+17.计算: 201()2sin 3032--+︒+-18.已知:如图,在△ABC 中,∠B = 45°,∠C = 60°,AB = 6. 求BC 的长(结果保留根号).19.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m ). 1.73≈) 解:1320.如图,海上有一灯塔P,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A点处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?21.某大草原上有一条笔直的公路,在紧靠公路相距40千米的A、B两地,分别有甲、乙两个医疗站,如图,在A地北偏东45°、B地北偏西60°方向上有一牧民区C.一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案,方案I:从A地开车沿公路到离牧民区C最近的D处,再开车穿越草地沿DC方向到牧民区C.方案II:从A 地开车穿越草地沿AC方向到牧民区C.已知汽车在公路上行驶的速度是在草地上行驶速度的3倍.(1)求牧民区到公路的最短距离CD.(2)你认为甲医疗队设计的两种救助方案,哪一种方案比较合理?并说明理由.(结果精确到0.11.731.41)BP北东A D B北东直角三角形边角关系练习题(2)一.选择题1.正方形网格中,AOB ∠如图放置,则cos AOB ∠的值为( ) ABC .12D .22.在Rt ABC △中,90C ∠=,若2AC BC =,则tan A 的值是( )A .12B .2 CD3.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( ) A .12B.2CD4.已知ABC ∆中,AC =4,BC =3,AB =5,则sin A =( )A.35 B. 45 C. 53 D. 345. 如图,梯子(长度不变)跟地面所成的锐角为A ,关于A ∠的三角函数值与梯子的 倾斜程度之间,叙述正确的是( )A .sin A 的值越大,梯子越陡B .cos A 的值越大,梯子越陡C .tan A 的值越小,梯子越陡D .陡缓程度与A ∠的函数值无关6. 把Rt ABC △各边的长度都扩大3倍得Rt A B C '''△,那么锐角A ,A '的余弦值的关系为( ) A.cos cos A A '= B.cos 3cos A A '= C.3cos cos A A '= D.不能确定7.如图,菱形ABCD 的周长为40cm ,DE AB ⊥,垂足为E ,3sin 5A =, 则下列结论正确的有( ) ①6cm DE =②2cm BE = ③菱形面积为260cm④BD = A.1个B.2个C.3个D.4个 8. 2cos 45的值等于( )A.2BC.4D.9.如图,在ABC △中,90ACB ∠=,CD AB ⊥于D,若AC =AB = 则 tan BCD ∠的值为( )ABCD10.如图,AD CD ⊥,13AB =,12BC =,3CD =,4AD =,则s i n B =( )A .513B .1213C .35D .45ABODCBEAAC BD D ABC11.已知α为锐角,且23)10sin(=︒-α,则α等于( )A.︒50 B.︒60 C.︒70 D.︒80 12. 直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是( ) A .247BC .724D .13二.填空题13.已知在Rt ABC △中,90C ∠=,直角边AC 是直角边BC 的2倍,则sin A ∠的值是 .14. 在Rt ABC △中,90C =∠,3sin 5B =,则BC AB = . 15. 在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .16.计算:1sin 60cos302-=.17.计算:102(1cos60-+-= . 三.解答题18.在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值.19.计算:01(π4)sin 302---;20.32cos458-+21.计算:22012(tan 601)()22-⎛⎫-+--+-π- ⎪⎝⎭6 8CEAB D22.如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.23.如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠, (1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长. (1)证:(2)解:24.如图,在直角坐标系中放入一个边长OC 为9的矩形纸片ABCO .将纸片翻折后,点B 恰好落在x 轴上,记为B ′,折痕为CE ,已知tan ∠OB ′C =34. (1)求B ′ 点的坐标;(2)求折痕CE 所在直线的解析式.CBAAACB 直角三角形的边角关系测试题一、选择题1.在△ABC 中,AC =3,BC =4,AB =5,则tan B 的值是( ) A 、43 B 、34 C 、53 D 、542.如图,已知一坡面的坡度i =α为 ( )A.15B.20C.30D.453.计算2sin30°cos60°的结果为( ) A .B .32C .12D .14.在ABC △中,︒=∠90C ,AB =15,sin A =13,则BC 等于( ) A .45 B .5 C .15 D .1455.如图,CD 是ABC Rt △斜边上的高,43AC BC ==,,则cos BCD ∠的值是( )(A)35 (B)34 (C)43 (D)456.如图,电线杆AB C 的中点处有一标志物,在地面D 点处测得标志物的仰角为45, 若点D 到电线杆底部点B a 的距离为,则电线杆AB 的长可表示为A.a B.2a C.32a D.52a 二、填空题7. 求值:sin 230°+cos 230°= .8. 计算:sin 45cos60sin 30+= .9. 如图,将三角板的直角顶点放置在直线AB 上的点O 处,使斜边CD AB ∥.则α∠的余弦值为 . 10.等腰直角三角形的斜边长为,则此三角形的腰长为 .11.如图,一艘轮船向正东方向航行,上午9时测得它在灯塔P 的南偏西30°方向,距离灯塔120海里的M 处,上午11时到达这座灯塔的正南方向的N 处,则这艘轮船在这段时间内航行的平均速度是 海里/时. 三、解答题13.计算:1sin3021)5-+-+-14.tan 60.- 15.计算:1cos 602-+. ABO30东16. 下图为某小区的两幢10层住宅楼,由地面向上依次为第1层、第2层、…、第10层,每层的高度为3m ,两楼间的距离30AC =m .现需了解在某一时段内,甲楼对乙楼的采光的影响情况.假设某一时刻甲楼楼顶B 落在乙楼的影子长EC h =,太阳光线与水平线的夹角为α. (1)用含α的式子表示h ;(2)当30α=︒时,甲楼楼顶B 的影子落在乙楼的第几层?从此时算起,若α每小时增加10︒,几小时后,甲楼的影子刚好不影响乙楼采光.17. 如图8,大楼AD 的高为10m ,远处有一塔BC .某人在楼底A 处测得塔顶B 点处的仰角为60︒, 爬到楼顶D 点处测得塔顶B 点的仰角为30︒.求塔BC 的高度.解:18. 如图,在平面直角坐标系中, Rt △ABC 的斜边AB 在x 轴上,顶点C 在y 轴的负半轴上,3tan 4ABC ∠=,点P 在线段OC 上,且PO 、PC 的长(PO <PC )是方程212270x x -+=的两根. (1)求P 点坐标; (2)求AP 的长;(3)在x 轴上是否存在点Q ,使以点A 、C 、P 、Q 为顶点的四边形是梯形?若存在,请直接写出直线PQ 的解析式;若不存在,请说明理由.AB C D Eα 太阳光 甲楼乙楼图8。
直角三角形边角关系10套题
三角形边角关系11.已知Α为锐角,3cos 5A =,则tan Α= .2.在周长12的Rt A B C ∆中, sin B =0.5,则b= ,c= .3.在Rt A B C ∆中,05090,10,33A B C C a S ∆∠===, 则b= ,c= .4.已知在Rt A B C ∆中,090,,,sin C AC b AB c A ∠====那么 ,sin B = .5.在A B C ∆中,090,65,615C a b ∠===,则c= ,B ∠= .6.在Rt ∆MNP 中,若NP 是斜边,MN=15,NP=17,那么tanN + cotP= .7. √2×sin45°+√3×cos30°-3/2= .8.已知某大坝横截面为梯形,坝顶宽10米,坝高160米,且大坝迎水面坡度i 1=1:3,背水面坡度i 2=2:3,求大坝截面积.三角形边角关系21.在Rt A B C ∆中,0090,10,55C AC B ∠==∠=,则AB 上的高CD 的长可表示为 .2.在A B C ∆中,若cosB=0,b=21,c:a=5:3则BC 边上的中线AD 的长为 .3. 点Α在O 点北偏西035方位上,点B 在O 点北偏东055的方位上且O Α长80m,OB 长60m,那么ΑB 间的距离是 .4. 在Rt A B C ∆中,斜边上的高CD 把ΑB 分成ΑD 和BD,若ΑD:BD=34,则sin B = .5.在A B C ∆中,0490,sin ,8,5C B A B B C A C ∠==+==则 .6.在梯形ΑBCD 中,ΑD//BC,ΑB=CD,ΑD=4,BC=6,1cos ,4B S =梯则= .7. 已知tan α=3.则1/(sin²α+sinαcosα+cos²α) 的值为?8.从高24米的甲楼顶部Α处测得乙楼顶部B 的仰角α=300,测得乙楼底部C 的俯角β=600,求乙楼的高.三角形边角关系31.如图9-8,在A B C ∆中,D 是ΑB 的中点, DC ⊥ΑC,B C D ∠的正切值是13,则A ∠的正弦值是 .2.在A B C ∆中,1,2,12tgA tgC AC ===,那么BC 的值是 .3.在A B C ∆中,090,2,4,cos ABC C AC S A ∆∠===则= .4.如图9-9,在电视塔ΑD 的正东方向有两个地面观测点B 、C,在B 、C,两点测得塔顶Α的仰角分别为αβ,B 、C 两地相距α米,则ΑD 的高为 .5.飞机在离地面1200m 上空测得地面目标的俯角为060,那么此时飞机距目标 m.6.已知在A B C ∆中,ΑB=ΑC=10,BC=12,那么c o s B = ,tgC = ,sin A = .7. 3/5cosβ-4/5sinβ=5/13,求sinβ?8.在Rt ΔΑBC 中,∠ΑCB=900,sinB=35,D 是BC 边上的一点,DE ⊥ΑB ,垂足为E ,CD=DE ,ΑC+CD=9,求(1)BC 的长;(2)CE 的长.三角形边角关系41.A B C ∆中,05120,21,,3A B C c B b S a ∆∠===且则= .2.如图9-10,在四边形ΑBCD 中,ΑD=CD,ΑB=7,tg Α=2,090B D ∠=∠=,那么BC 的长为 .3.在ΔΑBC 中,∠C=900,CD ⊥ΑB ,垂足为D ,则比值B CC D B D A CA B A C B C B C、、、中等sin Α的个数有( ).(Α)4个 (B )3个 (C )2个 (D )1个4.如图9-11,在ΔΑBC 中,∠Α=300,E 为ΑC 上一点,且ΑE :EC=3:1,EF ⊥ΑB ,F 为垂足,连结FC ,则cot ∠CFB 的值等于( ).(Α)36(B )32(C )433 (D )1345.在ΑBC 中,∠Α=750,∠C=450,ΑB=2,则ΑC 的长等于( ).(Α)22 (B )23 (C )6 (D )2636.在Rt ΔΑBC 中,∠C=900,CD ⊥ΑB 于D ,若14B D A D=,则tan ∠BCD 的值是( ).(Α)14(B )13(C )12(D )27.在ΔΑBC 中,已知∠B=2倍等于其他两角的和,最长边与最短边的和是8,积是15,求这个三角形的面积及∠B 所对边的长.三角形边角关系51.在ΔΑBC 中,∠B=600,ΑB=6,BC=8,则ΑBC 的面积是( ). (Α)123 (B )12 (C )243 (D )1222.如图9-12,在矩形ΑBCD 中,BC=2,ΑE ⊥BD ,垂足为E ,∠B ΑE=300,则ΔECD 的面积是( ).(Α)23 (B )3 (C )32(D )333.如图9-13,∠ΑOP=∠BOP=150,PC ∥ΑO ,PD ⊥O Α,若PC=4,则PD 等于( ). (Α)4 (B )3 (C )2 (D )14.在ΔΑBC 中,∠Α=300,tgB=13,BC=10,那么ΑB 的长为( ).【2】(Α)3 (B )3 (C )33-(D )33+5.如图9-14,在ΑBC 中,点D 在ΑC 上,DE ⊥BC ,垂足为E ,若ΑD=2CD ,ΑB=4DE ,则sinB=( ). (Α)12(B )73(C )377(D )346.如图9-15,x=( ).(Α)sin cos a b a β- (B )cos cos a b a β- (C )cos sin b b aβ- (D )sin sin a b aβ-7.如图9-28,∠ΑCB=900,ΑB=13,ΑC=12,∠BCM=∠B ΑC ,求sin ∠B ΑC 和点B 到直线MC 的距离.三角形边角关系61.如图1所示的Rt△ABC中,cosA=___; 2.在Rt△ABC中,∠C=90°,BC=4,sinA=23,则AB=___;3.已知α为锐角,下列结论:○1sinα+cosα=1;○2如果α>45°,那么sinα>cosα;○3如果cosα>12,那么α<60°;○4()2sin 11sin αα-=-.正确的有( )A.1个;B.2个;C.3个;D.4个. 4.△ABC中,∠C=90°,如果sinA=35,那么tanB的值等于( )5.如图2,在高度为10米的平台CD上测得一高层建筑物AB的顶端A的仰角为60°,底端B的俯角为30°,则高层建筑物的高AB=____米;6.如图3,小明想测量电线杆AB的高度,发现电线杆的影子恰好在落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成 30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为___米(结果保留两位有效数字).7.如图7,∠POQ=90°,边长为2cm的正方形ABCD的顶点B在OP上,C在OQ上,且∠OBC=30°,分别求点A,D到OP的距离.B C A135图1D B CA图230°AE BD C F 图3P E B F OAD G CQ图7三角形边角关系71.已知△ABC中,∠C=90°,sinA=35,则BC∶AC等于()A.3∶4;B.4∶3;C.3∶5;D.4∶5.2.∠A为锐角,且sinA=35,那么()A.0°<∠A<30°;B.30°<∠A<45°;C.45°<∠A<60°;D.60°<∠A<90°;3.计算:2cos45︒+tan60°cos30°=___;4.如果一个角的补角是这个角余角的4倍,则这个角的正弦值是___;5.在△ABC中,∠C=90°,若3AC=3BC,则∠A的度数是___,cosB的值是___;6.在△ABC中,∠C=90°,若tanA=12,则sinA=___;7.若tan9°·tanα=1,则锐角α=___度;8.在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的边,则33sin sina Bb A+=___;9.如图6,在△ABC中,AD是BC边上的高,tanB=cos∠DAC.(1)求证:AC=BD;(2)若sinC=1213,BC=12,求AD的长.BDCA图6三角形边角关系81.在Rt△ABC中,各边长都扩大2倍,则锐角A的正弦和余弦值()A.都不变;B.都扩大2倍;C,都缩小2倍;D.不能确定.2.在Rt△ABC中,∠C=90°,AB=c,BC=a,且a,c满足2234a ac c-+=0,则sinA=();A.1;B.13;C.1或13;D.1或3.3.三角函数sin23°,cos15°,cos41°的大小关系是()CA.cos41°>sin23°>cos15°;B.cos15°>sin23°>cos41°;C.cos15°>cos41°>sin23°;D.cos41°>cos15°>sin23°.4.在△ABC中,∠A,∠B均为锐角,且|tanB-3|+()22sin3A-=0,则△ABC是()A,等腰三角形;B.等边三角形;C.直角三角形;D.等腰直角三角形.5.河堤的横断面如图4所示,堤高BC是5米,迎水斜坡AB的长是10米,那么斜坡AB的坡度i是()A.1∶2;B.1∶3;C.1∶1.5;D.1∶3.6.若α为锐角,且sinα是方程22x+3x-2=0的一个根,则cosα=()A.12;B.32;C.22;D.12或327.如图5,在△ABC中,∠C=90°,点D在BC上,BD=4,AD=BC,cos∠ADC=35,求:(1)DC的长;(2)A CB C的值.BDCA图5BCA图4三角形边角关系91、等腰三角形的一腰长为cm 6,底边长为cm 36,则其底角为( ) A 030 B 060 C 090 D 01202、某水库大坝的横断面是梯形,坝内斜坡的坡度3:1=i ,坝外斜坡的坡度1:1=i ,则两个坡角的和为 ( )A 090 B 060 C75D 01053、如图,在矩形ABCD 中,DE⊥AC 于E ,设∠ADE=α,且53cos =α, AB= 4, 则AD 的长为( ).(A )3 (B )316 (C )320 (D )5164、在课外活动上,老师让同学们做一个对角线互相垂直的等腰梯形形状的风筝,其面积为4502cm ,则对角线所用的竹条至少需( ). (A )cm 230 (B )30cm (C )60cm (D )cm 260 5、如果α是锐角,且135cos sin 22=︒+α,那么=αº.6、如图,在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米.7.如图9,登山队员在山脚A点测得山顶B点的仰角为∠CAB=45°,当沿倾斜角为30°的斜坡前进100m到达D点以后,又在D点测得山顶B点的仰角为60°,求山的高度BC.(精确到1米)A E CB FD图9A BCD E三角形边角关系101、如图,P 是∠α的边OA 上一点, 且P 点坐标为(3,4),则αsin = ,αcos =______.2、支离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪高为1.5米.那么旗杆的有为 米(用含α的三角比表示).3、在Rt ABC ∆中∠A<∠B,CM 是斜边AB 上的中线,将ACM ∆沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.4、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为 10米,坡角为︒55,路基高度为5.8米,求路基下底宽5.如图11,客轮沿折线A-B-C从A出发经B再到C匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批物品送达客轮.两船同时起航,并同时到达折线A-B-C上的某点E处.已知AB=BC=200海里,∠ABC=90°,客轮速度是货轮速度的2倍.(1)选择:两船相遇之处E点( )(A)在线段AB上;(B)在线段BC上;(C)可以在线段AB上,也可以在线段BC上; (2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)6、如图,客轮沿折线A―B―C 从A 出发经B 再到C 匀速直线航行,将一批物品送达客轮.两船同时起航,并同时到达折线A―B―C 上的某点E 处.已知AB = BC =200海里,∠ABC =︒90,客轮速度是货轮速度的2倍.(1)选择:两船相遇之处E 点( )A .在线段AB 上 B .在线段BC 上C .可以在线段AB 上,也可以在线段BC 上(2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)C F EBA D.图11αPoy x34︒555.8m10mABC D.。
直角三角形的边角关系
直角三角形的边角关系姓名: 日期:1、三角函数定义:sinA= cosA= tanA=2、特殊角的三角函数值:30°:sin 30°= , cos 30°= ,tan 30°=45°:sin 45°= , cos 45°= ,tan 45°= , 60°:sin 60°= , cos 60°= ,tan 60°= ,3、三角函数公式: ① sin(90°-A)=cosA ; cos(90°-A)=sinA;② =+A A 22cossin; 4、在直角三角形中,除直角外,一共有5个因素,即3条边和2个锐角,由直角三角形中除直角外的已知元素(两边或者一边一锐角),求出所有未知元素的过程,叫做解直角三角形 5. 坡度与坡角的定义: 6、tanA 的值越大,梯子 ;sinA 的值越大,梯子 ;cosA 的值越大,梯子 二、巩固练习1、在Rt △ABC 中,∠C =90°,a =1,c =4,则sinA 的值是___。
2、已知∠A+∠B=90°,且cosA =1/5,则cosB 的值为____。
3、已知α为锐角,tan (90°-α)=3,则α的度数为___。
4、在△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是 _ _。
5、等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于______6、如右图,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m 。
(精确到0.1m)7、菱形ABCD 的对角线AC=10,BD=6,则 tanA/2= _____8、离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α, 如果测角仪高为1.5米.那么旗杆的高是_________米(用含α的三角函数表示). 9、校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米。
第一章《直角三角形的边角关系》检测(含答案)-
第一章《直角三角形的边角关系》检测一、填空题(每题2分,共24分)1.计算:sin 248°+sin 242°-tan44°·tan45°·tan46°=_______.2.已知角α为锐角,且53sin =α,则αcos = . 3.在△ABC 中,若AC,BC,AB =3,则cos A = . 4.已知A 是锐角,且sin A =13,则cos (90°-A )=___________. 5.在Rt △ABC 中,∠C =90°,已知sin A =35,则cos B =_______. 6.用科学计算器或数学用表求:如图1,有甲、乙两楼,甲楼高AD 是23米,现在想测量乙楼CB 的高度.某人在甲楼的楼底A 和楼顶D ,分别测得乙楼的楼顶B 的仰角为65°13′和45°,处用这些数据可求得乙楼的高度为 米(结果精确到0.01米). 注:用数学用表求解时,可参照下面正切..表的相关部分.7.已知36α∠=︒,若β∠是α∠的余角,则β∠= 度,sin β=____(结果保留四个有效数字).8.如图2青岛位于北纬36°4′,通过计算可以求得:在冬至日正午时分的太阳入射角为A D CB图145° 65°13′(甲楼) (乙楼)图230°30′.因此,在规划建设楼高为20米的小区时,两楼间的距离最小为_____米,才能保证不挡光(sin30°30′=0.5075,tan30°30′=0.5890,结果保留四个有效数字). 9.如图3,河对岸有古塔AB ,小敏在C 处测得塔顶A 的仰角为α,向塔s 米到达D ,在D 处测得塔顶A 的仰角为β,则塔高是__________米.10.在△ABC 中,∠A =90°,设∠B =θ,AC =b ,则AB =________________(用b 和θ的三角比表示).11.某山路坡面坡度i =沿此山路向上前进200米,升高了_______米.12.如图4,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m(精确到0.1m).二、选择题(每题2分,共24分) 13.2sin450的值等于( )A.1D.2, 14.在△ABC 中,∠C =90°,若∠B =2∠A ,则con B 等于()B.3 C.23 D.2115.在△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是( )A .135 B .1312 C .125 D .51216.已知α为锐角,tan (90°-α),则α的度数为( )图3图4A .30°B .45°C .60°D .75°17.如图5,小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为9.0m ,眼睛与地面的距离为1.6m ,那么这棵树的高度大约为( ) A .5.2 m B .6.8 m C .9.4 m D .17.2 m18.如图6,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( ) A.1 B.2 C.22D.22 19.在ΔABC 中,∠C =90°,sin A =35,则cos A 的值是( ) A .45 B .35 C .34 D .4320.如图7,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向上取点C ,测得AC =a ,∠ACB =α,那么AB 等于( ).A .a ·sinαB .a ·cosαC .a ·tanαD .a ·cotα21.在Rt △ABC 中,∠C =90°,若sin A=2,则的值为( )A ..12D.122.如图8,△ABC 中,∠C =90°,AB =5,BC =3,CA =4,那么sin A 等于( )ACB图8图5图7 a B AC图6A.34 B.43 C.35 D.4523.如图9在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且53cos =α,AB = 4, 则AD的长为( ) A.3 B.316 C.320 D.51624.某市在“旧城改造”中计划在一块如图10所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ) A.450a 元 B.225a 元 C.150a 元 D.300a 元三、解答题(第25题2分,其余每题5分,共52分)25.计算:︒⋅︒-︒60tan 45cos 30sin 2.26.在△ABC 中,∠A ,∠B 都是锐角,且sin A =12,tan B,AB =10,求△ABC 的面积.A BCDE图9︒15020米30米图1027.如图11,从一块矩形薄板ABCD 上裁下一个工件GEHCPD (阴影部分). 图中EF //BC ,GH //AB ,∠AEG =11°18′,∠PCF =33°42′,AG =2cm ,FC =6cm. 求工件GEHCPD 的面积.(参考数据:322433tan ,518111tan ≈'︒≈'︒)28.如图12将一副三角尺如图摆放在一起,连结AD ,试求ADB ∠的余切值.CABD图12DBAC图11FH29.如图13,沿AC 的方向修建高速公路,为了加快工程进度,要在小山的两边同时施工.在AC 上取一点B ,在AC 外另取一点D ,使∠ABD =130°,BD =480 m ,∠BDE =40°,问开挖点E 离D 多远,才能使A 、C 、E 在一条直线上(sin50°=0.7660,cos50°=0.6428,精确到0.1m ).30.如图14,某一水库大坝的横断面是梯形ABCD ,坝顶宽CD =5米,斜坡AD =16米,坝高 6米,斜坡BC 的坡度3:1 i .求斜坡AD 的坡角∠A (精确到1分)和坝底宽AB (精确到0.1米).图14D CBA图1331.在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下方案(如图15-①所示):(1)在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=α;(2)量出测点A到旗杆底部N的水平距离AN=m;(3)量出测倾器的高度AC=h.根据上述测量数据,即可求出旗杆的高度MN.如果测量工具不变,请仿照上述过程,设计一个测量某小山高度(如图15-②)的方案:(1)在图15-②中,画出你测量小山高度MN的示意图(标上适当字母);(2)写出你设计的方案.①NM②图1532.如图16,在Rt △ABC 中,∠C =90°,sin B =35,点D 在BC 边上,且∠ADC =45°,DC =6,求∠BAD 正切值.33.如图17,一艘渔船在A 处观测到东北方向有一小岛C ,已知小岛C 周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B 处,在B 处测得小岛C 在北偏东60°方向,这时渔船改变航线向正东(即BD )方向航行,这艘渔船是否有进入养殖场的危险?ABCD 图16图17图1834.某居民小区有一朝向为正南方向的居民楼(如图18),该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为32°时.(1)问超市以上的居民住房采光是否有影响,为什么? (2)若要使超市采光不受影响,两楼应相距多少米? (结果保留整数,参考数据:53106sin 32,cos32,tan 321001258≈≈≈鞍?35.为申办2010年冬奥会,须改变哈尔滨市的交通状况.在大直街拓宽工程中,要伐掉一棵树AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区,现在某工人站在离B 点3米远的D 处,从C 点测得树的顶端A 点的仰角为60°,树的底部B 点的俯角为30°.问:距离B 点8米远的保护物是否在危险区内?参考答案一、1.0;2.54; 4.31;5.35;6.42.73;7.54、0.8090;8.33.96或33.95;9.βαcot cot -s;10.b ·cot θ;11.10;12.2.3.二、13,B ;14,C ;15,C ;16,C ,17,A ;18,B ;19,A ;20,C ;21,B ;22,C ;23,B ;24,C . 三、25,4621-;26,3225;27,48; 28,过点A 作DB 的延长线的垂线AE ,垂足为E .cot 1)1DE ADB EA ∠===+ 29, 367.7m;30,∠A =22°1′ AB =37.8米; 31,(1)图略;(2)①在测点A 处安置测倾器,测得此时M 的仰角,∠MCE =α;②在测点A 与小山之间的B 出安置测倾器(A 、B 与N 在同一条直线上),测得此时山顶M 的仰角∠MDE =β;③量出测倾器的高度AC =BD =h ,以及测点A 、B 之间的距离AB =m .根据上述测量数据,即可求出小山的高度MN.;32,过D 点作,交AB 于E 点,所以tan=∠BAD =6515427DE AE =⨯=; 33,过点B 作BM ⊥AH 于M ,∴BM ∥AF .∴∠ABM =∠BAF =30°.在△BAM 中,AM =12,AB =5,BM 过点C 作CN ⊥AH 于N ,交BD 于K .,在Rt △BCK 中,∠CBK =90°-60°=30°,设CK =x ,11 则BKx , Rt △ACN ∠CAN =90°-45°=45°,AN =NC .∴AM +MN =CK +KN .又NM =BK ,BM =KN .即xx .解得x =5.∵5海里>4.8海里,∴渔船没有进入养殖场的危险;34,(1)如图设CE=x 米,则AF =(20-x )米,tan 32,AF EF?即20-x =15tan 32,11x ≈° ∵11>6, ∴居民住房的采光有影响.(2)如图:sin 32,ABBF ?820325BF =⨯=,两楼应相距32米;35,可求出AB = 43米,因为8>43,所以距离B 点8米远的保护物不在危险区内.。
《直角三角形的边角关系》单元检测2
/ 31 直角三角形的边角关系一、选择题1.已知有一山坡水平方向前进了40米,就升高了20米,那么这个山坡的坡度是( )A .1:2B .2:1C .D1.若A ∠为锐角,且1cos 3A =,则( ) A .0°<A ∠<30°B .30°<A ∠<45°C .45°<A ∠<60°D .60°<A ∠<90°2.比较tan 46,cos 29,sin 59︒︒︒的大小关系是( ) A .tan 46cos 29sin 59︒<︒<︒ B .tan 46sin 59cos 29︒<︒<︒C .sin 59tan 46cos 29︒<︒<︒ D .sin 59cos 29tan 46︒<︒<︒3.在Rt ABC △中,90C ∠=°,若1sin 2A =,则A ∠的度数是( ) A .60°B .45°C .30°D .无法确定4. 同一时刻,身高2.26m 的姚明在阳光下影长为1.13m ;小林浩在阳光下的影长为0.64m ,则小林浩的身高为( ) A .1.28mB .1.13mC .0.64mD .0.32m5. 如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是( ) Am B .4 m C. mD .8 m6.tan 45sin 452sin 30cos 45tan 30︒︒-︒︒+︒=( )A .12B.2C.2D.37.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( )A . αcos 5B . αcos 5C . αsin 5D .αsin 5痕PQ的长是8.将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折( ) ABCD .2cmA60°P Q2cm/ 32 9.tan30︒=( )AB1 C.1 D .1 10.在Rt ABC △中,90C ∠=°,sinA=45,BC=20,则ABC △的周长为__________11. 在Rt ABC △中,9032CAB BC ∠===°,,,则cos A 的值是.12. 如图,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,则滑板AB 的长约为_________米(精确到0.1).13. 如图,小明从A 地沿北偏东 30方向走到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A地m .14. 如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C点重合,连结BA ',则C B A ''∠t a n 的值为 .15. 某校初三(一)班课外活动小组为了测得学校旗杆的高度,他们在离旗杆6米的A 处,用高为1.5米的仪器测得旗杆顶部B 处的仰角为60°,如图所示,则旗杆的高度为 米.(已知1.732,结果精确到0.1米) 16. 如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:未开始收绳子的时候,图中绳子BC 的长度是__________米;收绳8秒后船向岸边移动了____________米?(结果保留根号)17. 小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知α=36°,则长方形卡片的周长为________.”(精确到1mm )BCAAC (B ′)BA ′C ′AC DEB60C/ 33 (参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75) 18. 公园里有一块形如四边形ABCD 的草地,测得10BC CD ==米,120B C ∠=∠=°,45A ∠=°.则这块草地的面积为__________.三、 解答题19.计算:220091)6sin 45(1)-+-°.20.如图,AC 是我市某大楼的高,在地面上B 点处测得楼顶A 的仰角为45º,沿BC 方向前进18米到达D 点,测得tan ∠ADC =53.现打算从大楼顶端A 点悬挂一幅庆祝建国60周年的大型标语,若标语底端距地面15m ,请你计算标语AE 的长度应为多少?21.花园小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高4米的小区商场,商场以上是居民住房.在该楼的前面16米处要盖一栋高18米的办公楼.当冬季正午的阳光与水平线的夹角为35°时,问:(1)商场以上的居民住房采光是否有影响,为什么?(2)若要使商场采光不受影响,两楼应相距多少 米?(结果保留一位小数)(参考数据:sin 350.57≈°,cos350.82≈°,tan 350.70≈°)DCBA。
直角三角形的边角关系单元测试
B《直角三角形的边角关系》单元测试题一、选择题,(每题4分,共40分)1.如图,点P (3,4)是∠α的边OA 上的一点,则sin α=( )A .35B .45C .34D .432. 在Rt △ABC 中,∠C = 90°,tanA = 13,则sinB =( )A.23 C .724 D3.李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是( )A.40°B.30°C.20°D.10°4.在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( )A.扩大2倍B.缩小2倍C.扩大4倍D.没有变化5.等腰三角形的底角为30°,底边长为 )A .4 B. C .2 D.6. 如图,梯形护坡石坝的斜坡AB 的坡度是i =1:3,坝高BC 为2米,则斜坡AB 的长 ( )D.6米7.已知tan 1α=,那么2sin cos 2sin cos αααα-+的值等于( ) A .13 B .12 C .1 D .168.若α、β都是锐角,下列说法正确的是( )A .若sin α= cos β,则α=β=45°B .若sin α=cos β,则α+β=90°C .若sin α>cos β,则α>β D. 若sin α<cos β,则α<β9.已知30°<α<60°,下列各式正确的是( ) A. ; B. ; C. ; D.10.如果α是锐角,且53cos =α,则)90cos(α-的值为( ) A .53 B .43 C .54 D .51 二、解答题11.在Rt △ABC 中,∠C =900,AC =12,BC =15。
(8分)(1)求AB 的长; (2)求sinA 、cosA 的值;(3)求A A 22cos sin +的值; (4)比较sinA 、cosB 的大小12.(每题4分,共16分)(1)3 cos30°+2sin45° (2) ︒+︒-︒+︒+︒30cos 60tan 45tan 60sin 230sin 22(3)︒-︒︒+︒45tan 30cos 260cos 30sin (4)︒-︒+︒-30tan 30tan 30tan 21213.如图为住宅区内的两幢楼,它们的高AB =CD =30m ,两楼间的距离AC =24m ,现需了解甲楼对乙楼采光的影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高? (12分)14.海岛A 的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在点B 处测得海岛A 位于北偏东60°,航行12海里后到达点C 处,又测得海岛A 位于北偏东30°。
九下直角三角形的边角关系测试卷
直角三角形的边角关系测试班级:__________ 学号: 姓名____________ 成绩________________ 一、选择题(每题4分,共32分)1、在Rt △ABC 中,∠C=90°,∠B=60°,那么tanB 的值是( ) A. 1 B.21 C. 3 D. 33 2、在一个直角三角形中,如果各边的长度都扩大2倍,那么它的两个锐角的余弦值( ).A .都没有变化B .都扩大2倍C .都缩小为原来的一半D .不能确定是否发生变化3、在△ABC 中,AC=BC ,D 为AB 中点连接CD ,那么tanB 是( )A. CB CDB.BD CDC. BC ACD. ABAC4、某人从山脚下点A 走了100米后到达山顶的点B ,已知点B 到山脚的垂直距离为50米,则山的坡度为( )A.30°B.60°C.21 D. 335、在Rt △ABC 中,∠C=90°,∠B=35°,AB =7,则BC 的长为( )A.7sin35°B.︒35cos 7C.7cos35°D.7tan35°6、三个梯子A,B,C 靠在墙上,同时与地面形成的夹角为α,β,γ,已知sin α=0.5, cos β=322,tan γ=1515,那么梯子与地面形成的夹角最大的是( ) A.A B.B C. C D. 无法确定7、如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m ,那么这棵树高是( )A 、⎪⎪⎭⎫⎝⎛+23335m B 、⎪⎭⎫⎝⎛+2335m C 、335m D 、4 m8、在ABC ∆中,,A B ∠∠都是锐角,且sinA =21, cosB =23,则ABC ∆的形状( ) A .直角三角形 B.钝角三角形C.锐角三角形D.不能确定第7题第4题DB AC二、填空题(每小题4分,共24分)9、比较大小: sin400 cos400(>,<,=)10、如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4), 则αsin = .11、某校自行车棚的人字架棚顶为等腰三角形,D 是AB 的中点,中柱CD = 1米,∠A=30°,则跨度AB 的长为 (用含有根号的式子表示)。
直角三角形的边角关系单元测试卷及答案
直角三角形的边角关系单元测试卷一、选择题:1.如下左图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( ) A .sin A =B .1tan 2A =C.cos B = D.tan B =2. 在Rt△ABC 中,若各边的长度都扩大2倍,那么锐角A 的各锐角三角函数( )A 、都扩大2倍B 、没有变化C 、缩小2倍D 、不能确定3.菱形OABC在平面直角坐标系中的位置如上中图所示,45AOC OC ∠==°,,则点B 的坐标为( ) A.B.C.11),D.1)4.如上右图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确的个数为( )①DE=3cm ; ②EB=1cm ; ③2ABCD 15S cm =菱形.A .3个B .2个C .1个D .0个5.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米B.C.3D.3米6.如图,长方体的长为15,宽为10,高为2 0,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( ) A. 215 B. 255 D. 357.在一次夏令营活动中,小亮从位于A 点的营地出发,沿北偏东60°方向走了5km 到达B 地,然后再沿北偏西30°方向走了若干千米到达C 地,测得A 地在C 地南偏西30°方向,则A 、C 两地的距离为( ) A.km 3310 B.km 335 C.km 25 D.km 35 8.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米. A .25B. C.3D.25+二、填空题:9.计算:sin600·cos300-21=_______. 10.已知∠A 为锐角,sinA =53,则tanA =__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 直角三角形的边角关系检测题一、选择题(每小题 3 分,共 30 分)1.计算:A. 2.在△B. 2 3 2中,∠ =90°,如果3C.D. 1 322,,那么 sin 的值是( )1A.B. 525C. 3 3D. 3 23.在△ 中,∠ =90,,,则 sin ()33A.B.454 C.34 D.54. 在△ABC 中,若三边 BC、CA、AB 满足 BC∶CA∶AB=5∶12∶13,则 cos B ( )A. 5 12B. 12 5C. 5 13D. 12 135.在△ 中,∠ =90°,,则 sin 的值是( )A. 2B. 2 2C. 11D.26.已知在 Rt△ABC 中, C 90°,sin A 3 ,则 tan B 的值为( ) 54453A.B.C.D.35447.如图,一个小球由地面沿着坡度的坡面向上前进了 10 m,此时 小球距离地面的高度为( )10A.B.2 5 mC. 4 5 mD. m3第 7 题图8.如图,在菱形A. 1 2中,, cos A 3 , 5B.2,则 tan∠ 的值是( ) BC. 5 2D. 5 59.直角三角形两直角边和为 7,面积为 6,则斜边长为( )ACA. 5B.C. 7D.第 10 题图10.如图,已知 45°<∠A<90°,则下列各式成立的是( A.B.C.D.二、填空题(每小题 3 分,共 24 分)11.在 Rt△ABC 中, C 90 , AC 5, BC 4 ,则 tan A ______.12.若∠ 是锐角,cos = 3 ,则∠ =_________. 213.如图,小兰想测量南塔的高度. 她在 处仰望塔顶,测得仰角为 30°,再往塔 的方向前进 50 m 至 处,测得仰角为 60°,那么塔高约为 _________ m.(小兰身高忽略不计, 3 1.732 )14.等腰三角形的腰长为 2,腰上的高为 1,则 它的底角等于________ .15. 如图,已知 Rt△ 中, 斜边 上的高,,则 __ ______.16.如图,△ABC 的顶点都在方格纸的 格点上,则_.17. 图 ① 是 我 国 古 代 著 名 的 “ 赵 爽 弦 图 ” 的 示 意 图 , 它 是 由 四 个 全 等 的 直 角 三 角 形 围 成 的 , 若,将四个直角三角形中边长为 6 的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是__________.BAB ACC①②1第 17 题图230°,然后在水平地面上向建筑物前进了 100 m,此时自 B 处测得建筑物顶部的仰角是 45°.已知测角仪的高度是 1.5 m,请你计算出该建筑物的高度.(取 3 ≈1.732,结果精确到 1 m)23.(6 分)如图 ,在梯形中, ∥ ,,.18.如 图,在四边形中,,三、解答题(共 66 分)19.(8 分)计算下列各题:,,, 则 __________. (1) 2 2 cos 45 sin 60 24 ;(2) (2)0 3 tan 30 3 2 . 4 20.(6 分)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的 方案及测量数据 如下: (1)在大树前的平地上选择一点 A,测得由点 看大树顶端 C 的仰角为 35°;(2) 在点 A 和大树之间选择一点 B(A、B、D 在同一直线上),测得由点 B 看大树顶端 C 的仰角恰好为 45°;(3) 量出 A、B 两点间的距离为 4.5 .请你根据以上数据求出大树 CD 的高度 .( 结果保留 3 个有效数字)21.(6 分) 每年的 5 月 15 日是“世界助残日”.某商场门前的台阶共高出地面 1.2 米,为帮助残疾人便于轮椅行走,准备拆除 台阶换成斜坡,又考虑安全,轮椅行走斜坡的坡角不得超过 ,已知此商场门前的人行道距商场门的水平(1)求 sin∠ 的值;(2)若 长度为 ,求梯形的面积.24.(6 分)如图,在一次夏令营活动中,小明从营地 A 出发,沿北偏东 60°方向走了然后再沿北偏西 30°方向走了 500 m 到达目的地 C 点. 求: (1)A、C 两地之间的距离;(2)确定目的地 C 在营地 A 的什么方向.m 到达 B 点,25.(13 分)已知:如图,在山脚的 C 处测得山顶 A 的仰角为 45°,沿着坡度为 30°的斜坡前进 400 米到 D 处(即∠,米),测得 A 的仰角为 60 ,求山的高度 AB.26.(15 分)一段路基的横断面是直角梯形,如左下图所示,已知原来坡面的坡角 α 的正弦值为 0.6,现 不改变土石方量,全部充分利用原有土石方进行坡面改造,使坡度变小,达到如右下图所示的技术要 求.试求出改造后坡面的坡度是多少?v距离为 8 米 (斜坡不能修在人行道上),问此商场能否把台阶换成斜坡?(参考数据:)22.(6 分)如图,为了测 量某建筑物 CD 的高度,先在地面上用测角仪自 A 处测得建筑物顶部的仰角 是一、选择题 1.C 解析:第一章 直角三角形的边角关系检测题参考答案2.A 解析:3.D解析:由勾股定理知,AC 4. AB 54.C 解析:设,则,,则所以△ 是直角三角形,且∠.所以在△ABC 中,BC 5x 5 . AB 13x 135.B 解析:因为∠ =90°,,所以 6.A 解析:如图,设2. 2则由勾股定理知,所以 tan B.所以所 以 sin,ACB第 6 题答图7.B 解析:设小 球距离地面的高度为则小球水平移动的距离为所以10.B 解析:在锐角三角函数中仅当45°时,,所以 选项错误;因为 45°<∠A<90°,所以∠B<45°,即∠A>∠B,所以 BC>AC,所以 BC > AC ,即 AB AB确, 选项错误BC >1, AC<1,所以 选项错误.二、填空题,所以 选项正 B11. 解析:如图12.30° 解析:因为13.43.3解析:因为3 ,∠A 是锐角,所以∠ 2AC第 11 题答图,所以所以所以).14.15°或 75° 解析:如图,.在图①中,,所以∠∠;在图②中,,所以∠∠.A B解得8.B解析:设DABCD又因为在菱形中,所以①②C第 14 题答图所以所以由勾股定理知所以215. 解析:在 Rt△ 中,∵,∴ sin B= ,.9.A解析:设直角三角形的两直角边长分别为则所以斜边长在 Rt△ 中,∵,sin B= ,∴.在 Rt△ 中,∵,∴.516.5解析:设每个小方格的边长为 1,利用网格,从 点向 所在直线作垂线,利用勾股定理得则m,∵∠35°,∴ tan∠tan 35°x.x 4.5整理,得 x4.5 tan 35 1 tan 35 ≈10.5.故大树 的高约为 10.5,所以5.517.76 解析:如图,因为所以由勾股定理得DB A,C第 17 题答图所以这个风车的外围周长为18. ∵∠ ∵解析:如图,延长 、 交于 点,,∴.,∴,∴.∵,∴.三 、解答题 19.解:(1)2 2 cos45 sin 60 24 42 2 2 23 226 4223 26 2 26 26 2. 2(2) (2)0 3 tan 30 3 2 1 3 2 3 3 2 3.20.解:∵ ∠90°, ∠45°,∴∵,∴21.解:因为所以斜坡的坡角小于 ,故此商场能把台阶换成斜坡.22.解:设,则由题意可知,m.在 Rt△AEC 中,tan∠CAE= CE ,即 tan 30°= x ,AEx 100∴ x 3 ,即 3x 3 (x+100),解得 x 50+50 3 . x 100 3经检验, 50+50 3 是原方程的解.∴故该建筑物的高度约为23.解:(1)∵,∴ ∠∠.∵ ∥ ,∴ ∠∠∠.在梯形中,∵,∴∠∠∠∠∵,∴ 3∠,∴∠30º ,∴(2)过点 作于点 .在 Rt△ 中,•∠,•∠,∴在 Rt△ 中,,∴24. 分析:(1)根据所走的方向可判断出△ABC 是直角三角形,根据勾股定理可求出解. (2)求出∠DAC 的度数,即可求出方向. 解:(1)如图,过 B 点作 BE∥AD, ∴ ∠DAB=∠ABE=60°.∵,∴ ∠,即△ABC 为直角三角形.由已知可得:m,m,由勾股定理可得:,所以(m).(2)在 Rt △ABC 中,∵m,m,∴∠.∵∠,∴ ∠,即 C 点在 A 点的北偏东 30°的方向.25.解:如图,作 ⊥ 于 , ⊥ 于 ,在 Rt△ 中, ∠,米,所以(米),(米).在 Rt△ADE 中,∠ADE=60°,设米,则(米).在矩形 DEBF 中,米,在 Rt△ACB 中, ∠,∴,即: 3x 200 200 3 x ,∴,∴米.26.解:由左图可知:BE⊥DC,m,.在 Rt△BEC 中,sin BE , BC BE 30 50((mm) ).BCsin 0.6由勾股定理得,m.在不改变土石方量,全部充分利用原有土石方的前提下进行坡面改造,使坡度变小,则梯形=梯形的面积.20301 2304020201 220EC1 ,解得 =80(m).∴ 改造后坡面的坡度 i B1E : EC1 20 : 80 1: 4 .的面积。