药剂学第四章药物微粒分散体系

合集下载

(完整版)药剂学复习重点归纳_人卫版

(完整版)药剂学复习重点归纳_人卫版

第一章绪论1.药剂学:研究药物制剂的基本理论、处方设计、制备工艺、质量控制及合理使用的综合性应用技术科学2.剂型:为适应治疗或预防的需要而制备的不同给药形式,称为药物剂型,简称剂型(Dosage form)3.制剂:为适应治疗或预防的需要而制备的不同给药形式的具体品种,称为药物制剂,简称药剂学任务:是研究将药物制成适于临床应用的剂型,并能批量生产安全、有效、稳定的制剂,以满足医疗卫生的需要。

药物剂型的重要性:改变药物作用性质,降低或消除药物的毒副作用,调节药物作用速度,靶向作用,影响药效药剂学的分支学科工业药剂学物理药剂学药用高分子材料学生物药剂学药物动力学临床药剂学药典作为药品生产、检验、供应和使用的依据第二章:药物制剂的稳定性药物制剂稳定性的概念药物制剂的稳定性系指药物在体外的稳定性,是指药物制剂在生产、运输、贮藏、周转,直至临床应用前的一系列过程中发生质量变化的速度和程度。

药用溶剂的种类(一)水溶剂是最常用的极性溶剂。

其理化性质稳定,能与身体组织在生理上相适应,吸收快,因此水溶性药物多制备成水溶液(二)非水溶剂在水中难溶,选择适量的非水溶剂,可以增大药物的溶解度。

1.醇类如乙醇、2.二氧戊环类 3.醚类甘油。

4.酰胺类二甲基乙酰胺、能与水混合,易溶于乙醇中。

5.酯类油酸乙酯。

6.植物油类如豆油、玉米油、芝麻油、作为油性制剂与乳剂的油相。

7.亚砜类如二甲基亚砜,能与水、乙醇混溶。

介电常数(dielectric constant)溶剂的介电常数表示在溶液中将相反电荷分开的能力,它反映溶剂分子的极性大小。

溶解度参数溶解度参数表示同种分子间的内聚能,也是表示分子极性大小的一种量度。

溶解度参数越大,极性越大。

溶解度(solubility)是指在一定温度下药物溶解在溶剂中达饱和时的浓度,是反映药物溶解性的重要指标。

溶解度常用一定温度下100g溶剂中(或100g溶液,或100ml溶液)溶解溶质的最大克数来表示,亦可用质量摩尔浓度mol/kg或物质的量浓度mol/L来表示。

微粒分散体系在药剂学中的意义

微粒分散体系在药剂学中的意义

微粒分散体系在药剂学中的意义
微粒分散体系在药剂学中具有重要的意义,因为它们能够改善药物的生物利用度、稳定性和治疗效果。

以下是微粒分散体系在药剂学中的一些重要意义:
1. 提高药物溶解度和生物利用度:微粒分散体系可以将水不溶性药物转化为更易溶解或更易吸收的形式,提高药物的生物利用度。

2. 延缓药物的释放:微粒分散体系可以通过控制粒子大小和分散度来延缓药物的释放,从而实现长效稳定的治疗效果。

3. 改善药物的稳定性:在微粒分散体系中,药物分子可以被包裹在分散介质中,从而提高其稳定性,防止化学反应或失效。

4. 提高药物的选择性和特异性:微粒分散体系可以通过改变粒子的表面性质和大小来提高药物的选择性和特异性,从而实现更准确的治疗效果。

5. 改善制剂工艺和生产效率:微粒分散体系可以使用常规方法进行制剂和生产,从而提高制剂工艺和生产效率,降低成本。

综上所述,微粒分散体系在药剂学中具有重要的应用前景,有望推进药物研究和开发,提高药物治疗效果和患者生活质量。

第四章_微粒分散体系

第四章_微粒分散体系

分子的真溶液则是透射光为主,同样观察不到乳光。

当一束光线在暗室通过胶粒分散系,在其侧面 可看到明显的乳光,即Tyndall现象。丁铎尔 现象是微粒散射光的宏观表现。

低分子溶液—透射光;粗分散体系—反射光;
胶体分散系—散射光。
丁达尔现象

丁达尔现象(Tyndall phenomena)

在暗室中,将一束光通过溶胶时,在侧面可 看到一个发亮的光柱,称为乳光,即丁达尔 (Tyndall)现象。

1、分散性
2、多相性 3、聚结不稳定性
三、在药剂学中的应用

1、有助于提高药物的溶解速度及溶解度,有利 于提高难溶性药物的生物利用度 2、利于提高药物在分散介质中的分散性 3、在体内分布上具有一定的选择性 4、具有缓释作用,减少剂量,降低毒副作用 5、改善药物在体内外的稳定性等

发生的电离、吸附或摩擦等产生的电荷所表现
的性质。
(一)电泳(electrophoresis) 在电场作用下微粒的定向移动叫电泳。 在溶液的电场中,微粒受两种作用力,一种是静电力Fe, 另一种是摩擦力Fs,而且这两种力在恒速运动时大小相 等。 E (4-16) v E 6rv
6r
其中,r—球型微粒半径, σ—表面电荷密度,E—电场强度,v—恒 速运动的速度。
式中,Π—渗透压,c—溶胶的浓度,R—气体常数,
T—绝对温度。

(三)沉降与沉降平衡
在一个分散体系中微粒的密度大于分散介质的密度,就会发生沉降。 如果是粗分散体系,粒子较大,经过一段时间以后,粒子会全部沉降到容器 的底部。如果粒子比较小,由于粒子的布朗运动,一方面受到重力作用而沉 降,另一方面由于沉降使上、下部分的浓度发生变化,引起扩散作用,使浓 度趋向于均匀。当沉降和扩散这两种方向相反的作用力达到平衡时,体系中 的粒子以一定的浓度梯度分步,这种平衡称作沉降平衡。达到沉降平衡后体 系的最下部浓度最大,随高度的上升浓度逐渐减小。

第四章-微粒分散体系

第四章-微粒分散体系

二、微粒分散体系的光学性质
光是一种电磁波,当一束光照射到一个微粒分散体系时,
可以出现光的吸收、反射和散射等现象。
光的吸收主要由微粒的化学组成与结构决定;光的反射 与散射主要取决于微粒的大小。丁铎尔现象是微粒散射光的 宏观表现。现今丁铎尔现象已经成为判断纳米体系的一个简 单方法。微粒大小不同,光学性质相差很大。在同等条件下, 粗分散体系由于反射光为主,不能观察到丁铎尔现象;而低 分子的真溶液则是透射光为主,同样观察不到乳光。
➢ 注射>50m的微粒,可使微粒分别被截留在肠、肾等相应部位。
四、微粒大小与测定方法
微粒大小完全均一的体系称为单分散体系; 微粒大小不均一的体系称为多分散体系; 微粒分散系中常用的粒径表示方法有几何学粒
径、比表面积径等。
1.电子显微镜法
测定原理:电子束射到样品上,如果能量足够大就 能穿过样品而无相互作用,形成透射电子,用于透 射电镜(TEM)的成像和衍射;
一、微粒分散系的动力学性质
➢ 微粒分散体系的动力学稳定性主要表现在 两个方面。
当微粒较小时,主要是分子热运动产生的
布朗运动;提高微粒分散体系的物理稳定

当微粒较大时,主要是重力作用产生的沉 降。降低微粒分散体系的物理稳定性
(一)Brown运动
布朗运动:粒子永不停息的无规则的直线运动
布朗运动是粒子在每一瞬间受介质分子碰撞的合力方向 不断改变的结果。由于胶粒不停运动,从其周围分子不 断获得动能,从而可抗衡重力作用而不发生聚沉。
反离子排列在定位离子附近。
反离子中心称为斯特恩面,从斯
特恩面到粒子表面之间为斯特恩
层。该层ψ0直线下降到ψd 。
ψo
斯特恩层外有一切动面,该处
电势即ζ电势,它是衡量胶粒带电

微粒分散体系-精品医学课件 (2)

微粒分散体系-精品医学课件 (2)

药物微粒分散体系
粗 Suspension 分 Sol 散 Emulsion 体 Microcapsule 系 microsphere
粒径 100nm-100μm
nanoemulsion 胶
Liposome

nanoparticle 分
Nanocapsule
散 体
Nanomicell

粒径 <100nm
临界聚沉浓度
三、 空间稳定理论
(一) 实验规律
相对分子质量大小高分子对微粒保护作用的影响
(a)较小相对分子量高分子;(b)中等相对分子量高分子;(c)较高相对分子量高分子
敏化作用(sensitization) :高分子在粒子表面覆
盖度q =0.5时絮凝效果最好,微粒聚集下沉
(二) 理论基础 1、两种稳定理论
3
r3( 0)g
在高度为dh的体积内粒子所受的总扩散力:
F扩散 Ad ARTdC
粒子总数为: LCdV LCAdh

每一个粒子所受到的扩散力:F扩散

ARTdC LCAdh

RT LC

dC dh
(二)沉降与沉降平衡
达平衡时,重力与扩散力大小相等、方向相反:
F扩散
1)体积限制效应理论: 两微粒接近时,彼此的吸附层不能互相穿透 2)混合效应理论: 微粒表面上的高分子吸附层可以互相穿透。
四、空缺稳定理论
亦称自由聚合物稳定理论。
五、微粒聚结动力学
快聚结 慢聚结
架桥聚结 聚合物
有效覆盖 微粒表面
小部分覆盖 微粒表面
空间保护作用 架桥聚结

Tyndall现象的本质 是粒子对光的散射

药剂学:药物微粒分散体系的基础理论

药剂学:药物微粒分散体系的基础理论
V-微粒沉降速度;r-微粒半径; ρ1、ρ2-分别为微粒和分散介 质密度;-分散介质粘度; g-重力加速度常数。
三、微粒分散系的光学性质
当一束光照射到微粒分散系时,可以出现光的吸
(二)沉降——Stokes’定律
• 粒径 较 大 的 微 粒 受 重力作 用 ,静 置 时 会 自 然 沉降 , 其沉降速度服从 Stokes ’ 定律: (4-11)
r愈大,微粒和分散介 质的密度差愈大,分散 介质的粘度愈小,粒子 的沉降速度愈大。
2r 2 ( 1 2 ) g V 9
– 小分子真溶液(<10-9m;<1nm) – 胶体分散体系(10-7~10-9m;1~100nm) – 粗分散体系(>10-7m;>100nm) • 微粒:直径在10-9~10-4m的微粒,其构成的分散体系统称为 微粒分散体系。如微米与纳米级大小的各种给药载体/系统。
微粒分散体系的特殊性能:
①多相体系:
微球表面形态
Scanning electron micrography of ADM-GMS(阿霉素明胶微球)

微球橙红色,形态圆整、均匀,微球表面可见孔 隙,部分微球表面有药物或载体材料结晶。
2.激光散射法——动态光散射法
• 对于溶液,散射光强度、散射角大小与溶液的性质、溶质 分子量、分子尺寸及分子形态、入射光的波长等有关,对 于直径很小的微粒,雷利(瑞利)散射公式:
微粒大小与体内分布
< 50nm 的微粒能够穿透肝脏内皮, 通过毛细血管末梢或
淋巴传递进入骨髓组织。
静脉注射、腹腔注射0.1~3.0m的微粒能很快被单核吞噬 细胞系统吞噬,浓集于巨噬细胞丰富的肝脏和脾脏等部位。 人肺毛细血管直径为2m,>2m的粒子被肺毛细血管滞 留下来,<2m的微粒则通过肺而到达肝、脾等部位。 。 注射> 50m 的微粒,可使微粒分别被 截留在肠、肾等相 应部位。

微粒分散体系

微粒分散体系

子分布于微粒周围,微粒表面的离子和靠近表面的
反离子构成了吸附层。

从吸附层表面至反离子电荷为零处形成微粒的
扩散层。
• ζ电位:从吸附层表面至反离子电荷为零处的电位差, 为动电位。
• ζ电位与微粒大小、电解质浓度、反离子水化程度有 关
19
/ r
微粒越小,ζ电位越高
微粒的双电层结构与ζ电位
其他性质
2
微粒分散体系在药剂学中的意义
1. 提高溶解度、溶解速度,生物利用度提高。 2. 增加分散性和稳定性。 3. 体内靶向性 4. 缓释作用、降低毒性 5. 提高体内外稳定性
3
第二节 药物微粒分散系的性质
• 性质包括动力学、光散射、电学、稳定性。
※ 主要讨论与用药安全、体内吸收、分布、 发挥药效有关的性质。
17
五、微粒的电学性质
• 微粒带电原因:电离、吸附、摩擦。
(一)电泳(electro phoresis)
• 定义:微粒分散系中的微粒在电场作用 下,向阴极、阳极做定向的移动。
• 微粒受力:静电力、摩擦力
E / 6r
粒子越小,移动越快
18
(二)微粒的双电层结构

微粒表面带同种电荷,通过静电引力,使反离
20
第三节 微粒分散系的稳定性
微粒分散药物制剂的稳定性包括: • 1.化学稳定性; • 2.物理稳定性(粒径变化、絮凝、聚结、乳
析、分层等); • 3.生物活性稳定性(生物活性、过敏性、溶
血); • 4.疗效稳定性(疗效是否随贮存而变化); • 5.毒性稳定性(急毒、慢毒是否随放置变化)。
21
一、热力学稳定性
• 在癌症的化疗中,将较大微粒进行动脉栓塞, 治疗肝癌、肾癌等,已显示其独特的优点。

第一篇 药物制剂的基本理论 第四章 微粒分散体系

第一篇 药物制剂的基本理论 第四章 微粒分散体系
四、空缺稳定理论
高分子未吸附于微粒表面时,在表面 的浓度低于体系溶液中的浓度,形成负吸 附,使微粒表面形成一种空缺表面层,在 这种体系中使胶体分散体系稳定的理论称 空缺稳定理论。
第三节 微粒分散体系物理稳定性相关理论
五、微粒聚结动力学 微粒>1μm不稳定(聚沉速度相对快) (一)快聚结 ΦT=0时势垒为0 ,一经碰撞就聚结,聚结速 度由碰撞速率决定,碰撞速率由布朗运动决定即 由扩散速度决定。 快聚结速度与微粒大小无关,受温度和介质 黏度影响。
分散体系,在侧面可观察到明显的乳光(散射光的 宏观表现)。本质是粒子对光的散射。低分子溶液 则是以透射光为主,无乳光。
第二节 微粒分散体系的物理化学性质
三、微粒分散体系的电学性质 1.电泳:如将电极插入微粒体系溶液中,通以电 流,则微粒可向阴极或阳极移动,这种在电场作 用下微粒的定向一定成为电泳。微粒大小与移动 速度成反比。
第二节 微粒分散体系的物理化学性质
一、微粒分散体系的动力学性质
1. Brown运动 1827年Brown在显微镜下发现,微粒
( < 100nm以下)在不停地不规则的运 动,将此现象命名为Brown 运动。
爱因斯坦根据分子运动论导出Brown运
动与粒子的半径、介质的黏度、温度有关。
第二节 微粒分散体系的物理化学性质
第三节 微粒分散体系物理稳定性相关理论
三、空间稳定理论 空间稳定效应的存在总势能: ΦT= ΦA +ΦR+ Φs Φs:空间稳定效应产生的排斥能,微粒
很近时趋于无穷大,故第一极小处不可能发 生聚沉,聚结多表现为较远距离上的絮凝。 空间稳定作用受电解质影响小。
第三节 微粒分散体系物理稳定性相关理论
第三节 微粒分散体系物理稳定性相关理论 三、空间稳定理论

11-药剂学-药物微粒分散系的基础理论

11-药剂学-药物微粒分散系的基础理论

2.高分子聚合物在固体微粒表面上的吸附构型 高分子在溶液中具有一定的挠曲性和一定数量 的活性基团,这些活性基团能吸附在固体微粒 表面上而使吸附的高分子具有一定形状。 其吸附的高分子构型取决于固体微粒和高分子 聚合物的性质以及它们之间的相互作用。如固 体微粒表面吸附点的数目、高分子聚合物的链 长与活性基团的数目和位置、高分子聚合物在 溶剂中的溶解度等都是影响其吸附构型的重要 因素。 这样可将吸附高分子聚合物的构型分成六种形 式。
当微粒的半径大于1μm后,微粒的平均 位移只有0.656μm/s,已不显著,在分散 介质中受重力场作用而匀速运动,此时 应按Stoke′s定律,其沉降或上浮的速 度u以下式表示:
2a (ρ − ρ ) g u= 9η
2 0
式中,a——微粒的半径;g——重力加 速度;η——分散介质的粘度;ρ和 ρ0——微粒和分散介质的密度。
吸附高分子的构型
(二)高分子化合物的稳定作用 高分子化合物对微粒分散系的稳定作用主要体 现在以下几方面:高分子吸附层存在,产生一 种 新 的 斥 力 势 能 ─ 空 间 斥 力 势 能 (Steric Repulsive Energy);高分子的存在减小微粒 间的Hamaker常数,因而也就减少了范德华引 力势能;带电高分子被吸附会增加微粒间的静 电斥力势能。 总的势能VT: VT= VA + VR + VS 中, VA—— 吸 引 势 能 , VR—— 静 电 斥 力 势 能 , VS——空间斥力势能。
当微粒半径a>1μm后,则微粒就要沉降 或上浮,动力稳定性较差。因此为了减 小微粒沉降或上浮的速度,则通过增加 分散介质的粘度,加入增稠剂,调节微 粒与分散介质的密度差,使ρ≈ρ0。这 样可提高此微粒分散制剂的稳定性。 但最主要的是减小微粒的半径,当微粒 半径a从 10μm减小为 1μm时,其沉降 速度从4.36×102μm/s降低为 4.36μm/s,相差100倍。

药剂学第四章药物微粒分散体系分析

药剂学第四章药物微粒分散体系分析

第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确的填A,错误的填B)1.药物微粒分散系是热力学稳定体系,动力学不稳定体系。

( )2.药物微粒分散系是动力学稳定体系,热力学不稳定体系。

( )3.药物微粒分散系是热力学不稳定体系,动力学不稳定体系。

( )4.微粒的大小与体内分布无关。

( )5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。

( )6.分子热运动产生的布朗运动和重力产生的沉降,两者降低微粒分散体系的稳定性。

( ) 7.微粒表面具有扩散双电层。

双电层的厚度越大,则相互排斥的作用力就越大,微粒就越稳定。

( )8.微粒表面具有扩散双电层。

双电层的厚度越小,则相互排斥的作用力就越大,微粒就越稳定。

( )9.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为反絮凝。

( )10.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。

( )11.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降。

( )12.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ上升。

( )13.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ降低,会出现反絮凝现象。

( )14.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降,出现絮凝状态。

加入的电解质叫絮凝剂。

( )15.絮凝剂是使微粒表面的ζ降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮凝状态的电解质。

( )16.絮凝剂是使微粒表面的ζ升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。

( )17.反絮凝剂是使微粒表面的ζ升高,使到排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。

药物微粒分散体系的基础理论

药物微粒分散体系的基础理论
• 【吸附层+扩散层】= 双电层构造
注:溶胶粒子表面电荷旳起源
电离作用:胶粒旳基团解离;硅胶粒子表面旳SiO2分子与 水生成H2SiO3,若解离生成SiO32-,使硅溶胶带负电,介质 具有H+离子而带正电。
吸附作用:胶粒优先吸附与本身有相同成份旳离子。如 AgNO3与KI→AgI,可吸附Ag+或I-带电。
¨ 当一束光线在暗室经过胶粒分散系,在其侧面可 看到明显旳乳光,即Tyndall现象。丁铎尔现象是 (胶体)微粒散射光旳宏观体现。
¨ 低分子溶液—透射光;粗分散体系—反射光; ¨ 胶体分散系—散射光。
丁达尔现象
• 丁达尔现象(Tyndall phenomena)
• 在暗室中,将一束光经过溶胶时,在侧面 可看到一种发亮旳光柱,称为乳光,即丁 达尔(Tyndall)现象。
又是布朗运动旳宏观体现。
• 布朗运动使很小旳微粒具有了动力学稳定性。 • 微粒运动旳平均位移Δ可用布朗运动方程表达:
RTt
3rN A
(4-1)
t-时间;T-热力学温度;η-介质粘度;r-微粒半径;NA-介质微粒数目
★ r愈小,介质粘度愈小,温度愈高,粒子旳平均位
移愈大,布朗运动愈明显。
布朗运动:粒子永不断息旳无规则旳直线运动
布朗运动是粒子在每一瞬间受介质分子碰撞旳 合力方向不断变化旳成果。因为胶粒不断运动, 从其周围分子不断取得动能,从而可抗衡重力 作用而不发生聚沉。
(二)沉降——Stokes’定律
• 粒径较大旳微粒受重力作 用,静置时会自然沉降, 其沉降速度服从Stokes’ 定律: (4-11)
V 2r2(1 2)g 9
摩擦带电:非导体构成旳体系中,介电常数较大旳一相易带 正电,另一相带负电。如玻璃(15)在水中(81)带负电,苯中 (2)带正电。

药剂学试题-理论-液体制剂部分

药剂学试题-理论-液体制剂部分

药剂学试题第一章绪论一.名词解释:药剂学(pharmaceutics)GMP OTC二.单项选择题1.必须凭医师或执业助理医师处方才可以调配、购买并在医生指导下使用的药品是()A.柜台发售药品B.处方药C.非处方药D.OTC2.GMP是指下列哪组英文的简写()A.Good Manufancturing PracticeB.Good Manufancturing PractiseC.Good Manufancture PractiseD.Goods ManufancturePractice3.《中国药典》最早颁布于()A.1930B.1950C.1949D.19534.下列哪一部药典无法律约束力()A.国际药典B.中国药典C.英国药典D.美国药典5.研究剂型及制剂生产的基本理论、工艺技术、生产设备和质量管理的科学称为()A.生物药剂学B.工业药剂学C.现代药剂学D.物理药剂学6.美国药典的英文缩写是()A.BPPC.JPD.AP三.配伍选择题A.新药B.处方药C.非处方药D.制剂E.剂型1.根据药物的性质、用药目的和给药途径,将原料药加工制成适合于医疗或预防应用的形式,称为()2.OTC药品指的是()3.未曾在中国境内上市销售的药品,称为()4.根据药典、局颁标准或其他规定的处方,将原料药加工制成具有一定规格的药物制品,称为()四.多项选择题1.按分散相在分散介质中的分散特性将剂型分为()A.混悬液型B.无菌溶液型C.胶体溶液型D.真溶液型E.乳浊液型2.药剂学的任务有()A.新剂型的研究与开发B.新辅料的研究与开发C.中药新剂型的的研究与开发D.生物技术药物制剂的研究与开发E.医药新技术的研究与开发3.药物剂型的重要性()A.药剂可改变药物的作用性质B.剂型能改变药物的作用速度C.改变剂型可降低(或消除)药物的毒副作用D.剂型可产生靶向作用E.剂型可影响疗效答案:二.单项选择题:1.B 2.A 3.D 4.A 5.B 6.B三.配伍选择题:1.E 2.C 3.A 4.D四.多项选择题:1.ACDE 2.ABCDE 3.ABCDE第二章药物溶液的形成理论一.名词解释:介电常数(ε)溶解度助溶增溶渗透压等渗溶液二.单项选择题1.在苯甲酸钠的作用下,咖啡因溶解度由1:50增大至1:2,苯甲酸钠的作用是()A.增溶剂B.助溶剂C.潜溶剂D.组成复方2.下列溶剂中属于非极性溶剂的是()A.水B.丙二醇C.液状石蜡D.二甲亚砜3.配制复方碘溶液的正确操作是()A.先将碘化钾配制溶液,再加入碘使溶解,然后加水稀释至刻度B.先将碘加入适量水中,然后加入碘化钾使形成复盐进行助溶,最后加水定容C.先将碘和碘化钾充分混合,然后加入适量水使形成复盐进行,最后加水定容D.先分别将碘和碘化钾各加入适量水溶解,然后混匀,最后加入水定容至刻度4.下了哪种溶剂不能作为注射剂的溶剂()A.注射用水B.注射用油C.乙醇D.二甲亚砜5.相似者相溶,“相似”指的是()A.形态相似B.密度相似C.分子量相似D.极性相似三.配伍选择题:1.微粉化能增加溶解度()2.加入碘化钾助溶()3.pH升高,溶解度增大()4.加入表面活性剂可增溶()5.pH升高,溶解度降低()四.多项选择题:1.影响药物溶解度的因素()A.温度B.溶剂的极性C.溶剂量D.药物的晶型E.药物的分子量2.难溶性药物微粉化的目的()A.改善溶出度提高生物利用度B.改善药物在制剂中的分散性C.有利于药物的稳定D.减少对胃肠道的刺激E.改善制剂的口感3.对方程dC/dt=DS/Vh(Cs-C),叙述正确的是()A.此方程为Arrhenius方程B.dC/dt为药物的溶出速度C.药物的溶出速度与(Cs-C)成正比D.方程中dC/dt与K成正比E.溶出介质的体积越大,药物的溶出速度越小4.可增加药物溶解度的方法有()A.微粉化B.加入助溶剂C.加入增溶剂D.制成固体分散体E.制成包合物五.问答题:1.增加药物溶解度的方法有哪些?2.举例说明助溶的机制?3.分析影响固体药物在液体中溶出速度的因素有哪些?答案:二.单项选择题:1.B 2.C 3.A 4.D 5.D三.配伍选择题:1.E 2.C 3.A 4.D 5.B四.多项选择题:1.ABD 2.AB 3.BCD 4.ABCDE五.问答题:1.答:混合溶剂法;助溶剂助溶法;增溶剂增溶法;制成可溶性盐法;制成固体分散物或包合物法等。

第4章药物微粒分散系的基础理论

第4章药物微粒分散系的基础理论
(一) 微粒间的Vander Waals吸引能
任何两个粒子之间都存在范德华引力,它是多个 分子的色散力、极性力和诱导偶极力之和,其大小与 粒子间距离的六次方成反比,称为六次律。
(二) 双电层的排斥作用能
静电斥力是由于微粒荷电,在微粒表面形成双电 层。
第三节 微粒分散体系的物理稳定性
(三) 微粒间总相互作用能 微粒间的势能为吸引势能VA 与相斥势能VR 之和 若令总势能为V,则 V = VA +VR
RTt 3rN A
t-时间;T-热力学温度;η -介质粘度;r-微粒半径;NA-介质微粒数目
r愈小,介质粘度愈小,温度愈高,粒子的平均位
移愈大,布朗运动愈明显。
(二)Stoke’s定律
粒径较大的微粒受重力作用,静置时会自然沉降 ,其沉降速度服从Stoke’s定律:
2r ( 1 2 ) g V 9
第二节
微粒分散系的物理化学性质
一、微粒的动力学性质 <10-7m布朗运动明显 二、微粒的光学性质 低分子---光透射 粗分散体系---光反射 交体分散体系---光散射---丁铎尔现象---粒径 四、微粒分散系的电学性质 电泳\微粒的双电层结构
(一)Brown运动
布朗运动是液体分子热运动撞击微粒的结果。 布朗运动是微粒扩散的微观基础,而扩散现象又是 布朗运动的宏观表现。 布朗运动使很小的微粒具有了动力学稳定性。 微粒运动的平均位移Δ可用布朗运动方程表示:
势能曲线的最高点恰好为零,势垒消失,体系由
稳定转为聚沉,这就是临界聚沉状态,这时的电
解质浓度即为该微粒分散体系的聚沉值。 将在第一极小处发生的聚结称为聚沉 (coagulation),将在第二极小处发生的聚结叫絮 凝(flocculation)。

药剂学第四章药物微粒分散体系

药剂学第四章药物微粒分散体系

第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确的填A,错误的填B)1.药物微粒分散系就是热力学稳定体系,动力学不稳定体系。

( )2.药物微粒分散系就是动力学稳定体系,热力学不稳定体系。

( )3.药物微粒分散系就是热力学不稳定体系,动力学不稳定体系。

( )4.微粒的大小与体内分布无关。

( )5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。

( )6.分子热运动产生的布朗运动与重力产生的沉降,两者降低微粒分散体系的稳定性。

( )7.微粒表面具有扩散双电层。

双电层的厚度越大,则相互排斥的作用力就越大,微粒就越稳定。

( )8.微粒表面具有扩散双电层。

双电层的厚度越小,则相互排斥的作用力就越大,微粒就越稳定。

( )9.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为反絮凝。

( )10.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。

( )11.微粒体系中加入某种电解质,中与微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降。

( )12.微粒体系中加入某种电解质,中与微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ上升。

( )13.微粒体系中加入某种电解质,中与微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ降低,会出现反絮凝现象。

( )14.微粒体系中加入某种电解质,中与微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降,出现絮凝状态。

加入的电解质叫絮凝剂。

( )15.絮凝剂就是使微粒表面的ζ降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮凝状态的电解质。

( )16.絮凝剂就是使微粒表面的ζ升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。

( )17.反絮凝剂就是使微粒表面的ζ升高,使到排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。

药剂学第四章药物微粒分散体系

药剂学第四章药物微粒分散体系

第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确得填A,错误得填B)1.药物微粒分散系就是热力学稳定体系,动力学不稳定体系。

( )2.药物微粒分散系就是动力学稳定体系,热力学不稳定体系。

( )3.药物微粒分散系就是热力学不稳定体系,动力学不稳定体系。

( )4.微粒得大小与体内分布无关。

( )5.布朗运动可以提高微粒分散体系得物理稳定性,而重力产生得沉降降低微粒分散体系得稳定性。

( )6.分子热运动产生得布朗运动与重力产生得沉降,两者降低微粒分散体系得稳定性。

( ) 7.微粒表面具有扩散双电层。

双电层得厚度越大,则相互排斥得作用力就越大,微粒就越稳定。

( )8.微粒表面具有扩散双电层。

双电层得厚度越小,则相互排斥得作用力就越大,微粒就越稳定。

( )9.微粒体系中加入某种电解质使微粒表面得ζ升高,静电排斥力阻碍了微粒之间得碰撞聚集,这个过程称为反絮凝。

( )10.微粒体系中加入某种电解质使微粒表面得ζ升高,静电排斥力阻碍了微粒之间得碰撞聚集,这个过程称为絮凝。

( )11.微粒体系中加入某种电解质,中与微粒表面得电荷,降低双电层得厚度,使微粒间得斥力下降。

( )12.微粒体系中加入某种电解质,中与微粒表面得电荷,降低双电层得厚度,使微粒表面得ζ上升。

( )13.微粒体系中加入某种电解质,中与微粒表面得电荷,降低双电层得厚度,使微粒表面得ζ降低,会出现反絮凝现象。

( )14.微粒体系中加入某种电解质,中与微粒表面得电荷,降低双电层得厚度,使微粒间得斥力下降,出现絮凝状态。

加入得电解质叫絮凝剂。

( )15.絮凝剂就是使微粒表面得ζ降低到引力稍大于排斥力,引起微粒分散体系中得微粒形成絮凝状态得电解质。

( )16.絮凝剂就是使微粒表面得ζ升高,使排斥力大于吸引力,引起微粒分散体系中得微粒形成絮凝状态得电解质。

( )17.反絮凝剂就是使微粒表面得ζ升高,使到排斥力大于吸引力,引起微粒分散体系中得微粒形成絮凝状态得电解质。

初级药师考试复习笔记——药剂学药物微粒分散系的基础理论、流变学基础、药物制剂的稳定性、药物制剂的设计

初级药师考试复习笔记——药剂学药物微粒分散系的基础理论、流变学基础、药物制剂的稳定性、药物制剂的设计

药剂学药物微粒分散系的基础理论、流变学基础、药物制剂的稳定性、药物制剂的设计一、药物微粒分散系的基础理论1.概述概念:一种或多种物质高度分散在某种介质中所形成的体系小分子真溶液(直径<10-9m )微粒分散体系分类胶体分散体系(直径在10-7 ~10-9m 范围):主要包括纳米微乳、脂质体、纳米粒、纳米囊、纳米胶束等,他们的粒径全都小于1000nm粗分散体系(直径>10-7m ):主要包括混悬剂、乳剂、微囊、微球,他们的微粒在500~100μm 范围内微粒:10-9 ~10-4m 范围的分散相统称微粒多相体系,出现大量的表面现象微粒分散体系特殊的性能热力学不稳定体系粒径更小的分散体系还有明显的布朗运动、丁铎尔现象、电泳现象性质有助于提高药物的溶解速度及溶解度,有利于提高难溶性药物的生物利用度有利于提高药物微粒在分散介质中的分散性和稳定性在体内分布上有一定的选择性一般具有缓释作用2.微粒分散系的主要性质与特点单分散体系:微粒大小完全均一的体系多分散体系:微粒大小不均一的体系微粒粒径表示方法:几何学粒径、比表面粒径、有效粒径测定方法:光学显微镜法、电子显微镜法、激光散射法、库尔特计数法、Stokes 沉降法、吸附法小于50nm 的微粒能够穿透肝脏内皮,通过毛细血管末梢通过淋巴传递进入骨髓组织静脉注射、腹腔注射0.1~0.3μm 的微粒分散体系能很快被网状内皮系统的巨噬细胞所吞噬,最终多数药物微粒浓集于肝脏和脾脏等部位7~12μm 的微粒,由于大部分不能通过肺的毛细血管,结果被肺部机械性的滤取,肺是静脉注射给药后的第一个能贮留的靶位若注射大于50μm 的微粒指肠系膜动脉、门静脉、肝动脉或肾动脉,可使微粒分别被截留在肠、肝、肾等相应部位微粒的动力学性质:布朗运动是微粒扩散的微观基础,而扩散现象又是布朗运动的宏观表现纳米体系:丁铎尔现象微粒的光学性质粗分散体系:反射光为主,不能观察到丁铎尔现象低分子的真溶液:透射光为主,不能观察到丁铎尔现象电泳微粒分散体系在药剂学中的意义微粒大小与测定方法微粒大小与体内分布微粒的电学性质微粒的双电层结构:吸附层、扩散层布朗运动重力产生的沉降:服从Stokes 定律V= 絮凝与反絮凝二、流变学基础剪切应力与剪切速度是表征体系流变性质的两个基本参数牛顿流动纯液体和多数低分子溶液在层流条件下的剪切应力S 与剪切速度D 成正比。

(完整版)药剂学第四章药物微粒分散体系

(完整版)药剂学第四章药物微粒分散体系

第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确的填A,错误的填B)1.药物微粒分散系是热力学稳定体系,动力学不稳定体系。

( )2.药物微粒分散系是动力学稳定体系,热力学不稳定体系。

( )3.药物微粒分散系是热力学不稳定体系,动力学不稳定体系。

( )4.微粒的大小与体内分布无关。

( )5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。

( )6.分子热运动产生的布朗运动和重力产生的沉降,两者降低微粒分散体系的稳定性。

( ) 7.微粒表面具有扩散双电层。

双电层的厚度越大,则相互排斥的作用力就越大,微粒就越稳定。

( )8.微粒表面具有扩散双电层。

双电层的厚度越小,则相互排斥的作用力就越大,微粒就越稳定。

( )9.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为反絮凝。

( )10.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。

( )11.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降。

( )12.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ上升。

( )13.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ降低,会出现反絮凝现象。

( )14.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降,出现絮凝状态。

加入的电解质叫絮凝剂。

( )15.絮凝剂是使微粒表面的ζ降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮凝状态的电解质。

( )16.絮凝剂是使微粒表面的ζ升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。

( )17.反絮凝剂是使微粒表面的ζ升高,使到排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确的填A,错误的填B)1.药物微粒分散系是热力学稳定体系,动力学不稳定体系。

( )2.药物微粒分散系是动力学稳定体系,热力学不稳定体系。

( )3.药物微粒分散系是热力学不稳定体系,动力学不稳定体系。

( )4.微粒的大小与体内分布无关。

( )5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。

( )6.分子热运动产生的布朗运动和重力产生的沉降,两者降低微粒分散体系的稳定性。

( ) 7.微粒表面具有扩散双电层。

双电层的厚度越大,则相互排斥的作用力就越大,微粒就越稳定。

( )8.微粒表面具有扩散双电层。

双电层的厚度越小,则相互排斥的作用力就越大,微粒就越稳定。

( )9.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为反絮凝。

( )10.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。

( )11.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降。

( )12.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ上升。

( )13.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ降低,会出现反絮凝现象。

( )14.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降,出现絮凝状态。

加入的电解质叫絮凝剂。

( )15.絮凝剂是使微粒表面的ζ降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮凝状态的电解质。

( )16.絮凝剂是使微粒表面的ζ升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。

( )17.反絮凝剂是使微粒表面的ζ升高,使到排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。

( )18.微粒的物理稳定性取决于总势能曲线上势垒的大小。

倘若势垒为零,微粒会发生聚结。

( )19.微粒的物理稳定性取决于总势能曲线上势垒的大小。

倘若有势垒存在,微粒不会发生聚结。

( )20.微粒的物理稳定性取决于总势能曲线上势垒的大小。

倘若有势垒存在,微粒会发生慢聚结。

( )21.微粒的物理稳定性取决于总势能曲线上势垒的大小。

倘若势垒为零,微粒不会发生聚结。

( )22.电解质的聚沉作用是因为压缩双电层,降低胶粒间静电斥力而致。

( )23.溶胶在热力学和动力学上都是稳定系统。

( )24.溶胶与真溶液一样是均相系统。

( )25.能产生丁达尔效应的分散系统是溶胶。

( )26.加入电解质可以使胶体稳定,加入电解质也可以使胶体聚沉;两者是矛盾的。

( ) 27.大分子溶液与溶胶一样是多相不稳定体系。

( )28.絮凝作用与聚沉作用的机理相同。

( )三、填空题1.混悬剂中的微粒粒径大多在μm之间。

2.粒子在液体介质中的沉降速度与粒子的大小密切相关,可以用Stoke's公式求算粒径,此公式为。

3.微粒分散系丁达尔(或称丁铎尔)现象的本质是。

4.微粒分散系布朗运动的本质是。

5.微粒扩散的微观基础是。

6.微粒的与相邻的共同构成微粒的双电层结构。

7.微粒分散系的稳定理论包括、、、、。

8.微粒分散系的敏化作用是指。

9.微粒大小的测定方法有、、、、、等。

10.微粒分散体系的性质包括、、、等。

11.微粒的物理稳定性表现包括微粒的、、、、等。

12.微粒分散体系的动力学稳定性主要表现在两个方面,一个是、。

13.外加电解质主要是通过、或作用方式来影响胶粒表面双电层的结构,从而影响溶胶的稳定性的。

14.溶胶聚沉时的外观标志有、、。

四、单项选择题1.根据Stocks定律,混悬微粒沉降速度与下列哪一个因素成正比?( )A.混悬微粒的半径B.混悬微粒的半径平方C.混悬微粒的粒度D.以上均不是2.下面对微粒描述正确的是:( )A.微粒粒径越大,表面张力越大,越不容易聚集B.微粒粒径越小,表面张力越小,越不容易聚集C.微粒粒径越小,表面张力越大,越容易聚集D.微粒粒径越大,表面张力越小,越容易聚集3.延缓混悬微粒沉降速度的最有效措施是:( )A.增加分散介质黏度B.减小分散相密度C.增加分散介质密度D.减小分散相粒径E.减小分散相与分散介质的密度差4.絮凝和反絮凝现象从本质上说是由于微粒的( )性质引起的A.热力学性质B.动力学性质C.电学性质D.都不是5.大于7微米的微粒能够被动靶向到( )。

A.肝脏B.脾脏C.肺D.淋巴系统6.将高分子溶液作为胶体体系来研究,因为它:( )A.是多相体系B.热力学不稳定体系C.对电解质很敏感D.粒子大小在胶体范围内7.纳米囊的直径范围为( )A.10~50微米B.10~100纳米C.30~50微米D.50~100微米E.0.1~l纳米8.微粒的双电层因重叠而产生排斥作用导致微粒分散系稳定是( )理论的核心内容。

A.空间稳定理论B.空缺稳定理论C.体积限制效应理论D.混合效应理论E.DLVO论9.ζ电位与下列哪一个因素成反比:( )A.微粒的表面电荷密度B.微粒半径C.介质的介电常数D.介质中电解质浓度E.介质的黏度10.下列哪一项对混悬液的稳定性没有影响( )A.微粒间的排斥力与吸引力B.压力的影响C.微粒的沉降D.微粒增长与晶型转变E.温度的影响11.区别溶胶与真溶液和悬浮液最简单最灵敏的方法是:( )A.乳光计测定粒子浓度B.观察丁铎尔效应C.超显微镜测定粒子大小D.观察ζ电位12.固体微粒与极性介质(如水溶液)接触后,在相之间出现双电层,所产生的电势是( ) A.滑动液与本体液之间的电势差B.固体表面与溶液主体间的电势差C.紧密层与扩散层之间的电势差D.小于热力学电位φ13.对ζ电势的阐述,正确的是:( )A.ζ电势与溶剂化层中离子浓度有关B.ζ电势在无外电场作用下也可表示出来C.ζ电势越大,溶胶越不稳定D.ζ电势越大,扩散层中反号离子越少14.根据DLVO理论,溶胶相对稳定的主要因素是:( )A.胶粒表面存在双电层结构B.胶粒和分散介质运动时产生ζ电位C.布朗运动使胶粒很难聚结D.离子氛重叠时产生的电性斥力占优势15.下面说法与DLVO理论不符的是:()A.胶粒间的斥力本质上是所有分子范德华力的总和B.胶粒间的斥力本质上是双电层的电性斥力C.胶粒周围存在离子氛,离子氛重叠越大,胶粒越不稳定D.溶胶是否稳定决定于胶粒间吸引作用和排斥作用的总效应16.胶体粒子的ζ电势是指:( )A.固体表面处与本体溶液之间的电位差B.紧密层、扩散层分界处与本体溶液之间的电位差C.扩散层处与本体溶液之间的电位差D.固液之间可以相对移动处与本体溶液之间的电位差17.在大分子溶液中加人大量的电解质,使其发生聚沉的现象称为盐析,产生盐析的主要原因是:( )A.电解质离子强烈的水化作用使大分子去水化B.降低了动电电位C.由于电解质的加人,使大分子溶液处于等电点D.动电电位的降低和去水化作用的综合效应18.溶胶的电学性质由于胶粒表面带电而产生,下列不属于电学性质的是:( )A.布朗运动B.电泳C.电渗D.沉降电势19.溶胶的聚沉速度与电动电位有关,即:( )A.电动电位愈大,聚沉愈快B.电动电位愈小,聚沉愈快C.电动电位为零,聚沉快D.电动电位愈负,聚沉愈快20.溶胶的光学性质是其高度分散性和不均匀性的反映,丁铎尔效应是最显著的表现,在下列光学现象中,它指的是:( )A.反射B.散射C.折射D.透射21.乳状液是由哪个分散体系组成?( )A.两种互不相溶的液体B.固体加液体C.两种互溶的液体D.多种互溶的液体22.Tyndall现象是发生了光的什么的结果:( )A.散射B.反射C.折射D.透射23.乳状液、悬浮液等作为胶体化学研究的对象,一般地说是因为它们:( )A.具有胶体所特有的分散性、不均匀性和聚结不稳定性B.具有胶体的分散性和不均匀性C.具有胶体的分散性和聚结不稳定性D.具有胶体的不均匀(多相)性和聚结不稳定性五、问答题1.分散体系有哪些?其范围分别是什么?2.微粒给药系统包括哪些?3.微粒分散体系给药系统的特殊性主要表现在哪些方面?4.使微粒分散体系聚沉的方法有哪些?5.影响微粒分散体系稳定性的因素有哪些?参考答案一、概念与名词解释1.分散体系是一种或几种物质高度分散在某种介质中所形成的体系。

2.即胶体质点表面因带有电荷,由于静电吸引作用,在固/液界面周围的溶液中存在着与固体表面电性相反、电荷相等的离子(形成双电层)。

由于溶液中的反离子的热运动,使得它们不能整齐地排列在固体质点附近,而是扩散地分布在质点周围。

3.微粒之间普遍存在Van der Waals吸引作用,在相互接近时又因双电层的重叠而产生排斥作用,微粒的稳定性就取决于微粒之间吸引与排斥作用的相对大小。

关于各种形状微粒之间的相互吸引能与双电层排斥能的理论称为DLVO理论。

4.微粒的物理稳定性取决于总势能曲线上势垒的大小,势垒的高度随溶液中电解质浓度的加大而降低,当电解质浓度达到某一数值时,势能曲线的最高点恰为零,势垒消失,体系由稳定转为聚沉,这就是临界聚沉状态。

二、判断题1.B 2.B 3.A 4.B 5.A 6.B 7.A 8.B9.A 10.B 11.A 12.B 13.B 14.A 15.A 16.B17.B 18.A 19.B 20.A 21.B 22.B 23.A 24.B25.B 26.B 27.B 28.B三、填空题1.0.5~102.()ηρρ92212grV-=3.微粒引起的光散射4.液体分子热运动撞击微粒的结果,是微粒扩散的微观基础5.布朗运动6.吸附层,扩散层7.絮凝和反絮凝,DLVO理论,空间稳定理论。

空缺稳定理论,微粒聚结动力学8.高分子不能完全覆盖微粒表面,使胶体对电解质的敏感性增加,促使微粒聚集下沉9.电子显微镜法,激光散射法,库尔特计数法,Stoke's沉降法,吸附法,光学显微镜法10.热力学性质,动力学性质,光学性质,电学性质11.絮凝,聚结,沉降,乳析,分层12.分子热运动产生的布朗运动,一个是重力产生的沉降13.离子交换,压缩,吸附14.颜色的改变,产生浑浊,静置后出现沉淀四、选择题(一)单项选择题1.B 2.A 3.D 4.C 5.C 6.D 7.B 8.A9.B 10.B 11.B 12.B 13.A 14.D 15.C 16.D17.D 18.A 19.C 20.B 21.A 22.A 23.D五、问答题1.分散体系及其线度范围:粗分散体系(悬浊液、乳状液),>l00nm(10-7m以上);胶体分散体系(溶胶),1~100nm(10-9~10-7m);分子与离子分散体系(真溶液),<1nm(10-9m以下)。

相关文档
最新文档