虚功(虚位移)原理复习与例题共50页
第11章 虚位移原理—习题(1~17)
第11章 虚位移原理——习题1~1711-1 图示平面机构,圆盘的半径为r ,可绕其中心轴转动,直杆BC 和BD 的长度为l 1 = 2r ,直杆AB 的长度为l 2 = 3r ,试建立图示位置圆盘的虚转角θδ与滑块C 的虚位移C r δ之间的关系。
(题11-1答案:)11-2 在图示平面机构中,O 1A = AB = r ,O 2C = 2r ,BD = 4r ,C 为杆BD 的中点,试建立图示位置杆O 1A 的虚转角1δθ与杆O 2C 的虚转角2δθ之间的关系。
(题11-2答案:)11-3 如图所示曲柄摇杆机构,已知OA = OB = l ,试建立图示位置两杆虚转角之间的关系。
(题11-3答案:)11-4 在图示平面机构中,半径为R = 2r 的四分之一细圆环BD ,其上套一套筒A ,套筒与可绕轴O 转动的直杆OA 铰接,OA 的长度为l = 3r ,试建立图示题11-1图题11-2图位置杆OA 的虚转角与点D 的虚位移之间的关系。
(题11-4答案:)11-5 在如图所示平面机构中,O 1A = O 3C = O 3D = AB = l ,在图示位置,CB = O 2B =l 332,试建立该位置A 、D 两点虚位移之间的关系。
(题11-5答案:)11-6 在图示平面机构中,ABD 为边长等于a 的正三角形平板,O 1B 、O 2D 的杆长也均为a 。
机构在图示位置时,杆OE 与水平线成60◦角,A 、D 、O 2在同一水平线上,O 1B 位于铅垂位置,且OA = a ,试求此瞬时刚体O 1B 与OE 的虚转角之间的关系。
题11-3图题11-4图题11-5图题11-6图(题11-6答案:)11-7 在图示平面四连杆机构中,在杆AB 上垂直地作用有三角形分布载荷,其最大集度为q ,在杆OA 的中点作用有水平向左的主动力F ,且F = ql ,若不计各构件自重和各接触处摩擦,为使系统在图示位置平衡,所需施加的作用于杆BC 上的主动力偶矩M 的值。
5-3虚位移原理
出现任何约束反力。
虚位移原理给出了区别质系的真实平衡位置与约
束所容许的可能平衡位置的准则或判据 。
虚位移原理可求解质系的各类平衡问题:
系统在给定位置平衡时主动力之间的关系
求系统在已知主动力作用下的平衡位置 求系统在已知主动力作用下平衡时的约束反力
解题步骤
1. 确定研究对象:整体 2. 约束分析:是否理想约束? 3. 受力分析:
作用三个力 Pi ,求平衡时 Pi 与 Si (i 1,2,3) 的关系 (设液体为不可压缩的)。
P1
P2
S2
S3
S1
Байду номын сангаас
P3
无穷多个质点组成的非刚体的平衡
解
塞i 的虚位移为 δri ,方向如图。 液体不可压缩
δr3
S δr 0
i 1 i i
3
P1
P2
1 ( S1δr1 S 2δr2 ) S3
(P 1 P 2 )δr 2 W P 1 (tan tan ) δr 3y 0
P 1 P 2
W P 1 (tan tan )
P1
δr1
1
3
δr2
2
P2
W δr3
例4
在压缩机的手轮上作用一力矩 M。手轮轴的两端各 有螺距同为 h、但螺纹方向相反的螺母 A 和 B,这两 个螺母分别与长为 a 的杆相铰接,四杆形成菱形框, 如图所示。 此菱形框的点 D固定 不动,而点C连接在 压缩机的水平压板上。 求当菱形框的顶角等 于2 时,压缩机对被 压物体的压力。
例5
已知:a, P, M; 求:约束反力NB
a
a
M A
第14章 虚位移原理_例题
弹簧原长 (600 300 )mm
弹簧后来长
(600
300 cos
)mm
弹簧缩短
(
300 cos
300 )mm
弹簧力 F
k
(
300
ቤተ መጻሕፍቲ ባይዱcos
300 )
由虚 位移原理:
M • F •ra F •rB 0 M Frr 0 0
[M
1.5(
1 cos
1)
0.3
sin cos2
0] 0
解: 对系统:建立坐标系和受力分析 解析法:
yK 6l sin yK 6l cos (1)
虚功方程:M W 6l cos 0 (2)
所以: M 6Wl cos
例6: 书14-5
当OC绕轴O摆动时,滑块A沿曲柄滑动,从而带动杆AB在导槽
内移动,不计各构 件自 重与各处摩擦。OC a,OD l
rB 2a (2)
列虚功方程:
M PrD FBxrB 0
(3)
将(1)(2)代入(3),得:
M Pa FBx 2a 0
FBx
1 M 2 a
P
(2)求B 铰的垂直约束力: 解除B 铰的垂直约束,代之以垂直力 FBy 。 杆BCD 的速度瞬心在A
rD 5a
rB 2a
M PrD
F
、F
给出力
P
、
F
处的虚位移 rD、rB
几何法: rC cos rD
C
rC cos(90 2 ) rB cos
A
θ
θ rC D F
Fθ
rB
B
由虚功原理 PrD FrB 0 0
PrC cos F 2sinrC 0 (P cos 2F sin )rC 0
理论力学-虚位移原理
第六章 虚位移原理
§6-3 虚位移·自由度
虚位移
虚位移与实位移的区别:
●与实际发生的微小位移(简称实位移)不同,虚位移是纯 粹几何概念,是假想位移,只是用来反映约束在给定瞬时的 性质。它与质点系是否实际发生运动无关,不涉及运动时间、 主动力和运动初始条件。
●虚位移仅与约束条件有关,在不破坏约束情况下,具有任 意性。而实位移是在一定时间内真正实现的位移,具有确定 的方向,它除了与约束条件有关外,还与时间、主动力以及 运动的初始条件有关。
按照约束对质点系运动限制的不同情况,可将约束分类如下:
1.完整约束和非完整约束
其约束方程的一般形式为
fj( x 1 ,y 1 ,z 1 ;..x n , .y n ;,z n ;x 1 ,y 1 ,z 1 ,..x n. ,y n ;,zn;t)0 (j1,2,...s,)
式中n为系统中质点的个数,s为约束方程的数目。
第六章 虚位移原理
§6-1 概 述
虚位移原理是质点系静力学的普遍原理,它将 给出任意质点系平衡的充要条件,这和刚体静力学 的平衡条件不同,在那里给出的刚体平衡的充要条 件,对于任意质点系的平衡来说只是必要的,但并 不是充分的(参阅刚化原理)。
第六章 虚位移原理
§6-1 概 述
非自由质点系的平衡,可以理解为主动力通过约束的 平衡。约束的作用在于:
fj(x 1 ,y 1 ,z 1 ;.x .n ,.y n ;,z n ;t) 0 (j1,2,..s.),
第六章 虚位移原理
§6-2 约束和约束方程
1. 完整约束和非完整约束
y
A
完整约束
约束方程:
x
yA r
第十四章-虚位移原理讲义
第十四章-虚位移原理讲义-CAL-FENGHAI.-(YICAI)-Company One1第十四章虚位移原理一、回顾:液压升降台如图所示,求油压举升缸筒的拉力。
本题目是物体系平衡问题。
图(a)1.取缸筒为研究对象∑M G(F)=0 求出F E2.取CG、DE+缸筒为研究对象∑M C(F)=0 求出F Dy(b)(c)23.取整体为研究对象∑M A(F)=0 求出F B4.取杆BD为研究对象∑M K(F)=0 求出F Dx(d)(e)5.取杆DE为研究对象∑M O(F)=0 求出F JH由上分析可知:(1)用静力学中求解物体系统平衡问题的方法求解,需要选取5次研究对象,列5个方程,求解过程较为复杂。
(2)运算过程中出现了4个题目并不需要求解的约束反力,称之为中间变量,消除这些约束反力,才能得到要求的量。
问题有无别的方法求解物体系统的平衡问题而这种方法又能避开求这些中间变量,简化求解过程。
二、求解物体系统的平衡问题的两种方法⑴用静力平衡方程求解----刚体静力学(几何静力学)⑵用虚位移原理求解----分析静力学3虚位移原理是应用功的概念分析系统的平衡问题,是研究静力学平衡问题的另一途径。
对于只有理想约束的物体系,由于约束力不作功,有时应用虚位移原理求解更为方便。
三、利用虚位移原理求解的平衡问题一般有如下几个特点:⑴结构特点-----结构为几何可变体系⑵待求量特点-----数目较少⑶研究对象的选取-----取整体即可求解四、基本概念几何可变体系-----约束允许系统动几何不变体系-----约束不允许系统动举例:图图如图所示,约束允许结构动,受力后可以不动,该结构为几何可变体系。
如图所示,约束不允许结构动,受力后仍然不动,该结构为几何不变体系。
对于几何不变体系,只要解除某些约束,用约束力代替约束的作用,即可将不变体系变为可变体系。
约束·虚位移·虚功一、约束及其分类4(1)概念约束——限制质点或质点系运动的条件。
理论力学2虚位移原理
7
2. 解析法 适用于完整、定常、双面约束
例:求A和B两点的虚位移
O
x
解:选1、2为系统的广义坐标,直角坐标原
点选在固定点O,则A、B坐标可表示为:
a
1 A(x1, y1)
x1 a sin1 y1 a cos1
x2 a sin1 b sin2 y2 a cos1 b cos2
y
2 b B(x2, y2)
0
m3 g
i 1
1. 分析主动力作用点的虚位移
2. 求主动力的虚功之和
14
rA
A
rC1
m1 g
M
O
rC2
m2g
rB
BF
解:
W 0
Fr M 0 m3 g B
rA rB rA rB L
FL M (FL M ) 0 0
LF M 0 M L F
15
例: 图示椭圆规机构,连杆A、B长为l,,杆重和摩擦力不计,
0
i 1
广义力及以广义力表示的质系平衡条件
k
Q jq j 0
j 1
广义力
任意点的虚位移与广义坐标虚位移的关系:
xi yi
zi W
xi
q1
yi
q1
zi
q1
n
i 1
q1
xi q2
q1
yi q2
q1
zi q2
r Fi
•
r ri
q2 q2 q2
L L L
n i 1
xi qk
r m2 g
解:根据虚位移原理
2
{Fixxi Fiyyi} 0
x1 l1 cos y1 l1 sin x2 l1 cos l2 cos y2 l1 sin l2 sin
虚功及虚功原理结构位移计算的一般公式图乘法及举例温度改资料讲解
§6-1 静定结构位移
a)验算结构的刚度;
1、计算位移有三个目的: b)为超静定结构的内力分析打基础;
§6-3 单位荷载法
(位移计算的一般公式)
t1
F2 K ΔKH
e g k t2
W 1 = 2F N 1 2 d + s F S 1 2 d + s M 1 2 ds F1
K‘
需首先虚拟力状态
Ε2γ2κ2
在欲求位移处沿所求位移方向
位移状态 2
加上相应的广义单位力F=1
( ) 1×D + R c =
柱
F
F
C
F
D
F/2
F
F/2
A
4.5F
3.0F
B
0.287l E 0.222l
G
0.25l
0.25l
2F
2F
1
C
3)求 FN 4)求ΔC
D
00
F
DC =
FNFNPl A
1.50
EA
1/2
E
1.50
G
B 1/2
材料 钢筋 混凝土
钢筋
杆件 FNP
FN F N p l
A
AD -4.74F -1.58 0.263l
Δ12
Δ22
再加F2,F2在自身引起的位移Δ22上作的功
W22=1/2F2Δ·22
F dW
O
Δ11
B F1 Δ A
理论力学15-2虚功原理N
F
x B
y
x
若用几何法分析虚位移: 几何法分析虚位移,无需 对AB 杆,δrB方向如图, 设定坐标系。 由协调关系,δyC方向如图。 两虚位移在BC杆方向投影应相等: rB cos(2 90) rC cos(90 ) rB sin 2 rC sin 两虚位移关系: rC 2rB cos 用虚功方程 (FCy视为主动力) FCy (rC ) F (rB cos(90 )) 0
2 rD rE 3
3 r2 rE 4
四) 用虚功方程 ( Fi ri ) 0 10 r1 FD (rD ) 6 r2 3(- ) 0 3rE rE rE 2rE rD r1 r2
3 3 6 4 1 2 3 1 [10 FD ( ) 6 3( )]rE 0 3 3 4 6 FD 11(kN ) ( )
四、虚位移原理应用
一) 用虚位移原理求平衡位置的主动力
基本步骤: 1. 受力分析 画出全部可作虚功的主动力; 2. 虚位移分析 1) 变分法:建坐标系,列出虚位移点的坐标, 进行变分计算,建立虚位移之间的关系。 2) 几何法:根据虚位移的协调关系及虚位移的 投影关系,建立虚位移之间的关系。 3. 使用虚位移原理:
若求B点约束反力,虚位移图?
若求A点约束反力,虚位移图?
二) 用虚位移原理求平衡时的约束反力 虚位移原理是作用于质点系上所有主动力在任 何虚位移中所作虚功之和为零。 它与约束反力无关,似乎无法求约束反力。 若用该原理求约束反力,可沿所求约束反力方 向解除相应约束,并用一假想的主动力代替。 再用虚位移原理,求出该假想施加的“主动 力”,仍可得到对应的约束反力。
第15章虚位移原理例题
已知ctgθ=2。
解:将杆BD截断,暴露出内力
F
、F
给出力
P
、
F
处的虚位移 rD、rB
几何法: rC cos rD
C
rC cos(90 2 ) rB cos
A
θ
θ rC D F Fθ
rB
B
由虚功原理 PrD FrB 0 0
PrC cos F 2sinrC 0 (P cos 2F sin )rC 0
P
rD
F P ctg P
2
FNB
P1
Hale Waihona Puke r1 rBP2rC rB
M
rB
FNB
P1
r1 rB
P2
rC rB
M
rB
M
FNB
而
r1 rB
1 2
,
rC rB
181
,
rB
rG
4
1rB
rE
6
1rB
rC
12
1rB
1 12
181
11 96
FNB
1 2
P1
11 8
P2
11 96
M
例11: 书15-15
用虚位移原理求图示桁架中杆BD的内力,
例9:三铰拱上有载荷作用力P及力偶M, 各尺寸如图,求B铰的约束力。 解:(1)求B 铰水平约束力:
解除B 铰的水平约束,代之以水平力FBx 分析主动力:M,P,FBx ,
给虚位移,求虚位移关系:
C*为刚体CDB的瞬心,
刚体CDB的虚转角也为 。 rD a (1)
rB 2a (2)
列虚功方程:
re
300
cos
13–5 卡氏定理 13–6 虚功原理
n
将杆件视为无数微段的组合,虚功为: W * dW *
L
We* Wi* V
*
F1 1 F2 2 ... lq( x) ( x)dx ... M
在小变形情况下虚功原理适用于一般可变形体。
虚功原理:在外力作用下处于平衡的梁,任意给它一 个虚位移,则外力在虚位移上所作的外力虚功等于梁 F11 F2 2 ... lq( x) ( x)dx ... M 的内力在虚变形上所作的虚变形功或内力虚功。
V n Pn
卡氏第二定理 线弹性结构的变形能对于任一独立广义外力的偏导 数等于相应于该力的广义位移 ,即卡氏第二定理
意大利工程师—阿尔伯托· 卡斯提安诺(Alberto Castigliano,
1847~1884)
二、使用卡氏定理的注意事项:
P 1 P2
①Vε——整体结构在外载作用下的线
因为虚位移是连续的两个相邻微段的公共截面因为虚位移是连续的两个相邻微段的公共截面的位移和转角是相同的但相邻微段公共截面上的位移和转角是相同的但相邻微段公共截面上的内力却大小相等方向相反作用力和反作用的内力却大小相等方向相反作用力和反作用力力故它们所作的虚功相互抵消即杆件上力力故它们所作的虚功相互抵消即杆件上所有内力所做的虚功之和为零故所有内力所做的虚功之和为零故杆件的总虚功杆件的总虚功即为外力在虚位移上所做的虚功即为外力在虚位移上所做的虚功
§13–5 卡氏定理 在线弹性范围内,外力按比例加载以及小变形条 件下,存储在弹性体内的变形能可以表示为,
n 1 1 1 1 V P 1 P2 2 Pn n Pi i 1 i 12 2 2 2
即,在上述条件下,弹性体内的变形能与外力加 载的次序(加载路径)无关。
虚功(虚位移)原理复习与例题
FAsA 2qlsE
M
sE
l
A
0
P
q
M
B
D
C
sC sE
其中
FA
sA sC 2sE
代入虚功方程,得
(FA
ql
M 2l
)sA
0
解得
FA
M 2l
ql
§5.2.3 用广义坐标表示的质点系平衡条件
xi xi (q1, q2 ,qs , t) yi yi (q1, q2,qs ,t)(i 1,2,, n)
虚位移与实位移的区别和联系
实位移——质点或质点系在其真实运动中,在一定的时间间 隔内发生的位移。
(1)在完整定常约束下,实位移是诸多虚位移中的一个; (2)在完整定常约束下,虚位移方向沿其速度方向。
dr ——实位移 r ——虚位移
M dre
dr
r
M1
2. 虚 功
质点或质点系所受的力在虚位移上所作的功——虚功。
自 由 度 —— 在完整约束条件下,确定质点系位置的独立参变 量的数目等于系统的自由度数。
N=3n—s
对于稳定的完整约束,各质点的坐标可以写成广义坐标的 函数形式
xi xi (q1, q2 ,qk , t) yi yi (q1, q2,qk ,t)(i 1,2,, n) zi zi (q1, q2 ,qk , t)
2l
P
q
M
BC
sE
D
sD
FD
(2) 解除B处约束,代之以反力
P
q
M
FB ,并将其视为主动力。
A
D
BC
由虚功方程,得
sB sC sE
PsB FBsB
14.虚位移原理
O l
αA l
β
B
x
3. 混合法:
y xA lcos xA l sin yA l sin yA l cos xB l(cos cos )
P xB l sin l sin yB l(sin sin ) yB l cos l cos
例三. 曲柄滑块机构如图. 试用φ 角的变分表示B、C 点的虚位移.
i1
i1
对于理想约束:
n
F Ni ri 0
i1
n
F i ri 0
i1
( 充分性从略 )
◆:两种常 用的形式:
(1)矢量式
F i
ri
0
(几何法用)
(2) 直角坐标式 ( Fix xi Fiy yi Fiz zi ) 0 (解析法用)
例一. 图示螺旋压榨机. 其手柄上作用一水平面内的力偶, 其矩为2Fl . 设螺杆的螺距为h, 求平衡时作用于被压榨物体上的力. 解: 取系统分析, 设手柄顺力偶的方向
FDx
M b
3Fa b
FDx
M
D xD
将D 处的固定铰支座代之以
yC yB
活动铰支座及铅垂力FDY.
a
a
a
F 给D 处以铅垂虚位移yD, 相
应各处的虚位移如图示
A
C
B
DC 杆呈‘ 瞬时平动’.
b yD
M
D
FDy
yD yC
yB
3 2
yC
由虚位移原理:
FDy yD F yB 0
3 FDy yD F 2 yC 0
re rB sin2
OB
h
由虚位移原理: Msin2 h
F
虚功原理例题
虚功原理例题虚功原理是力学中的一个重要原理,它在解决静力学和动力学问题中有着广泛的应用。
虚功原理的核心思想是系统受力平衡时,任何虚位移所做的功都为零。
通过虚功原理,我们可以简化和系统化力学问题的求解过程,使得复杂的力学问题变得更加清晰和易于理解。
下面,我们通过几个例题来深入理解虚功原理的应用。
例题一:如图所示,质量为m的物体通过绳子和光滑的滑轮与墙面连接,滑轮的质量可以忽略不计。
求当物体下降h时,绳子所做的功。
解析:根据虚功原理,我们可以假设物体下降了Δh的虚位移,此时绳子所做的虚功可以表示为W=mgΔh。
由于绳子是光滑的,所以滑轮对绳子所做的虚功为零。
根据虚功原理,物体所受的重力和绳子的拉力平衡,因此绳子所做的虚功也为零。
所以绳子所做的功为零。
例题二:一个质量为m的物体放在倾角为θ的光滑斜面上,斜面的长度为L。
求当物体下降h时,重力对斜面所做的功。
解析:当物体下降h时,我们可以假设斜面上升Δh的虚位移,此时重力对斜面所做的虚功可以表示为W=mgΔh。
根据虚功原理,斜面对物体的支持力与物体下降的高度有关,所以斜面对物体所做的虚功也不为零。
根据几何关系,斜面对物体所做的功可以表示为W=mgLsinθ。
因此,重力对斜面所做的功为W=mgLsinθ。
例题三:一个质量为m的物体通过绳子与墙面连接,绳子的另一端连接着一个质量为M的物体。
求当物体下降h时,绳子对墙面的拉力所做的功。
解析:当物体下降h时,我们可以假设绳子下降Δh的虚位移,此时绳子对墙面的拉力所做的虚功可以表示为W=TΔh。
根据虚功原理,绳子对墙面的拉力与物体下降的高度有关,所以绳子对墙面的拉力所做的虚功不为零。
因此,绳子对墙面的拉力所做的功为W=Th。
通过以上例题的分析,我们可以看到虚功原理在力学问题中的重要作用。
它不仅可以简化问题的求解过程,还可以帮助我们更加深入地理解力学问题背后的物理本质。
希望通过这些例题的讲解,能够对虚功原理有一个更加清晰的认识。
虚位移原理习题解答
7-1. 在图示机构中,曲柄OA 上作用一力偶,其矩为M ,另在滑块D 上作用水平力F 。
机构尺寸如图所示。
求当机构平衡时,力F 与力偶矩M 的关系。
解 设OA 杆虚位移为δϕ,则A 、B 、C 、D 各点虚位移如图,θδθδθδθδδϕδcos 2cos cos 2cos D B A B A r r r r a r ===由上述各式和虚功方程0=+-D r F M δδϕ解出θ2tan Fa M =7-2. 图示桁架中,已知AD=DB=6m ,CD=3m ,节点D 处载荷为P 。
试用虚位移原理求杆3的内力。
解 B 、C 、D 各点虚位移如图所示,θδδθδθδcos ,2sin cos C D c B r r r r ==代入虚功方程 03=-B D r F r P δδ解得杆3的内力 P PF ==θcot 23 7-3. 组合梁由铰链C 铰接AC 和CE 而成,载荷分布如图所示。
已知跨度l=8m ,P=4900N ,均布力q=2450N/m ,力偶矩M=4900N ⋅m ;求支座反力。
N 2450N 14700N 2450==-=E B A F F F ,,7-4 组合梁由水平梁AC 、CD 组成,如图所。
已知:F 1= 20kN ,F 2 = 12kN ,q = 4kN/m ,M = 2kN ·m 。
不计梁自重,试求:固定端A 和支座B 处的约束力。
组合梁由水平梁AC 、CD 组成,如图12-16a 所。
已知:F 1= 20kN ,F 2 = 12kN ,q = 4kN/m ,M = 2kN ·m 。
不计梁自重,试求:固定端A 和支座B 处的约束力。
(a)(b)2 222(d )(e)图12-16 例题12-5图解:组合梁为静定结构,其自由度为零,不可能发生虚位移。
为能应用虚位移原理确定A 、B 二处的约束力,可逐次解除一个约束,代之以作用力,使系统具有一个自由度,并解除约束处的正应力视为主动力;分析系统各主动力作用点的虚位移以及相应的虚功,应用虚位移原理建立求解约束力的方程。
虚位移原理
§14-1 约束,虚位移和虚功
一 定义
约束: 限制质点或质点系位置和运动的条件 约束方程: 限制条件的数学方程
二 约束分类
3
1, 几何约束和运动约束 限制质点或质点系在空间的几何位置 的条件称为几何约束。
f (x, y, z) 0 x2 y2 l2 0
4
x
2 A
y
2 A
r2
xB x A yB yA 2 l 2
第十四章 虚位移原理 (静力学问题)
§14-1 约束,虚位移和虚功 §14-2 虚位移原理
1,学会给机构虚位移
2,学会求虚功
(几何法和解析法)
3,学会虚位移原理解题
1
在第一篇静力学中,我们从静力学公理出发,通过力系 的简化,得出刚体的平衡条件,用来研究刚体及刚体系统的 平衡问题。在这一章里,我们将介绍普遍适用于研究任意质 点系的平衡问题的一个原理,它从位移和功的概念出发,得 出任意质点系的平衡条件。该原理叫做虚位移原理。它是研 究平衡问题的最一般的原理,不仅如此,将它与达朗伯原理 相结合,就可得到一个解答动力学问题的动力学普遍方程。
直接求出主动力,而不必计算约束力,为人类 节省多少华年,增添巨大方便。 力学之金律
对具有不理想约束的质点系,将不理想约束
解除,使之成为具有理想约束的质点系,将不
理想约束力视为主动力,又可应用虚位移原理。 多么辩证!
将约束解除,代之相应的约束反力,并视 为主动力,又可求出约束力。多么灵活!
23
解题类型
D P
θ
l
B
l
51
据虚位移原理
→rA Mo
A
M
rA
a
PrD
0
虚位移关系