2019届云南省红河州开远市中考数学一模试卷((有答案))最新
2016-2019年云南省红河州开远市中考数学一模试卷
2018年云南省红河州开远市中考数学一模试卷一、填空题:本大题共6小题,每小题3分,满分18分.1. −8的相反数是________.2. 分解因式:x 2−1=________.3. 半径为2的圆中,60∘的圆心角所对的弧的弧长为________.4. 某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x >0),十二月份的快递件数为y 万件,那么y 关于x 的函数解析式是________.5. 若一个几何体的三视图相同,则这个几何体是________.(填一个即可)6. 如图,正比例函数y 1=x 的图象与反比例函数y 2=kx (k ≠0)的图象相交于A 、B 两点,点A 的纵坐标为2.当y 1>y 2时,自变量x 的取值范围是________二、选择题:本大题共8小题,每小题4分,满分32分,每小题只有一个选项符合题目要求.贯彻落实党和政府扶贫开发方针、政策,负责组织实施和监督扶贫开发项目建设,开远市扶贫办2018年财政拨款收支总预算21800900元.将21800900用科学记数法表示为( ) A.0.218009×108 B.2.18009×108 C.2.18009×107 D.21.8009×106下列计算正确的是( ) A.a 7÷a =a 6 B.a 5+a 5=a 10 C.a 3⋅a 2=a 6 D.(−a 3)2=−a 6不等式组{2−x >1,x+52≥1, 中,不等式①和②的解集在数轴上表示正确的是( )A.B.C.D.如图,把一张三角形纸片ABC 沿中位线DE 剪开后,在平面上将△ADE 绕着点E 顺时针旋转180∘,点D 到了点F 的位置,则S △ADE :S BCFD 是( )A.1:3B.1:4C.1:1D.1:2如图,在△ABC 中,AB =AC ,∠A =30∘,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A.45∘B.30∘C.75∘D.50∘赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是( )A.1.4,1.3B.1.2,1.3C.1.4,1.35D.1.3,1.3“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD 垂足为E ,CE =1寸,AB =10寸,求直径CD 的长”,依题意,CD 长为( )A.13寸B.12寸C.24寸D.26寸如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为()A.115∘B.105∘C.135∘D.125∘三、解答题:本大题共9小题,满分70分,解答应写出文字说明,证明过程或演算步骤.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≅△DEF.先化简,再求值:1a+1−a+1a2−2a+1÷a+1a−1,其中a=√2.为了绿化环境,某班同学都积极参加植树活动,该班同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:(1)该班共有多少名同学?(2)条形统计图中,求m和n的值;(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?小云玩抽卡片和旋转盘游戏,有两张正面分别标有数字1,2的不透明卡片,背面完全相同;转盘被平均分成3个相等的扇形,并分别标有数字−1,3,4(如图所示),小云把卡片背面朝上洗匀后从中随机抽出一张,记下卡片上的数字;然后转动转盘,转盘停止后,记下指针所在区域的数字(若指针在分格线上,则重转一次,直到指针指向某一区域为止).(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之积为负数的概率.如图,菱形ABCD的对角线AC与BD相交于点O,且BE // AC,CE // BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4√10,tanα=12,求四边形OBEC的面积.如图,在平面直角坐标系xOy中,直线BC与抛物线y=x2+bx+c交于点B(3, 0)和点C(0, 3),抛物线y=x2+bx+c过点B、C且与x轴的另一个交点为A.(1)求直线BC及该抛物线的表达式;(2)设该抛物线的顶点为D,求△DBC的面积.某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店每天的纯收入.(1)若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的纯收入不少于800元,则每份套餐的售价应不低于多少元?(2)该店把每份套餐的售价提高到10元以上,每天的纯收入能否达到1560元?若不能,请说明理由;若能,求出每份套餐的售价应定为多少元时,既能保证纯收入又能吸引顾客?如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30∘,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD // AB时,求PD的长;AB,连结DE.(2)如图3,当DC⌢=AC⌢时,延长AB至点E,使BE=12①求证:DE是⊙O的切线;②求PC的长.参考答案与试题解析2018年云南省红河州开远市中考数学一模试卷一、填空题:本大题共6小题,每小题3分,满分18分.1.【答案】此题暂无答案【考点】相反数【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】因式分解水都用公式法【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】弧因斯计算【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】根据于际问械列否次函这关系式【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】由三视正活断几何体【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】反比于函数偏压史函数的综合【解析】此题暂无解析【解答】此题暂无解答二、选择题:本大题共8小题,每小题4分,满分32分,每小题只有一个选项符合题目要求.【答案】此题暂无答案【考点】科学较盛法含-表项较大的数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】同底射空的除法同底水水的乘法幂的乘表与型的乘方合较溴类项【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】解一元表次镜等式组在数较溴表示总等线的解集【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】图验把剪拼【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】等腰三验库的性质线段垂直来分线慢性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】条都连计图中位数众数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】勾体定展垂径水正的应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】相似三来形的循质【解析】此题暂无解析【解答】此题暂无解答三、解答题:本大题共9小题,满分70分,解答应写出文字说明,证明过程或演算步骤.【答案】此题暂无答案【考点】全等三表形木判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】分式因化简优值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】扇表统病图条都连计图【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一元一表方型的应片——解程进度问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】列表法三树状图州【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】菱都资性质矩根的惯定解直于三角姆【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】待定正数键求一程植数解析式二次明数织性质二次常数图见合点的岸标特征待定水体硫故二次函数解析式抛物线明x稀的交点【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一元二较方程轻应用一元都次特等水的实常应用一次水根的应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】圆因归合题【解析】此题暂无解析【解答】此题暂无解答。
红河哈尼族彝族自治州中考数学一模试卷
红河哈尼族彝族自治州中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)把7﹣(﹣3)+(﹣5)﹣(+2)写成省略加号和的形式为()A . 7+3﹣5﹣2B . 7﹣3﹣5﹣2C . 7+3+5﹣2D . 7+3﹣5+22. (2分)下列说法错误的是()A . 如果m>n,那么-m<-nB . 如果-a是正数,那么a是负数C . 如果x是大于1的数,那么-x是小于-1的数D . 一个数的相反数不是正数就是负数3. (2分)函数中自变量x的取值范围是()A . x≥﹣3B . x≥3C . x≥0且x≠1D . x≥﹣3且x≠14. (2分)将一元二次方程2(x﹣3)=x2+x﹣1化成一般形式后,一次项系数和常数项分别为()A . 1,﹣4B . ﹣1,5C . ﹣1,﹣5D . 1,﹣65. (2分)(2017·都匀模拟) 下列图形既是轴对称图形又是中心对称图形的是()A .B .C .D .6. (2分)如图,吸管与易拉罐上部的夹角∠1=60°,则∠2的度数是()A . 50°B . 60°C . 70°D . 80°7. (2分)如图,在Rt△ABC中,CD是斜边AB的中线,已知CD=2,AC=3,则sinB的值是()。
A .B .C .D .8. (2分) (2015八上·福田期末) 方程组的解是()A .B .C .D .9. (2分)如图,已知是的角平分线,是的垂直平分线,,,则的长为()A . 6B . 5C . 4D .10. (2分) (2017九上·杭州月考) 已知抛物线y=ax2+bx+c的顶点为(-3,-6),有以下结论:①当a>0时,b2>4ac;②当a>0时,ax2+bx+c≥-6;③若点(-2,m) ,(-5,n) 在抛物线上,则m<n;④若关于 x 的一元二次方程ax2+bx+c=-4的一根为-5,则另一根为-1.其中正确的是()A . ①②B . ①③C . ②③④D . ①②④二、填空题 (共7题;共7分)11. (1分) (2016八下·余干期中) 观察下列各式: =2 , =3 , =4 ,…请你找出其中规律,并将第n(n≥1)个等式写出来________.12. (1分)分解因式:m2﹣10m=________13. (1分) 2元的人民币x张,5元的人民币y张,共120元,这个关系用方程可以表示为________14. (1分)(2017·和平模拟) 如果反比例函数y= (a为常数)的图象,在每一个象限内,y随x的增大而减小,写出一个符合条件的a的值为________.15. (1分)在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩________.16. (1分) (2019八上·椒江期中) 已知:如图,△ABC是等边三角形,延长AC到E,C为线段AE上的一动点(不与点A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE 与CD交于点Q,连接PQ,OC.以下五个结论:①AD=BE;②AP=BO;③PQ//AE;④∠AOB=60°;⑤OC平分∠AOE;结论正确的有________(把你认为正确的序号都填上)17. (1分) (2019七上·施秉月考) 观察下列多项式:,,,,…按此规律,则可以得到第个多项式是________.三、综合题 (共9题;共47分)19. (5分)计算:(1)(8985+10023﹣7932)0;(2)(﹣3)2×(﹣3)0+(﹣3)﹣2×(﹣3)2;(3)(1.1×10﹣6)(1.2×107).20. (5分)(2018·乌鲁木齐模拟) 先化简,再求值:,其中a=21. (2分)(2016·广元) 某班数学课外活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度i=1:2,且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测倾器的高度忽略不计,结果保留根号)22. (10分)(2017·鄞州模拟) 将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x <10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.23. (10分)(2017·杭州) 在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.24. (2分)(2018·遵义模拟) 已知,AB是⊙O的直径,点C、D是半⊙O 的三等分点(如图1),(1)求证:四边形OBCD是菱形.(2)直线PD切⊙O于D,交直径BA的延长线于P,若切线长PD的长为3,求菱形的面积.25. (6分) (2018九上·西湖期末) 已知两个函数:y1=ax+4,y2=a(x﹣)(x﹣4)(a≠0).(1)求证:y1的图象经过点M(0,4);(2)当a>0,﹣2≤x≤2时,若y=y2﹣y1的最大值为4,求a的值;(3)当a>0,x<2时,比较函数值y1与y2的大小.26. (2分)(2020·拉萨模拟) 如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与y 轴交于点A(0,6),与x轴交于点B(﹣2,0),C(6,0).(1)直接写出抛物线的解析式及其对称轴;(2)如图2,连接AB,AC,设点P(m,n)是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点P 作PD⊥AC于点E,交x轴于点D,过点P作PG∥AB交AC于点F,交x轴于点G.设线段DG的长为d,求d与m的函数关系式,并注明m的取值范围;(3)在(2)的条件下,若△PDG的面积为,①求点P的坐标;②设M为直线AP上一动点,连接OM交直线AC于点S,则点M在运动过程中,在抛物线上是否存在点R,使得△ARS为等腰直角三角形?若存在,请直接写出点M及其对应的点R的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、综合题 (共9题;共47分)19-1、19-2、19-3、20-1、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
2019年云南省中考数学模拟试卷(一) 含答案
2019年云南省中考数学模拟试卷(一)一、填空题(本大题共6小题,每小题3分,满分18分) 1.|﹣2|的相反数是 . 2.在函数y=中,自变量x 的取值范围是.3.若x、y 为实数,且|x+3|+=0,则的值为 .4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 (只需添加一个即可)5.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 .6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分) 7.一个数用科学记数法表示为2.37×105,则这个数是( ) A .237 B .2370 C .23700 D .2370008.下列运算正确的是( ) A .3a+2a=5a 2B .3﹣3=C .2a 2•a 2=2a 6D .60=09.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是( ) A .2B .3C .4D .510.在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B (1,1),将线段AB 平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B ′的坐标为( ) A .(4,3) B .(3,4) C .(﹣1,﹣2) D .(﹣2,﹣1) 11.下面空心圆柱形物体的左视图是( )2019x y ()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分) 1.|﹣2|的相反数是 ﹣2 . 【考点】15:绝对值;14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答. 【解答】解:|﹣2|的相反数是-2, 故答案为:﹣2.2.在函数y=中,自变量x 的取值范围是 x≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x ﹣1≥0,解不等式可求x 的范围. 【解答】解:根据题意得:x ﹣1≥0, 解得:x ≥1. 故答案为:x ≥1.3.若x 、y 为实数,且|x+3|+=0,则的值为 ﹣1 .【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值. 【分析】首先根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解. 【解答】解:根据题意得:x+3=0,且y ﹣3=0, 解得x=﹣3,y=3. 则原式=﹣1. 故答案是:﹣1.4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 ∠ABC=90° (只需添加一个即可)【考点】LF :正方形的判定;L5:平行四边形的性质.【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可. 【解答】解:条件为∠ABC=90°,理由是:∵平行四边形ABCD 的对角线互相垂直, ∴四边形ABCD 是菱形,2019x y ()∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】1E:有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a 时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC ≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;频数频率故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.。
2019年云南省红河州中考数学模拟试卷及答案(word解析版)
云南省红河州2019年中考数学模拟试卷一、选择题(本大题共7个小题,每小题3分,共21分)1.(3分)(2019•红河州模拟)下列运算正确的是()A.(a3)2=a5B.a3+a2=a5C.(a3﹣a)÷a=a2D.a3÷a3=1考点:整式的混合运算分析:A、利用幂的乘方法则即可判定;B、利用同类项的定义即可判定;C、利用多项式除以单项式的法则计算即可判定;D、利用同底数的幂的除法法则计算即可.解答:解:A、(a3)2=a6,故错误;B、∵a3和a2不是同类项,∴a3+a2≠a5,故错误;C、(a3﹣a)÷a=a2﹣,故错误;D、a3÷a3=a0=1,正确.故选D.点评:此题主要考查了整式的运算,对于相关的法则和定义一定要熟练.2.(3分)(2019•红河州模拟)今年是我云南省实施新课改后的首次高考,报名总人数达21万人,是全省高考报名持续10年增长后首次下降,21万用科学记数法表示这个数,结果正确的是()A.2.1×104B.2.1×105C.21×104D.2.1×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将21万用科学记数法表示为2.1×105.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2019•红河州模拟)下列图形中,既是轴对称图形又是中心对称图形的共有()A.1个B.2个C.3个D.4个考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:各图形中:(1)不是轴对称图形,是中心对称图形,不符合题意;(2)是轴对称图形,不是中心对称图形,不符合题意;(3)既是轴对称图形,也是中心对称图形,符合题意;(4)既是轴对称图形,又是中心对称图形,符合题意.故既是轴对称图形又是中心对称图形的共有2个.故选B.点评:考查了中心对称图形与轴对称图形的概念.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.4.(3分)(2019•红河州模拟)如图,几何体左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看易得第一层有2个正方形,第二层左边有一个正方形.故选A.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.(3分)(2019•红河州模拟)如图,AB为⊙O直径,CD为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A.70°B.35°C.30°D.20°考点:圆周角定理;垂径定理.分析:由于直径AB⊥CD,由垂径定理知B是的中点,进而可根据等弧所对的圆心角和圆周角的数量关系求得∠A的度数.解答:解:∵直径AB⊥CD,∴B是的中点;∴∠A=∠BOC=35°;故选B.点评:此题主要考查的是垂径定理和圆周角定理的综合应用,理解等弧所对的圆周角是圆心角的一半是解决问题的关键.6.(3分)(2019•红河州模拟)某校九年级8位同学一分钟跳绳的次数如下:168,164,183,168,150,172,176,185,则由这组数据得到的下列结论中错误的是()A.中位数为159 B.众数为168 C.极差为35 D.平均数为170.75考点:极差;算术平均数;中位数;众数.分析:将数据从小到大重新排列,由中位数、众数、极差及平均数的定义进行各选项的判断即可.解答:解:将数据从小到大排列为:150,164,168,168,172,176,183,185,A、中位数为=170,结论错误,故本选项正确;B、众数为168,结论正确,故本选项错误;C、极差=185﹣150=35,结论正确,故本选项错误;D、平均数为170.75,结论正确,故本选项错误;故选A.点评:本题考查了中位数、众数、极差及平均数的知识,属于基础题,掌握各自的定义是关键.7.(3分)(2019•红河州模拟)某县为发展教育事业,加强了对教育经费的投入,2008年投入3 000万元,预计2010年投入5 000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000(1+x)2=5000 B.3000x2=5000C.3000(1+x%)2=5000 D.3000(1+x)+3000(1+x)2=5000考点:由实际问题抽象出一元二次方程.专题:增长率问题;压轴题.分析:增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果教育经费的年平均增长率为x,根据2008年投入3 000万元,预计2010年投入5 000万元即可得出方程.解答:解:设教育经费的年平均增长率为x,则2009的教育经费为:3000×(1+x)2010的教育经费为:3000×(1+x)2.那么可得方程:3000×(1+x)2=5000故选A.点评:本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.二、填空题(本大题共7个小题,每小题3分,共21分)8.(3分)(2019•红河州模拟)﹣100的倒数是﹣.考点:倒数.专题:计算题.分析:直接根据倒数的定义求解.解答:解:﹣100的倒数为﹣.故答案为﹣.点评:本题考查了倒数的定义:a(a≠0)的倒数为.9.(3分)(2019•红河州模拟)不等式组的解集为x<﹣3.考点:解一元一次不等式组.分析:求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.解答:解:,∵解不等式①得:x≤﹣2,解不等式②得:x<﹣3,∴不等式组的解集是x<﹣3,故答案为x<﹣3.点评:本题考查了解一元一次不等式和解一元一次不等式组,注意:解不等式的规律是同大取大,同小取小,大大小小解不了,小大大小取中间.10.(3分)(2019•红河州模拟)函数y=中,自变量x的取值范围是x>1.考点:函数自变量的取值范围.专题:函数思想.分析:从两个角度考虑:分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.解答:解:根据题意得到:x﹣1>0,解得x>1.故答案为:x>1.点评:本题考查了函数式有意义的x的取值范围.判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.11.(3分)(2019•红河州模拟)已知扇形的面积为12π,半径等于6,则它的圆心角等于120度.考点:扇形面积的计算.专题:压轴题.分析:根据扇形的面积公式S=,得n=.解答:解:根据扇形的面积公式,得n===120°.点评:此题主要是能够灵活运用扇形的面积公式.12.(3分)(2019•红河州模拟)已知关于x的方程2x2﹣mx﹣6=0的一个根2,则m=1,另一个根为﹣.考点:一元二次方程的解.分析:根据一元二次方程的解的定义,将x=2代入已知方程,列出关于m的新方程,通过解该方程即可求得m的值;然后由根与系数的关系即可求得原方程的另一根.解答:解:设方程的另一根为x2.∵关于x的方程2x2﹣mx﹣6=0的一个根2,∴x=2满足该方程,∴2×22﹣2m﹣6=0,解得,m=1;由韦达定理知,2x2=﹣3,解得,x2=﹣;故答案是:1;﹣.点评:本题主要考查了方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.13.(3分)(2019•红河州模拟)如图,在△ABC中,若DE∥BC,=,DE=4cm,则BC的长为12cm.考点:平行线分线段成比例.专题:计算题.分析:因为DE∥BC,可利用平行线分线段成比例定理求出BC的长.解答:解:∵DE∥BC,∴=,又∵=,∴,∴=,∴BC=12cm.故答案为12cm.点评:本题考查了平行线分线段成比例定理,找出图中的比例关系是解题的关键.14.(3分)(2019•红河州模拟)计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳计算结果中的个位数字的规律,猜测32009+1的个位数字是4.考点:尾数特征.分析:通过观察可发现个位数字的规律为4、0、8、2依次循环,再计算即可得出答案.解答:解:∵2009÷4=502…1,∴32009+1的个位数字与31+1=4的个位数字相同,为4.故答案为:4.点评:考查了尾数特征,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三、解答题(本大题共9个小题,共58分)15.(5分)(2019•红河州模拟)先化简,再求值:,再选择一个使原式有意义的x代入求值.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=×=2x+8当x=1时,原式=2×1+8=10.点评:本题考查的是分式的化简求值,在选取x的值时要保证分式有意义.16.(6分)(2019•红河州模拟)如图,四边形ABCD中,AD∥BC,AF=CE,BE⊥AC于E,DF⊥AC于F.试判断DC与AB的位置关系,并说明理由.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:探究型.分析:根据ASA证△DFA≌△BEC,推出AD=BC,根据平行四边形的判定得出四边形ABCD 是平行四边形,根据平行四边形的性质推出即可.解答:解:DC∥AB,理由如下:∵AD∥BC,∴∠DAF=∠BCE,又∵BE⊥AC,DF⊥AC,∴∠DFA=∠BEC=90°,在△DFA和△BEC中∵,∴△DFA≌△BEC(ASA),∴AD=BC,∵AD∥BC∴四边形ABCD是平行四边形,∴DC∥AB.点评:本题考查了平行四边形的性质和判定和全等三角形的性质和判定的应用,关键是推出四边形ABCD是平行四边形,题目比较好,也可证△DFC≌△BEA,推出∠DCF=∠BAC,根据平行线的判定推出平行.17.(6分)(2019•红河州模拟)某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A的仰角为45°,再往摩天轮的方向前进50米至D处,测得最高点A的仰角为60°.则该兴趣小组测得的摩天轮的高度AB约是多少米?(结果精确到1米)(参考数据:,)考点:解直角三角形的应用-仰角俯角问题.分析:分别在Rt△ABD和Rt△ABC中,用AB表示出BC、BD的长,进而由CD=BC﹣BD=50求出AB的长.解答:解:在Rt△ABC中,由∠C=45°,得AB=BC,在Rt△ABD中,tan60°=,得BD===AB,又因为CD=50,即BC﹣BD=50,得AB﹣AB=50,解得:AB≈118.答:摩天轮的高度AB约是118米.点评:此题主要考查了仰角与俯角的问题,利用两个直角三角形拥有公共直角边,能够合理的运用这条公共边是解答此题的关键.18.(6分)(2019•红河州模拟)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有50人,抽测成绩的众数是5次;(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?考点:条形统计图;用样本估计总体;扇形统计图;众数.专题:压轴题;图表型.分析:(1)用4次的人数除以所占百分比即可得到总人数,人数最多的次数即为该组数据的众数;(2)用总人数减去其他各组的人数即可得到成绩为5次的人数;(3)用总人数乘以达标率即可得到达标人数.解答:解:(1)从条形统计图和扇形统计图可知,达到4次的占总人数的20%,∴总人数为:10÷20%=50人,众数为5次;(2)如图.(3)∵被调查的50人中有36人达标,∴350名九年级男生中估计有350×=252人.点评:题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(6分)(2019•红河州模拟)如图,一转盘被等分成三个扇形,上面分别标有﹣1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形>.(1)若小静转动转盘一次,求得到负数的概率;(2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.用列表法(或画树状图)求两人“不谋而合”的概率.考点:列表法与树状图法.专题:计算题.分析:(1)由转盘被等分成三个扇形,上面分别标有﹣1,1,2,利用概率公式即可求得小静转动转盘一次,得到负数的概率;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.解答:解:(1)∵转盘被等分成三个扇形,上面分别标有﹣1,1,2,∴小静转动转盘一次,得到负数的概率为:;(2)列表得:﹣1 1 2小静小宇﹣1 (﹣1,﹣1)(﹣1,1)(﹣1,2)1 (1,﹣1)(1,1)(1,2)2 (2,﹣1)(2,1)(2,2)∴一共有9种等可能的结果,两人得到的数相同的有3种情况,∴两人“不谋而合”的概率为=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(6分)(2019•红河州模拟)如图,已知一次函数y=kx+b的图象和反比例函数的图象相交于A(3,m),B(n,﹣3)两点.(1)求此一次函数的解析式;(2)求△OAB的面积.考点:反比例函数与一次函数的交点问题.分析:(1)把点A、B的坐标代入反比例函数解析式求出m、n的值,从而得到点A、B,然后利用待定系数法求一次函数解析式解答;(2)根据一次函数解析式求出OC的长,再根据△OAB的面积=△OCB的面积+△OAC的面积列式计算即可得解.解答:解:(1)将A(3,m),B(n,﹣3)两点代入反比例函数得,m=1,n=﹣1,所以,A(3,1),B(﹣1,﹣3),又∵一次函数y=kx+b的图象过A(3,1),B(﹣1,﹣3)两点,∴,解得,所以,一次函数的解析式是y=x﹣2;(2)令x=0,则y=﹣2,∴点C的坐标为(0,﹣2),∴OC=2,△OAB的面积=△OCB的面积+△OAC的面积=×2×1+×2×3=4.点评:本题考查了反比例函数与一次函数的交点问题,比较简单,利用反比例函数解析式求出点A、B的坐标是解题的关键.21.(6分)(2019•红河州模拟)如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B 的坐标为(﹣2,1).(1)画出△ABC绕C点顺时针旋转90°的△A1B1C1并写出A1点的坐标.(2)以原点O为位似中心,位似比为2,在第二象限内作△ABC的位似图形△A2B2C2,并写出C2的坐标.考点:作图-位似变换;作图-旋转变换.分析:(1)根据△ABC绕C点顺时针旋转90°的△A1B1C1,得出各对应点的坐标即可得出答案;(2)根据位似图形的性质得出对应点位置即可得出答案.解答:解:(1)如图所示:A1(﹣2,5);(2)如图所示:C1(﹣2,4).点评:此题主要考查了位似图形的画法以及图形的旋转变换,根据已知得出对应点位置是解题关键.22.(8分)(2019•红河州模拟)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地1800元/台1600元/台B地1600元/台1200元/台(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y (元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.考点:一次函数的应用;一元一次不等式的应用.分析:(1)派往A地x台乙型联合收割机,那么派往B地(30﹣x)台,派往A地的(30﹣x)台甲型收割机,派往B地(20﹣30+x)台,可得y=(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200,10≤x≤30.(2)根据题意可列不等式(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200≥79600,解出x看有几种方案.解答:解:(1)y=(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200=200x+74000,10≤x≤30;(2)200x+74000≥79600,解得x≥28,三种方案,依次为x=28,29,30的情况(13分)①当x=28时,派往A地28台乙型联合收割机,那么派往B地2台乙,派往A地的2台甲型收割机,派往B地18台甲.②当x=29时,派往A地29台乙型联合收割机,那么派往B地1台乙,派往A地的1台甲型收割机,派往B地19台甲.③当x=30时,派往A地30台乙型联合收割机,那么派往B地0台乙,派往A地的0台甲型收割机,派往B地20台甲.点评:本题考查的是用一次函数解决实际问题,根据题意列出函数式以及根据题意列出不等式结合自变量的取值范围确定方案.23.(9分)(2019•红河州模拟)如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒).(1)当t=1时,得到P1、Q1两点,求经过A、P1、Q1三点的抛物线解析式及对称轴l;(2)当t为何值时,直线PQ与⊙C相切并写出此时点P和点Q的坐标;(3)在(2)的条件下,抛物线对称轴l上存在一点N,使NP+NQ最小,求出点N的坐标并说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)先求出t=1时,AP和OQ的长,即可求得P1,Q1的坐标,然后用待定系数法即可得出抛物线的解析式.进而可求出对称轴l的解析式.(2)当直线PQ与圆C相切时,连接CP,CQ则有Rt△CMP∽Rt△QMC(M为PG 与圆的切点),因此可设当t=a秒时,PQ与圆相切,然后用a表示出AP,OQ的长即PM,QM的长(切线长定理).由此可求出a的值.(3)本题的关键是确定N的位置,先找出与P点关于直线l对称的点P′的坐标,连接P′Q,那么P′Q与直线l的交点即为所求的N点,可先求出直线P′Q的解析式,进而可求出N点的坐标.解答:解:(1)由题意得A、P1、Q1的坐标分别为A(0,8)、P1(1,8)、Q1(4,0)(1分)设所求抛物线解析式为y=ax2+bx+c则∴a=﹣,b=,c=8∴所求抛物线为y=﹣x2++8对称轴为直线l:x=;(2)设t=a时,PQ与⊙C相切于点M连接CP、CM、CQ,则PA=PM=a,QO=QM=4a又∵CP、CQ分别平分∠APQ和∠OQP,而∠APQ+∠OQP=180°∴∠PCQ=90°∴PC⊥CQ∴Rt△CMP∽Rt△QMC∴即∴a=±2由于时间a只能取正数,所以a=2即当运动时间t=2时,PQ与⊙C相切此时:P(2,8),Q(8,0);(3)点P关于直线l的对称点为P(﹣1,8)则直线PQ的解析式为:y=当x=时,y=﹣×+==.因此N点的坐标为(,).点评:本题主要考查了二次函数解析式的确定、切线的性质、切线长定理等知识点.。
2019年4月云南省红河州开远市中考数学模拟试卷(有答案解析)最新
2019年云南省红河州开远市中考模拟试卷(4月份)数学一.填空题(共6小题,满分18分)1.一个数的相反数等于它本身,则这个数是.2.分解因式:x2﹣2x+1= .3.半径为4,圆心角为120°的弧长为;弧长为2π,半径为6的圆心角为.4.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x米,花圃面积为S平方米,则S关于x 的函数解析式是(不写定义域).5.三视图都相同的几何体是.(至少填两个)6.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.二.选择题(共8小题,满分32分,每小题4分)7.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积约为多少平方千米( )A .36×107B .3.6×108C .0.36×109D .3.6×1098.下列运算结果正确的是( )A .a 3+a 4=a 7B .a 4÷a 3=aC .a 3•a 2=2a 3D .(a 3)3=a 69.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为( )A .B .C .D . 10.如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边的长为3,则另一边的长为( )A .2a+5B .2a+8C .2a+3D .2a+211.如图,在底边BC 为2,腰AB 为2的等腰三角形ABC 中,DE 垂直平分AB于点D ,交BC 于点E ,则△ACE 的周长为( )A .2+B .2+2C .4D .312.某中学组织了一次读书活动,随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数和众数分别是( )A.2,1 B.1,1.5 C.1,2 D.1,113.一条排水管的截面如图所示,已知该排水管的半径OA=10,水面宽AB=16,则排水管内水的最大深度CD的长为()A.8 B.6 C.5 D.414.如图,A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,如果△RPQ∽△ABC,那么点R应是甲、乙、丙、丁四点中的()A.甲B.乙C.丙D.丁三.解答题(共9小题,满分70分)15.(6分)如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.16.(6分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.17.(8分)某汽车交易市场为了解二手轿车的交易情况,将本市场去年成交的二手轿车的全部数据,以二手轿车交易前的使用时间为标准分为A、B、C、D、E五类,并根据这些数据由甲,乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)该汽车交易市场去年共交易二手轿车辆.(2)把这幅条形统计图补充完整.(画图后请标注相应的数据)(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为度.18.(6分)某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?19.(7分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)20.(8分)如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE ∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形;(2)若AB=5,AC=6,求四边形CODE的周长.21.(8分)如图,已知抛物线y=x2+bx+c与x轴交于A、B(点A在点B的左侧),与y轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数解析式;(2)求直线BC的函数解析式.22.(9分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A 型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?23.(12分)如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.参考答案与试题解析一.填空题1.一个数的相反数等于它本身,则这个数是0 .【分析】根据相反数的定义解答.【解答】解:0的相反数是0,等于它本身,∴相反数等于它本身的数是0.故答案为:0.2.分解因式:x2﹣2x+1= (x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.3.半径为4,圆心角为120°的弧长为;弧长为2π,半径为6的圆心角为60°.【分析】把半径、圆心角代入弧长公式,求出弧长;把弧长、半径代入弧长公式,求出其圆心角.【解答】解:弧长公式为:l=,把r=4,n=120代入公式,得l==;把l=2π,r=6代入公式,得2π=,解得n=60.答案:,60°.4.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x米,花圃面积为S平方米,则S关于x 的函数解析式是S=﹣2x2+10x (不写定义域).【分析】根据题意列出S与x的二次函数解析式即可.【解答】解:设平行于墙的一边为(10﹣2x)米,则垂直于墙的一边为x米,根据题意得:S=x(10﹣2x)=﹣2x2+10x,故答案为:S=﹣2x2+10x5.三视图都相同的几何体是球,正方体.(至少填两个)【分析】球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形.【解答】解:三视图都相同的几何体是球,正方体.故答案为:球,正方体.6.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.【分析】以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y=﹣x上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P′的坐标,再利用反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.【解答】解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(﹣,﹣),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(﹣,).根据图形的对称性可知:PP′=AB=QQ′,∴点P′的坐标为(﹣+2, +2).又∵点P′在双曲线y=上,∴(﹣+2)•(+2)=k,解得:k=.故答案为:.二.选择题(共8小题,满分32分,每小题4分)7.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积约为多少平方千米()A.36×107B.3.6×108C.0.36×109D.3.6×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将360000000用科学记数法表示为:3.6×108.故选:B.8.下列运算结果正确的是()A.a3+a4=a7B.a4÷a3=a C.a3•a2=2a3D.(a3)3=a6【分析】根据同底数幂的除法、同底数幂的乘法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:∵a3+a4≠a7,∴选项A不符合题意;∵a4÷a3=a,∴选项B符合题意;∵a3•a2=a5,∴选项C不符合题意;∵(a3)3=a9,∴选项D不符合题意.故选:B.9.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.10.如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a >0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边的长为3,则另一边的长为()A.2a+5 B.2a+8 C.2a+3 D.2a+2【分析】利用已知得出矩形的长分为两段,即AB+AC,即可求出.【解答】解:如图所示:由题意可得:拼成的长方形一边的长为3,另一边的长为:AB+AC=a+4+a+1=2a+5.故选:A.11.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4 D.3【分析】根据线段垂直平分线的性质得到BE=AE,可得AE+EC=BC=2,即可得到结论【解答】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:B.12.某中学组织了一次读书活动,随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数和众数分别是()A.2,1 B.1,1.5 C.1,2 D.1,1【分析】先将图中的数据按照从小到大的顺序排列,找出中位数,再找出图中出现次数最多的数据,求出众数即可.【解答】解:将图中的数据按照从小到大的顺序排列,可得出第20名和第21名学生的阅读时间均为1小时,可得出中位数为: =1(小时),由图可得,阅读时间为1小时的学生人数最多,故可得出众数为:1小时.故选:D.13.一条排水管的截面如图所示,已知该排水管的半径OA=10,水面宽AB=16,则排水管内水的最大深度CD的长为()A.8 B.6 C.5 D.4【分析】先根据垂径定理求出AC的长,再根据勾股定理求出OC的长,由CD=OD ﹣OC即可得出结论.【解答】解:∵AB=16,OD⊥AB,OA=10,∴AC=AB=8,∴OC==6,∴CD=OD﹣OC=10﹣6=4.故选:D.14.如图,A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,如果△RPQ∽△ABC,那么点R应是甲、乙、丙、丁四点中的()A.甲B.乙C.丙D.丁【分析】根据相似三角形的对应高的比等于相似比,代入数值即可求得结果.【解答】解:∵△RPQ∽△ABC,∴,即,∴△RPQ的高为6.故点R应是甲、乙、丙、丁四点中的乙处.故选:B.三.解答题(共9小题,满分70分)15.(6分)如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.【分析】根据三角形全等的判定,由已知先证∠ACB=∠DCE,再根据SAS可证△ABC≌△DEC.【解答】证明:∵∠1=∠2,∴∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS).16.(6分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.【分析】先将已知条件化简,可得:(x﹣y)2+(x﹣z)2+(y﹣z)2=0.因为x,y,z均为实数,所以x=y=z.将所求代数式中所有y和z都换成x,计算即可.【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y ﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z ﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.17.(8分)某汽车交易市场为了解二手轿车的交易情况,将本市场去年成交的二手轿车的全部数据,以二手轿车交易前的使用时间为标准分为A、B、C、D、E 五类,并根据这些数据由甲,乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)该汽车交易市场去年共交易二手轿车3000 辆.(2)把这幅条形统计图补充完整.(画图后请标注相应的数据)(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为54 度.【分析】(1)根据B类别车辆的数量及其所占百分比可得总数量;(2)用总数量乘以C类别的百分比求得其数量,据此即可补全条形图;(3)用360°乘以D类车辆占总数量的比例即可得出答案.【解答】解:(1)该汽车交易市场去年共交易二手轿车1080÷36%=3000辆,故答案为:3000;(2)C类别车辆人数为3000×25%=750辆,补全条形统计图如下:(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为360°×=54°,故答案为:54.18.(6分)某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(2)若该水果店按售价销售完这批水果,获得的利润是多少元?【分析】(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据表格中的数据和意义列出方程并解答;(2)总利润=甲的利润+乙的利润.【解答】解:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得:5x+9(140﹣x )=1000,解得:x=65,∴140﹣x=75.答:购进甲种水果65千克,乙种水果75千克;(2)3×65+4×75=495(元)答:利润为495元.19.(7分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)首先分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,然后画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案.【解答】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.20.(8分)如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形;(2)若AB=5,AC=6,求四边形CODE的周长.【分析】(1)如图,首先证明∠COD=90°;然后证明∠OCE=∠ODE=90°,即可解决问题.(2)如图,首先证明CO=AO=3,∠AOB=90°;运用勾股定理求出BO,即可解决问题.【解答】解:(1)如图,∵四边形ABCD为菱形,∴∠COD=90°;而CE∥BD,DE∥AC,∴∠OCE=∠ODE=90°,∴四边形CODE是矩形.(2)∵四边形ABCD为菱形,∴AO=OC=AC=3,OD=OB,∠AOB=90°,由勾股定理得:BO2=AB2﹣AO2,而AB=5,∴DO=BO=4,∴四边形CODE的周长=2(3+4)=14.21.(8分)如图,已知抛物线y=x2+bx+c与x轴交于A、B(点A在点B的左侧),与y轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数解析式;(2)求直线BC的函数解析式.【分析】(1)利用待定系数法即可解决问题;(2)求出B、C两点坐标,利用待定系数法即可解决问题;【解答】解:(1)由题意,∴,∴抛物线的解析式为y=x2﹣2x﹣3.(2)对于抛物线y=x2﹣2x﹣3,令y=0,得到x=﹣1或3,∴B(3,0),C(0,﹣3),设直线BC的解析式为y=mx+n,则有,解得,∴直线BC的解析式为y=x﹣3.22.(9分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?【分析】(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+14.4.结合函数图象的性质进行解答即可.【解答】解:(1)依题意得: 2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤112,解得m≤40,即A型健身器材最多可购买40套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+14.4.∵﹣0.1<0,∴y随m的增大而减小,∴m=40时,y最小.∵m=40时,y最小值=﹣0.1×40+14.4=10.4(万元).又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.23.(12分)如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.【分析】(1)连接OM,如图1,先证明OM∥BC,再根据等腰三角形的性质判断AE⊥BC,则OM⊥AE,然后根据切线的判定定理得到AE为⊙O的切线;(2)设⊙O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明△AOM∽△ABE,则利用相似比得到=,然后解关于r的方程即可;(3)作OH⊥BE于H,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH=BE﹣HE=,再根据垂径定理得到BH=HG=,所以BG=1.【解答】(1)证明:连接OM,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴=,即=,解得r=,即设⊙O的半径为;(3)解:作OH⊥BE于H,如图,∵OM⊥EM,ME⊥BE,∴四边形OHEM为矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.。
2019年最新云南省中考数学模拟试卷含答案解析
九年级数学中考模拟试卷一、填空题:1.若|2x﹣1|=3,则x= .2.如图,已知AF∥EC,AB∥CD,∠A=65°,则∠C= 度.3.分解因式:x2+2x-3=____________.4.正多边形的一个外角等于20°,则这个正多边形的边数是______.5.设x,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22= .16.如图所示,正方形ABCD对角线AC所在直线上有一点O,OA=AC=2,将正方形绕O点顺时针旋转60°,在旋转过程中,正方形扫过的面积是.二、选择题:7.据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A.4.0570×109B.0.40570×1010C.40.570×1011D.4.0570×10128.小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会儿,小华继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x之间的关系的大致图象是()A. B. C. D.9.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是()10.计算÷=()A. B.5 C. D.11.已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大概是( )12.已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2B.众数是8C.中位数是6D.中位数是713.下列图形中不是中心对称图形的是()14.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是( )A.(,3)、(﹣,4)B.()、(﹣)C.()、(﹣)D.()、(﹣)三、解答题:15.解不等式组:,并把解集在数轴上表示出来.16.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.17.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?18.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?19.某校为了了解本校九年级女生体育项目跳绳的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟跳绳测试,同时统计每个人跳的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥180),良好(150≤x≤179),及格(135≤x≤149)和不及格(x≤134),并将统计结果绘制成如下两幅不完整的统计图。
云南省红河州开远市2018-2019学年九年级数学学业水平考试模拟试题
云南省红河州开远市2019年初中学业水平复习统一检测 数 学 试 题 卷(全卷共三大题,23小题,满分:120分,考试用时:120分钟)注意事项:本卷为试题卷,考生解题作答必须在答题卡上,答案书写在答题卡相应的位置上,在试题卷、草稿纸上作答无效.一、填空题:本大题共6小题,每小题3分,满分18分. 1.9-= . 2.若分式62xx-有意义,则实数x 的取值范围是 . 3.一个几何体的三视图如图所示,则这个几何体的名称是 .4.因式分解:x 2﹣x = .5.小明某次月考,语文、数学、英语的平均成绩是93分,其中语文成绩是90分,英语成绩是95分,则数学成绩是 分.左视图主视图俯视图6.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则BED ∠的度数为 .二、选择题:本大题共8小题,每小题4分,满分32分,每小题只有一个选项符合题目要求.7.下列四个通信商标图中,不是中心对称图形的是( )8.改革开放40年,是我国逐步消除贫困的40年,2019年是脱贫攻坚关键的一年,中共中央政治局委员、国务院扶贫开发领导小组组长胡春华表示,2019年要确保再减少农村贫困人口1000万左右,基本完成“十三五”易地扶贫搬迁规划建设任务.其中“1000万”用科学记数法表示为( ) A .3110⨯B .7110⨯C .8110⨯D .11110⨯9.下列计算,正确的是( ) A .2(2)--=4 B .0322-⨯18=-C .46÷(﹣2)6=64D210.有一条圆弧的长为2πcm ,半径为2cm ,则这条圆弧所对的圆心角的度数是( )A .90°B .120°C .135°D .180°A B C DBCD EA11.不等式组312840>xx-⎧⎨-⎩≥的解集在数轴上表示为( )12.某市某楼盘准备以每平方米15000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,最终以每平方米12150元的均价销售,则平均每次下调的百分率是()A.11% B.10% C.9% D.8%13.如图,圆的两条弦AB与CD相交于点E ,且=,∠A=40°,则∠CEB的度数为( )A.50°B.70°C.80°D.90°14.如图,在平面直角坐标系中xOy中,已知点A的坐标是(0,1),以OA为边在右侧作等边三角形OAA1,过点A1作x轴的垂线,垂足为点O1,以O1A1为边在右侧作等边三角形O1A1A2,再过点A2作x轴的垂线,垂足为点O2,以O2A2为边在右侧作等边三角形O2A2A3,…,按此规律继续作下去,得到等边三角形O2018A2018A2019,则点A2019的纵坐标为( )AEDCBA .201612⎛⎫ ⎪⎝⎭B .201712⎛⎫ ⎪⎝⎭C .201812⎛⎫ ⎪⎝⎭D .201912⎛⎫ ⎪⎝⎭三、解答题:本大题共9小题,满分70分,解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分6分)先化简,再求值:22121121x x x x x x --⎛⎫-+÷ ⎪+++⎝⎭,其中x = -3.16.(本小题满分6分)如图,在△ABC 和△ADE 中,AB =AD ,∠B =∠D ,∠1=∠2.求证:△ABC ≌△ADE .12EDCBA17.(本小题满分8分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.这本书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.用现代白话文可以这样理解:甲口袋中装有黄金9枚(每枚黄金重量相同),乙口袋中装有白银11枚(每枚白银重量相同),用称分别称这两个口袋的重量,它们的重量相等.若从甲口袋中拿出1枚黄金放入乙口袋中,乙口袋中拿出1枚白银放入甲口袋中,则甲口袋的重量比乙口袋的重量轻了13两(袋子重量忽略不计).问一枚黄金和一枚白银分别重多少两?请根据题意列方程(组)解之.18.(本小题满分7分)如图,反比例函数ykx=的图象与一次函数y12=-x的图象分别交于M,N两点,已知点M的坐标是(2,)m-.(1)求反比例函数的表达式;(2)点P为y轴上的一点,当∠MPN为直角时,请求出点P的坐标.19.(本小题满分7分)某区域平面示意图如图所示,点O 在河的一侧,AC 和BC 表示两条互相垂直的公路.甲勘测员在A 处测得点O 位于北偏东45°的方向上,乙勘测员在B 处测得点O 位于南偏西73.7°的方向上,再测得AC =840m ,BC =500m .请求出点O 到公路BC 的距离. 参考数据:sin 73.7°2425≈,cos 73.7°725≈,tan 73.7°247≈.20.(本小题满分7分)在一个不透明的布袋里装有四个标号为1,2,3,4的小球,它们的形状、大小、质地完全相同.小明从布袋里随机取出一个小球,记下小球上的数字,这个数字作为横坐标x ,再把这个小球放回不透明的布袋里搅匀,小红从布袋里随机取出一个小球,记下小球上的数字,这个数字作为纵坐标y ,这样确定了一个点Q 的坐标(,)x y .(1)请用画树形图或列表法,写出点Q 所有可能的坐标;(2)小明和小红约定做一个游戏,其规则为:若x 、y 满足xy ≥6则小明胜,若x 、y 满足xy <6则小红胜,这个游戏公平吗?请说明理由.B21.(本小题满分8分)中国共产党第十九次全国代表大会提出了要坚定实施七大战略,某数学兴趣小组从中选取了四大战略进行调查,A:科教兴国战略,B:人才强国战略,C:创新驱动发展战略,D:可持续发展战略,要求被调查的每位学生只能从中选择一个自已最关注的战略,根据调查结果,该小组绘制了如图所示的两幅不完整的统计图,请你根据统计图中提供的信息,解答下列问题:(1)求本次抽样调查的学生人数;(2)求出统计图中m、n的值;(3)在扇形统计图中,求战略B所在扇形的圆心角度数;(4)若该校有3000名学生,请估计出选择战略A和B共有的学生数.四大战略扇形统计图人数/人22.(本小题满分9分)如图,AB 是⊙O 的直径,AF 是⊙O 的切线,CD 是垂直于AB 的弦,垂足为点E ,过点C 作AD 的平行线与AF 相交于点F ,已知CD =,BE =1. (1)求弦AD 的长;(2)求证:直线FC 是⊙O 的切线.23.(本小题满分12分)如图①,四边形OABC 是矩形,点A 的坐标为(3,0),点C 的坐标为(0,6),点P 从点O 出发,沿线段OA 以每秒1个单位长度的速度向点A 移动,同时点Q 从点A 出发,沿线段AB 以每秒2个单位长度的速度向点B 移动,当点P 与点A 重合时移动停止.设点P 移动的时间为t 秒. (1)当△CBQ 与△PAQ 相似时,求t 的值;(2)当t =1时,抛物线y =x 2+bx +c 经过P ,Q 两点,与y 轴交于点M ,抛物线的顶点为K ,如图②所示,该抛物线上是否存在点D ,使∠MQD 12∠MKQ ?若存在,请求出所有满足条件的点D 的坐标;若不存在,请说明理由.图①图②E FDCOBA云南省红河州开远市2019年初中学业水平复习统一检测数学参考答案及评分标准一、填空题:本大题共6小题,每小题3分,满分18分.二、选择题:本大题共8小题,每小题4分,满分32分,每小题只有一个选项符合题目要求.三、解答题:本大题共9小题,满分70分,解答应写出文字说明,证明过程或演算步骤. 15.(6分) 解:原式=()()2211121(1)---+-÷++x x x x x x …………………………………………1分22211(1)12--++=⋅+-x x x x x …………………………………………2分 ()22(1)12--+=⋅+-x x x x x …………………………………………3分 =﹣x (x +1).…………………………………………4分∴当x =-3时,原式=-(-3)×(-3+1)=-6. ……………………………………6分 16.(6分)证明:∵∠1=∠2,∵∠DAC +∠1=∠2+∠DAC . ∴∠BAC =∠DAE . ……………………2分在△ABC 和△ADE 中, ∠=∠⎧⎪=⎨⎪∠=∠⎩B DAB ADBAC DAE , ……………………5分∴△ADE ≌△ABC (ASA ). ……………………6分 17.(8分)解:设每枚黄金重x 两,每枚白银重y 两. ……………………1分12EDCBA由题意得()()91110813=⎧⎨+-+=⎩x yy x x y .……………………4分解得14341174⎧=⎪⎪⎨⎪=⎪⎩x y .……………………7分答:每枚黄金重1434两,每枚白银重1174两. ……………………8分18.(7分)解:(1)∵点M (﹣2,m )在一次函数y 12=-x 的图象上,∴m 12=-⨯(﹣2)=1.………………………………1分∴M (﹣2,1).∵反比例函数y =kx的图象经过点M (﹣2,1),∴k =﹣2×1=﹣2. ∴反比例函数的表达式为2=-y x. ………………………………3分(2)∵正比例函数y 12=-x 的图象与反比例函数y =kx的图象分别交于M ,N 两点,点M (﹣2,1), ∴N (2,﹣1).∵点P 为y 轴上的一点, ∴设P (0,n ),………………………………4分∵∠MPN 为直角,∴△MPN 是直角三角形,∴PM 2+PN 2=MN 2. ∴(0+2)2+(n ﹣1)2+(0﹣2)2+(n +1)2=(2+2)2+(﹣1﹣1)2,解得n. ∴点P 的坐标为(0)或(0,).………………………………7分19.(7分)解:作OM ⊥BC 于M ,ON ⊥AC 于N . ……………………1分 则四边形ONCM 为矩形.∴ON =MC ,OM =NC .设OM =x ,则NC =x ,AN =840﹣x . 在Rt △ANO 中,∠OAN =45°.∴ON =AN =840﹣x ,则MC =ON =840﹣x .……………3在Rt △BOM 中,724==∠OM BM tan OBM x .……………5分由题意得,840﹣x 724+x =500. 解得,x =480.……………………6分 答:点O 到公路BC 的距离为480m . …………………7分20.(7分)解:(1)画树形图得:则点Q 所有可能的坐标有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种.………………………4分列表得:1 1234246836912481216(1,1) 1 2 开始3 2 横坐标x : 43 2 3 1 24 3 1 2 4 3 纵坐标y : 坐标(x ,y ): (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4)积xy :BM(请参考树形图给分) (2)这个游戏是公平的.理由如下:………………………………5分理由:∵x、y满足xy≥6有:(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4),共8种情况,x、y满足xy<6有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(3,1),(4,1),共8种情况.∴P(小明胜)18162==,P(小红胜)18162==.∴这个游戏是公平的.………………………………7分21.(8分)解:(1)本次抽样调查的学生人数为105126360÷=300人.………………2分(2)m=300﹣(105+90+45)=60.………………3分n90300=⨯100=30.………………4分(3)战略B所在扇形的圆心角度数为360°60300⨯=72°.………………6分(4)估计选择A和B战略的学生有300010560300+⨯=1650人.………………8分22.(9分)(1)解:(1)连接OC,∵AB是⊙O的直径,CD⊥AB,∴CE=DE12=CD12=⨯.设OC=x,∵BE=1,∴OE=x﹣1.在Rt△OCE中,OC2=OE2+CE2,∴x2=(x﹣1)22.解得x=2.………………3分∴OA=OC=2,OE=1.∴AE=3.在Rt△AED中,AD=4分(2)证明:∵AF是⊙O切线,∴AF⊥AB.∵CD⊥AB,∴AF∥CD.∵CF∥AD,∴四边形ADCF是平行四边形.EFDCOBA∵AD =CD ,∴平行四边形ADCF 是菱形. ………………7分在Rt △ACE 中,AC=AC =AD =CD .∴△ACD 是等边三角形.∵四边形ADCF 是平行四边形,∴AF =CD ,CF =AD .∴AF =CF =AC . ∴三角形ACF 是等边三角形.∴∠ACF =60°. 在Rt △OCE 中,∵tan ∠OCE===OE CE ,∴∠OCE =30°.∴∠OCA =∠ACD -∠OCE =60°-30°=30°.∴∠OCF =∠ACF +∠OCA =60°+30°=90°.∵点C 在⊙O 上,∴FC 是⊙O 的切线.………………9分 23.(12分)解:(1)如图①,∵当点P 与点A 重合时运动停止,且△P AQ 可以构成三角形,∴0<t <3.……1分∵四边形OABC 是矩形,∴∠B =∠P AQ =90°. ∴当△CBQ 与△P AQ 相似时,存在两种情况: ①当△QBC ∽△P AQ 时,∴=BC BQAQ AP ,∴36223-=-t t t .∴4t 2﹣15t +9=0.∴(t ﹣3)(4t 3-)=0. ∴t 1=3(舍),t 234=. (4)②当△CBQ ∽△P AQ 时,∴=CB BQ PA AQ .∴36232-=-t t t.∴t 2﹣9t +9=0.∴t =7,∴t 不符合题意,舍去. 综上所述,当△CBQ 与△P AQ 相似时,t =34或t .………………………6分(2)当t =1时,P (1,0),Q (3,2).把P (1,0),Q (3,2)代入抛物线y =x 2+bx +c 中得10932++=⎧⎨++=⎩b c b c ,解得32=-⎧⎨=⎩b c .图①∴抛物线:y =x 2﹣3x +2=23124⎛⎫-- ⎪⎝⎭x .∴顶点k (32,14-).……………………………7分连接MQ ,∵Q (3,2),M (0,2),∴MQ ∥x 轴,作抛物线对称轴,交MQ 于E ,∴KM =KQ .∴KE ⊥MQ . ∴∠MKE =∠QKE 12=∠MKQ .设DQ 交y 轴于H . (ⅰ)当点D 在直线MQ 的上方时,如图②所示, 则∠DQM 12=∠MKQ =∠MKE . ∵∠HMQ =∠MEK =90°,∴△HMQ ∽△MEK .∴=H M M E M Q E K .∴321324=+HM.解得MH =2.∴H (0,4).∴直线HQ 的解析式为y 23=-x +4.由方程组224332⎧=-+⎪⎨⎪=-+⎩y x y x x 得x 2﹣3x +223=-x +4.解得x 1=3(舍),x 223=-.∴D (23-,409).……10分(ⅱ)当点D 在直线MQ 的下方时,y 轴上存在点H ,如图③所示,使∠HQM 1=∠MKQ =∠MKE .由对称性得H (0,0),即H 与原点重合.∴直线OQ 的解析式y 23=x . 由方程组22332⎧=⎪⎨⎪=-+⎩y x y x x 得3x 2﹣11x +6=0.解得x 1=3(舍),x 223=.∴D (23综上所述,点D 的坐标为D (23-,409)或(23,49).……………12分注意:以上参考答案及评分标准仅供评卷时参考,其它答案请参考评分标准酌情给分.图②图③。
(完整版)云南省2019年中考数学模拟试题及答案(2),推荐文档
度数是
°.
2
11. 在 函 数 y 1 中,自变量 x 的取值范围是 x 2
1
. 图4
12. 已知一次函数 y kx b(k 0) 的图像经过一、二、四象限,请你写出一个符合条件的
函数关系式
.
13. 某小组在迎新活动中,需制作 5 顶圆锥形的帽子,圆锥底面圆的直径为 12cm,高为 8cm,则共需材料
1 求 B 点的海拔;
2 求斜坡 AB 的坡度.
图7
18.(本小题6分)初三(5)班勤工俭学活动中获得2018元,班委会决定拿出不少于270元但不超过300元的资金为
参加勤工俭学活动的同学购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集
作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.
如图 1:对这两名运动员的成绩进行比较,下列
50
四个结论中,不正确的是
40
A.甲运动员得分的极差大于乙运动员得分的极差
30
B.甲运动员得分的的中位数大于乙运动员得分的
20
的中位数 C.甲运动员的成绩比乙运动员的成绩稳定
10 0 1 2 3 4 5 6 7 89
D.甲运动员的得分平均数大于乙运动员的得分平均数
3
分,满分
18
分) 9.中
国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们应该节约用水.若每人每天
浪费水 0.32L,那么 100 万人每天浪费的水为 201800L,用科学记数法表示为
L.
10. 如图 4,有 一 块 含 有 45°角的直角三角板的两个顶
点放在直尺的对边上. 如果∠2=25°,那么∠1 的
云南省2019-2020学年数学中考模拟试卷一(含答案)
云南省2019-2020学年数学中考模拟试卷一(含答案)一、单选题1.一个数用科学记数法表示为2.37×105,则这个数是()A. 237B. 2370C. 23700D. 237000【答案】 D【考点】科学记数法—表示绝对值较大的数2.下列运算正确的是()A. 3a+2a=5a2B. 3﹣3=C. 2a2•a2=2a6D. 60=0【答案】B【考点】单项式乘单项式,0指数幂的运算性质,负整数指数幂的运算性质,合并同类项法则及应用3.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A. 2B. 3C. 4D. 5【答案】C【考点】中心对称及中心对称图形4.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A. (4,3)B. (3,4)C. (﹣1,﹣2)D. (﹣2,﹣1)【答案】B【考点】坐标与图形变化﹣平移5.下面空心圆柱形物体的左视图是()A. B. C. D.【答案】A【考点】简单组合体的三视图6.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【答案】A【考点】在数轴上表示不等式(组)的解集7.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A. 25,25B. 24.5,25C. 25,24.5D. 24.5,24.5【答案】A8.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A. B. 2 C. 3 D. 4【答案】B【考点】等腰三角形的性质,勾股定理,平行四边形的性质二、填空题9.|﹣2|的相反数是________.【答案】-2【考点】相反数及有理数的相反数,绝对值及有理数的绝对值10.已知函数关系式:y= ,则自变量x的取值范围是________.【答案】x≥1.【考点】二次根式有意义的条件,解一元一次不等式11.若x、y为实数,且|x+3|+ =0,则的值为________.【答案】﹣1【考点】代数式求值,非负数之和为012.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是________(只需添加一个即可)【答案】∠ABC=90°或AC=BD【考点】正方形的判定13.已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是________.【答案】(1,4)【考点】待定系数法求二次函数解析式,二次函数y=ax^2+bx+c的性质14.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M= ,即1+3+32+33+…+3100= ,仿照以上推理计算:1+5+52+53+…+52015的值是________.【答案】【考点】有理数的乘方三、解答题15.先化简,再求值:(1+ )÷ ,其中x= ﹣1.【答案】解:原式= • = ,当x= ﹣1时,原式=【考点】分式的化简求值16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【答案】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.【考点】全等三角形的判定与性质17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【答案】(1)解:观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;统计图为:(2)解:∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°(3)解:0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人【考点】用样本估计总体,频数(率)分布表,频数(率)分布直方图18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【答案】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元【考点】分式方程的应用19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【答案】(1)解:∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为(2)解:画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为【考点】列表法与树状图法20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y= 的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【答案】(1)解:当x=12时,y= =20,B(12,20),∵AB段是恒温阶段,∴A(2,20),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)解:把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y= ,即15= ,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小【考点】待定系数法求一次函数解析式,一次函数的性质,反比例函数图象上点的坐标特征,通过函数图像获取信息并解决问题21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB= ,求线段OE的长.【答案】(1)证明:∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD(2)解:在Rt△AOB中,cos∠CAB= = ,AB=14,∴AO=14× = ,在Rt△ABE中,cos∠EAB= = ,AB=14,∴AE= AB=16,∴OE=AE﹣AO=16﹣= .【考点】菱形的判定,解直角三角形的应用22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F= ,⊙O的半径为4,求CD的长.【答案】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴∠AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB(2)解:如图,设CD=a,∵OA⊥CD,∴CE= CD= a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F= ,tan∠ACF= = ,即,解得AE= a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a= ,CD= .【考点】等腰三角形的判定,垂径定理,切线的性质,锐角三角函数的定义23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【答案】(1)解:在Rt△ABC中,AB=4,BC=a,∴AC= = ,∴CD= AC= ,∵∠ACD=90°,∴S△ACD= AC•CD= .(2)解:如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF= BC= a,∴D到射线BN的距离为 a(3)解:存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA= AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC= AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD= = ,AG=a+2,CD= ,∴,∴a=4 +8,即:满足条件的a的值为2或4 +8.【考点】三角形的面积,等腰三角形的性质,勾股定理,相似三角形的判定与性质。
2020届云南省红河州开远市中考数学一模试卷(有解析)
2020届云南省红河州开远市中考数学一模试卷一、选择题(本大题共8小题,共32.0分)1.下列数学符号中,属于中心对称图形的是()A. ∠B. ▱C. △D. ⊥2.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.3.下列四个式子中,x的取值范围为x≥2的是()A. √x−2x−2B.√x−2C. √x−2xD. √2−x4.如果代数式m(m+2)=2,那么m2+4m+4m ÷m+2m2的值为()A. 4B. 3C. 2D. 15.小明不慎把家里的圆形玻璃打碎了,带如图的玻璃碎片到商店配到与原来大小一样的圆形玻璃,以下是工作人员排乱的操作步骤:①连接AB和BC;②在玻璃碎片上任意找不在同一直线上的三点A、B、C;③以点O为圆心,OA为半径作⊙O;④分别作出AB和BC的垂直平分线,并且相交于点O;正确的操作步骤是()A. ②①③④B. ②①④③C. ①②④③D. ①④②③6.若一个五边形的四个内角都是100°,那么第五个内角的度数为()A. 120°B. 100°C. 140°D. 150°7.福娃们在一起探讨研究下面的题目:函数y=x2−x+m(m为常数)的图象如图,如果x=a时,y<0;那么x=a−1时,函数值是多少?贝贝:我注意到当x=0时,y=m>0..晶晶:我发现图象的对称轴为x=12欢欢:我判断出x1<a<x2.迎迎:我认为关键要判断a−1的符号.妮妮:M{2x+y+2,x+2y,2x−y}=min{2x+y+2,x+2y,2x−y}可以取一个特殊的值.参考上面福娃们的讨论,请你解该题,你选择的答案是()A. y<0B. 0<y<mC. y>mD. y=m8.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A. l1:l2=1:2,S1:S2=1:2B. l1:l2=1:4,S1:S2=1:2C. l1:l2=1:2,S1:S2=1:4D. l1:l2=1:4,S1:S2=1:4二、填空题(本大题共6小题,共18.0分)9.已知a、b互为相反数,c、d互为倒数,m的绝对值为3,那么(a+b)m3+5m+2001cd=______ .10.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽,把577000000000000用科学记数法表示为______ .B.一个数的绝对值是1,则这个数是______ .211.已知:如图,AB//EF,∠ABC=75°,∠CDF=135°,则∠BCD=______度.12.若m=2n+2,则m2−4mn+4n2的值是______.13.刘徽计算圆周率是从正六边形开始的,易知圆的内接正六边形可分为六个全等的正三角形,每个三角形的边长均为圆的半径R.此时圆内接正六边形的周长为6R,如果将圆内接正六边形的周长等同于圆的周长,可得圆周率为3.当正十二边形内接于圆时,如果按照上述方法计算,可得圆周率为______.(参考数据:sinl5°=0.26)14.已知反比例函数y=的图象经过(1,−2),则k=_________.三、计算题(本大题共1小题,共6.0分))−2tan60°15.计算:|−2|+30−(−6)×(−12四、解答题(本大题共8小题,共64.0分)16.如图所示,BD是正方形ABCD的对角线,BC=4,点H是AD边上的一动点,连接CH,作HE⊥CH,使得HE=CH,连接AE.(1)求证:∠DCH=∠AHE;(2)如图2,过点E作EF//AD交对角线BD于点F,试探究:在点H的运动过程中,EF的长度是否为一个定值;如果是,请求出EF的长度.17.某工厂签了1200件商品订单,要求不超过15天完成.现有甲、乙两个车间来完成加工任务.已知甲车间加工1天,乙车间加工2天,一共可加工140个零件;甲车间加工2天,乙车间加工3天,一共可加工240个零件.(1)求甲、乙每个车间的加工能力每天各是多少件?(2)甲、乙两个车间共同生产了若干天后,甲车间接到新任务,留下乙车间单独完成剩余工作,求甲、乙两车间至少合作多少天,才能保证完成任务.18.如图,Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,D为⊙O上一点,连接AD、BD、CD,OB,且BD=AB.(1)求证:OB//CD;(2)若D为弧AC的中点,求tan∠BDC.19.复课返校后,为了让同学们进一步了解“新型冠状病毒”的防控知识,某学校组织了一次关于“新型冠状病毒”的防控知识比赛,从问卷中随机抽查了一部分,对调查结果进行了分组统计,并制作了表格与条形统计图(如图):分组结果频数频率A.完全掌握300.3B.比较清楚50mC.不怎么清楚n0.15D.不清楚50.05请根据上图完成下面题目:(1)总人数为______人,m=______,n=______.(2)请你补全条形统计图.(3)若全校有2700人,请你估算一下全校对“新型冠状病毒”的防控知识“完全掌握”的人数有多少?20.我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如图两幅不完整的统计图:(1)本次随机调查的学生人数为______人;(2)补全条形统计图;(3)若该校七年级共有800名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;(4)七(1)班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.21.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E、F处要安装为y=−140两盏警示灯,求这两盏灯的水平距离EF(精确到1米).22.在四边形ABCD中,AB,BC,CD,AD的长分别为13,3,4,12,∠BCD=90°,则四边形ABCD的面积.23.如图,在半径为5cm的⊙O中,直径AB与弦CD相交于点P,∠CAB=50°,∠APD=80°.(1)求∠ABD的大小;(2)求弦BD的长.【答案与解析】1.答案:B解析:解:A、∠,不属于中心对称图形;B、▱,属于中心对称图形;C、△,不属于中心对称图形;D、⊥,不属于中心对称图形;故选:B.根据中心对称图形的概念判断即可.本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.答案:B解析:解:这个立体图形的左视图是,故选:B.左视图有2列,从左到右分别是2,1个正方形.此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.3.答案:C解析:此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.直接利用二次根式有意义的条件进而分析得出答案.解:A.√x−2,x满足x−2≥0,x−2≠0,x−2解得:x>2,故此选项错误;B.,x满足x−2>0,故此选项错误;√x−2C.√x−2,x的取值范围为x≥2,故此选项正确;xD.√2−x,2−x≥0,解得:x≤2,故此选项错误;故选C.4.答案:C解析:本题主要考查了分式的化简求值,注意解答时先化简得到m(m+2)整体求解即可.化简原分式时,先对分子的多项式因式分解,然后除法变成乘法,进行约分化简,然后整体代入即可求解结果.解:m2+4m+4m ÷m+2m2=(m+2)2m⋅m2m+2=m(m+2),∵已知m(m+2)=2,所以原分式的值为2.故选:C.5.答案:B解析:解:由题意正确的操作步骤:②①④③,故选:B.根据垂径定理解决问题即可.本题考查作图−复杂作图,垂径定理的应用,解答本题的关键是明确三角形外接圆的圆心是三边垂直平分线的交点.6.答案:C解析:解:因为五边形的内角和是(5−2)×180°=540°,4个内角都是100°,所以第5个内角的度数是540°−100°×4=140°.故选:C.利用多边形的内角和定理即可求出答案.本题主要考查了多边形的内角和公式,是一个比较简单的问题.7.答案:C解析:试题分析:把x=a代入函数y=x2−x+m中求出函数a、a−1与0的关系,进而确定x=a−1时,函数y=x2−x+m的值.x=a代入函数y=x2−x+m中得:y=a2−a+m=a(a−1)+m,∵x=a时,y<0,∴a(a−1)+m<0,由图象可知:m>0,∴a(a−1)<0,又∵x=a时,y<0,∴a>0则a−1<0,由图象可知:x=0时,y=m,又∵x <12时y 随x 的增大而减小, ∴x =a −1时,y >m . 故选:C .8.答案:A解析:[分析]根据圆的周长分别计算l 1,l 2,再由圆锥侧面积公式计算S 1,S 2,求出比值即可. 本题考查了旋转及圆锥侧面积的计算,掌握圆的周长和圆锥侧面积公式是解题的关键. 解:∵l 1=2π×BC =2π, l 2=2π×AB =4π, ∴l 1:l 2=1:2, ∵在中,AC =√AB 2+BC 2=√22+12=√5,∵S 1=π×1×√5=√5π, S 2=π×2×√5=2√5π, ∴S 1:S 2=1:2, 故选A .9.答案:2016或1986解析:解:由题意得:a +b =0,cd =1,m =3或−3,当m =3时,原式=15+2001=2016;当m =−3时,原式=−15+2001=1986, 故答案为:2016或1986利用相反数,倒数以及绝对值的代数意义求出a +b ,cd ,m 的值,代入原式计算即可得到结果. 此题考查了代数式求值,熟练掌握运算法则是解本题的关键.10.答案:5.77×1014;±12解析:解:A 、577000000000000用科学记数法表示为:5.77×1014; B 、一个数的绝对值是12,则这个数是:±12.故答案为:5.77×1014;±12.A 、科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.B、直接利用绝对值的性质得出答案.本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.11.答案:30解析:解:∵∠CDF=135°,∴∠EDC=180°−135°=45°,∵AB//EF,∠ABC=75°,∴∠1=∠ABC=75°,∴∠BCD=∠1−∠EDC=75°−45°=30°,故答案为:30.根据邻补角的定义得到∠EDC=180°−135°=45°,根据平行线的性质得到∠1=∠ABC=75°,根据三角形外角的性质即可得到结论.本题考查了平行线的性质,三角形外角的性质,邻补角的定义,熟练掌握平行线的性质是解题的关键.12.答案:4解析:解:∵m=2n+2,∴m−2n=2,∴m2−4mn+4n2=(m−2n)2=22=4.故答案为:4.直接利用完全平方公式分解因式得出即可.此题主要考查了利用公式法分解因式,熟练掌握完全平方公式的形式是解题关键.13.答案:3.12解析:解:如图,设半径为R的圆内接正十二边形的周长为L.连接OA1、OA2,∵十二边形A1A2…A12是正十二边形,∴∠A1OA2=30°.作OM⊥A1A2于M,又OA1=OA2,∴∠A1OM=15°,A1A2=2A1M.。
最新云南省红河州开远市中考数学一模试卷((有配套答案))
云南省红河州开远市中考数学一模试卷一、填空题:本大题共6小题,每小题3分,满分18分.1.﹣8的相反数是.2.分解因式:x2﹣1= .3.半径为2的圆中,60°的圆心角所对的弧的弧长为.4.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.5.若一个几何体的三视图相同,则这个几何体是.(填一个即可)6.如图,正比例函数y1=x的图象与反比例函数y2=(k≠0)的图象相交于A、B两点,点A的纵坐标为2.当y1>y2时,自变量x的取值范围是二、选择题:本大题共8小题,每小题4分,满分32分,每小题只有一个选项符合题目要求.7.贯彻落实党和政府扶贫开发方针、政策,负责组织实施和监督扶贫开发项目建设,开远市扶贫办2018年财政拨款收支总预算21800900元.将21800900用科学记数法表示为()A.2.18009×108B.0.218009×108C.2.18009×107D.21.8009×1068.下列计算正确的是()A.a5+a5=a10B.a7÷a=a6 C.a3•a2=a6 D.(﹣a3)2=﹣a69.不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.10.如图,把一张三角形纸片ABC沿中位线DE剪开后,在平面上将△ADE绕着点E顺时针旋转180°,点D到了点F的位置,则S△ADE:S▱BCFD是()A.1:4 B.1:3 C.1:2 D.1:111.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°12.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.4,1.3 C.1.4,1.35 D.1.3,1.313.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD为⊙O的直径,弦AB⊥CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意,CD长为()A.12寸B.13寸C.24寸D.26寸14.如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为()A.105°B.115°C.125°D.135°三、解答题:本大题共9小题,满分70分,解答应写出文字说明,证明过程或演算步骤.15.(6分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.16.(6分)先化简,再求值:﹣÷,其中a=.17.(8分)为了绿化环境,某班同学都积极参加植树活动,该班同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:(1)该班共有多少名同学?(2)条形统计图中,求m和n的值;(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.18.(6分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?19.(7分)小云玩抽卡片和旋转盘游戏,有两张正面分别标有数字1,2的不透明卡片,背面完全相同;转盘被平均分成3个相等的扇形,并分别标有数字﹣1,3,4(如图所示),小云把卡片背面朝上洗匀后从中随机抽出一张,记下卡片上的数字;然后转动转盘,转盘停止后,记下指针所在区域的数字(若指针在分格线上,则重转一次,直到指针指向某一区域为止).(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之积为负数的概率.20.(8分)如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.21.(8分)如图,在平面直角坐标系xOy中,直线BC与抛物线y=x2+bx+c交于点B(3,0)和点C(0,3),抛物线y=x2+bx+c过点B、C且与x轴的另一个交点为A.(1)求直线BC及该抛物线的表达式;(2)设该抛物线的顶点为D,求△DBC的面积.22.(9分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y (元)表示该店每天的纯收入.(1)若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的纯收入不少于800元,则每份套餐的售价应不低于多少元?(2)该店把每份套餐的售价提高到10元以上,每天的纯收入能否达到1560元?若不能,请说明理由;若能,求出每份套餐的售价应定为多少元时,既能保证纯收入又能吸引顾客?23.(12分)如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD∥AB时,求PD的长;(2)如图3,当=时,延长AB至点E,使BE=AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.参考答案与试题解析一、填空题1.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣8的相反数是8.故答案为:8.2.【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).3.【分析】将n=60,r=2代入弧长公式l=进行计算即可.【解答】解:l===π.故答案为π.4.【分析】根据题意列出关系式即可.【解答】解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)25.【分析】三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,找到从3个方向得到的图形全等的几何体即可.【解答】解:球体的三视图是3个全等的圆;正方体的三视图是3个全等的正方形.故填球体或正方体.6.【分析】由点A的纵坐标为2结合正比例函数图象上点的坐标特征可得出点A 的坐标,利用正反比例函数的对称性可得出点B的坐标,观察函数图象,找出正比例函数图象在反比例函数图象上方时x的取值范围,此题得解.【解答】解:∵点A在正比例函数y1=x的图象上,且点A的纵坐标为2,∴点A的坐标为(2,2).∵正、反比例函数图象关于原点中心对称,∴点B的坐标为(﹣2,﹣2).观察函数图象,可知:当﹣2<x<0或x>2时,正比例函数图象在反比例函数图象上方,∴当y1>y2时,自变量x的取值范围是﹣2<x<0或x>2.故答案为:﹣2<x<0或x>2.二、选择题:本大题共8小题,每小题4分,满分32分,每小题只有一个选项符合题目要求.7.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:21800900=2.18009×107,故选:C.8.【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选:B.9.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x<1,解不等式②,得:x≥﹣3,则不等式组的解集为﹣3≤x<1,故选:B.10.【分析】由题意可知DE∥BC,所以△ADE∽△ABC,利用相似三角形的性质可得到S△ADE:S▱BCED=1:3,又因为S△ADE=S△CEF,进而可得到S△ADE:S▱BCFD的比值.【解答】解:∵DE是△ABC中位线,∴DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC=1:2,∴S△ADE=:S△ABC=1:4,∴S△ADE:S▱BCED=1:3,∵将△ADE绕着点E顺时针旋转180°得到△CEF,∴△ADE≌△CEF,∴S△ADE=S△CEF,∴S△ADE:S▱B CFD=1:4,故选:A.11.【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选:B.12.【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第四组,1.4万步,故众数是1.4(万步);因图中是按从小到大的顺序排列的,最中间的步数都是1.3(万步),故中位数是1.3(万步).故选:B.13.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,如图所示,设直径CD的长为2x,则半径OC=x,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故选:D.14.【分析】根据相似三角形的对应角相等即可得出.【解答】解:∵△ABC∽△EDF,∴∠BAC=∠DEF,又∠DEF=90°+45°=135°,所以∠BAC=135°,故选D.三、解答题:本大题共9小题,满分70分,解答应写出文字说明,证明过程或演算步骤.15.【分析】先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS,即可证明△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).16.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:﹣÷====,当a=时,原式=.17.【分析】(1)根据植4棵的有11人,所占百分比为22%,求出总人数;(2)根据植树5棵人数所占的比例来求n的值;用总人数减去其它植树的人数,就是m的值;(3)根据植树2棵的人数所占比例,即可得出圆心角的比例,即可求出圆心角的度数.【解答】解:(1)由两图可知,植树4棵的人数是11人,占全班人数的22%,所以该班共有人数为:11÷22%=50(人);(2)由扇形统计图可知,植树5棵人数占全班人数的14%,所以n=50×14%=7,m=50﹣(4+18+11+7)=10;(3)所求扇形圆心角的度数为:360°×=72°.18.【分析】设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,根据抽调之后甲班剩余人数恰好是乙班剩余人数的2倍,列方程求解.【解答】解:设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,由题意得,45﹣x=2[39﹣(x﹣1)],解得:x=35,则x﹣1=35﹣1=34.答:从甲班抽调了35人,从乙班抽调了34人.19.【分析】(1)首先根据题意列出图表,然后由图表求得所有可能的结果;(2)由(1)列出的图表可得出所有出现的结果,再根据概率公式即可求出答案.【解答】解:(1)列表如下:﹣1 3 41 1,﹣1 1,3 1,42 2,﹣1 2,3 2,4(2)∵两数之积为负数的情况共有2种可能:(1,﹣1),(2,﹣1),∴P(两数之积为负数)==.20.【分析】(1)利用菱形的对角线互相垂直结合平行线的性质得出∠BOC=∠OCE=∠OBE=90°,进而求出即可;(2)利用菱形的性质结合勾股定理得出CO,BO的长,进而求出四边形OBEC的面积.【解答】(1)证明:∵菱形ABCD的对角线AC与BD相交于点O,∴AC⊥BD,∵BE∥AC,CE∥BD,∴∠BOC=∠OCE=∠OBE=90°,∴四边形OBEC是矩形;(2)解:∵菱形ABCD的周长是4,∴AB=BC=AD=DC=,∵tanα=,∴设CO=x,则BO=2x,∴x2+(2x)2=()2,解得:x=,∴四边形OBEC的面积为:×2=4.21.【分析】(1)利用待定系数法分别求一次函数和抛物线解析式;(2)过点D作DE∥y轴交直线BC于E,如图,先配方得到y=(x﹣2)2﹣1.则D(2,﹣1),再确定E(2,1),然后利用S△DBC=S△CDE+S△BDE进行计算.【解答】解:(1)设直线BC的解析式y=kx+b(k≠0)将点B(3,0)C(0,3)代入得,解得,∴直线BC的解析式为y=﹣x+3.将B(3,0),C(0,3)代入抛物线的解析式得,解得,∴抛物线的解析式为y=x2﹣4x+3;(2)过点D作DE∥y轴交直线BC于E,如图,∵y=x2﹣4x+3=(x﹣2)2﹣1.∴D(2,﹣1),当x=2时,y=﹣x+3=1,则E(2,1),∴S△DBC=S△CDE+S△BDE=×3×DE=×3×(1+1)=3.22.【分析】(1)①利用每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本),以及每份套餐售价不超过10元,每天可销售400份得出等式求出即可;②由题意得400(x﹣5)﹣600≥800,解出x的取值范围即可.(2)由题意可得y与x的函数关系式,再求出当y=1560时x的值即可.【解答】解:(1)①y=400(x﹣5)﹣600.(5<x≤10),②依题意得:400(x﹣5)﹣600≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售价x(元)取整数,∴每份套餐的售价应不低于9元.(2)依题意可知:每份套餐售价提高到10元以上时,y=(x﹣5)[400﹣40(x﹣10)]﹣600,当y=1560时,(x﹣5)[400﹣40(x﹣10)]﹣600=1560,解得:x1=11,x2=14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意.故该套餐售价应定为11元.23.【分析】(1)根据题意首先得出半径长,再利用锐角三角函数关系得出OP,PD的长;(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.【解答】解:(1)如图2,连接OD,∵OP⊥PD,PD∥AB,∴∠POB=90°,∵⊙O的直径AB=12,∴OB=OD=6,在Rt△POB中,∠ABC=30°,∴OP=OB•tan30°=6×=2,在Rt△POD中,PD===2;(2)①证明:如图3,连接OD,交CB于点F,连接BD,∵=,∴∠D BC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∵BE=AB,∴OB=BE,∴BF∥ED,∴∠ODE=∠OFB=90°,∴DE是⊙O的切线;②由①知,OD⊥BC,∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.。
云南省2019年中考数学模拟考试试卷(一)(含解析)
2019年云南省中考数学模拟试卷(一)一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 .2.在函数y=中,自变量x 的取值范围是. 3.若x 、y 为实数,且|x+3|+=0,则的值为 . 4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 (只需添加一个即可)5.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 .6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是( )A .237B .2370C .23700D .237000 8.下列运算正确的是( )A .3a+2a=5a 2B .3﹣3=C .2a 2•a 2=2a 6D .60=0 9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是( )A .2B .3C .4D .510.在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B (1,1),将线段AB 平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为( )A .(4,3)B .(3,4)C .(﹣1,﹣2)D .(﹣2,﹣1)11.下面空心圆柱形物体的左视图是( )2019xy ()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5无所谓0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC 于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 ﹣2 .【考点】15:绝对值;14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:|﹣2|的相反数是-2,故答案为:﹣2.2.在函数y=中,自变量x 的取值范围是 x ≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x ﹣1≥0,解不等式可求x 的范围.【解答】解:根据题意得:x ﹣1≥0,解得:x ≥1.故答案为:x ≥1.3.若x 、y 为实数,且|x+3|+=0,则的值为 ﹣1 . 【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得:x+3=0,且y ﹣3=0,解得x=﹣3,y=3.则原式=﹣1.故答案是:﹣1.4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 ∠ABC=90° (只需添加一个即可)2019xy ()【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.【解答】解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】1E:有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC 于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.。
云南省红河州名校2019-2020学年中考数学模拟学业水平测试试题
云南省红河州名校2019-2020学年中考数学模拟学业水平测试试题一、选择题1.2018年12月27日,国家发展改革委发布《关于全力做好2019年春运工作的意见》显示预测,2019年春运全国民航旅客发送量将达到7300万人次,比上一年增长12%.其中7300万用科学记数法表示为( )A .77310⨯B .77.310⨯C .87.310⨯D .80.7310⨯ 2.截至到2019年2月19日,浙江省的注册志愿者人数达到14480000人,数据14480000用科学记数法表示为( )A .1.4487B .1.448×104C .1.448×106D .1.448×107 3.已知二次函数y =x 2﹣3x+m(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2﹣3x+m =0的两实数根是( )A .x 1=1,x 2=﹣1B .x 1=1,x 2=3C .x 1=1,x 2=2D .x 1=1,x 2=34.在百度搜索引擎中输入“合肥”二字,能搜索到与之相关的结果个数约为41300000,数41300000用科学记数法表示正确的为:( )A. B. C. D.5.如图是由5个完全相同的小正方体组成的几何体,则该几何体的俯视图是( )A .B .C .D .6.如图,线段AB 是两个端点在2(0)y x x=>图象上的一条动线段,且1AB =,若A B 、的横坐标分别为a b 、,则()()22214b a a b ⎡⎤⎣⎦--+的值是( )A .1B .2C .3D .47.如图,一次函数y =kx+b 与y =x+2的图象相交于点P (m ,4),则关于x ,y 的二元一次方程组2kx y b y x -=-⎧⎨-=⎩的解是( )A .34x y =⎧⎨=⎩B . 1.84x y =⎧⎨=⎩C .24x y =⎧⎨=⎩D . 2.44x y =⎧⎨=⎩8.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( ) A .5 B .4 C .3 D .29.已知三角形ABC 的三个内角满足关系∠B +∠C=3∠A ,则此三角形( ).A .一定有一个内角为45°B .一定有一个内角为60°C .一定是直角三角形D .一定是钝角三角形 10.如图,已知抛物线y =ax 2+bx+c 经过点(﹣1,0),以下结论:①2a+b >0;②a+c <0;③4a+2b+c >0;④b 2﹣5a 2>2ac .其中正确的是( )A .①②B .③④C .②③④D .①②③④11.规定以下两种变换::①f(m,n)=(m,−n),如f(2,1)=(2,−1);②(,)(,)g m n m n =-- ,如(2,1)(2,1)g =--.按照以上变换有:()()()3,43,43,4f g f =--=-⎡⎤⎣⎦,那么()2,3g f -⎡⎤⎣⎦等于( )A .(2-,3-)B .(2,3-)C .(2-,3)D .(2,3)12.如图,已知菱形OABC 的两个顶点O (0,0),B (2,2),若将菱形绕点O 以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D 的横坐标为( )AB .C .1D .﹣1二、填空题13.不等式组101102x x +>⎧⎪⎨-≥⎪⎩的最小整数解是__________. 14.不等式组5234x x -≤-⎧⎨-<⎩的解集是______________. 15.已知一组数据:13,1,0,﹣5,7,﹣4,5,这组数据的极差是_____. 16.已知23x xy -=-,228xy y -=-,则代数式2224x xy y -+的值为________. 17.用一组, a b 的值说明命题“对于非零实数, a b ,若a b <,则11a b>”是错误的,这组值可以是a =______,b =_____.18.书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是_____.三、解答题19.如图,菱形ABCD 中,∠A=120°,E 是AD 上的点,沿BE 折叠△ABE ,点A 恰好落在BD 上的点F ,求∠BFC 的度数是.20.3x =12,0.2y =12,0.1z =0,∴对虾400亩,大黄鱼600亩,蛏子0亩;养植对虾的劳动力是12人,养殖大黄鱼的劳动力是12人,养殖蛏子的劳动力是0人.【点睛】(1)解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解;(2)利用函数的单调性来解决实际问题.21.计算:214sin 4522-⎛⎫︒--- ⎪⎝⎭. 22.如图,直线y =﹣x+4分别交x 轴、y 轴于A 、C 两点,抛物线y =﹣x 2+mx+4经过点A ,且与x 轴的另一个交点为点B .连接BC ,过点C 作CD ∥x 轴交抛物线于点D(1)求抛物线的函数表达式;(2)若点E 是抛物线上的点,求满足∠ECD =∠BCO 的点E 的坐标;(3)点M 在y 轴上且位于点C 上方,点N 在直线AC 上,点P 为第一象限内的抛物线上一点,若以点C 、M 、N 、P 为顶点的四边形是菱形,求菱形的边长.23.如图,点D 是以AB 为直径的半圆O 上一点,连接BD ,点C 是»AD 的中点,过点C 作直线BD 的垂线,垂足为点E .求证:(1)CE 是半圆O 的切线;(2)BC 2=AB•BE.24.在2018年梧州市体育中考中,每名学生需考3个项目(包括2个必考项目与1个选考项目)每个项目20分,总分60分.其中必考项目为:跳绳和实心球;选考项目:A 篮球、B 足球、C 排球、D 立定跳远、E50米跑,F 女生800米跑或男生1000米跑.某兴趣小组随机对同学们的选考项目做了调查,根据调查结果绘制了两幅不完整的条形统计图与扇形统计图.结合图中信息,回答下列问题:(1)在这次调查中,一共调查了 名学生,扇形统计图中C 对应的圆心角的度数为 ;(2)在本次调查的必考项目的众数是 ;(填A 、B 、C 、D 、E 、F 选项)(3)选考项目包括球类与非球类,请用树状图或列表法求甲、乙两名同学都选球类的概率.25.某商场销售一种小商品,每件进货价为190元.调查发现,当销售价为210元时,平均每天能销售8件;当销售价每降低2元时,平均每天就能多销售4件.设每件小商品降价x 元,平均每天销售y 件.(1)直接写出y 与x 之间的函数关系式(不必写出x 的取值范围);(2)商场要想使这种小商品平均每天的销售利润达到280元,求每件小商品的销售价应定为多少元?(3)设每天的销售总利润为w 元,求w 与x 之间的函数关系式;每件商品降价多少元时,每天的总利润最大?最大利润是多少?【参考答案】***一、选择题13.014.-1<x≤315.1816.217.1a =- 1b =18.310三、解答题19.75°【解析】【分析】根据菱形的性质可得AB=BC ,∠A+∠ABC=180°,BD 平分∠ABC ,然后再计算出∠FBC=30°,再证明FB=BC ,再利用等边对等角可得∠BFC=∠BCF ,利用三角形内角和可得答案.【详解】解:∵四边形ABCD 是菱形,∴AB=BC ,∠A+∠ABC=180°,BD 平分∠ABC ,∵∠A=120°,∴∠ABC=60°,∴∠FBC=30°,根据折叠可得AB=BF ,∴FB=BC ,∴∠BFC=∠BCF=(180°-30°)÷2=75°,故答案为:75°.【点睛】此题主要考查了菱形的性质,关键是掌握菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.20.无21.-6【解析】【分析】将特殊三角函数值代入、先计算乘方、化简二次根式和去绝对值符号,最后相加减即可.【详解】解:原式=4(242⨯---=24+=﹣6.【点睛】考查了特殊三角函数的混合运算,解题关键是熟记特殊三角函数及其运算法则.22.(1)y =﹣x 2+3x+4;(2)E 的坐标为E 1175,416⎛⎫⎪⎝⎭或1351,416⎛⎫ ⎪⎝⎭;(3)﹣2. 【解析】【分析】(1)利用直线方程求得点A 、C 的坐标,根据点A 、C 坐标求得抛物线解析式;(2)分点E 在CD 上方、点E 在CD 下方两种情况,分别求解即可;(3)分CM 为菱形的一条边、CM 为菱形的对角线两种情况,分别求解即可.【详解】解:(1)y =﹣x+4,令x =0,则y =4,令y =0,则x =4,则点A 、C 的坐标分别为(4,0)、(0,4),将点A的坐标代入抛物线的表达式并解得:m=3,故抛物线的表达式为:y=﹣x2+3x+4①,令y=0,则x=﹣1或4,故点B(﹣1,0);(2)①当点E在CD上方时,tan∠BCO=14 OBOC,则直线CE的表达式为:y=14x+4②,联立①②并解得:x=0或114(舍去0),则点E(114,7516);②当点E在CD下方时,同理可得:点E′(134,5116);故点E的坐标为E(114,7516)或(134,5116);(3)①如图2,当CM为菱形的一条边时,过点P作PQ∥x轴,∵OA=OC=4,∴∠PMQ=∠CAO=45°,设点P(x,﹣x2+3x+4),则PM PQ x,C、M、N、P为顶点的四边形是菱形,则PM=PN,x=﹣x2+3x+4,解得:x=0或4(舍去0),x=﹣2;②如图3,当CM为菱形的对角线时,同理可得:菱形边长为;故:菱形边长为﹣2.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、菱形基本性质等,要注意分类求解、避免遗漏.23.(1)详见解析;(2)详见解析.【解析】【分析】(1)连接OC,根据圆周角定理得到∠ABC=∠DBC,根据等腰三角形的性质得到∠OCB=∠OBC,等量代换得到∠OCB=∠CBD,推出OC∥BD,根据平行线的性质得到OC⊥CE,于是得到结论;(2)连接AC,由AB是⊙O的直径,得到∠ACB=90°,根据相似三角形的性质即可得到结论.【详解】证明:(1)连接OC,∵点C是AD的中点,∴AC CD=,∴∠ABC=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OCB=∠CBD,∴OC∥BD,∵CE⊥BE,∴OC⊥CE,∴CE是半圆O的切线;(2)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥BE,∴∠E=90°,∴∠E=∠ACB,∵∠ABC=∠CBD,∴△ABC∽△CBE,∴AB BC BC BE=,∴BC2=A B•BE.【点睛】本题考查了相似三角形的判定和性质,切线的判定,圆周角定理,正确的作出辅助线是解题的关键.24.(1)50,108°;(2)C;(3)1 4【解析】【分析】(1)用足球的人数除以它所占的百分比得到调查的总人数,用360°乘以C所占的百分比得到C的扇形圆心角度数;(2)根据众数的定义求解可得;(3)画树状图展示所有36种等可能的结果数,找出都选球类的结果数,然后根据概率公式求解.【详解】解:(1)5÷10%=50名,答:在这次调查中,一共调查了50名学生,扇形统计图中C对应的圆心角的度数为360×1550=108°,(2)在本次调查的必考项目的众数是C;(3)画树状图如图所示,共有36种等可能的结果,甲、乙两名同学都选球类的有9种情况,∴则P (甲、乙两名同学都选球类)=936=14. 【点睛】本题主要考查数据统计里的知识,关键在于根据树状图计算概率.这道题的综合性比较强,是考试的热点问题,应当熟练掌握.25.(1)28y x =+;(2)当每件小商品的销售价定为200元或204元时,平均每天的销售利润可达到280元;(3)每件小商品降价8元时,每天的总利润最大,最大利润为288元.【解析】【分析】(1)根据销售单价是210元时平均每天销售量是8件,而销售价每降低2元,平均每天就可以多售出4件,即可得出关系式;(2)利用每件商品利润×销量=总利润,得出关系式求出即可;(3)由题意得出:w=(210-190-x )(8+2x )进而得出二次函数的最值即可得出答案.【详解】解:⑴y 与x 之间的函数关系式为28y x =+.⑵由题意可得:(28)(210190)280x x +--=.整理得216600x x -+=.解得12x 6,x 10==. 2106204-=(元),21010200-=(元)答:当每件小商品的销售价定为200元或204元时,平均每天的销售利润可达到280元. ⑶由题意可得,2w (2x 8)(210190x)2(x 8)288=+--=-+∵20a =-<,抛物线开口向下,当8x =时,有最大值,最大值为288.答:每件小商品降价8元时,每天的总利润最大,最大利润为288元.【点睛】本题考查二次函数的实际应用,解题的关键是熟练掌握二次函数的实际应用.。
2019年云南省中考数学模拟试卷(一)(解析版)
2019年云南省中考数学模拟试卷(一)(解析版)2019年云南省中考数学模拟试卷(一)一、选择题(每小题4分,共32分)1.2019的相反数是()A。
-2019 B。
-1 C。
2019 D。
12.下列图形中,既是轴对称图形又是中心对称图形的是()A。
图A B。
图B C。
图C D。
图D3.下列运算正确的是()A。
3a^2-2a^2=a^2B。
-(2a)^2=-2a^2C。
(a+b)^2=a^2+b^2D。
-2(a-1)=-2a+14.云南宣威普立大桥,连接桥面的公路总长度约为米,将数据用科学记数法表示为()A。
1.46×10^5 B。
0.146×10^6 C。
1.46×10^6 D。
146×10^35.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A。
图A B。
图B C。
图C D。
图D6.一组数据2,4,6,4,8的中位数为()A。
2 B。
4 C。
6 D。
87.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A。
35° B。
45° C。
55° D。
65°8.已知一元二次方程x^2+kx-3=0有一个根为1,则k的值为()A。
-2 B。
2 C。
-4 D。
4二、填空题(每小题3分,共18分)9.因式分解:8a^3-2ab^2=2a(4a^2-b^2)10.函数y=√(x-2)的自变量x的取值范围是[2,∞)11.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为1/312.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=50°13.如图,点D为矩形OABC的AB边的中点,反比例函数y=k/x的图象经过点D,交BC边于点E.若△BDE的面积为1,则k=214.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为4π cm三、解答题(共9个小题,70分)15.(6分)计算:|-2|-2cos60°-(2019-1)=|-2|-2×1/2-2018=-201916.(6分)解不等式组:{x|x≤-2}∪{x|x>3},表示为数轴上的解集。
云南省2019年中考数学真题试题(含答案解析)
云南省2019年中考数学试卷(全卷三个大题,共23题,共8页;满分120分,考试用时120分钟)注意事项:1. 本卷为试题卷,考生必须在答题卡上解题作答. 答案应写在答题卡的相应位置上,在 试题卷、草稿纸上作答无效.2. 考试结束后,请将试卷和答题卡一并交回.一、填空题 (本大题共6小题,每小题3分,共18分)1. 若零上8°C 记作 +8°C,则零下6°C 记作 -6 °C.2. 分解因式:122+-x x = (x – 1)2.3. 如图,若AB∥CD,∠1= 40°,则∠2 = 140 度. 4. 若点(3,5)在反比例函数xky =(0≠k )的图象上,则k = 15 . 5. 某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:乙班数学成绩扇形统计图甲班数学成绩频数分布直方图20%30%35%10%5%A B C D E根据以上统计图提供的信息,则D 等级这一组人数较多的班是 甲班 .6. 在平行四边形ABCD 中,∠A= 30°,AD =34,BD = 4,则平行四边形ABCD 的面积等于21DA B CA B CDE A B CDE二、选择题 (本大题共8小题,每小题4分,共32分,每小题正确的选项只有一个)7.下列图形既是轴对称图形,又是中心对称图形的是( B )A. B. C. D.8.2019年“五一“期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为 ( C )A.4108.68⨯ B. 610688.0⨯ C.51088.6⨯ D. 61088.6⨯9.一个十二边形的内角和等于 ( D )A. 2160°B. 2080°C. 1980°D. 1800°10.要使21+x有意义,则x的取值范围为 ( B )A. 0≤x B. 1-≥x C. 0≥x D.1-≤x11.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是 ( A )A. 48πB. 45πC. 36πD. 32π12.按一定规律排列的单项式:3x,5x-,7x,9x-,11x,……,第n个单项式是( C )A.121)1(---nn x B. 12)1(--nn xC. 121)1(+--nn x D. 12)1(+-nn x13.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB = 5,BC = 13,CA = 12,则阴影部分(即四边形AEOF)的面积是 ( A )A. 4B. 6.25C. 7.5D.914. 若关于x 的不等式组⎩⎨⎧<->-0,2)1(2x a x 的解集为a x >,则a 的取值范围是 ( D )A. 2<aB. 2≤aC. 2>aD.2≥a三、解答题 (本大题共9小题,共70分) 15. (本小题满分6分)计算:102)1(4)5(3--+--+π. 解:原式 = 9 + 1 – 2 – 1 …4分 = 7 …6分16. (本小题满分6分)如图,AB = AD ,CB = CD. 求证:∠B =∠D.证明:在△ABC 和△ADC 中,⎪⎩⎪⎨⎧===AC AC CD CB AD AB , …3分∴△ABC≌△ADC(SSS). …4分 ∴∠B =∠D. …6分DABC某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1) 直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2) 如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.解:(1) 这15名营业员该月销售量数据的平均数、中位数、众数分别是278,180,90. …6分(2) 中位数最适合作为月销售目标,理由如下:这15个人中,月销售量不低于278件的只有2人,远低于营业员的一半,月销售量不低于180件的有8人,占营业员的一半左右,月销售量不低于90件的有15人,即所有营业员,所以中位数最适合作为月销售目标. …8分或说:因为从统计的数据来看,若目标定为平均数为278,能完成目标的只有2名员工,根本达不到一半左右的营业员都能达到月销售目标;若目标定为众数94,所有营业员都能达到月销售目标;若目标定为平均数180,大概有8人能达到月销售目标,占营业员的一半左右,所以中位数最适合作为月销售目标.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育“基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校所乘大巴车的平均速度. 解:设甲学校所乘大巴车的平均速度为x 千米/小时, 则乙学校所乘大巴车的平均速度为1.5x 千米/小时,依题意,得15.1270240=-xx . …3分 解得 60=x .经检验60=x 是所列方程的解. ∴60=x ,1.5x = 90.答:甲、乙两所学校所乘大巴车的平均速度分别为60千米/小时和90千米/小时. …6分 19. (本小题满分7分)甲、乙两同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异). 从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x 、y 表示,若y x +为奇数,则甲获胜;若y x +为偶数,则乙获胜.(1) 用列表法或树状图法(树状图也称树形图)中的一种方法,求(x ,y )所有可能出现的结果总数;(2) 你认为这个游戏对双方公平吗?请说明理由. 解:(1) 所有可能的结果如下表:(2) 这个游戏对双方是公平的,理由如下:共有16种等可能的结果,y x +分别是2,3,4,5;3,4,5,6;4,5,6,7;5,6,7,8,y x +为奇数的结果有8种;y x +为偶数的结果有8种,∴P (甲获胜) =21168=,P (乙获胜) =21168=,∴P (甲获胜)= P (乙获胜). ∴这个游戏对双方是公平的. …7分如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO = OC ,BO = OD ,且∠AOB = 2∠OAD.(1) 求证:四边形ABCD 是矩形;(2) 若∠AOB:∠ODC = 4:3,求∠ADO 的度数. (1) 证明:∵AO = OC,BO = OD ,∴四边形ABCD 是平行四边形. …1分∵∠AOB = 2∠OAD,∠AOB = ∠OAD+∠ODA,∴∠OAD =∠ODA. …2分∴AO = DO. …3分 ∴AO = OC = BO = OD, ∴AC = BD.∴四边形ABCD 是矩形. …4分(2) 设∠AOB = 4x °,∠ODC = 3x°,则∠COD = 4x °,∠OCD = 3x°. …5分在△COD 中,∠COD +∠OCD +∠ODC = 180°, …6分 ∴4x + 3x + 3x = 180,解得x = 18,∴∠ODC = 3x° = 54°, …7分∴∠ADO = 90° - ∠ODC = 90° – 54° = 36°. …8分D OA B C21. (本小题满分8分)已知k 是常数,抛物线k x k k x y 3)6(22+-++=的对称轴是y 轴,并且与x 轴有两个交点.(1) 求k 的值;(2) 若点P 在抛物线k x k k x y 3)6(22+-++=上,且P 到y 轴的距离是2,求点P 的坐标.解:(1) ∵抛物线k x k k x y 3)6(22+-++=的对称轴是y 轴。
【精品】2019年云南省中考数学模拟试卷(一)含答案解析
2019年云南省中考数学模拟试卷(一)一、填空题(本大题共6小题,每小题3分,满分18分) 1.|﹣2|的相反数是 . 2.在函数y=中,自变量x 的取值范围是.3.若x 、y 为实数,且|x+3|+=0,则 的值为 . 4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 (只需添加一个即可)5.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 .6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分) 7.一个数用科学记数法表示为2.37×105,则这个数是( ) A .237 B .2370 C .23700D .2370008.下列运算正确的是( ) A .3a+2a=5a 2 B .3﹣3=C .2a 2•a 2=2a 6D .60=09.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是( ) A .2B .3C .4D .510.在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B (1,1),将线段AB 平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为( ) A .(4,3) B .(3,4) C .(﹣1,﹣2) D .(﹣2,﹣1) 11.下面空心圆柱形物体的左视图是( )2019x y()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5无所谓0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分) 1.|﹣2|的相反数是 ﹣2 . 【考点】15:绝对值;14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答. 【解答】解:|﹣2|的相反数是-2, 故答案为:﹣2.2.在函数y=中,自变量x 的取值范围是 x≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x ﹣1≥0,解不等式可求x 的范围. 【解答】解:根据题意得:x ﹣1≥0, 解得:x ≥1. 故答案为:x ≥1.3.若x 、y 为实数,且|x+3|+=0,则的值为 ﹣1 . 【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解. 【解答】解:根据题意得:x+3=0,且y ﹣3=0, 解得x=﹣3,y=3. 则原式=﹣1. 故答案是:﹣1.4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 ∠ABC=90° (只需添加一个即可)2019x y()【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.【解答】解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】1E:有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.。
2019年数学中考一模试卷(附答案)
2019年数学中考一模试卷(附答案)一、选择题1.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .2.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )A .15B .14C .15D .417 3.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( )A .94B .95分C .95.5分D .96分4.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y=kx+43与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .12 5.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .6.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A.35B.53C.73D.547.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED度数为( )A.110°B.125°C.135°D.140°8.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5B.6C.7D.89.下面的几何体中,主视图为圆的是()A.B.C.D.10.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+11.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个12.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()A .B .C .D .二、填空题13.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n501002004005008001000120015002000色盲患者的频数m37132937556985105138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.15.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.16.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx=在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.17.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____.18.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)20.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .三、解答题21.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 22.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来24.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b 的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x ﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y ﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y 4+y2++2y3+y 2+y+y 4+y2+﹣2y3+y 2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70625.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2.A解析:A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC224115,则cos B=BCAB=154,故选A 3.B解析:B 【解析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.A解析:A【解析】试题解析:∵直线l:y=kx+43与x轴、y轴分别交于A、B,∴B(0,43),∴OB=43,在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=12PA=6-12x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征.5.C【解析】从上面看,看到两个圆形,故选C .6.B解析:B【解析】【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可.【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置,∴AE=AB ,∠E=∠B=90°,又∵四边形ABCD 为矩形,∴AB=CD ,∴AE=DC ,而∠AFE=∠DFC ,∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ),∴EF=DF ;∵四边形ABCD 为矩形,∴AD=BC=6,CD=AB=4,∵Rt △AEF ≌Rt △CDF ,∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B .【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理. 7.B解析:B【分析】由AB ∥CD ,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】∵AB ∥CD ,∴∠BAC+∠C=180°,∵∠C=70°,∴∠CAB=180°-70°=110°,又∵AE 平分∠BAC ,∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°,故选B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.8.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键9.C解析:C【解析】试题解析:A 、的主视图是矩形,故A 不符合题意;B 、的主视图是正方形,故B 不符合题意;C 、的主视图是圆,故C 符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.10.D解析:D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.11.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.12.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解: 观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右, 故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2 解析:20112【解析】【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】 解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.15.2【解析】由D 是AC 的中点且S △ABC=12可得;同理EC=2BE 即EC=可得又等量代换可知S △ADF -S △BEF=2解析:2【解析】由D 是AC 的中点且S △ABC =12,可得1112622ABD ABC S S ∆∆==⨯=;同理EC=2BE 即EC=13BC ,可得11243ABE S ∆=⨯=,又,ABE ABF BEF ABD ABF ADF S S S S S S ∆∆∆∆∆∆-=-=等量代换可知S △ADF -S △BEF =216.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1), ∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴OD ==故答案为:【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k . 17.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x ,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6, ∴这组数据的中位数为352+=4, 故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键. 18.6【解析】分析:根据BD=CDAB=CD 可得BD=BA 再根据AM ⊥BDDN ⊥AB 即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB ∠ABD=∠P+∠BAP 即可得到△APM 是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.19.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.20.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x 2+22=(4-x )2,解得,∴BE=; ②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE 的长为或3. 故答案为:或3.三、解答题21.44a -,3-.【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -; 当a=14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值. 22.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=,∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 23.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】 解:341{5122x x x x ≥--->①② 解不等式①可得x≤1,解不等式②可得x >-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.24.(1)4,4,1,1;(2)x =2或x =﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,再整理化简求出y 的值,最后求出x 的值.【详解】(1)因为3和5的均值为4,所以,设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,去括号,得:(y 2﹣2y+1)2+(y 2+2y+1)2=706,y 4+4y 2+1﹣4y 3+2y 2﹣4y+y 4+4y 2+1+4y 3+2y 2+4y =706,整理,得:2y 4+12y 2﹣704=0(成功地消去了未知数的奇次项),解得:y 2=16或y 2=﹣22(舍去)所以y =±4,即x+2=±4.所以x =2或x =﹣6. 【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.25.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b ,则有400100900b k b =⎧⎨+=⎩ ,解得5400k b =⎧⎨=⎩, ∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。
2019年云南省红河州中考数学模拟试卷(含答案)
2019年云南省红河州中考数学模拟试卷一.填空题(满分18分,每小题3分) 1.的倒数是 .2.将470000科学记数法表示为 . 3.因式分解:9a 3b ﹣ab = .4.已知如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么S △CPE :S △ABC= .5.函数y =中,自变量x 的取值范围是 .6.二次函数y =x 2+x ﹣2的图象与x 轴有 个交点.二.选择题(满分32分,每小题4分) 7.下列计算错误的是( ) A .﹣3(2x ﹣4)=﹣6x +12 B .(3a ﹣b )2=9a 2﹣b 2 C .(x 2+1)0=1D .()﹣1=38.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“孝”字一面相对而上的字是( )A .包B .容C .大D .气9.不等式组的解集在数轴上表示正确的是( )A .B .C.D.10.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如表所示:则该班学生一周读书时间的中位数和众数分别是()A.9,8B.9,9C.9.5,9D.9.5,811.如图是一斜坡的横截面,某人沿斜坡从M出发,走了13米到达N处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是()A.1:5B.12:13C.5:13D.5:1212.如图,圆锥的底面半径OB=6cm,高OC=8cm,则这个圆锥的侧面积是()A.30cm2B.60πcm2C.30πcm2D.48πcm213.如图,DE、FG分别是△ABC的AB、AC边上的垂直平分线,且∠BAC=100°,那么∠DAF的度数为()A.10°B.20°C.30°D.40°14.如图,平行四边形ABCD中,AB=4,AD=6,∠ABC=60°,∠BAD与∠ABC的平分线AE、BF交于点P,连接PD,则tan∠ADP的值为()A.B.C.D.三.解答题(共9小题,满分70分)15.(6分)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.(1)求证:DE=DF;(2)若在原有条件基础上再添加AB=AC,你还能得出什么结论.(不用证明)(写2个)16.(6分)给出下列算式:32﹣12=8=8×1;52﹣32=16=8×2;72﹣52=24=8×3;92﹣72=32=8×4.(1)观察上面一系列式子,你能发现什么规律?(2)用含n的式子表示其规律(n为正整数).(3)计算20192﹣20172的值,此时n是多少?17.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:(1)统计表中的a=,b=,c=;(2)请将频数分布表、直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.18.(6分)一个三位数满足以下条件:①三个数位上的数字之和为12;②百位上的数比十位上的数大6,③个位上的数是十位上的数的4倍,求这个三位数.19.(8分)在一个不透明的布袋里装有3个标有数字1,2,4的小球,它们除数字不同外形状大小完全相同.小昆从布袋里随机取出一个小球,记下数字为x,然后放回布袋搅匀,再从布袋中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y);(1)用列表或画树状图的方法(只选其中一种),表示出点M所有可能的坐标;(2)求点M(x,y)在函数y=的图象上的概率.20.(8分)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并写出x的取值范围;(2)若要求总利润超过14960元,有多少种不同分配方案?请列出具体方案;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润,甲店的B型产品以及乙店的A,B型产品的每件利润不变,该公司如何设计分配方案,使总利润达到最大?21.(7分)如图,抛物线y=ax2+bx﹣2与y轴的交点为A,抛物线的顶点为B(1,﹣3).(1)求出抛物线的解析式;(2)点P为x轴上一点,当△P AB的周长最小时,求出点P的坐标.22.(9分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC 分别交AC的延长线于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AC=8,CE=4,求弧BD的长.(结果保留π)23.(12分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F,记旋转角为α(0°<α<90°).(I)如图①,当α=30°时,求点D的坐标;(Ⅱ)如图②,当点E落在AC的延长线上时,求点D的坐标;(Ⅲ)当点D落在线段OC上时,求点E的坐标(直接写出结果即可).参考答案一.填空题1.4.2.4.7×105.3.ab(3a+1)(3a﹣1)4.1:8.5.x≥2且x≠3.6.两.二.选择题7.B.8.D.9.A.10.A.11.D.12.B.13.B.14.A.三.解答题15.(1)证明:∵AD是△ABC的中线,∴BD=CD,∵BE∥C F,∴∠FCD=∠EBD,∠DFC=∠DEB,在△CDE和△BDF中,,∴△CDF≌△BDE(AA S),∴DE=DF(2)可以得出AD⊥BC,∠BAD=∠CAD.(理由等腰三角形三线合一).16.解:(1)规律:等式的左边是两个连续奇数的平方差,右边是8的倍数;(2)∵32﹣12=8=8×1,52﹣32=16=8×2,72﹣52=24=8×3,92﹣72=32=8×4,…∴设n(n≥1)表示自然数,用关于n的等式表示这个规律为:(2n+1)2﹣(2n﹣1)2=8n;(3)2n+1=2019,解得:n=1009,∴20192﹣20172=8×1009=8072.答:20192﹣20172的值8072,此时n是1009.17.解:(1)∵c=18÷0.36=50,∴a=50×0.2=10,b=14÷50=0.28,故答案为:10、0.28、50;(2)补全图形如下:补全统计表如下:(3)所有被调查学生课外阅读的平均本数为=6.4(本);(4)该校八年级学生课外阅读7本及以上的人数约为1200×(0.28+0.16)=528(人).18.解:设十位上数字为x,则百位上数字为:x+6,个位上数字为:4x,故x+x+6+4x=12,解得:x=1,故x=6=7,4x=4,则这个三位数是:714,答:这个三位数是714.19.解:(1)由题意可得,树状图如下图所示,共有9种结果,且每种结果发生的可能性相同;(2)∵点M(x,y)在函数的图象上有3种情况,分别为(1,4),(4,1),(2,2),∴,即点M(x,y)在函数y=的图象上的概率是.20.解:(1)由题意得,甲店B型产品有(70﹣x)件,乙店A型有(40﹣x)件,B型有(x﹣10)件,则W=180x+150(70﹣x)+120(40﹣x)+110(x﹣10)=20x+14200.由,解得10≤x≤40;(2)由W=20x+14200>14960,解得x>38.故38<x≤40,x=39,40.则有两种不同的分配方案.①x=39时,甲店A型39件,B型31件,乙店A型1件,B型29件;②x=40时,甲店A型40件,B型30件,乙店A型0件,B型30件;(3)依题意:W=(180﹣a)x+150(70﹣x)+120(40﹣x)+110(x﹣10)=(20﹣a)x+14200.①当0<a<20时,20﹣a>0,W随x增大而增大,∴x=40,W有最大值,即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达到最大;②当a=20时,10≤x≤40,W=16800,符合题意的各种方案,使总利润都一样;③当20<a<30时,20﹣a<0,W随x增大而减小,∴x=10,W有最大值,即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达到最大.21.解:(1)∵抛物线与y轴交于点A(0,﹣2),顶点为B(1,﹣3)∴可设抛物线解析式y=a(x﹣1)2﹣3,代入点A(0,﹣2)得a=1∴抛物线解析式抛物线解析式y=(x﹣1)2﹣3=x2﹣2x﹣2;(2)设点A(0,﹣2)关于x轴的对称点为A′(0,2),连接A′B交x轴于点P,则此时△P AB的周长最小设直线A′B的解析式y=kx+b,代入点A′(0,2),B(1,﹣3)得:,解得:k=﹣5,b=2,∴直线A′B的解析式y=﹣5x+2,当y=0时,x=,∴P(,0).22.(1)证明:连接OD,如图1所示:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)解:作OG⊥AE于点G,连接BD,如图2所示:则AG=CG=AC=4,∠OGE=∠E=∠ODE=90°,∴四边形ODEG是矩形,∴OA=OB=OD=CG+CE=4+4=8,∠DOG=90°,∴AB=2OA=16,∵AC=8,CE=4,∴AE=AC+CE=12,∵∠DAE=∠BAD,∠AED=∠ADB=90°,∴△ADE∽△ABD,∴=,即=,∴AD2=192,在Rt△ABD中,BD===8,在Rt△ABD中,∵AB=2BD,∴∠BAD=30°,∴∠BOD=60°,则弧BD的长度为=.23.解:(I)过点D作DG⊥x轴于G,如图①所示:∵点A(6,0),点B(0,8).∴OA=6,OB=8,∵以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,∴AD=AO=6,α=∠OAD=30°,DE=OB=8,在Rt△ADG中,DG=AD=3,AG=DG=3,∴OG=OA﹣AG=6﹣3,∴点D的坐标为(6﹣3,3);(Ⅱ)过点D作DG⊥x轴于G,DH⊥AE于H,如图②所示:则GA=DH,HA=DG,∵DE=OB=8,∠ADE=∠AOB=90°,∴AE===10,∵AE×DH=AD×DE,∴DH===,∴OG=OA﹣GA=OA﹣DH=6﹣=,DG===,∴点D的坐标为(,);(Ⅲ)连接AE,作EG⊥x轴于G,如图③所示:由旋转的性质得:∠DAE=∠AOC,AD=AO,∴∠OAC=∠ADO,∴∠DAE=∠ADO,∴AE∥OC,∴∠GAE=∠AOD,∴∠DAE=∠GAE,在△AEG和△AED中,,∴△AEG≌△AED(AAS),∴AG=AD=6,EG=ED=8,∴OG=OA+AG=12,∴点E的坐标为(12,8).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届云南省红河州开远市中考一模试卷数学一、填空题:本大题共6小题,每小题3分,满分18分.1.﹣8的相反数是.2.分解因式:x2﹣1= .3.半径为2的圆中,60°的圆心角所对的弧的弧长为.4.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.5.若一个几何体的三视图相同,则这个几何体是.(填一个即可)6.如图,正比例函数y1=x的图象与反比例函数y2=(k≠0)的图象相交于A、B两点,点A的纵坐标为2.当y1>y2时,自变量x的取值范围是二、选择题:本大题共8小题,每小题4分,满分32分,每小题只有一个选项符合题目要求.7.贯彻落实党和政府扶贫开发方针、政策,负责组织实施和监督扶贫开发项目建设,开远市扶贫办2018年财政拨款收支总预算21800900元.将21800900用科学记数法表示为()A.2.18009×108B.0.218009×108C.2.18009×107D.21.8009×1068.下列计算正确的是()A.a5+a5=a10B.a7÷a=a6 C.a3•a2=a6 D.(﹣a3)2=﹣a69.不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.10.如图,把一张三角形纸片ABC沿中位线DE剪开后,在平面上将△ADE绕着点E顺时针旋转180°,点D到了点F的位置,则S△ADE:S是()▱BCFDA.1:4 B.1:3 C.1:2 D.1:111.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°12.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.4,1.3 C.1.4,1.35 D.1.3,1.313.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD为⊙O的直径,弦AB⊥CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意,CD长为()A.12寸B.13寸C.24寸D.26寸14.如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为()A.105°B.115°C.125°D.135°三、解答题:本大题共9小题,满分70分,解答应写出文字说明,证明过程或演算步骤.15.(6分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.16.(6分)先化简,再求值:﹣÷,其中a=.17.(8分)为了绿化环境,某班同学都积极参加植树活动,该班同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:(1)该班共有多少名同学?(2)条形统计图中,求m 和n 的值;(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.18.(6分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?19.(7分)小云玩抽卡片和旋转盘游戏,有两张正面分别标有数字1,2的不透明卡片,背面完全相同;转盘被平均分成3个相等的扇形,并分别标有数字﹣1,3,4(如图所示),小云把卡片背面朝上洗匀后从中随机抽出一张,记下卡片上的数字;然后转动转盘,转盘停止后,记下指针所在区域的数字(若指针在分格线上,则重转一次,直到指针指向某一区域为止).(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之积为负数的概率.20.(8分)如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.21.(8分)如图,在平面直角坐标系xOy中,直线BC与抛物线y=x2+bx+c交于点B(3,0)和点C(0,3),抛物线y=x2+bx+c过点B、C且与x轴的另一个交点为A.(1)求直线BC及该抛物线的表达式;(2)设该抛物线的顶点为D,求△DBC的面积.22.(9分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y (元)表示该店每天的纯收入.(1)若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的纯收入不少于800元,则每份套餐的售价应不低于多少元?(2)该店把每份套餐的售价提高到10元以上,每天的纯收入能否达到1560元?若不能,请说明理由;若能,求出每份套餐的售价应定为多少元时,既能保证纯收入又能吸引顾客?23.(12分)如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD∥AB时,求PD的长;(2)如图3,当=时,延长AB至点E,使BE=AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.参考答案与试题解析一、填空题1.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣8的相反数是8.故答案为:8.2.【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).3.【分析】将n=60,r=2代入弧长公式l=进行计算即可.【解答】解:l===π.故答案为π.4.【分析】根据题意列出关系式即可.【解答】解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)25.【分析】三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,找到从3个方向得到的图形全等的几何体即可.【解答】解:球体的三视图是3个全等的圆;正方体的三视图是3个全等的正方形.故填球体或正方体.6.【分析】由点A的纵坐标为2结合正比例函数图象上点的坐标特征可得出点A 的坐标,利用正反比例函数的对称性可得出点B的坐标,观察函数图象,找出正比例函数图象在反比例函数图象上方时x的取值范围,此题得解.【解答】解:∵点A在正比例函数y1=x的图象上,且点A的纵坐标为2,∴点A的坐标为(2,2).∵正、反比例函数图象关于原点中心对称,∴点B的坐标为(﹣2,﹣2).观察函数图象,可知:当﹣2<x<0或x>2时,正比例函数图象在反比例函数图象上方,∴当y1>y2时,自变量x的取值范围是﹣2<x<0或x>2.故答案为:﹣2<x<0或x>2.二、选择题:本大题共8小题,每小题4分,满分32分,每小题只有一个选项符合题目要求.7.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:21800900=2.18009×107,故选:C.8.【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选:B.9.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x<1,解不等式②,得:x≥﹣3,则不等式组的解集为﹣3≤x<1,故选:B.10.【分析】由题意可知DE∥BC,所以△ADE∽△ABC,利用相似三角形的性质可得到S△ADE:S▱BCED =1:3,又因为S△ADE=S△CEF,进而可得到S△ADE:S▱BCFD的比值.【解答】解:∵DE是△ABC中位线,∴DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC=1:2,∴S△ADE=:S△ABC=1:4,∴S△ADE:S▱BCED=1:3,∵将△ADE绕着点E顺时针旋转180°得到△CEF,∴△ADE≌△CEF,∴S△ADE=S△CEF,∴S△ADE:S=1:4,▱B CFD故选:A.11.【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选:B.12.【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第四组,1.4万步,故众数是1.4(万步);因图中是按从小到大的顺序排列的,最中间的步数都是1.3(万步),故中位数是1.3(万步).故选:B.13.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,如图所示,设直径CD的长为2x,则半径OC=x,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故选:D.14.【分析】根据相似三角形的对应角相等即可得出.【解答】解:∵△ABC∽△EDF,∴∠BAC=∠DEF,又∠DEF=90°+45°=135°,所以∠BAC=135°,故选D.三、解答题:本大题共9小题,满分70分,解答应写出文字说明,证明过程或演算步骤.15.【分析】先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS,即可证明△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).16.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:﹣÷====,当a=时,原式=.17.【分析】(1)根据植4棵的有11人,所占百分比为22%,求出总人数;(2)根据植树5棵人数所占的比例来求n的值;用总人数减去其它植树的人数,就是m的值;(3)根据植树2棵的人数所占比例,即可得出圆心角的比例,即可求出圆心角的度数.【解答】解:(1)由两图可知,植树4棵的人数是11人,占全班人数的22%,所以该班共有人数为:11÷22%=50(人);(2)由扇形统计图可知,植树5棵人数占全班人数的14%,所以n=50×14%=7,m=50﹣(4+18+11+7)=10;(3)所求扇形圆心角的度数为:360°×=72°.18.【分析】设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,根据抽调之后甲班剩余人数恰好是乙班剩余人数的2倍,列方程求解.【解答】解:设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,由题意得,45﹣x=2[39﹣(x﹣1)],解得:x=35,则x﹣1=35﹣1=34.答:从甲班抽调了35人,从乙班抽调了34人.19.【分析】(1)首先根据题意列出图表,然后由图表求得所有可能的结果;(2)由(1)列出的图表可得出所有出现的结果,再根据概率公式即可求出答案.【解答】解:(1)列表如下:),∴P(两数之积为负数)==.20.【分析】(1)利用菱形的对角线互相垂直结合平行线的性质得出∠BOC=∠OCE=∠OBE=90°,进而求出即可;(2)利用菱形的性质结合勾股定理得出CO,BO的长,进而求出四边形OBEC的面积.【解答】(1)证明:∵菱形ABCD的对角线AC与BD相交于点O,∴AC⊥BD,∵BE∥AC,CE∥BD,∴∠BOC=∠OCE=∠OBE=90°,∴四边形OBEC是矩形;(2)解:∵菱形ABCD的周长是4,∴AB=BC=AD=DC=,∵tanα=,∴设CO=x,则BO=2x,∴x2+(2x)2=()2,解得:x=,∴四边形OBEC的面积为:×2=4.21.【分析】(1)利用待定系数法分别求一次函数和抛物线解析式;(2)过点D作DE∥y轴交直线BC于E,如图,先配方得到y=(x﹣2)2﹣1.则D(2,﹣1),再确定E(2,1),然后利用S△DBC=S△CDE+S△BDE进行计算.【解答】解:(1)设直线BC的解析式y=kx+b(k≠0)将点B(3,0)C(0,3)代入得,解得,∴直线BC的解析式为y=﹣x+3.将B(3,0),C(0,3)代入抛物线的解析式得,解得,∴抛物线的解析式为y=x2﹣4x+3;(2)过点D作DE∥y轴交直线BC于E,如图,∵y=x2﹣4x+3=(x﹣2)2﹣1.∴D(2,﹣1),当x=2时,y=﹣x+3=1,则E(2,1),∴S△DBC=S△CDE+S△BDE=×3×DE=×3×(1+1)=3.22.【分析】(1)①利用每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本),以及每份套餐售价不超过10元,每天可销售400份得出等式求出即可;②由题意得400(x﹣5)﹣600≥800,解出x的取值范围即可.(2)由题意可得y与x的函数关系式,再求出当y=1560时x的值即可.【解答】解:(1)①y=400(x﹣5)﹣600.(5<x≤10),②依题意得:400(x﹣5)﹣600≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售价x(元)取整数,∴每份套餐的售价应不低于9元.(2)依题意可知:每份套餐售价提高到10元以上时,y=(x﹣5)[400﹣40(x﹣10)]﹣600,当y=1560时,(x﹣5)[400﹣40(x﹣10)]﹣600=1560,解得:x1=11,x2=14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意.故该套餐售价应定为11元.23.【分析】(1)根据题意首先得出半径长,再利用锐角三角函数关系得出OP,PD的长;(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.【解答】解:(1)如图2,连接OD,∵OP⊥PD,PD∥AB,∴∠POB=90°,∵⊙O的直径AB=12,∴OB=OD=6,在Rt△POB中,∠ABC=30°,∴OP=OB•tan30°=6×=2,在Rt△POD中,PD===2;(2)①证明:如图3,连接OD,交CB于点F,连接BD,∵=,∴∠D BC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∵BE=AB,∴OB=BE,∴BF∥ED,∴∠ODE=∠OFB=90°,∴DE是⊙O的切线;②由①知,OD⊥BC,∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.。