龙门吊结构计算及施..
龙门吊基础计算
龙门吊基础计算龙门吊是一种常见的起重设备,广泛应用于各个行业。
它的基础计算是设计和安装龙门吊时必不可少的一项工作。
本文将从龙门吊的基本原理、基础计算的步骤和注意事项等方面进行介绍和分析。
一、龙门吊的基本原理龙门吊是一种能够沿着轨道移动的起重设备,它通常由两个立柱和一个横梁组成。
立柱固定在地面上,横梁则悬挂在立柱之间。
龙门吊通过电动机驱动横梁移动,从而实现货物的起升和横向运输。
它的优点是结构简单、起升能力大、作业范围广。
二、基础计算的步骤1. 确定龙门吊的工作条件:包括起重物的重量、吊钩的高度、起升速度、作业频率等。
2. 确定龙门吊的结构参数:包括立柱的高度、横梁的跨度、轨道的长度等。
3. 计算龙门吊的荷载:根据起重物的重量和工作条件确定龙门吊的额定起重量。
4. 计算龙门吊的支撑力:根据龙门吊的结构参数和工作条件,计算立柱的支撑力,确保立柱能够承受龙门吊的荷载。
5. 计算龙门吊的基础尺寸:根据立柱的支撑力和土壤的承载力,计算龙门吊基础的尺寸和深度,确保龙门吊的安全和稳定。
三、基础计算的注意事项1. 在进行基础计算时,需要考虑到龙门吊的工作条件和使用环境,确保计算结果的准确性。
2. 在计算龙门吊的荷载和支撑力时,需要充分考虑起重物的重量、重心位置以及起升速度等因素。
3. 在计算龙门吊的基础尺寸时,需要考虑到土壤的承载力和基础的稳定性,确保龙门吊能够牢固地固定在地面上。
4. 在进行基础计算时,可以使用一些常见的工程软件或者手工计算方法,但需要注意计算的准确性和合理性。
5. 在进行基础计算时,需要遵循相关的国家标准和规范,确保龙门吊的设计和安装符合安全要求。
龙门吊的基础计算是设计和安装龙门吊时必不可少的一项工作。
通过确定工作条件、结构参数,计算荷载和支撑力,最终确定基础尺寸,可以确保龙门吊的安全和稳定。
在进行基础计算时,需要注意工作条件和使用环境,遵循相关的国家标准和规范,确保计算结果的准确性和合理性。
10t龙门吊机走道基础计算手册 (1)
10t 龙门吊机走道基础计算书
一、概述
为满足钢筋制作的需要,在钢筋制梁区域设置1台10t 龙门吊机。
龙门吊机
跨度14m ,净高9m 。
龙门吊机配备10t 电动葫芦一台。
根据吊机轨道地基承载力要求和钢筋场地地质条件,10t 龙门吊机轨道基底
12钢筋。
双面配筋计算公式:
公式:02)(2'0'2
=+-++)(‘a A h A b n x b A A n x s s s s —a I 受压区换算截面对中性轴的惯性矩;
—a S 受压区换算截面对中性轴的面积矩;
—s A 受拉区钢筋的截面积;
—'s A 受压区钢筋的截面积;
—cm a 5=受拉钢筋重心至受拉混凝土边缘的距离;
'5a cm =—受压钢筋重心至受压混凝土边缘的距离;
030525h h a cm =-=-=—截面有效高度;
—x 混凝土受压区高度;
以上公式的参数均取于<<公路钢筋混凝土及预应力混凝土桥涵设计规
范>>(JTGD62—2004)。
所以,由上面计算可得:
基础钢筋布设:
上排布置φ12钢筋,间距5+3×10+5(cm )共4根
下排布置φ12钢筋,间距5+3×10+5(cm )共4根
A.验算上部钢筋受拉时的应力:
由公式得:
2210210(4.5 4.5)(4.525 4.55)04040
x x ⨯⨯++-⨯+⨯=2 4.567.50x x +-=得x =6.3cm
由公式得:
32
140 6.310 4.5(6.35)341y ⨯⨯+⨯⨯-==(cm)。
25吨龙门吊计算书
25吨龙门吊计算书【原创实用版】目录1.引言2.龙门吊的基本概念和结构3.25 吨龙门吊的设计参数4.25 吨龙门吊的计算过程5.结论正文一、引言龙门吊是一种广泛应用于港口、车间、仓库等场合的重型起重设备。
本文主要介绍一种 25 吨龙门吊的计算书,以便于更好地理解龙门吊的设计原理和计算过程。
二、龙门吊的基本概念和结构龙门吊,又称门式起重机,是一种桥架型起重设备,主要用于室外作业。
它由主梁、支腿、起重小车、电气系统等部分组成。
主梁是龙门吊的主要承载结构,支腿用于支撑主梁,起重小车在主梁上运行,负责吊装货物。
三、25 吨龙门吊的设计参数在设计 25 吨龙门吊时,需要考虑以下主要参数:1.载重量:25 吨2.主梁跨度:根据实际需求设定,例如 20 米3.主梁截面:根据主梁跨度和载重量计算得出,例如:200mm×200mm4.支腿高度:根据实际需求设定,例如 10 米5.起重小车参数:根据主梁跨度和载重量计算得出,例如:5 吨,5 米四、25 吨龙门吊的计算过程在计算 25 吨龙门吊的过程中,需要考虑以下方面:1.主梁弯曲强度计算:根据主梁截面和载重量计算主梁的弯曲强度,以确保主梁在吊装过程中不会发生弯曲变形。
2.主梁稳定性计算:分析主梁在各种工况下的稳定性,以确保主梁在使用过程中始终保持稳定。
3.支腿强度计算:根据支腿高度和载重量计算支腿的强度,以确保支腿在吊装过程中不会发生弯曲或屈曲。
4.起重小车计算:根据起重小车的参数和载重量计算起重小车的强度和稳定性。
五、结论本文通过对 25 吨龙门吊的设计参数和计算过程的介绍,帮助读者更好地了解龙门吊的设计原理和计算方法。
40t龙门吊轨道梁及基础柱计算
一基本情况40T龙门吊的跨度为11.4m,根据现场需要设置于出土孔处,龙门吊基础柱为800X800钢筋砼基础,两端支座设置于围护桩冠梁上,中间两支座设置于主体结构纵梁上。
龙门吊走行梁为800x1400砼梁,梁顶与地面平齐。
计算示意图如下。
图1 40T龙门吊基础梁计算简图3.2龙门吊参数:表2 龙门吊参数3.4龙门吊工况40t龙门吊达到最大起重量、小车行至极限位置(小车满载停在支腿一侧的悬臂端处),且当两架龙门吊位于主体结构G-F轴中部时,基础柱承受轴力最大;基础梁最大弯矩通过时程分析,取最大弯矩验算。
3.5走行梁荷载计算1、走行梁竖向荷载查40t龙门吊图纸得知,龙门吊的大车最大轮压为330KN,龙门吊一侧轮距8.5m,每侧两肢共4个轮,计算竖向荷载标准值为660KN。
考虑荷载分项系数,取1.4考虑吊车竖向荷载动力系数,按工作级别为A6~A8 软钩吊车取1.102、走行梁横向水平荷载吊车横向水平荷载标准值,取横行小车重量及额定起重量之和的百分比,本吊车额定起重为40T, 吊车横向水平荷载标准值百分数为10%龙门吊四肢每肢横向水平荷载标准值为:Tk=0.5*0.5×(Q+g1)g×10%=0.5*0.5*(40+23.1)*10*0.1=15.8KN3、走行梁纵向水平荷载设计值(制动力引起的纵向水平荷载计算此处略)4、走行梁其他荷载设计值钢板、轨枕、钢轨等重量按每米60kg计算(走行梁自重不考虑,因为装配式贝雷梁桥容许荷载已考虑自重)。
3.6走行梁内力计算1、走行梁竖向内力计算1 计算简图:2 计算条件:荷载条件:均布恒载 : 0.00kN/m 均布活载 : 0.00梁容重 : 25.00kN/m3计算时考虑梁自重: 考虑恒载分项系数: 1.20 活载分项系数 : 1.40 移动荷载:移动荷载数目 :1机械1-集中力F(kN):660 660机械1-间距(m) :8.5梁左移动限制 : 否梁左移动限制距离: ----梁左移动限制 : 否梁左移动限制距离: ----单元划分长度 : 0.200m 机械最小移动步长: 0.200m机械间最小间距 : --- 机械荷载分项系数: 1.5403 内力简图:2、走行梁水平内力计算1 计算简图:2 计算条件:荷载条件:均布恒载 : 0.00kN/m 均布活载 : 0.00梁容重 : 25.00kN/m3计算时考虑梁自重: 不考虑恒载分项系数: 1.20 活载分项系数 : 1.40 移动荷载:移动荷载数目 :1机械1-集中力F(kN):15.8 15.8机械1-间距(m) :8.5梁左移动限制 : 否梁左移动限制距离: ----梁左移动限制 : 否梁左移动限制距离: ----单元划分长度 : 0.200m 机械最小移动步长: 0.200m机械间最小间距 : --- 机械荷载分项系数: 1.5403 内力简图:龙门吊走行梁配筋计算根据计算结果:走行梁最大正弯矩为Mx=1991KN.m,My=198KN.m;最大剪力Vy=1571KN,Vx=40KN。
龙门吊计算书
龙门吊计算书-CAL-FENGHAI.-(YICAI)-Company One1计算书目录第1章计算书................................................................ 错误!未定义书签。
龙门吊轨道基础、车挡设计验算......................... 错误!未定义书签。
龙门吊走行轨钢轨型号选择计算..................... 错误!未定义书签。
龙门吊轨道基础承载力验算......................... 错误!未定义书签。
龙门吊轨道基础地基承载力验算..................... 错误!未定义书签。
吊装设备及吊具验算................................... 错误!未定义书签。
汽车吊选型思路................................... 错误!未定义书签。
汽车吊负荷计算................................... 错误!未定义书签。
汽车吊选型....................................... 错误!未定义书签。
钢丝绳选择校核................................... 错误!未定义书签。
卸扣的选择校核................................... 错误!未定义书签。
绳卡的选择校核................................... 错误!未定义书签。
汽车吊抗倾覆验算..................................... 错误!未定义书签。
地基承载力验算....................................... 错误!未定义书签。
第1章计算书1.1 龙门吊轨道基础、车挡设计验算MG85-39-11龙门吊,龙门吊跨径改装修整为37m,每台最大起吊能力为85T。
60T龙门吊的设计与计算说明
60T龙门吊的设计与计算说明龙门吊的设计与检算一、概况XXX桥,全长559.34m共有板梁594片,全部为先张法预应力板梁,预制场设在第17#墩~第22#墩之间左幅的一块空地上,预制场的走向与桥梁的走向一致。
(见附图)二、龙门吊的设置因为预制场的走向与桥梁的走向一致,而预制场上只设置一台龙门吊,这样必须借助一个型钢加工的扁担(重约10t)板梁最大的自重31.2t,滑轮和钢丝绳重约2t,合重43.2t,按1.3的系数为43.2×1.3=56.2t。
这样龙门吊的吊重按60t设置。
三、龙门吊的主要参数:吊重W1=60t,跨度L=30m,高度H=15m,天车重W2=6t。
由6组贝雷片加上下加强弦杆。
四、强度检算:(一)横梁:1、静荷载:横梁由10片贝雷片上下加加强弦杆组成6组,贝雷片自重:G1=275Kg/片;加强弦杆自重:G2=80Kg/片;插销和支撑架的自重(对应贝雷片):G3=25Kg/片;这样横梁自重G=(G1+ G2×2+ G3)×6×10=27600Kg。
横梁的静荷载为横梁的自重,可视为均布荷载q=(G÷1000)×10KN/30m=9.2KN/m;故Mmax静=ql2/8=9.2×302÷8=1035KN•mQmax静=ql/2=9.2×30/2=138KN2、动荷载:动荷载系数K动=1.3;(教材《基础工程》)工作荷载P=K动(W1 +W2)=1.3×(600+60)=858KN。
故Mmax动=PL/4=858×30/4=6435KN•mQmax动=P=858KN3、总荷载:Mmax =Mmax静+Mmax动=7470KN•mQmax =Qmax动+Qmax动=996KN4、容许强度:[M]=9618.8KN•m;[Q]=1397.8KN。
5、结论:[M]>Mmax [Q]>Qmax 满足要求。
10T龙门吊板式基础计算案例
10T龙门吊板式基础计算案例龙门吊是一种用于起重和搬运作业的重型机械设备。
典型的龙门吊通常由支架、横梁、起重装置和控制系统组成。
为了确保龙门吊的稳定性和安全性,需要进行基础计算。
下面是一个10吨龙门吊板式基础计算案例,详细说明了计算过程。
1.首先确定龙门吊的重量和工作载荷。
根据实际需求和设计要求,假设龙门吊的重量为80吨,工作载荷为10吨。
2.确定基础尺寸。
根据实际使用情况和现场条件,选择适当的基础尺寸。
假设选定的基础尺寸为10米x10米。
3.确定基础承载力。
基础承载力是指基础能够承受的最大荷载。
根据国家标准和建筑规范,可以得到基础承载力的计算公式:P=A×q,其中P为基础承载力,A为基础面积,q为单位面积承载力。
4.计算单位面积承载力。
根据地质勘察和土壤力学性质的测试数据,确定土壤的承载力。
假设单位面积承载力为150kN/m27.设计基础结构。
在确定基础尺寸和承载力之后,可以开始设计基础结构。
在本案例中,选择板式基础结构进行设计。
板式基础结构由基础底板、基础墙壁和基础柱组成。
8.设计基础底板。
基础底板是承受重量和工作载荷的主要部分。
根据实际需求和设计要求,选择适当的底板厚度、材料和加固方式。
假设选择的底板厚度为1米,材料为钢筋混凝土,采用钢筋网加固。
9.设计基础墙壁。
基础墙壁是支撑基础底板和承受荷载的重要组成部分。
根据实际需求和设计要求,选择适当的墙壁高度、厚度和材料。
假设选择的墙壁高度为2米,厚度为0.5米,材料为钢筋混凝土。
10.设计基础柱。
基础柱是承受重量和工作载荷的重要部分。
根据实际需求和设计要求,选择适当的柱高度、直径和材料。
假设选择的柱高度为3米,直径为0.5米,材料为钢筋混凝土。
11.进行基础施工。
根据设计要求和技术规范,开始进行基础的施工工作。
包括挖掘基坑、浇筑混凝土、安装钢筋和加固等工序。
12.进行基础验收。
在基础施工完成后,进行基础验收工作。
包括对基础结构的尺寸和强度进行检查,确保基础的安全性和稳定性。
龙门吊计算书
龙门吊计算书假定计算参数:1、龙门用万能杆件拼装。
2、龙门净高16m,净宽42m,计算荷载1988KN。
3、龙门采用双层横梁拼装。
4、截面弹性模量E取2.1x105MPa。
一、求解截面特性现拟定横梁与立柱截面形式如下:由万能杆件标准图得:A=559.2cm2I y=I y1+A1d2+I y2+A2d2=2×(7896+279.6×1002)=5607792cm4W y=I y/z0=56077.92cm3I z=I z0+I z1+A1d2+I z2+A2d2=5264+2×(5264+186.4×2002)=14927792cm4 W z=I z/y0=74638.96cm3②立柱截面形式A=372.8cm2I x=I x1+A1d2+I x2+A2d2=2×(5264+186.4×1002)=3738528cm4W x=I x/z0=37385.28cm3I z=I z1+A1d2+I z2+A2d2=2×(5264+186.4×1002)=3738528cm4W z=I z/x0=37385.28cm3二、求解钢构内力与挠度根据龙门受力情况,可把龙门简化为钢构模型进行计算,荷载值P=1988KN(钢构件重)+420KN(横梁自重)=2408KN,考虑到单龙门受力将力分配如下图所示:VSES3.2 译码文件窗口界限尺寸(X,Y):60.000 35.116计算类型(静力1,模态2,动力响应3,屈曲4):1节点总数:6单元类型(桁架元1,刚架元2,三角形平面元3,四边形平面元4,空间元5,矩形板元6,板壳元7,梁-板壳组合8,杆-实体组合):2是否计入剪切变形(仅对梁单元):中间铰个数(仅对梁单元):虚拟单元数(仅对梁单元):单元总数:5单元特性种类:2材料种类:1有约束的节点数:6有支座位移的节点数:加荷载的节点数:2加荷载的单元数:是否计入重力:False重力因子(GX,GY,GZ):0 0 0节点号及节点坐标(X,Y,Z):1 2.000000e+00 2.000000e+00 0.000000e+002 2.000000e+00 1.800000e+01 0.000000e+003 1.600000e+01 1.800000e+01 0.000000e+004 3.000000e+01 1.800000e+01 0.000000e+005 4.400000e+01 1.800000e+01 0.000000e+006 4.400000e+01 2.000000e+00 0.000000e+00单元特性号及特性值:1 5.600000e-02 1.000000e+02 1.000000e+02 1.490000e-01 1.000000e+001.000000e+002 3.730000e-02 1.000000e+02 1.000000e+02 3.740000e-02 1.000000e+00 1.000000e+00材料特性号及特性值:1 7.800000e+04 2.100000e+11 3.000000e-01单元号及节点号,单元特性号,材料特性号:1 12 002 0012 23 001 0013 5 6 002 0014 3 4 001 0015 4 5 001 001约束节点号及约束值:1 1 1 1 0 0 02 0 0 1 1 1 03 0 0 1 1 1 04 0 0 1 1 1 05 0 0 1 1 1 06 1 1 1 0 0 0节点荷载所在的节点号及荷载分量值(PX,PY,PZ,MX,MY,MZ):3 0.000000e+00 -1.240000e+06 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+004 0.000000e+00 -1.240000e+06 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00弹簧单元数:集中质量节点数:VSES3.2计算结果文件计算类型:1节点号及节点位移 (m):1 0.00000e+00 0.00000e+00 0.00000e+002 6.38744e-04 -2.53287e-03 0.00000e+003 2.12913e-04 -5.73020e-02 0.00000e+004 -2.12917e-04 -5.73020e-02 0.00000e+005 -6.38748e-04 -2.53287e-03 0.00000e+006 0.00000e+00 0.00000e+00 0.00000e+00单元号及单元内力(局部坐标下的N1,MY1,MZ1,N2,MY2,MZ2):1 1.24000e+06 0.00000e+00 -2.50000e-01 -1.24000e+06 0.00000e+00 5.72316e+062 3.57698e+05 0.00000e+00 5.72316e+06 -3.57698e+05 0.00000e+00 1.16368e+073 1.24000e+06 0.00000e+00 5.72316e+06 -1.24000e+06 0.00000e+00 -2.50000e-014 3.57698e+05 0.00000e+00 -1.16368e+07 -3.57698e+05 0.00000e+00 1.16368e+075 3.57698e+05 0.00000e+00 -1.16368e+07 -3.57698e+05 0.00000e+00 -5.72316e+06单元号及单元剪力(局部坐标下的QY1,QZ1,QY2,QZ2):1 3.57698e+05 0.00000e+00 -3.57698e+05 0.00000e+002 1.24000e+06 0.00000e+00 -1.24000e+06 0.00000e+003 3.57698e+05 0.00000e+00 -3.57698e+05 0.00000e+004 -2.50000e-01 0.00000e+00 2.50000e-01 0.00000e+005 -1.24000e+06 0.00000e+00 1.24000e+06 0.00000e+00单元号及单元应力 (局部坐标下的max1,min1,max2,min2):1 -3.32440e+07 -3.32440e+07 -2.75208e+07 -3.89671e+072 -6.64297e+05 -1.21106e+07 5.24938e+06 -1.80243e+073 -2.75208e+07 -3.89671e+07 -3.32440e+07 -3.32440e+074 5.24938e+06 -1.80243e+07 5.24938e+06 -1.80243e+075 5.24938e+06 -1.80243e+07 -6.64296e+05 -1.21106e+07综合上面分析跨中最大挠度Δd=5.7302e-02m(钢构模型)<44/600=7.33333e-2满足钢结构设计规范要求。
(完整版)龙门吊计算书
下赶场沟大桥预制场74T龙门吊设计计算书下赶场沟大桥74T龙门吊计算书一、概述本预制场龙门吊横梁由贝雷片拼成,门柱由钢管和型钢组成;计算跨径为24m。
1、门柱一个门柱用2根Φ325mm、δ=10mm的钢管作主立柱,立柱上采用2根[25b槽钢作斜撑。
立柱顶上设置2根[30b槽钢作横梁,贝雷片直接作用于[30b槽钢上。
立柱底部通过20mm厚A3钢板与单轨平车连接。
每个门柱两个平车,一个主动,一个被动。
两个平车之间用2根14#槽钢拼焊成箱形前后焊联。
钢管与钢横梁采用焊接连接加固。
2、横梁一组横梁用6排9片贝雷片,设置上下加强弦杆。
两端头用4片(90-115-90)×118cm支撑架连接。
中间接头均用90×118cm支撑架连接。
同时横梁的上下面均用支撑架连接加固,除两端头上表面用(90-115-90)×118cm支撑架外,其余用90×118cm支撑架。
横梁一边通过吊带悬挂28#工字钢设10T电动葫芦,用于模板安装及砼浇筑,吊带距离间隔为1m。
横梁与门柱用桁架螺栓连接,再用Φ20U型螺栓加固。
3.天车在横梁上安放枕木、铁轨、1.6m主动平车。
枕木间距为60cm,5T慢速卷扬机放平车上,用5门滑车组吊装,钢丝绳采用直径为25mm 的。
4.操作台操作台设在门柱上,两套门吊的操作台相邻设置,以便于联系,统一协调操作。
各种电缆按规定布设,保证安全,便捷。
二、横梁计算对本龙门吊可进行如下简化计算,横梁拟用简支梁进行计算,脚架按受压格构柱进行计算,斜撑起稳定作用不作受力计算。
1、荷载计算横梁自重:q=11.7 KN/m天平及滑轮自重:P1=25KN起吊重量:P2=740/2=370KN2、计算简图(横梁)3、内力计算(1)最大弯矩当集中荷载作用于横梁的跨中位置,产生跨中最大弯矩,此时A、B支点也产生最大的负弯矩。
其中有R A=R B=(11.7×27+740÷2)÷2=343KN下弦弯矩:M A=M B=1/2*ql2=1/2×11.7×1.52=13.2 KN·m上弦弯矩:M Cmax=R A×12-11.7×(27÷2)2÷2=3050KN·m(2)最大支点反力计算当集中荷载作用在距离支点2.5m时,该支点的反力最大。
龙门吊基础梁计算书
龙门吊条形基础梁计算一、概况两台龙门吊组合,单台龙门吊自重G=76t,最大起重量为g=30t,吊车轮距6m。
其条形基础梁持力层为回填碎石,修正后地基承载力特征值取为fa=150kPa,条形基础梁采用C30级混凝土,钢筋采用HRB400级。
该条形基础梁依据《地基基础设计规范》(GB50007-2011)及《混凝土结构设计规范》(GB50010-2010),采用倒梁法进行设计。
二、计算简图取最不利情况为:两列龙门吊进行组合,并同时满载于同一侧,该侧四个轮压同时达到最大,且此时龙门吊处于条形基础梁最边缘处(根据《地基基础设计规范》第8.3.1条第2款要求,最边缘轮压处基础梁挑出l/4=5/4=1.25m)。
最不利荷载作用简图如图1所示,基础梁采用倒梁法进行设计,其计算简图如图2所示:图1 最不利荷载作用简图图2 基础梁内力计算简图其中最大轮压标准值为:Pmax,k=760/4+300/2=340kN。
三、确定基底尺寸根据地基承载力要求确定条形基础基底尺寸,由图1可看出,基础总长度按保守可取为:l=5×2+1.25×2=12.5m那么根据地基承载力要求,基础宽度为:b≥4×340/(100×12.5)=1.08m实际取基础宽度为b=1.2m,并据此取条形基础高度为h=0.5m,验算地基承载力如下:p k=(4×340+25×1.2×0.5×12.5)/(12.5×1.2)=103.2kPa<f a=150kPa 满足要求。
四、基础梁内力及配筋计算(一)内力计算在对称荷载作用下,基底反力呈均匀分布,单位长度的基底净反力设计值为:p j=(1.4×4×340+1.2×25×1.2×0.5×12.5)/12.5=170.32kN/m按连续梁模型,其计算简图如图2所示,采用理正工具箱计算内力如图3所示:图3 计算内力图(二)内力调整根据《地基基础规范》第8.3.2条第1款的规定,边跨跨中弯矩及第一内支座的弯矩值乘以1.2的系数。
10t龙门吊机走道基础计算书 (1)
10t 龙门吊机走道基础计算书一、概述为满足钢筋制作的需要,在钢筋制梁区域设置1台10t 龙门吊机。
龙门吊机跨度14m ,净高9m 。
龙门吊机配备10t 电动葫芦一台。
根据吊机轨道地基承载力要求和钢筋场地地质条件,10t 龙门吊机轨道基底需夯实,并采用钢筋混凝土条形基础作为龙门吊机的走道。
1. 3q2. 公式:02)(2'0'2=+-++)(‘a A h A b n x b A A n x s s s s —a I 受压区换算截面对中性轴的惯性矩;—a S 受压区换算截面对中性轴的面积矩;—s A 受拉区钢筋的截面积;—'s A 受压区钢筋的截面积;—cm a 5=受拉钢筋重心至受拉混凝土边缘的距离;'5a cm =—受压钢筋重心至受压混凝土边缘的距离;030525h h a cm =-=-=—截面有效高度;—x 混凝土受压区高度;—y 受压区合力到中性轴的距离;—b 基础的宽度;—n 钢筋的弹性模量与混凝土的变形模量之比;M Z 。
A.由公式得:2210210(4.5 4.5)(4.525 4.55)04040x x ⨯⨯++-⨯+⨯=2 4.567.50x x +-=得x =6.3cm 由公式得:322140 6.310 4.5(6.35)34140 6.310 4.5(6.35)2y ⨯⨯+⨯⨯-==⨯⨯+⨯⨯-(cm) 025 6.3422.7Z h x y =-+=-+=(cm)由公式得:316101574.522.7s s M A Z σ⨯===⨯<200(MPa)合格 由公式得: 157 6.3 5.31025 6.3c σ=⨯=-<7.0(MPa)合格 由公式得: 032100.5τ⨯==<][2-tp σ=0.73(MPa)合格。
60T龙门吊板式基础计算案例
60T龙门吊板式基础计算案例龙门吊是一种用于起重和搬运工作的大型建筑设备,它通常用于大型工程项目中。
龙门吊的基础是其稳定性和承重能力的重要保证,因此在进行龙门吊的基础计算时,需要考虑多种因素,包括土壤条件、荷载要求、基础形式等。
以下是一个60T龙门吊板式基础计算案例。
1.首先,确定60T龙门吊的基础尺寸。
龙门吊的基础尺寸是根据设备的整体重量和工作条件来确定的。
根据设计要求,60T龙门吊的基础尺寸为20m×10m。
2.确定龙门吊的工作荷载。
龙门吊的工作荷载是指它能够承受并进行起重和搬运的最大荷载。
根据设计要求,60T龙门吊的工作荷载为60吨。
3.确定土壤的承载力。
土壤的承载力是指土壤能够承受的最大荷载。
根据实地勘察和土壤试验结果,假设土壤的承载力为200kPa。
4.计算龙门吊的基础面积。
龙门吊的基础面积是根据基础尺寸和土壤承载力来计算的。
根据公式,基础面积=工作荷载/土壤承载力。
因此,基础面积=60T/200kPa=300m²。
5.按照基础面积计算基础板的尺寸。
基础板是龙门吊的基础结构之一,用于承载整个设备的重量,并将其传递到土壤上。
根据基础面积和基础板的形状(一般为矩形),可以计算出基础板的尺寸。
假设基础板的宽度为5m,则基础板的长度为基础面积/基础板宽度=300m²/5m=60m。
6.确定基础板的深度。
基础板的深度是根据土壤的质地和稳定性来确定的。
根据实地勘察,假设基础板的深度为2m。
7.确定基础板的形式。
龙门吊的基础板形式一般有两种选择:浸桩和板式。
根据设计要求,选择板式基础作为60T龙门吊的基础形式。
8. 确定基础板的钢筋数量和直径。
基础板的钢筋数量和直径是根据基础板的尺寸和设计要求来确定的。
根据经验公式,假设每米基础板的钢筋数量为0.1根,钢筋直径为20mm。
则基础板的钢筋数量为0.1×60m=6根,钢筋直径为20mm。
9.进行基础板的施工。
基础板的施工需要按照设计要求进行,包括砼配合比、施工工艺等。
2×50t龙门吊施工方案及检算
2×50t龙门吊施工方案及检算一、拼装前准备工作先清点各种材料是否齐备(详见材料清单),对台车、卷扬机、电动葫芦先试机,对起吊设备等进行检查,拼装材料进行排序运转,一切准备完成后方可拼装。
二、2×50t龙门吊结构简介龙门吊行走部分采用级配道碴、枕木、钢轨组合,钢轨间距1435mm,走行轨中心间距为22.3m,净空距离为7.8m。
轨道车平台采用I40a型工字钢和2cm钢板组合,立柱采用2×3组6m高的贝雷片拼装,主横梁采用2×3组贝雷片拼装,横梁和立柱采用贝雷销及异型加强弦杆联结。
具体见附件1《2×50t龙门吊拼装结构图》。
三、结构拼装1、龙门吊立柱:龙门吊走行轨中线距离按22.3m放出,以保证龙门吊内侧净跨为20.8m。
对路基进行整平压实,在枕木位置先铺设40cm厚级配道碴;再安放枕木(枕木间距0.7m),枕木安放完成后,进行水平调整;最后安放钢轨,钢轨和枕木之间采用道钉扣牢,左右轨面必须保持水平,轨距采用标准轨距1435mm。
用吊机将台车放于钢轨上,主动台车均置于小里程方向一侧。
两侧台车安装好后调整其相对位置,确保台车中心间距一致,采用木楔楔好龙门吊走行部,确保走行部分定位于钢轨上。
吊机配合拼装龙门吊支腿贝雷片。
贝雷片连接销必须完全压实,并用开口销锁紧。
支撑架与贝雷片连接螺栓必须用规定型号,不得用小于规定型号的螺栓代替。
2、龙门吊横梁的拼装:在平整的水泥地上放好贝雷片,对准两侧的阴阳螺扣,将3.0×1.5m的贝雷片横向拼装成21m长,拼装时完成时应为2×3组,3组之间采用900mm支撑架联结。
为保证横梁受力时的强度,底部增设加强弦杆。
每3组横梁拼装好后,用两台25t吊机平行起吊到两侧的立杆平行位置,横梁和立柱采用贝雷销及异型加强弦杆联结,完成横梁的拼装。
横梁安装完成后,为保证立柱受力时的稳定性,每立柱单侧采用两根[10槽钢进行斜向支撑。
龙门吊计算参照
电动葫芦行架式龙门起重机主梁的计算方法:现在有不少电动葫芦行架式龙门起重机主梁是正三角形。
是由一片主行架和两片副行架组成。
如何计算各杆件的内力?1,应用刚度分配理论进行计算。
一般主行架分配0.92-0.97的外载。
其余由两片副行架承受。
主行架的分配系数:(腹杆截面不计)K=E*A1/(E*A1+E*A2)式中:E—钢的弹性模量,A1-主行架上下弦杆的截面积。
A2-两片副行架上下弦杆的截面积。
上式化简:K=A1/(A1+A2)2,对外载进行分配,再应用行架计算法分别对主,副行架计算。
求出内力。
3,注意:有的杆件是共用杆,则应力叠加。
4,稳定性计算。
5,稳定性强度计算。
起重机钢结构技术问答我的一个同行朋友问我:1、对于A3钢,你的许用应力一般取多少。
“起重机设计规范”2类载荷取240/1.33=180Mpa是否太大,我不敢取这么大。
答:起重机设计规范”2类载荷取:180Mpa(N/mm^2)。
是安全可靠的。
放心用吧!2、对于A3,你用Q235-A,还是Q235-B,能否使用沸腾钢?答:Q235-A,和Q235-B,在一般情况都可以。
沸腾钢(脱氧不完全的钢)的使用应在温度—20度以上使用。
重要的杆件不能用沸腾钢。
84年我曾在张家口设计了一台龙门吊。
主杆件都是镇静钢。
水平行架中的腹杆用的是沸腾钢。
无问题。
3、对于箱型主梁,其翼缘焊缝强度如何计算,翼缘纵向加劲肋如何设计?答:对于箱型主梁,其翼缘焊缝强度的计算可分三部分:①,翼缘板与腹板的焊缝:τ=(Q*s)/(I*(2*0.7*h))≤(τ)式中:Q—梁计算截面的剪力;Ns—翼缘对中和轴的面积矩;(mm^3)I—梁的毛截面惯性矩;(mm^4)h—焊逢高;(mm)τ—剪应力(Mpa)或(N/mm^2)在工作中,我通过多次计算知翼缘板与腹板的焊缝:剪应力较小。
以后一般我就不算了。
我总结:当是工字梁时:焊逢高为腹板板厚的0.8倍(翼缘板板厚比腹板板厚要厚)。
当是箱形梁时:焊逢高为腹板板厚的1.0倍(因是单面焊口)。
120龙门吊计算书
邯郸市北恒工程机械有限公司LDS BH 12030三角桁架龙门吊计算书LDS BH12030三角桁架门式起重机计算书计算:审核:日期:北恒工程机械有限公司技术科一起重机主要性能参数1.1 额定起重量:120t1.2 起升高度:10m1.3 大车走行距:30m1.4 整机运行速度:0-10m/min1.5 吊梁行车运行速度:0-5m/min1.6 吊梁起落速度:≤0.75m/min1.7 适应坡度:±1%1.12 整机运行轨道和基础:单轨P43 枕木间距,500~600mm卵石道床>350mm二起重机结构组成2.1 吊梁行车:1台(120t,五门滑轮组,双卷扬)2.2 走行总成:2套2.3 左侧支腿:1套2.4 右侧支腿:1套2.5 托架总成:4根2.6 主横梁总成:2根2.7 吊梁扁担:1套2.8 端横联:2套2.9 电缆托架:1套2.10 行车电缆悬挂:1套2.11 行车行程限位:1套2.12 夹轨器:4套2.13 操作平台:1套2.14 电器系统:1套2.15 起重机运行轨道1套三方案设计注:总体方案见图LDS BH 12030-00-0003.1 吊梁行车3.1.1 主要性能参数额定起重量:120t运行轨距:2000mm轴距:2500mm卷扬起落速度:8m/min运行速度:0-5m/min驱动方式:集中驱动自重:8t卷筒直径:400 mm卷筒容绳量:200 m3.1.2 起升机构已知:起重能力Q静=Q+W吊具=120+1.0=1211t粗选:双卷扬,倍率m=12,滚动轴承滑轮组,效率η=0.92, 见《起重机设计手册》表3-2-11,P223,则钢丝绳自由端静拉力S::S=Q静/(η×m)=121/(0.92×12)/2=5.4t,选择JM6t卷扬机;钢丝绳破断拉力总和∑t:∑t=S×n/k=5×5/0.82=30.4t <32.3t,选择钢丝绳:6×37-21.5-1700,GB1102-74,《起重机设计手册》P195。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙门吊结构计算及施工方案目录一、工程概况二、轨道设计三、支架系统四、施工工艺五、龙门吊应力计算六、起升机构设计计算七、小车机构设计计算八、减速器以及链传动计算九、大车运行计算十、龙门吊起重机计算十一、龙门吊拼装方案十二、梁板吊施工方案编制依据1.《起重设备安装工程施工及验收规范》JBJ31-962.相关资料一、工程概况1、概述仙花店高架桥,全长600M,24跨,每跨为25M预制箱梁。
梁板预制场位于仙花店高架桥的小桩号路基上,梁板最大重量77吨,起吊采用双龙门吊,自重为60吨。
2、施工特点梁板预制场为石方路基挖方段,地质条件较好。
龙门吊施工作业的以移梁板为主,施工期间无须其他起重机械辅助,该桥的上部结构均为安装构件,安装工艺简捷,安装精确。
二、轨道的设计1、纵向轨道梁:龙门吊大车行车系统设计间距为35.0m,考虑到在使用过程中对称均匀受力,初步将的设计跨度定为25.5m,轨道拟采用铁轨,设计最大单轮压力为26t,每组滑车的前后轮距为1.8m,结合轨枕的布置,取如下计算图求。
当荷载作用在①③处时为弯距最不利位置:查弯距影响线图表得:Mmax=2×l×f/2=0.289×25.5×52t/2=191.607t.m<[M0] =224.64t.m最大挠度查表得:Fmax=K×(pl3/100EI)式中:K——挠度系数取为2.716P——为集中荷载为52tL——为计算跨度25.5mE——弹性模量为2.1×107t/m2I——惯矩为7.515×105cm4Fmax=2.716×(52/123)/(100×2.1×107×0.007515)=0.55×10-2m=5.5mm<l/600=45 mm剪力计算:Vmax=K×P=1.34×52=69.68t<V0 =69.89t故均符合要求2、沉降计算:简化计算如下:S=△c+△k=Nl0/EA+2Nh/3EA+N/C O A0式中:N——竖向压力为N=52tE——材料弹模E=2.1×105N/mm2L0——架体高度L0=10.85mH——架体支撑长h=2mA——横断面积A=20106mm2C O——地基竖向地基系数C O=m o hM O为比例系数,岩石土层取M O=3000KN/m4则C O=3000×103/10.2×1.71×104=5.13×10-2N/mm3A0——底平面的作用面积A0=Л(d/2+h.tgψ/4)2或A0=1/4Лl12取两者中的小值。
ψ为土的内磨擦角取ψ=75。
L1为两排桩间距取2.0m。
A01=Л(d/2+htg4/4)2=Л×(800/2+1.71×104×tg75/4)2=7.3×106mm2A02=1/4Лl12=1/4×Л×20002=3.14×106mm2取A O=3.14×106mm2则:S=N l0/EA+2Nh/3EA+N/C O A O=1.285+1.35+3.1=5.735mm但在实际使用过程中,作用在单轨道上的压力均小于52t,故单轨道的沉降均在5mm以内,能够满足使用要求。
三、支架系统:结合龙门吊吊装拱肋,安装过程中各分节节段采用少支架系统支承,小拱分三节吊装,大拱分七节吊装,吊装时单节最大重量控制在10t以内,则小拱拱肋吊装时,一跨共需4个支架,大拱吊装时需要12个支架,上部拼装万能杆件桁架。
单柱承载能力仍然为52t,支架系统在拱肋安装荷载作用下的内力及变形,在这里不作详细计算,但在实际过程中,应根据其荷载的分配情况对支架的水平偏位和压缩变形作详细计算,便于控制拱肋的安装精度。
四、施工工艺1、工艺流程在这里将分为1#拱、2#拱、为3#拱,、4#拱,其施工工艺流程如图所示。
↓↓↓ ↓ ↓ ↓↓ ↓ ↓ ↓→ → ←↓↓↓↓施工工艺流程图5-12、龙门吊拼装龙门吊拼装时应将龙门吊的行走系统安装上轨道,并与轨道固结,分别拼装两侧立柱,考虑到在拼装过程中的侧向稳定性,在立柱拼装时,应在其四角各设一根缆风。
同时在龙门吊横梁垂直投影位置,拼装横梁,并将左右两片横梁按0.8米的净间距锁定,安好天车轨道和天车,天车也应与横梁锁定,等立柱和横梁均拼装好后,在立柱顶上各设1组滑车,将横梁提升至立柱的固定杆处,与立柱对接。
横梁安装就位后,将天车、行走系统的固结、两横梁间的锁定及立柱缆风解除,对龙门吊进行调试。
在安装大拱前需将两台龙门吊的高度升至同一高度,考虑到不影响其它作业点的正常运作,应选择轨道中间适当的位置,由于拱肋安装时是用两台龙门吊来共同拼装,为保证龙门吊有足够的稳定性,可将两台龙门吊的立柱与轨道轴线方向连成整体,并将其行走系统与轨道固结,首先在两龙门吊立柱各设一道横梁,用龙门吊起吊至与立柱对接,在拼装时必需采取措施保证立柱的侧向稳定,将天车与横梁锁定,并将两横梁锁定,在立柱顶上各设四组滑车将横梁悬吊后,解除横梁与立柱之间的联结,将横梁提升至需要的高度后,与立柱对接,再解除横梁与天车及横梁之间的锁定,将其与立柱之间的联接解除,经检查确认上述步骤均完成后,解除龙门吊行走系统与轨道之间的固结,对龙门吊进行调试,直到龙门吊的各项性能均达到了设计要求后,方可进行吊装施工。
五、龙门吊应力计算1、设计条件①. 计算风速最大工作风速: 6级最大非工作风速:10级(不加锚定)最大非工作风速:12级(加锚定)②. 起升载荷Q=40吨③. 起升速度满载:v=1 m/min空载:v=2 m/min④小车运行速度:满载:v=3 m/min空载:v=6 m/min⑤大车运行速度:满载:v=5 m/min空载:v=10 m/min⑥采用单轨双轮支承型式。
⑦跨度35米,净空跨度15米。
⑧起升高度:H上=10米2、轮压及稳定性计算(1) 载荷计算①.起升载荷:Q=40t②.自重载荷小车自重G1=6.7t龙门架自重G2=60t大车运行机构自重G3=10t司机室G4=0.5t电气G5=1.5t③.载荷计算工作风压:qⅠ=114 N/m2qⅡ=190 N/m2正面:FwⅠ=37.5x23.7KN=798.75KNFwⅡ=37.5x11.7KN=263.25KN(2)轮压计算小车位于最外端,Ⅱ类风垂直于龙门吊正面吹大车, 运行机构起制动,并考虑惯性力的方向与风载方向相同。
龙门吊自重:G=G1+ G2+G3+G4+G5=6.7+60+10+2=78.7t起升载荷:Q=40t水平风载荷:FwⅡ=9.86t水平风载荷对轨道面的力矩:MwⅡ=9.86 X 44.8=441.7 tm水平惯性力:Fa=(G+Q) X a=(78.7+40) X 0.2 X 1000=2.374 X 1000 N=2.374 t水平惯性力对轨道面的力矩:Ma = 2.374 X 15=35.61tm总的水平力力矩:M1 = Ma+ MwⅡ=38 tm小车对中心线的力矩:M2=(6.7+40)X13.5=630.45tm最大腿压:Pmax=0.25 (G+Q) + M1/2L + Mq/2K=0.25 ⨯118.7 + 38/54 + 747.2/84=30最大工作轮压:Rmax= Pmax/4 =7.5t(3) 稳定性计算工况1:无风、静载,由于起升载荷在倾覆边内侧, 故满足∑M>≧0工况2:有风、动载,∑M=0.95 ⨯(78.7+40) ⨯27-630.45=2414. 2>0工况3:突然卸载或吊具脱落,按规范不需验算为防止龙门吊倾覆或移动,龙门吊设置风缆。
六起升机构设计计算(一)设计参数1.起重量:Q=40t2.起升速度:V吊=1m/sV空=2m/s3.钢丝绳倍率: q=4(二)钢丝绳计算Smax=Q/(qa η) Q=40t=4000Kg q —倍率, q=4 a —卷入卷筒根数 a=2η=0.97Smax=Q/(qa η)=40000/(2⨯4⨯0.97)=5.15⨯103Kg 选择 6w(19)-20-185-Ⅰ-光Sp=Φ∑S=0.85⨯30.25=25.70t> n ⨯ Smax=5 ⨯ 5.15=25.75t (三) 电动机的选择及校核8.785.0100060110000401000=⨯⨯⨯==ηQVN j KW选择变速调速电机 YTSZ180L-8 额定功率: 9Kw 额定转矩: 140.1Nm 额定转速: 735r/min 转动惯量: 0.285Kgm2 重量: 250Kg 过载系数λ:2.8 过载校核:Kw QV m H P n 9.58.78.21.21000=⨯=⨯≥ηλPn=11KW>5.9KW 满足要求。
七 小车机构设计计算 (一) 确定车轮直径小车采用2轮布置,轮距2.5m 。
小车自重引起的轮压RtRt=1.3×(6.7×10000) ÷4×1.1=22000N起升载荷引起的轮压Rt=1.1×(40×10000) ÷4=110000N最大轮压: Rmax=7.5×103最小轮压: Rmin=2.5×103 车轮的等效疲劳计算载荷 Rc=(2 Rmax+ Rmin )÷3=4.12×103采用圆柱车轮和铁路轨道,初选车轮直径φ400,铁路轨道P43,车轮材料为45号钢,踏面硬度HB=300—380,硬度层为15mm,P43轨道是凸形,曲率半径R=300mm. 车轮的许用轮压为:)(32221N m R K C C R c =C1----车轮转速系数,车轮的转数min /39.24.03r D v n =⨯=⨯=ππC2----运行机构工作级别系数,1K2---与车轮材料有关的电接触应力系数,0.1 R----曲率半径,为300mmm---曲率半径的比值所确定的系数,为0.454432322211053.9106.1145.03001.0117.1⨯>⨯=⨯⨯⨯==N m R K C C R c N(二) 运行阻力计算1.运行摩擦阻力Ff=wG ,w=0.008N G 4107.46)407.6(⨯=+= N F f 341074.3107.46008.0⨯=⨯⨯=2.坡度阻力N F G F 341067.401.0107.4601.0sin sin ⨯=⨯⨯===γγγγ3.风阻力Fw=(3+2.64)×12.97=0.073×103NF=Ff+Fr+Fw=(3.74+4.61+0.073) ⨯ 103=8.42⨯ 103N (三) 电动机的计算P=(FV)/(1000η)=(8.42⨯103 ⨯0.05×103)/(1000×0.85)=4.1kw八 减速器以及链传动计算总传动比i=940/2.39=393.3 i=i1•i2初估链传动比i2=2输出转速n=2.39⨯2=4.78 r/min 选择SEW 生产的斜齿轮减速电机 型号:R103DV112M6 输出转速:nout=5.5 r/min 则链传动比 i2=5.5/2.39=2.3 Z1=17, Z2=39, i1=39/17=2.3九 大车运行计算 (一) 确定车轮直径大车采用4⨯2轮布置, 轮距1.8m由总体计算,可知大车轮的最大轮压 Rmax=7.5t. 最小轮压: Rmin=2.5t等效计算轮压:RC=(2×7.5+2.5)×2/3=11.7t 初选大车车轮直径φ600,轨道P43车轮的许用轮压:RC=C1C2K232m R (N)C1为转速系数, 车轮的转速:n=m in/6526.26.05r DV =⨯=•ππ满空n =min /305.56.010r =⨯πC1=1.17 C2=1 K2=0.1 R=300 m=0.3388RC=1.17×0.1×3002÷0.3883=18×104>11.7⨯104N 满足要求。