平面杆单元有限元分析

合集下载

弹性力学与有限元分析第二章-平面桁架有限元分析及程序设计

弹性力学与有限元分析第二章-平面桁架有限元分析及程序设计

x
由单元①的刚度方程:
Fj

k
① ji
i

k
① jj
j

k
① ji
2
k
① jj
1
由单元③的刚度方程:
Fj

k
③ ji
i

k
③ jj
j

k
③ ji
3
k
③ jj
1
§2.3 结点平衡与整体刚度矩阵的集成
代入结点1的平衡条件:
k
l
xi
)
(dx j
dxi
)
(
yj
l
yi )
(dy j
dyi )
(dx j dxi ) (dy j dyi )
cos sin
由于杆件的变形产生位移:
ui dxi vi dyi
u j dxj v j dy j
因此,杆件应变为:
dl l
l
(ui
uj)
l
(vi
vj)
杆件轴力为:
(2k1 k2 )v4 P
结构的整体刚度系数
v4
P 2k1
k2
12 3
l2 l1 l1
4 P
N1
N1y
cos
k1v4
cos
k1P
(2k1 k2 ) cos
N2
k2v4
k2P 2k1 k2
位移法求解超静定结构。
§2.1 平面桁架单元的离散
结构的离散化:尽量将结构离散成数量最少的等截面直 杆单元
kki③ ③jii
ki③j
k
③ jj
3 3 3 3
§2.3 结点平衡与整体刚度矩阵的集成

2_杆系结构有限元分析1

2_杆系结构有限元分析1

( x) Nii N j j
x x N 1 , N 其中 i 为形函数。 j l l
由材料力学扭转可知
d dN e e M GI p GI p θ GI p B θ dx dx
其中 B
dN 1 1 dx l l
§1-2 扭转杆单元
e
外力势能 V u
e

e T
fe
e
1 e T e e e T 总势能 U V u K u u f e 2
e e
§1-1 拉(压)杆单元
1 e T e e e T U V u K u u f e 2
e e e
根据最小势能原理,势能泛函取驻值的必要条件
空间杆单元坐标变换矩阵
0 T 0
单元在两个坐标系中刚度矩阵转换关系同样有
K e T T K ' T
e
矩阵中仅仅包含有坐标的倾角,仅平行移动坐标轴,刚度矩阵 中元素值不变,矩阵的阶数也不改变。
§1-2 扭转杆单元
结点位移向量θe i , j
T
结点力向量
平衡关系
杆单元结点力向量
f U i
e
Uj
T
单元在外力和内力作用下处于平衡状态,反映单元平衡状态 的关系式就是刚度方程。下面利用最小势能原理推导单元的 刚度方程。 最小势能原理:在满足连续条件和边界条件的位移中,满足 平衡条件的位移其总势能最小,反之亦然。 单元总势能
e U e V e
M e Mi , M j
T
杆件发生自由扭转时,待求位移是截面的扭转角 ( x) 在局部坐标系中,每一个点将具有一个基本未知位移,最简单 的单元位移函数可以设为

结构分析的有限元法-第三章

结构分析的有限元法-第三章

式中
H 1 u B A yH v
(3.32)

H 0 u H 0 v 0 0 0 0 1 0 0 2 0 6x
(3.33)
单元刚度矩阵
再次应用式(2.70),并进行一系列的积分运算,可以得出单元刚度矩阵的显式如下:
l
K
e
E d A B B d x
0 1 l
Av
1
2 l
0 0 1 l 2 1 l
(3.21)
MATLAB不仅可以进行数值运算,也能进行符号运算。如式(3.20)中的矩 阵Au和Av的求逆运算,我们可以在MATLAB的命令窗口下输入 >> syms L >> Au = [ 1 0 1 L ] ; >> Av = [ 1 0 0 0 0 1 0 0 1 L L^2 L^3 0 1 2*L 3*L^2] ; 第一句是定义符号变量L,后面定义两个矩阵Au和Av。然后我们再输入下 面求逆的命令 >> inv(Au) ans = 0 1 1 [ 1, 0] Au [ -1/L, 1/L] 1 l 1 l >> inv(Av) ans = 0 0 1 [ 1, 0, 0, 0] 0 1 0 1 [ 0, 1, 0, 0] A v 2 2 3 l 2 l 3 l [ -3/L^2, -2/L, 3/L^2, -1/L] 3 2 3 1 l 2 l [ 2/L^3, 1/L^2, -2/L^3, 1/L^2] 2 l
根据材料力学的有关知识,我们可以立刻写出杆单元的结点位移与结点力 之间的关系为
FNi EA l (u i u j ) FNj EA l (u j u i )

第5章 杆单元和梁单元

第5章 杆单元和梁单元

1 u2 E (2) A(2) (2) 2 u3 l
1 1 u2 1 1 1 u 2 R2 3
u1 在这里,把表达成整体位移矢量 u 2 的函数,如下: u 3
5.1 杆件系统的有限元分析方法
(1) (1) (1)
F3 10N
,进行相应的单元应力计算。得到的结果如下:
0 u1 4 u2 2.5 10 m u 7.5 10 4 m 3
(2) ( x) 5 103 (1) 0.05MPa (2) = 0.1MPa
第五章 杆单元和梁单元
第5章 杆单元和梁单元
本章主要介绍利用杆单元及梁单元进行结构静力学的有限 元分析原理。首先介绍了杆单元的分析方法,详细给出了采用 杆单元进行有限元分析的整个过程;紧接着介绍了平面梁单元 ,以一个平面悬臂梁力学模型为分析实例,分别采用材料力学 、弹性力学解析计算以及有限元法进行了分析与求解,以加深 读者对有限元法的理解。
E (2) A(2) (2) u2 1 u2 l 0 F3 (2) (2) E A u3 2 u3 l (2)
5.1.1 一维杆单元
u2 由最小势能原理,势能函数对未知位移 求变分,满足 u3 的条件是 ,得如下方程式 0, 0
P 1 , u1
E e , Ae , l e
1
图 5-2 杆单元
P2 , u2
2
对于两个节点的杆单元,存在如下节点力和节点位移的关 系式 u P 1 e 1 (5.1) k
P2
u2
其中, k e 称为单元刚度矩阵
5.1.1 一维杆单元

杆梁结构有限元分析

杆梁结构有限元分析

3.1 杆梁结构的直接解法
机械分社
(1)平面压杆有限元法的直接法
由节点平衡有: 即有:
U1(1)u1 U1(1)u2 N1
U
u (1)
21
(U
(2 2
)
U
(1) 2
)u2
U
(2 2
)u3
F1
U
(2 3
)
u2
U
(2 3
)
u3
F2
EA1 l1
u1
EA1 l1
u2
N1
EA1 l1
u1
( EA1 l1
3.1 杆梁结构的直接解法
机械分社
杆梁结构是指长度远大于其横截面尺寸的构件组成的杆 件系统,例如机床中的传动轴,厂房刚架与桥梁结构中的梁 杆等,可以用杆单元或梁单元来进行离散化。
空间杆系:平面杆系是指各杆轴线和外力作用线位于一 个平面内,若各杆轴线和外力作用线不在一个平面内。 (1)平面压杆有限元法的直接法
单元刚度矩阵每一列元素表示一组平衡力系,对于平面 问题,每列元素之和为零。
3.1 杆梁结构的直接解法
机械分社
(2)平面梁单元有限元法的直接法 2)节点位移与节点力之间的关系
Ui
Vi
k11
k21
M i U j
k31
k41
V
j
M j
k51
k61
他们在轴和轴的投影之和等于零:
vi
6EI l2
i
12EI l3
vj
6EI l2
j
M
j
6EI l2
vi
2EI l
i
6EI l2
vj
4EI l

有限元法(杆系)

有限元法(杆系)

Fjy
FFji Fj
s in cos s in
s in
0 0
0 0 0
0
cos s in
或 F(e) T F (e) (1)
Fiy
i
Fi i
Fix
拉压杆单元
0 Fi e
0 0 0
0 Fj 0
F jy
j
j
uiy ui
uix
u jy
y
Fj
F jx uj
u jx
2)
叠加形成总刚度矩阵,求位移
2sin2
0
sin2 EA sin cos
l
0
0
sin2
sin cos
0 2 cos2 1 sin cos
cos2 0 1
sin cos cos2
sin2 sin cos
sin2 sin cos
0 0 0 0
sin cos cos2 sin cos cos2
• 用单元节点位移表示单元内部位移
第 i 个单元中的位移用所包含的结点位移来表示:
u(x)
ui
ui1 ui Li
(x
xi )
(1- 1)
其中 u i 为第 i 结点的位移, xi 为第 i 结点的坐标。
第 i 个单元的应变为 i ,应力为 i ,内力为 N i :
i
du dx
ui1 ui Li
x
在局部坐标下,轴向力与轴向位移的关系:
(e)
Fi
1 0 1 0ui e
0
Fj
0
EA
0
0
l 1 0
0
0
0 1 0
0 0 0

有限元分析基本步骤

有限元分析基本步骤
变形。
• 截面参数由用另外提供,材料和温度等也另外 提供。
• 对特殊行业,也可建立管单元。
2
• 二维单元
– 分类:面单元和板单元
– 特点:厚度远小于长度和宽度
– 节点连接:节点处铰接,传递平面内的力,不能传递 弯矩
– 形状:三角形或四边形
• 载荷
– 平面单元和板单元只承受平面内的载荷,不能传递力 矩
– 壳单元在节点处固接,可承受垂直于平面的载荷,可 传递任意方向的力并可传递弯矩和扭矩
• 如模块盒底板可建立壳单元
• 厚度尺寸和其他参数另外提供
3
• 三维单元
– 不能简化为二维问题的连续体。节点处铰 接,只传递力不能传递扭矩。单元形状为 六面体、或四面体、五面体。
– 实际问题模型可由多种模型结合。
• 则节点载荷为
{ } [ ] P e = Pxi Pyi Pxj Pyj Pxm Pym T
20
体积力移置
21
l ds
22
23
σ e = Dε e = DBeδ e = S eδ e
{ε}= [B]{δ }e
5. 建立单元刚度矩阵
• 由虚功原理可导出节点力和节点位移的关系。
• 设节点力为
Ui
0
∂Nm
0
∂x
[B]
=
1 2A
0 ∂Ni
∂Ni ∂y ∂Ni
∂x 0 ∂N j
∂N j
∂y ∂N j
∂x 0 ∂Nm
∂Nm ∂y ∂Nm
=
1 2A
b0i ci
0 ci bi
bj 0 cj
0 cj bj
bm 0
0
cm
cm bm

第二章 杆系结构的有限元法分析

第二章  杆系结构的有限元法分析

F ⓔ Fxi
Fyi
Fzi
M xi
M yi
M zi
Fxj
Fyj
Fz j
M xj
M yj
T
M zj
EA
EA
l
0
0
0
0
0
0
l
0
0
0
0
Fxi
0
12 EI z l3
0
0
0
6 EI z l2
0
12EI l3
z
0
0
0
6 EI z l2
ui
Fyi
0
0
12EI y l3
0
6EI y l2
所谓杆件是指从构造上来说其长度远大于其截面尺寸的一维构件。在结
构力学上我们通常将承受轴力或扭矩的杆件称为杆,而将承受横向力和弯矩的杆 件称为梁。在有限单元法中这两种情况的单元分别称为杆单元和梁单元。但由于 在实际工程结构中,同一构件上,上述几种受力状态往往同时存在,因此为方便 起见,本书都称之为杆单元。并且,本书所讨论的杆单元均是指等截面直杆单元, 对于变截面杆和弯曲杆件,我们在进行单元划分时可以将其分为若干等截面杆单 元。因此本书的分析方法仍然对其适应。
在所有结构中,杆系结构是最简单的一类结构,也是我们在工程上最常
见的一类结构。如平面桁架、平面刚架、连续梁、空间刚架、空间桁架等都属于 此类结构,以此类结构为基础介绍有限单元法的分析过程。
首先了解一下有限单元法分析问题的基本步骤。
第一步:对结构物进行离散化,划分为有限个单元
3 2
4 5
1
6
1
2
3
4
5
第八步:引入边界条件

杆梁结构的有限元分析

杆梁结构的有限元分析

【典型例题】3.1.2(2) 变截面杆单元的推导
如图3-5所示,有一受轴载荷的线性变截面杆件,两端的截 面积为A1和A2,长度为l,材料的弹性模量为E,试建立描述该 杆件的一个杆单元。
3.1.3 杆单元的坐标变换
1. 平面杆单元的坐标变换
在工程实际中,杆单元可能处于整体坐标系(global coordinate system)中的任意一个位置,如图3-6所示,这需要 将原来在局部坐标系(local coordinate system)中所得到的单元 表达等价地变换到整体坐标系中,这样,不同位置的单元才 有公共的坐标基准,以便对各个单元进行集成(即组装)。图3-6 中的整体坐标系为( ),杆单元的局部坐标系为(ox)。
下面针对图3-2所示的一端固定的拉杆问题,分别讨论 基于直接求解方法以及基于试函数的间接方法的求解过程。
【求解原理】3.1.1(3) 1D问题的直接求解
【求解原理】3.1.1(4) 1D问题的虚功原理求解
先以一个简单的结构静力平衡问题来描述虚功原理的基本思 想,然后再具体求解一端固定的拉杆问题。
【基本变量】3.1.1(1) 1D问题的基本变量 由于该问题是沿x方向的一维问题,因此只有沿x
方向的基本变量,即 定义沿x方向移动为位移: u(x) 定义沿x方向的相对伸长(或缩短)量为应变: εx(x) 定义沿x方向的单位横截面上的受力为应力:
【基本方程】3.1.1(2) 1D问题的基本方程 该问题的三大类基本方程和边界条件如下:
第3章 杆梁结构的有限元分析
3.1 杆件有限元分析的标准化表征与算例
3.1.1 杆件分析的基本力学原理
杆件是最常用的承力构件,它的特点是连接它的 两端一般都是铰接接头,因此,它主要是承受沿轴线 的轴向力,因两个连接的构件在铰接接头处可以转动, 则它不传递和承受弯矩。

杆件系统有限单元法

杆件系统有限单元法
e
(3)单元应力场的表达 由弹性力学中物理方程有:
σ e ( x ) = E eε e ( x ) = E e B e ( x ) ⋅ δ e = S e ( x ) ⋅ δ e
其中Se为单元的应力函数矩阵:
⎡ E S ( x) = E B ( x) = ⎢ − ⎣ l
e e e
e
E ⎤ ⎥ l ⎦
平面梁单元的节点位移δe和节点力Fe为:
δ =⎡ ⎣ui vi θi u j v j θ j ⎤ ⎦
e e
T
F =⎡ ⎣ FNi FQi M i FNj FQj M j ⎤ ⎦
相应的刚度方程为:
T
K e ⋅δ e = F e
将杆单元刚度矩阵与纯弯梁单元刚度矩阵进行组 合,可得到平面梁单元的刚度矩阵:
可以写出节点位移向量和节点力向量:
δ =⎡ ⎣ui u j ⎤ ⎦
e
e
T
T ⎡ ⎤ F = ⎣ FNi FNj ⎦
(1)单元位移模式的表达 由于每个节点只有一个轴向位移,即一个单元共有 两个自由度,因此可假设该单元的位移模式为具有 两个待定系数的函数模式:
u ( x ) = a 0 + a1 x
e
第三章
杆件结构的有限元分析 (FEA)
在杆件系统中根据单元受力的特点,我们可以 把它们分成两大类:杆和梁。为了以后描述的 方便,我们把两端铰接,只受轴向力的基本结 构称为杆单元,而受轴向力和弯矩、扭矩、剪 力共同作用的基本结构称为梁单元。
3.1 平面杆单元
局部坐标系中的杆单元描述
设有一任意的杆单元如图所示,i 和j 为单元的两 个结点,x 为该单元的局部坐标,其原点设在单 元的i 结点。设两个结点在x 方向的位移为 u i 和 u j ,它们的正方向如图3-1 所示,与它们相应的 结点力 FN δ e

第五讲 杆系有限元的动力分析部分(1)

第五讲 杆系有限元的动力分析部分(1)

K12 y1 (t ) 0 K 22 y2 (t )
由第二式
y1 (t ) K11 y1 (t ) K12 y2 (t ) 0 M 11 K 21 y1 (t ) K 22 y2 (t ) 0
F sin t
3
F sin t
2
F sin t
1
结构分析时,静力分析和动力分析 或许只是结构分析过程中的不同工 况,因此,模型计算时通常需要统 一的自由度选择,而非在两个完全 不同的模型中独立进行分析。 动力自由度和静力自由度是不同的。 动力计算自由度基于质量位形描述 而静力计算自由度(位移法),是 结点位移。
从以上推导过程可知: {y}向量为静力分析时的位移向量 {y1}向量为动力分析时的位移向量 [M']和[K']矩阵为与动力自由度对应的质量、 刚度矩阵
三、杆系结构自由振动分析
3、动力自由度的坐标变换
动力自由度下的运动方程,根据矩阵元素的物理意义可知,质量矩阵 可以是对角矩阵,但刚度矩阵通常为非对角矩阵。
F sin t
2
F sin t
1
运动分析模型
静力分析模型
二、杆系结构动力分析模型
1、动力自由度与分析自由度选取
通过之前的上机分析,可知梁线刚 度远远大于柱线刚度在一般结构中 并不总是可以满足!!!
由于动力分析的荷载模式主要来自 自于水平地面运动。 此时侧向位移是主运动自由度 (x>>y),产生的位移、速度和加 速度要远远大于因为结点转动产生 的楼盖梁的竖向运动的对应值。 所以普通框架可以只考虑楼层的侧 向位移作为动力自由度。
静力分析模型
三、杆系结构自由振动分析

有限单元法课件第四章 杆件系统的有限元法

有限单元法课件第四章 杆件系统的有限元法
桁杆 梁
(a)
(b)
由杆件组成的结构体系称为杆系,如起重机,桥梁等。
由桁杆组成的杆系称为桁架。
由梁组成的杆系成为刚架。
若杆系和作用力均位于同一平面内,则称为平面桁架 或平面刚架,否则称为空间桁架或空间刚架。
由于杆件结构采用一维单元进行离散,所以杆系的网 格划分容易用半自动方法实现。当采用自动网格划 分方法时,杆系的几何模型是由杆件轴线构成的线框 模型。
R
e P
RiP R jP
R
lP
R
R
e F
RiF R jF
Rlx Rly NlT l R l
lF T l
Px dx (l i, j ) Py
e T
Bj dx
kii k ji
kij k jj
其中矩阵元素为
kst D Bt dx B as 0 EA 0 at 0 0 0 bs dx 0 EI 0 bt ct 0 cs 0 0 EAas at dx 0 EIb b EIb c s t s t EIcs bt EIcs ct 0
e
du dx e x 2 B Bi q x d v dx 2
Bj q
e
其中
ai 0 0 Bi 0 b c i i a j 0 0 Bj 0 b c j j 1 12 6 ai a j bi b j 3 x 2 l l l 4 6 2 6 ci 2 x cj 2 x l l l l

有限元第三章杆系结构单元分析

有限元第三章杆系结构单元分析
u N ui ui T N δe
对应的虚应变为:
B δe
根据虚位移原理虚功方程,有:
W外 FdeT δ e
l 0
q(
x)
N

δ
edx


W变
l
0 Adx
l δ eT BT EAB δ edx 0
将上式整理得:
(3-23)
Fde
dx
(3-5)
虚曲率
k d 2 v
dx2
(3-6)
若又设单元任一截面实际的水平和竖向位移为 u (x)、v (x),
则由材料力学可得与位移对应的截面内力为
FN

EA du dx
(3-7)
M

EI
d 2v dx2
(3-8)
式中EA,EI分别为单元的抗拉(压)、抗弯曲刚度。
有限单元法
在图3-3和上述矩阵说明的情况下,将虚位移原理用于单元, 则单元的虚功方程为
类型单元刚度矩阵相同。
Y
x
y
局部坐标


X
○○

整体坐标
P
大家要熟悉知道单元编号,节点编号,位移编号,以及整体 坐标和局部坐标。
有限单元法
2 1
3
4ቤተ መጻሕፍቲ ባይዱ
5
6
图2.1 弯曲杆件系统
1
有限单元法
2
3
4
5
图2.2 截面连续变化杆件系统
结点编号
单元编号
5 (8 9 10) 6
4
3
(2 3 4)
3
1
1 (0 0 0)
设平面杆系结构用结点分成等直杆(单元)集合,其 中某单元e隔离体如图3-3所示,如果建立了单元e的虚位移 原理虚功方程,则整个杆系结构的虚功方程可由对各杆求 和获得。为用矩阵形式写出杆件及杆系结构虚位移原理的 虚功方程,以便于今后推导使用,特引入一下矩阵(向 量):

有限元分析第二讲杆单元分析

有限元分析第二讲杆单元分析

引入边界位移约束和载荷:
则系统平衡方程化为:
2 2 0 0 F1 EA 2 3 1 u P 2 L 0 F 0 1 1 3
上述方程组中删除第1,3个方程,得到:
解得:
(四)举例
例1 求图示2段杆中的应力。
解:分2个杆单元,单元之间在节点2连接。 各单元的刚度矩阵分别为:
参考前面弹簧系统的方法,装配2杆系统的有限元方 程(平衡方程)如下:
2 2 0 u1 F1 EA 2 3 1 u 2 F2 L u F 0 1 1 3 3
2 杆单元

一、一维等截面杆单元及其刚度矩阵
考虑一个2节点一维等截面杆单元: L— 杆长 A— 截面积
E— 弹性模量
ui 单元节点位移:d u j
fi 单元节点力:f fj
u u ( x)
——杆单元位移
——杆单元应变 ——杆单元应力

du dx
( x) ( x)
应变—位移关系: 应力—应变关系:
E
(一)直接法导出单元特性 杆单元伸长量:
u j ui
应变:
应力:
L E E L
EA EA k 杆内力: F A L L
EA 杆的轴向刚度: k L
轴向拉压变形模式下,该杆单元的行为与弹簧单元相同, 因此杆单元的刚度矩阵为:
EA k L
比照弹簧元的刚度方程,写出杆单元的刚度方程为:
f i k k ui EA 1 1 ui f j k k u j L 1 1 u j

有限元分析杆单元

有限元分析杆单元

V
考虑到d 旳任意性,立即得到:
f
V
BT EBdV
d
kd
k BTEBdV ——杆单元刚度矩阵
V
这就是刚度矩阵旳一般形式,可推广到其他类型旳单元。
对于上面旳杆单元: 与前面直接法得到旳公式相同!
(三)有关杆单元旳讨论
1)在单元坐标系下,每个节点一种未知位移分量,单元 共有2个自由度。
2)单元刚度矩阵元素旳物理意义: 单元刚度方程
1 1 1
1
单元2:2-3
135,l 2 ,m 2
2
2
k 2 T2Tk2T2
1 1
0
0
T
1
0 1 01
1
0
0
EA 2 2 1 1 0
0
0
0
0
01 1
0
0
L 2 2 0 0 1 1 1 0 1 0 0 0 1 1
0
0
1
1
0
0
0
0 0
0 1 1
u2 v2 u3 v3
1 1 1 1
——平衡条件
对于杆单元,定义虚位移如下:
节点虚位移:
d
ui u j
单元虚位移: u Nd
则单元虚应变: d (u) Bd
dx
节点力(外力)虚功: dTf
单元虚应变能:
TdV
V
dTBT EBddV
V
dT V
BT EBdV
d
对杆单元应用虚位移原理,得:
dTf dT BTEBdV d
引入边界位移约束和载荷: 则系统平衡方程化为:
2
EA L
2 0
2 3 1
0 1 1

桥梁结构分析的杆系有限元法及结构模型的建立2015

桥梁结构分析的杆系有限元法及结构模型的建立2015

结构的离散化
确定了结构的全部 节点,也就确定了 结构的单元划分, 然后对结构进行单 元编号和节点编号, 通常单元编号用①, ②,……表示,节 点编号用1, 2,……表示,如图 所示。
6 67
5
4
3
5
4
1
2
1
2
3
单元杆端力与杆端位移的表示方法
• 平面桁架单元的局部坐标和整体坐标:
y
y
x
3
x2
2
y
1
结构分析的杆系有限元法
• 概述 • 有限单元法的概念及应用 • 结构的离散化 • 单元杆端力与杆端位移 • 逆步变换 • 单元刚度矩阵 • 总刚度矩阵 • 边界条件的后处理法 • 线性代数方程组的数值解法
结构分析的含义
• 结构分析的含义,不仅指在一定的已知条件下对结构的变 形和内力等进行计算,而且包括分析构件刚度变化对内力 变化的影响,对结构的几何组成进行分析,以及选择合理 的结构形式等等。
结构分析的有限元法
• 美国20世纪70年代推出的至今仍然是世界销售量最大的 NASTRAN(NAsa STRuctural Analysis,美国国家航空和 宇宙航行局结构分析程序系统)程序与当时西德推出的 ASKA(Automatic System for Kinematics Analysis,运动 分析的自动程序系统)齐名,同为当时最为著名和广泛应 用的程序,但几十年后的现在,ASKA已无法与 NASTRAN相比。原因是ASKA后来没有大规模的资金投 入,使程序不断得到滚动发展(维护)和组织推广、剌激 程序在竞争中不断改进各种功能。
向量
X
e i
Yi e
F
e
Fi e Fje

机械结构有限元分析---结构动力问题有限元法

机械结构有限元分析---结构动力问题有限元法
K V B DB dV
e T
单元阻尼矩阵
单元刚度矩阵 单元等效结点荷 载向量
F (t )e V N T FV dV S N T Fs T dS
07
制作:南昌航空大学————贺红林,2014
7.3 结构运动方程及其动力学矩阵
一、结构的运动方程 按照与静力有限元相同的方法,将所有单元的运动方程进 行集成,可得结构总体运动方程:
07
制作:南昌航空大学————贺红林,2014
7.1 动力学问题的基本概念
1、自由振动与受迫振动 自由振动——动荷载为零,由初始位移和初始速度引 起的结构振动。 受迫振动——由动荷载引起的结构振动。 2、动力问题的主要研究内容 结构的自振特性分析(无阻尼自由振动分析),寻求结构 的固有频率和主振型

结构的动力响应分析(受迫振动分析),寻求结构的 动内力、动位移的大小及其变化规律。

07
制作:南昌航空大学————贺红林,2014
3、动力有限元法的基本概念

结构离散
与静力问题相同,基本未知量仍为独立的结点位移 {δ},但{δ}是时间t的函数,同时是确定结构全部质量位置 的参数,故又称作动力自由度。 位移模式
07
制作:南昌航空大学————贺红林,2014
2、集中质量矩阵 将分布质量按某种原则换算成结点集中质量,按单元动 力自由度顺序放入相应位置形成的单元质量矩阵,称集中质 量矩阵。 当质量均匀分布时,常按照结点所分担的线段、面积和 体积确定该结点集中质量的大小。 因为假设集中质量集中成质点,故没有转动惯量,与转 动自由度相对应的质量为零。
0 sin t
代带入自由振动方程得
K M O

有限元平面问题

有限元平面问题

平面应力 H =
(5)单元刚度方程
K e ⋅ δ e = Pe
讨论1:平面三节点三角形单元的节点位移和 坐标变换
由于该单元的节点位移是以整体坐标系中的X方向位移(ui)和Y 方向位移(vi)来定义的,所以没有坐标变换的问题。
讨论2:平面三节点三角形单元的应变矩阵和应力矩 阵为常系数矩阵
单元的位移场为线性关系,由几何函数矩阵Be可知,由于△ 是常系数,因而Be、Se为常系数矩阵,不随X、Y的变化, 即这种单元在单元内任意一点的应变和应力都相同,因此, 三节点三角形单元称为常应变单元。在应变梯度较大的部 位,单元划分应适当密集,否则将不能真实反映应变的变化 而导致误差较大。
由节点位移条件可求得待定系数:
1 a1 = uj xj yj 2Δ um xm ym 1 a3 = 1 xj uj 2Δ 1 xm um 1 xi ui
ui xi yi
1 a2 = 1 uj yj 2Δ 1 u m ym 1 xi yi 2Δ = 1 x j y j 1 xm ym
1 ui
yi
1 a4 = vj xj yj 2Δ vm xm ym 1 a6 = 1 xj vj 2Δ 1 xm vm 1 xi vi
第四章
连续体平面问题
杆梁结构系统由于本身存在有自然的连接关系 即自然节点,所以他们的离散化均叫做自然离 散,这样的计算模型对原始结构具有很好的描 述,而连续体结构不同,它本身内部不存在有 自然的连接关系,而是以连续介质的形式进行 物质间的相互关联,所以,必须人为地在连续 体内部和边界上划分节点,以分片(单元)连 续的形式来逼近原来复杂的几何形状,这种离 散过程叫做逼近性离散。
N(x,y)为形状函数:
⎡ Ni 0 N j 0 N m 0 ⎤ N ( x, y ) = ⎢ ⎥ ⎢ ⎣ 0 Ni 0 N j 0 N m ⎥ ⎦
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

显然是正交阵,即:
~ 1 ~ T T T
单元节点位移向量的变换式如下:

d Td
~ T 0 T ~ 0 T
其中:
同样可以得到单元节点力的变换式为:
f Tf
(2)刚度矩阵的坐标变换 局部坐标系下杆单元的刚度方程为:
把该方程扩充到2-D局部 坐标系x-y下的4阶形式:
fi k11 k12 ui f j k21 k22 u j
单元刚度矩阵的第i(i=1,2)列元素表示当维持单元 的第i个自由度位移为1,其它自由度位移为0时,施加 在单元上的节点力分量。
(也可以用此方法直接导出杆单元的刚度矩阵元素) 3)单元刚度矩阵对称、奇异、主对角元素恒正。
引入边界位移约束和载荷:
方程化为:
2 2 0 0 F1 EA 2 3 1 u P 2 L 0 F 0 1 1 3
上述方程组中删除第1,3个方程,得到: 2 2 0 0 F1 EA u P 2 3 1 2 L 0 F 0 1 1 3 解得:
例2:求杆两端的支反力
已知:
解:
先检查杆右端与墙壁是否接触。计算右端的自由 伸长:
所以,右端间隙将闭合,即节点3与刚性墙壁接触。
参照前面的讨论,可直接写出2单元系统平衡方程:
载荷与边界条件:
系统平衡方程为:
分离出第2个方程:
即:
得到:
节点位移列式:
根据求出的节点位移,用系统有限元方程中的 第1、3个方程可以求解支反力。
u1 0 PL u 2 1 u 3EA 0 3
即位移解为:
单元1应:
1 u 2 u1 E PL P 1 E 1 E E 0 L L L 3EA 3A
单元2应力:
u3 u2 E 2 PL P 2 E 2 E E 0 L L L 3EA 3A
——杆单元应变
——杆单元应力
应变—位移关系:

du dx
应力—应变关系:
E
下面通过二种方法研究杆单元的单元特性。 2.1.1 直接法导出单元特性(方法一) 杆单元伸长量: 应 变: 应 力: 杆内力:
u j ui
L E E L EA EA F A k L L
杆单元
目 标:通过杆单元特性方程的建立,初步掌握有限元法单元分析
的过程和原理,了解杆系结构分析的原理。
2.1、一维等截面杆单元及其刚度矩阵
考虑一个2节点一维等截面杆单元: L— 杆长
A— 截面积
E— 弹性模量 单元上的力学量和基本关系如下:
u u ( x)
——杆单元位移
( x) ( x)
vi) u (, i
u i , vi
(1)向量的坐标变换
节点的位移分量和节点力分量在2-D局部坐标系x-y下描述。节点上 的位移和节点力向量在2-D局部坐标系与2-D总体坐标系下的变换如下:
称为方向余弦
~ di Tdi
向量的坐标变换矩阵为:
m ~ l T m l
写成矩阵符号形式:
k d f
d Td
利用前面的向量坐标变换式,得:
f Tf
k Td Tf
考虑到变换矩阵的正交性,得:
k Td Tf
T k Td f
T
kd f
则,总体坐标系中的单元刚度矩阵为:
k T k T
T
用单元刚度矩阵装配结构(系统)刚度矩阵的 方法与1-D情况相同。
2.1.4 举例 例1 求图示2段杆中的应力。
解:结构分为2个杆单元,单元之间在节点2铰接。
2个杆单元的刚度矩阵分别为:
参考前面弹簧系统的方法,装配2杆系统的有限元 方程(平衡方程)如下:
2 2 0 u1 F1 EA u F 2 3 1 2 2 L u F 0 1 1 3 3
1 EA 0 L 1 0
0 1 0 ui f xi v f 0 0 0 i yi 0 1 0 u j f xj 0 0 0 v j f yj
(3)单元应力
即:
例题分析
单元计算汇总
则杆的轴向刚度:
EA k L
轴向拉压变形模式下,该杆单元的行为与弹簧单元 相同,因此杆单元的刚度矩阵为:
比照弹簧元的刚度方程,写出杆单元的刚度方程为:
f i k k ui EA 1 1 ui f u u k k 1 1 L j j j
2.1.3 关于杆单元的讨论 1)在单元局部坐标系下,每个节点一个未知位移分量和 一个自由度,单元共有2个自由度。 2)单元刚度矩阵元素的物理意义 刚度方程中令: ui 1 u j 0
单元刚度方程
则: f i k11 f j k21
由第1个方程可以得出:
由第3个方程可以得出:
2.2、2-D和3-D空间中的杆单元 (平面和空间桁架单元)
2.2.1 2-D空间中杆单元 1-D空间杆单元 坐标 变 换 2- D空间杆单元
基 本 思 想
原来1-D空间中的杆坐标系作为局部坐标系




x(, y )
每节点一个自由度
X,Y
每节点2个自由度
相关文档
最新文档