14导数的定义及导数的计算

合集下载

导数的定义及求导的运算法则

导数的定义及求导的运算法则

lim
x0
f (x) x
f (0)
(x 1) 1
lim
1.
x0
x
所以 f(0) f(0) 1,由定理 3.1.1 知,函数 f (x) 在点
x 0 处可导,并且 f (0) 1.
2023/4/22
37-9
续解 当 x 0 时, f (x) ex , f (x) (ex ) ex;
lim y x x0 x
lim
x0
y x
lim x x0
f
(x0 ) 0 0,
即表明函数 y f (x) 在点 x0 点连续.
2023/4/22
37-13
注 1(逆否命题) 如果函数 y f (x) 在点 x0 处不连续,则 函数 y f (x) 在点 x0 处不可导.
lim f ( x) lim ( x x) ( x) 1;
x0
x0
x
当 x 0, f (0) 0,
y y x
o
x
f ' (0)
lim
x0
|
0
x x
|
0
lim
x0
x x
1,
f
'
(0)
lim
x0
|
0
x x
|
0
lim
x0
x x
1,
f (0) 不存在.

(|
x
|)
1 1
x0 .
x0

(2) 算比值 (3) 求极限
y f ( x x) f ( x);
x
x
y lim y .
x0 x
例1 求函数 f ( x) C(C为常数)的导数.

高中数学导数的概念及其意义

高中数学导数的概念及其意义

高中数学导数的概念及其意义
导数(Derivative)概念及意义
一、导数的定义
1、导数的定义
导数是一种描述曲线的变化率的度量,它表示的是做一个变量的变化
的大小和另一个变量的变化的方向以及变化的变化率之间的关系。

2、导数的计算公式
导数的计算公式为:y’=limΔx→0 (f(x+Δx)-f(x))/Δx,其中f(x)表示函数,Δx表示x在很小的量度上的变动值。

3、导数的形式表示
导数的形式有两种:一种是函数的图象,用斜率来表示;另一种是用
函数的微分式表示。

二、导数的意义
1、导数的实际意义
导数的实际意义是曲线某一点上的斜率,它表示曲线在该点处的变化率,也就是曲线在该点处的微小位移对应的函数值的变化率。

2、导数的数学意义
数学意义上,导数是一种尺度,也是一种衡量函数变化率的标准,它可以实现曲线的斜率变化规律,从而发现函数的性质,如果曲线的斜率变化率是恒定的,就可以称这种曲线为等差线。

3、导数的应用
导数的应用非常广泛,目前主要在图形科学、机器学习、控制理论和金融计算等领域。

导数及其应用知识点总结

导数及其应用知识点总结

导数及其应用知识点总结导数及其应用是微积分中的重要概念,它可以用来描述一个函数在其中一点的变化率,进而用于求解曲线的切线、求解最值、优化问题等。

在学习导数及其应用的过程中,我们需要掌握导数的定义、导数的计算法则、导数与函数性质的关系以及导数在几何和物理问题中的应用等知识点。

一、导数的定义1.函数在其中一点的导数:函数f(x)在点x=a处的导数定义为:f'(a) = lim(h→0) (f(a+h)-f(a))/h2.函数的导函数:函数f(x)在定义域上每一点的导数所构成的新函数,被称为函数f(x)的导函数,记作f'(x)。

二、导数的计算法则1.常数法则:对于常数k,有:(k)'=0。

2.幂函数法则:对于幂函数y=x^n,其中n为常数,则有:(x^n)'=n*x^(n-1)。

3.基本初等函数法则:对于基本初等函数(如幂函数、指数函数、对数函数、三角函数和反三角函数),可以通过求导法则求得其导函数。

4.乘积法则:对于函数u(x)和v(x),有:(u*v)'=u'*v+u*v'。

5.商数法则:对于函数u(x)和v(x),有:(u/v)'=(u'*v-u*v')/v^26.复合函数法则:对于复合函数y=f(g(x)),有:y'=f'(g(x))*g'(x)。

三、导数与函数性质的关系1.导函数与函数的单调性:若函数f(x)在区间I上可导,则f'(x)在I上的符号与f(x)在I上的单调性一致。

2.导函数与函数的极值:若函数f(x)的导函数在点x=a处存在,且导数的符号在x=a左侧从正数变为负数,那么函数在点x=a处取得极大值;若导数的符号在x=a左侧从负数变为正数,那么函数在点x=a处取得极小值。

3.导函数与函数的凹凸性:函数f(x)的导函数f''(x)的符号与函数f(x)的凹凸性一致。

艺术生高考数学专题讲义:考点14 导数与函数的极值、最值

艺术生高考数学专题讲义:考点14 导数与函数的极值、最值

考点十四导数与函数的极值、最值知识梳理1.函数的极值的定义一般地,设函数f(x)在点x0及附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0 ),就说f(x0)是函数的极大值,x0叫做函数的极大值点.如果对x0附近的所有的点,都有f(x)>f(x0 ),就说f(x0)是函数的极小值,x0叫做函数的极小值点.极大值与极小值统称为函数的极值.极大值点与极小值点统称为极值点.注意:可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′=0,但x=0不是极值点.2.判断f(x0 )是极大、极小值的方法当函数f(x)在点x0处连续时,若x0满足f′(x0 )=0,且在x0的两侧f(x)的导数值异号,则x0是f(x)的极值点,f(x0 )是极值.如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.3.求可导函数f(x)的极值的步骤(1)确定函数的定义域,求导数f′(x) ;(2)求方程f′(x) =0的根;(3)检查f′(x)在x0两侧的符号①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点;②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点;③若f′(x)在x0两侧的符号相同,则x0不是极值点.4.函数的最值在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(1)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(2)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.5.函数的极值与最值的区别与联系极值是个“局部”概念,而函数最值是个“整体”概念.函数的极值表示函数在某一点附近的情况,是在局部对函数值的比较;函数的最值表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.函数的极值不一定是最值,最值也不一定是极值.典例剖析题型一 利用导数求函数的极值例1 已知函数f (x )=x 3-2x 2e x.求f (x )的极大值和极小值.解析 函数f (x )的定义域为R ,f ′(x )=-x (x 2-5x +4)e x =-x (x -1)(x -4)e x ,当x 变化时,f (x )、f ′(x )的符号变化情况如下:∴f (x )的极大值为f (0)=0和f (4)=32e 4,f (x )的极小值为f (1)=-1e.变式训练 设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解析 对f (x )求导得f ′(x )=e x·1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.题型二 利用极值求参数例2 设f (x )=ln(1+x )-x -ax 2,若f (x )在x =1处取得极值,则a 的值为________. 答案 -14解析 由题意知,f (x )的定义域为(-1,+∞), 且f ′(x )=11+x -2ax -1=-2ax 2-(2a +1)x 1+x,由题意得:f ′(1)=0,则-2a -2a -1=0,得a =-14,又当a =-14时,f ′(x )=12x 2-12x 1+x =12x (x -1)1+x ,当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0, 所以f (1)是函数f (x )的极小值,所以a =-14.变式训练 已知x =3是函数f (x )=a ln x +x 2-10x 的一个极值点,则实数a =________. 答案 12解析 f ′(x )=a x +2x -10,由f ′(3)=a3+6-10=0,得a =12,经检验满足条件.题型三 利用导数求函数的最值例3 设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2. (1)求a ,b 的值;(2)令g (x )=f (x )-2x +2,求g (x )在定义域上的最值. 答案 (1)a =-1,b =3 (2)最大值为0,无最小值 解析 (1)f ′(x )=1+2ax +bx(x >0),又f (x )过点P (1,0),且在点P 处的切线斜率为2,∴⎩⎪⎨⎪⎧ f (1)=0,f ′(1)=2,即⎩⎪⎨⎪⎧1+a =0,1+2a +b =2.解得a =-1,b =3. (2)由(1)知,f (x )=x -x 2+3ln x ,其定义域为(0,+∞), ∴g (x )=2-x -x 2+3ln x ,x >0.则g ′(x )=-1-2x +3x =-(x -1)(2x +3)x .当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. ∴g (x )的最大值为g (1)=0,g (x )没有最小值. 变式训练 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解析 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调增区间为(0,+∞).②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝⎛⎦⎤0,1a ,单调递减区间为⎣⎡⎭⎫1a ,+∞. (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ;当ln 2≤a <1时,最小值为f (2)=ln 2-2a . 综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a .解题要点 求函数f (x )在[a ,b ]上的最大值和最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.当堂练习1.已知函数y =f (x ),其导函数y =f ′(x )的图象如图所示,则y =f (x ) ________.①在(-∞,0)上为减函数② 在x =0处取极小值 ③ 在(4,+∞)上为减函数 ④ 在x =2处取极大值答案 ③解析 由f ′(x )的图象可知,f (x )在(-∞,0)上单调递增,在(0,2)上单调递减,∴f (x )在x =0处取得极大值,同理f (x )在x =2处取得极小值,故①,②,④均不正确 ,由f ′(x )的图象可知f (x )在(4,+∞)上单调递减.2.函数f (x )=(x 2-1)2+2的极值点是________.①x =1 ②x =-1 ③x =1或-1或0 ④x =0 答案 ③解析 ∵f (x )=x 4-2x 2+3,由f ′(x )=4x 3-4x =4x (x +1)(x -1)=0,得x =0或x =1或x =-1.又当x <-1时,f ′(x )<0,当-1<x <0时,f ′(x )>0,当0<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, ∴x =0,1,-1都是f (x )的极值点.3. 若函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则a 与b 的关系是________. 答案 a +2b =0解析 y ′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.4.函数f (x )=xe x ,x ∈[0,4]的最大值是________.答案 1e5.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.答案 3解析 f ′(x )=x 2+2x -a(x +1)2,由f (x )在x =1处取得极值知f ′(1)=0,∴a =3.课后作业一、 填空题1.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________.答案 -173解析 f ′(x )=x 2+2x -3,令f ′(x )=0,得x =1(x =-3舍去), 又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173.2.函数f (x )=x 3-32x 2-6x 的极值点的个数是________.答案 2解析 f ′(x )=3x 2-3x -6=3(x 2-x -2)=3(x -2)(x +1).令f ′(x )=0,得x =-1或x =2.易知x =-1为f (x )的极大值点,x =2为f (x )的极小值点.故f (x )的极值点有2个. 3.函数f (x )=12x -x 3在区间[-3,3]上的最小值是________. 答案 -16解析 由f ′(x )=12-3x 2=0,得x =-2或x =2. 又f (-3)=-9,f (-2)=-16,f (2)=16,f (3)=9, ∴函数f (x )在[-3,3]上的最小值为-16.4.f (x )=e x -x (e 为自然对数的底数)在区间[-1,1]上的最大值是________. 答案 e -1解析 f ′(x )=e x -1,令f ′(x )=0,得x =0.令f ′(x )>0,得x >0,令f ′(x )<0,得x <0,则函数f (x )在(-1,0)上单调递减,在(0,1)上单调递增,f (-1)=e -1+1,f (1)=e -1,f (-1)-f (1)=1e +2-e<12+2-e<0,所以f (1)>f (-1).5.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________. 答案 3百万件解析 依题意得,y ′=-3x 2+27=-3(x -3)(x +3),当0<x <3时,y ′>0;当x >3时,y ′<0.因此,当x =3时,该商品的年利润最大.6.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab的值为________.答案 -23解析 由题意知,f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =01+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2b =1或⎩⎪⎨⎪⎧a =-6b =9,经检验⎩⎪⎨⎪⎧a =-6b =9满足题意,故a b =-23.7.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是________.(填序号)①函数f (x )有极大值f (2)和极小值f (1) ②函数f (x )有极大值f (-2)和极小值f (1) ③函数f (x )有极大值f (2)和极小值f (-2) ④函数f (x )有极大值f (-2)和极小值f (2) 答案 ④解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 8.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是________. 答案 -37解析 f ′(x )=6x 2-12x =6x (x -2),∴f (x )在(-2,0)上单调递增,在(0,2)上单调递减. ∴x =0为极大值点,也为最大值点. ∴f (0)=m =3,∴m =3. ∴f (-2)=-37,f (2)=-5. ∴最小值是-37.9.函数f (x )=x 3+ x 2-x +2在[0,2]上的最小值是________. 答案4927解析 f ′(x )=3x 3+2x -1,f ′(x )=0,x ∈[0,2],得x =13.比较f (0)=2,f (13)=4927,f (2)=12.可知最小值为4927.10.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p 元,销量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则该商品零售价定为__________ 元时利润最大,利润的最大值为__________. 答案 30 23 000解析 设商场销售该商品所获利润为y 元,则y =(p -20)Q =(p -20)(8 300-170p -p 2)=-p 3-150p 2+11 700p -166 000(p ≥20), ∴y ′=-3p 2-300p +11 700. 令y ′=0得p 2+100p -3 900=0,∴p =30或p =-130(舍去),则p ,y ,y ′变化关系如下表:∴当p =30时,y 取极大值为23 000元.又y =-p 3+150p 2+11 700p -166 000在(20,+∞)上只有一个极值,故也是最值. ∴该商品零售价定为每件30元,所获利润最大为23 000元.11.若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________. 答案 -23 -16解析 y ′=ax+2bx +1.由已知⎩⎪⎨⎪⎧a +2b +1=0,a 2+4b +1=0,解得⎩⎨⎧a =-23,b =-16.二、解答题12. (2015北京文节选)设函数f (x )=x 22-k ln x ,k >0.求f (x )的单调区间和极值解析 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0)得f ′(x )=x -k x =x 2-kx.由f ′(x )=0解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (x )f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. 13.设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值. (1)求a 、b 的值;(2)若对于任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围. 解析 (1)f ′(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2处取得极值,则有f ′(1)=0,f ′(2)=0,即⎩⎪⎨⎪⎧6+6a +3b =0,24+12a +3b =0.解得a =-3,b =4. (2)由(1)可知,f (x )=2x 3-9x 2+12x +8c ,f ′(x )=6x 2-18x +12=6(x -1)(x -2). 当x ∈(0,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,3)时,f ′(x )>0. 所以,当x =1时,f (x )取得极大值f (1)=5+8c ,又f (0)=8c ,f (3)=9+8c . 则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以9+8c <c 2,解得c <-1或c >9, 因此c 的取值范围为(-∞,-1)∪(9,+∞).。

导数的定义及计算

导数的定义及计算

导数的定义及计算导数是微积分中的重要概念之一,用于描述函数在某一点的变化率或斜率。

在本文中,我们将介绍导数的定义及计算方法,并通过一些具体的例子来加深理解。

一、导数的定义在数学中,函数f(x)在x点处的导数可以用以下极限定义表示:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,lim表示极限操作,h表示自变量x的变化量,也可以解释为一个无限小的增量。

根据这个定义,我们可以得出导数的几何意义是函数在该点处的切线的斜率。

二、导数的计算方法1. 基本导数公式导数有一些基本的计算公式,这些公式可以帮助我们计算各种类型函数的导数。

下面是一些常用的基本导数公式:- 常数函数导数:常数函数的导数为0。

- 幂函数导数:幂函数f(x) = x^n 的导数为 f'(x) = n*x^(n-1)。

- 指数函数导数:指数函数f(x) = a^x(其中a>0且a≠1)的导数为f'(x) = ln(a) * a^x。

- 对数函数导数:对数函数f(x) = ln(x)(其中x>0)的导数为 f'(x) = 1/x。

- 正弦函数导数:正弦函数f(x) = sin(x)的导数为 f'(x) = cos(x)。

- 余弦函数导数:余弦函数f(x) = cos(x)的导数为 f'(x) = -sin(x)。

通过运用这些基本导数公式,我们可以计算更复杂函数的导数。

2. 导数的运算法则导数还具有一些运算法则,这些法则可以简化导数的计算过程。

下面是导数的运算法则:- 和差法则:若f(x)和g(x)是可导函数,则(f(x)±g(x))' = f'(x)±g'(x)。

- 积法则:若f(x)和g(x)是可导函数,则(f(x)·g(x))' = f'(x)·g(x) +f(x)·g'(x)。

第14讲、导数的概念与运算(教师版)2025高考数学一轮复习讲义

第14讲、导数的概念与运算(教师版)2025高考数学一轮复习讲义

第14讲导数的概念与运算知识梳理知识点一:导数的概念和几何性质1、概念函数()f x 在0x x =处瞬时变化率是0000()()limlim x x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.知识点诠释:①增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数;②当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近;③导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率,即00000()()()lim lim x x f x x f x yf x x x∆→∆→+∆-∆'==∆∆.2、几何意义函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.3、物理意义函数()s s t =在点0t 处的导数0()s t '是物体在0t 时刻的瞬时速度v ,即0()v s t '=;()v v t =在点0t 的导数0()v t '是物体在0t 时刻的瞬时加速度a ,即0()a v t '=.知识点二:导数的运算1、求导的基本公式基本初等函数导函数()f x c =(c 为常数)()0f x '=()a f x x =()a Q ∈1()a f x ax -'=()x f x a =(01)a a >≠,()ln x f x a a'=()log (01)a f x x a a =>≠,1()ln f x x a'=()xf x e =()xf x e '=()ln f x x =1()f x x'=()sin f x x =()cos f x x '=()cos f x x=()sin f x x'=-2、导数的四则运算法则(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±;(2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+;(3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=.3、复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为x u x y y u '''=:【解题方法总结】1、在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩.2、过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.必考题型全归纳题型一:导数的定义【例1】(2024·全国·高三专题练习)已知函数()y f x =的图象如图所示,函数()y f x =的导数为()y f x '=,则()A .(2)(3)(3)(2)f f f f <'<-'B .(3)(2)(3)(2)f f f f <'<-'C .(2)(3)(2)(3)f f f f <-'<'D .(3)(3)(2)(2)f f f f <-'<'【答案】D【解析】由()f x 图象可知()()()()''323221f f f f -<<-,即()()()()''3322f f f f <-<.故选:D【对点训练1】(2024·云南楚雄·高三统考期末)已知某容器的高度为20cm ,现在向容器内注入液体,且容器内液体的高度h (单位:cm )与时间t (单位:s )的函数关系式为3213h t t =+,当t t =0时,液体上升高度的瞬时变化率为3cm/s ,则当01t t =+时,液体上升高度的瞬时变化率为()A .5cm/sB .6cm/sC .8cm/sD .10cm/s【答案】C【解析】由3213h t t =+,求导得:22h t t '=+.当t t =0时,20023h t t '=+=,解得01t =(03t =-舍去).故当012t t =+=时,液体上升高度的瞬时变化率为22228cm/s +⨯=.故选:C【对点训练2】(2024·河北衡水·高三衡水市第二中学期末)已知函数()f x 的导函数是()f x ',若()02f x '=,则0001()()2lim x f x x f x x∆→+∆-=∆()A .12B .1C .2D .4【答案】B【解析】因为()02f x '=所以00000Δ0Δ011(Δ)()(Δ)()1122lim lim ()11Δ22Δ2x x f x x f x f x x f x f x x x→→'+-+-===故选:B【对点训练3】(2024·全国·高三专题练习)若函数()f x 在0x 处可导,且()()0002lim12x f x x f x x∆→+∆-=∆,则()0f x '=()A .1B .1-C .2D .12【答案】A【解析】由导数定义可得()()()00002lim 2x f x x f x f x x∆→+∆-'=∆,所以()01f x '=.故选:A .【对点训练4】(2024·高三课时练习)若()f x 在0x 处可导,则()0f x '可以等于().A .()()000lim x f x f x x x∆→--∆∆B .()()000limx f x x f x x x∆→+∆--∆∆C .()()0002limx f x x f x x x∆→+∆--∆∆D .()()0002limx f x x f x x x∆→+∆--∆∆【答案】A【解析】由导数定义()()()0000=lim x f x x f x x xf ∆→+∆-∆',对于A ,()()()()()()00000000=lim limx x f x f x x f x f x x f x x x x x∆→∆→--∆-=--∆'-∆∆,A 满足;对于B ,()()()()()()()00000000lim lim2=x x f x x f x x f x x f x x x x x x x xf ∆→∆→+∆--∆+∆--∆=+∆--∆∆',()()()00001=lim2x f f x x f x x x x∆→+∆--∆∆',B 不满足;对于C ,()()()()()()()0000000022lim =l =im23x x f x x f x x f x x f x x x x x x xf x ∆→∆→-+∆-∆+∆--∆+'∆--∆∆,()()()000021lim3=x f x x f x f x x x∆→+--∆'∆∆,C 不满足;对于D ,()()()()()()()0000000022lim lim23=x x f x x f x x f x x f x xx x x x x xf ∆→∆→+∆--∆+∆--∆=+∆--∆∆',()()()0000132=limx f x x f x x x f x∆→+∆--∆'∆,D 不满足.故选:A.【解题方法总结】对所给函数式经过添项、拆项等恒等变形与导数定义结构相同,然后根据导数定义直接写出.题型二:求函数的导数【例2】(2024·全国·高三专题练习)求下列函数的导数.(1)()()221f x x =-+;(2)()()ln 41f x x =-;(3)()322x f x +=(4)()f x =【解析】(1)因为()()2221441f x x x x =-+=-+,所以()84f x x '=-.(2)因为()()ln 41f x x =-,所以()441f x x '=-.(3)因为()322x f x +=,所以()3232ln2x f x +'=⨯(4)因为()f x =,所以()f x '=【对点训练5】(2024·高三课时练习)求下列函数的导数:(1)()2321cos y x x x =++;(2)y (3)18sin ln y x x x =+-;(4)32cos 3log xy x x x =-;(5)33sin 3log xy x x =-;(6)e cos tan x y x x =+.【解析】(1)()()()22321cos 321cos y x x x x x x '''=+++++⋅()2(62)cos 321sin x x x x x =+-++.(2)3122235y x x x-=+-+,所以1222213331311222912y x x x x --'=⨯⋅+-⋅=-+.(3)17118cos y x x x'=+-.(4)()()()()332cos 2cos 3log log x x y x x x x x x '⎡⎤''''=+-+⎢⎥⎣⎦()332ln 2cos 2sin 3log 3log e x x x x x =---.(5)()()13sin 3sin 3ln 3xxy x x x '''=+-⋅()313ln 3sin 3cos 3log e xx x x x=+-⋅.(6)sin e cos tan e cos cos x xxy x x x x=+=+,故()()()()2sin cos cos sin e cos e cos cos x x x x x xy x x x ''-'''=+⋅+21=e cos e sin cos x x x x x-+.【对点训练6】(2024·海南·统考模拟预测)在等比数列{}n a 中,32a =,函数()()()()12512f x x x a x a x a =---L ,则()0f '=__________.【答案】16-【解析】因为()()()()()()()1251251122f x x x a x a x a x x a x a x a '⎛⎫''=---+---⎡⎤⎡⎤ ⎪⎣⎦⎣⎦⎝⎭L L ()()()()()()1251251122x a x a x a x x a x a x a '=-⋅--+---⎡⎤⎡⎤⎣⎦⎣⎦L L ,所以()125102f a a a '=-L .因为数列{}n a 为等比数列,所以2152434a a a a a ===,于是()21042162f '=-⨯⨯=-.故答案为:16-【对点训练7】(2024·辽宁大连·育明高中校考一模)已知可导函数()f x ,()g x 定义域均为R ,对任意x 满足()21212f x x g x x ⎛⎫+=- ⎪⎝⎭,且()11f =,求()112f g ⎛⎫''+= ⎪⎝⎭__________.【答案】3【解析】由题意可知,令1x =,则()211211112f g ⎛⎫+⨯⨯⨯=- ⎪⎝⎭,解得()111222f g ⎛⎫=-=- ⎪⎝⎭,由()21212f x x g x x ⎛⎫+=- ⎪⎝⎭,得()()()221122122f x x g x x g x x '⎡⎤⎛⎫⎛⎫'''++=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即()2114122f x xg x x g x ⎛⎫⎛⎫''++=⎪ ⎪⎝⎭⎝⎭,令1x =,得()211141111122f g g ⎛⎫⎛⎫''+⨯⨯⨯+⨯⨯= ⎪ ⎪⎝⎭⎝⎭,即()1114122f g g ⎛⎫⎛⎫''++= ⎪ ⎝⎭⎝⎭,解得()111114143222f g g ⎛⎫⎛⎫⎛⎫''+=-=-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:3.【对点训练8】(2024·河南·高三校联考阶段练习)已知函数()f x 的导函数为()f x ',且()()212f x x f x '=++,则()1f '=______.【答案】1-【解析】因为()()212f x x f x '=++,则()()211f x xf ''=+,故()()1211f f ''=+,故()11f '=-.故答案为:1-.【对点训练9】(2024·全国·高三专题练习)已知函数2()(0)e e x x f x f -'=-,则(0)f =__________.【答案】-2【解析】由函数2()(0)e e x x f x f -'=-求导得:2()2(0)e e x x f x f -''=+,当0x =时,(0)2(0)1f f ''=+,解得(0)1f '=-,因此,2()e e x x f x -=--,所以(0)2f =-.故答案为:-2【解题方法总结】对所给函数求导,其方法是利用和、差、积、商及复合函数求导法则,直接转化为基本函数求导问题.题型三:导数的几何意义方向1、在点P 处切线【例3】(2024·广东广州·统考模拟预测)曲线()321y x =-在点()1,1处的切线方程为__________.【答案】650x y --=【解析】函数()321y x =-的导函数为()2621y x '=-,所以函数()321y x =-在1x =处的导数值16x y ='=,所以曲线()321y x =-在点()1,1处的切线斜率为6,所以曲线()321y x =-在点()1,1处的切线方程为()161y x -=-,即650x y --=,故答案为:650x y --=.【对点训练10】(2024·全国·高三专题练习)曲线3()ln(2)2f x x =++在点()()0,0f 处的切线方程为______.【答案】22ln 230x y -++=【解析】因为3()ln(2)2f x x =++,所以1()2f x x '=+,则()102f '=,又3(0)ln 22f =+,所以曲线在点()()0,0f 处的切线方程为31ln 222y x --=,即22ln 230x y -++=.故答案为:22ln 230x y -++=.【对点训练11】(2024·全国·高三专题练习)已知函数321()cos 32f x x bx ⎛⎫=++ ⎪⎝⎭π,()f x '为()f x 的导函数.若()f x '的图象关于直线x =1对称,则曲线()y f x =在点()()22f ,处的切线方程为______【答案】73y =-【解析】2ππ()2sin 22f x x bx x ⎛⎫'=+-⎪⎝⎭,令2()2g x x bx =+,ππ()sin 22h x x ⎛⎫=- ⎪⎝⎭,则()()()f x g x h x '=+,令πππ22x k =+,Z k ∈,解得x =2k +1,Z k ∈,当k =0时,x =1,所以直线x =1为()h x 的一条对称轴,故()g x 的图象也关于直线x =1对称,则有212b-=,解得b =-1,则321π()cos 32f x x x x ⎛⎫=-+ ⎪⎝⎭,2ππ()2sin 22f x x x x ⎛⎫'=-- ⎪⎝⎭,7(2)3f =-,()20f '=,故切线方程为73y =-.故答案为;73y =-.【对点训练12】(2024·湖南·校联考模拟预测)若函数()()()322f x x x x λλ=+-∈R 是奇函数,则曲线()y f x =在点()(),f λλ处的切线方程为______.【答案】24320x y --=【解析】因为()()()322f x x x x λλ=+-∈R 是奇函数,所以()()0f x f x -+=对x ∀∈R 恒成立,即()()()3232222220x x x x x λλλλλ-+-++-=-=对x ∀∈R 恒成立,所以2λ=,则()32f x x =,故()26f x x '=,所以()()3222216,26224f f '=⨯==⨯=,所以曲线()y f x =在点()216,处的切线方程为()16242y x -=-,化简得24320x y --=.故答案为:24320x y --=方向2、过点P 的切线【对点训练13】(2024·江西·校联考模拟预测)已知过原点的直线与曲线ln y x =相切,则该直线的方程是______.【答案】1ey x=【解析】由题意可得()1f x x'=,设该切线方程y kx =,且与ln y x =相切于点()00,x y ,()000000ln 1y kx y x k f x x ⎧⎪=⎪⎪=⎨'⎪⎪==⎪⎩,整理得0ln 1x =,∴0e x =,可得1e k =,∴1ey x =.故答案为:1ey x =.【对点训练14】(2024·浙江金华·统考模拟预测)已知函数()31f x x ax =-+,过点()2,0P 存在3条直线与曲线()y f x =相切,则实数a 的取值范围是___________.【答案】19,22⎛⎫ ⎪⎝⎭【解析】由2()3f x x a '=-,设切点为(,)m n ,则切线斜率为2()3f m m a '=-,所以,过()2,0P 的切线方程为2(3)(2)y m a x =--,综上,23(3)(2)1n m a m n m am ⎧=--⎨=-+⎩,即23(3)(2)1m a m m am --=-+,所以322261a m m =-++有三个不同m 值使方程成立,即2y a =与32()261g m m m =-++有三个不同交点,而2()612g m m m '=-+,故(,0)-∞、(2,)+∞上()0g m '<,()g m 递减,(0,2)上()0g m '>,()g m 递增;所以()g m 极小值为(0)1g =,极大值为(2)9g =,故129a <<时两函数有三个交点,综上,a 的取值范围是19,22⎛⎫⎪⎝⎭.故答案为:19,22⎛⎫⎪⎝⎭【对点训练15】(2024·浙江绍兴·统考模拟预测)过点2,03⎛⎫- ⎪⎝⎭作曲线3y x =的切线,写出一条切线方程:__________.【答案】0y =或32y x =+(写出一条即可)【解析】由3y x =可得23y x '=,设过点2,03⎛⎫- ⎪⎝⎭作曲线3y x =的切线的切点为00(,)x y ,则300y x =,则该切线方程为20003()y y x x x -=-,将2,03⎛⎫- ⎪⎝⎭代入得3200023()3x x x -=--,解得00x =或01x =-,故切点坐标为(0,0)或(1,1)--,故切线方程为0y =或32y x =+,故答案为:0y =或32y x =+【对点训练16】(2024·海南海口·校联考模拟预测)过x 轴上一点(),0P t 作曲线():3e x C y x =+的切线,若这样的切线不存在,则整数t 的一个可能值为_________.【答案】4-,5-,6-,只需写出一个答案即可【解析】设切点为()()000,3e x x x +,因为()4e xy x '=+,所以切线方程为()()()000003e 4e x x y x x x x -+=+-.因为切线l 经过点P ,所以()()()000003e 4e x xx x t x -+=+-,由题意关于0x 的方程()2003430x t x t ----=没有实数解,则()2Δ(3)4430t t =-++<,解得73t -<<-.因为t 为整数,所以t 的取值可能是6-,5-,4-.故答案为:4-,5-,6-,只需写出一个答案即可【对点训练17】(2024·全国·模拟预测)过坐标原点作曲线()2e xy x =+的切线,则切点的横坐标为___________.【答案】1-1-【解析】由()2e xy x =+可得()3e xy x '=+,设切点坐标为()00,x y ,所以切线斜率00(3)e xk x =+,又因为()0002e x y x =+,则切线方程为()()()000002e 3e x xy x x x x -+=+-,把()0,0代入并整理可得200220x x +-=,解得01x =-或01x =-故答案为:1-+1-【对点训练18】(2024·广西南宁·南宁三中校考模拟预测)若过点()()1,P a a ∈R 有n 条直线与函数()()2e xf x x =-的图象相切,则当n 取最大值时,a 的取值范围为__________.【答案】()3,e --【解析】设过点()1,P a 的直线l 与()f x 的图象的切点为()()000,2e xx x -,因为()()1e xf x x '=-,所以切线l 的斜率为()()0001e xf x x '=-,所以切线l 的方程为()()()000002e 1e x xy x x x x --=--,将()1,P a 代入得()()()000002e 1e 1x xa x x x --=--,即()()()()0002000001e 12e 33e x x x a x x x x x =--+-=-+-,设()()2e 33x g x x x =-+-,则()()()()2233e 23e e x x xg x x x x x x =-+-+-+=-+',由()0g x '=,得0x =或1x =,当0x <或1x >时,()0g x '<,所以()g x 在()(),0,1,-∞+∞上单调递减;当01x <<时,()0g x '>,所以()g x 在()0,1上单调递增,所以()()()03,()1e g x g g x g ==-==-极小值极大值,又22333324x x x ⎛⎫-+-=---< ⎪⎝⎭0,所以()0g x <恒成立,所以()g x 的图象大致如图所示,由图可知,方程()02003e 3x a x x =-+-最多3个解,即过点()()1,P a a ∈R 的切线最多有3条,即n 的最大值为3,此时3e a -<<-.故答案为:()3,e --.【对点训练19】(2024·全国·模拟预测)已知函数()()321113f x x f x '=++,其导函数为()f x ',则曲线()f x 过点()3,1P 的切线方程为______.【答案】1y =或38y x =-【解析】设切点为()00,M x y ,由()()321113f x x f x '=++,得()()221f x x f x ''=+,∴()()1121f f ''=+,得()11f '=-,∴()32113f x x x =-+,()22f x x x '=-,∴切点M 为320001,13x x x ⎛⎫-+ ⎪⎝⎭,()20002f x x x '=-,∴曲线()f x 在点M 处的切线方程为()()322000001123y x x x x x x ⎛⎫--+=-- ⎪⎝⎭①,又∵该切线过点()3,1P ,∴()()3220000111233x x x x x ⎛⎫--+=-- ⎪⎝⎭,解得00x=或03x =.将00x =代入①得切线方程为1y =;将03x =代入①得切线方程为()133y x -=-,即38y x =-.∴曲线()f x 过点()3,1P 的切线方程为1y =或38y x =-.故答案为:1y =或38y x =-方向3、公切线【对点训练20】(2024·云南保山·统考二模)若函数()4ln 1f x x =+与函数()()2120g x x x a a=->的图象存在公切线,则实数a 的取值范围为()A .10,3⎛⎤⎥⎝⎦B .1,3⎡⎫+∞⎪⎢⎣⎭C .2,13⎡⎫⎪⎢⎣⎭D .12,33⎡⎤⎢⎥⎣⎦【答案】A【解析】由函数()4ln 1f x x =+,可得()4f x x'=,因为0a >,设切点为(),4ln 1t t +,则()4f t t'=,则公切线方程为()44ln 1y t x t t --=-,即44ln 3y x t t =+-,与212y x x a =-联立可得21424ln 30x x t a t ⎛⎫-+-+= ⎪⎝⎭,所以()2412434ln 0t t a ⎛⎫∆=+-⨯⨯-= ⎪⎝⎭,整理可得221134ln t a t⎛⎫+ ⎪⎝⎭=-,又由00a t >⎧⎨>⎩,可得34ln 0t ->,解得340e t <<,令()22134ln t h t t⎛⎫+ ⎪⎝⎭=-,其中340e t <<,可得()()2424ln 1134ln t t t t t h t t +-⎛⎫+⋅ ⎪⎝⎭'=-,令()4ln 1t t t ϕ=+-,可得()410t t ϕ'=+>,函数()t ϕ在340,e ⎛⎫ ⎪⎝⎭上单调递增,且()10ϕ=,当01t <<时,()0t ϕ<,即()0h t '<,此时函数()h t 单调递减,当341t e <<时,()0t >φ,即()0h t '>,此时函数()h t 单调递增,所以()()min 13h t h ==,且当0t +→时,()h t →+∞,所以函数()h t 的值域为[)3,+∞,所以13a≥且0a >,解得103a <≤,即实数a 的取值范围为1(0,]3.故选:A.【对点训练21】(2024·宁夏银川·银川一中校考二模)若直线1(1)1y k x =+-与曲线e x y =相切,直线21)1(y k x =+-与曲线ln y x =相切,则12k k 的值为___________.【答案】1【解析】设()x f x e =,则()e x f x '=,设切点为11(,)x y ,则11e xk =,则切线方程为111e ()x y y x x -=-,即111e e ()x xy x x -=-,直线1(1)1y k x =+-过定点(1,1)--,所以1111e e (1)x x x --=--,所以11e 1xx =,设()ln g x x =,则1()g x x'=,设切点为22(,)x y ,则221k x =,则切线方程为2221()y y x x x -=-,即2221ln ()y x x x x -=-,直线1(1)1y k x =+-过定点(1,1)--,所以22211ln (1)x x x --=--,所以22ln 1x x =,则12,x x 是函数()f x e x =和()ln g x x =的图象与曲线1y x=交点的横坐标,易知()f x 与()g x 的图象关于直线y x =对称,而曲线1y x=也关于直线y x =对称,因此点1122(,),(,)x y x y 关于直线y x =对称,从而12e xx =,12ln x x =,所以1122e 1x k k x ==.故答案为:1.【对点训练22】(2024·河北邯郸·统考三模)若曲线e x y =与圆22()2x a y -+=有三条公切线,则a 的取值范围是____.【答案】()1,+∞【解析】曲线e x y =在点()00,x y 处的切线方程为()000e e x xy x x -=-,由于直线()000e ex x y x x -=-与圆()222x a y -+=*)因为曲线e x y =与圆()222x a y -+=有三条公切线,故(*)式有三个不相等的实数根,即方程()()0220e122x x a ---=有三个不相等的实数根.令()()()22e12xg x x a =---,则曲线()y g x =与直线2y =有三个不同的交点.显然,()()()22e21xg x x a x a '=---+.当(),1x a ∈-∞-时,()0g x '>,当()1,2x a a ∈-+时,()0g x '<,当()2,x a ∈++∞时,()0g x '>,所以,()g x 在(),1a -∞-上单调递增,在()1,2a a -+上单调递减,在()2,a ++∞上单调递增;且当x →-∞时,()()22120e xx a g x ----=→,当x →+∞时,()()()22e12xg x x a =---→+∞,因此,只需()()1222g a g a ⎧->⎪⎨+<⎪⎩,即()()2122e 1-e2a a -+⎧>⎪⎨<⎪⎩,解得1a >.故答案为:()1,+∞【对点训练23】(2024·湖南长沙·湖南师大附中校考模拟预测)若曲线21:()C f x x a =+和曲线2:()2ln C g x x =恰好存在两条公切线,则实数a 的取值范围为__________.【答案】(1,)-+∞【解析】由题意得2()2,()(0)f x x g x x x''==>,设与曲线2()f x x a =+相切的切点为()211,x x a +,与曲线()2ln g x x =相切的切点为()22,2ln x x ,则切线方程为()21112y x x x x a =-++,即2112y x x x a =-+,()22222ln y x x x x =-+,即2222ln 2y x x x =+-,由于两切线为同一直线,所以1221222,2ln 2x x x a x ⎧=⎪⎨⎪-+=-⎩,得()21112ln 20a x x x =-->.令2()2ln 2(0)x x x x ϕ=-->,则22(1)(1)()2x x x x x xϕ+-'=-=,当01x <<时,()0x ϕ'<,()ϕx 在(0,1)单调递减,当1x >时,()0x ϕ'>,()ϕx 在(1,)+∞单调递增.即有1x =处()ϕx 取得极小值,也为最小值,且为(1)1ϕ=-.又两曲线恰好存在两条公切线,即()a x ϕ=有两解,结合当0x →时,2x 趋近于0,ln x 趋于负无穷小,故()ϕx 趋近于正无穷大,当x →+∞时,2x 趋近于正无穷大,且增加幅度远大于ln x 的增加幅度,故()ϕx 趋近于正无穷大,由此结合图像可得a 的范围是(1,)-+∞,故答案为:(1,)-+∞【对点训练24】(2024·江苏南京·南京师大附中校考模拟预测)已知曲线21:()C f x x =与曲线()12:e (0)x C g x a a +=>有且只有一条公切线,则=a ________.【答案】34e 【解析】设曲线()yf x =在1x x =处的切线与曲线()yg x =相切于2x x =处,()2f x x '=,故曲线()y f x =在1x x =处的切线方程为21112()y x x x x -=-,整理得2112y x x x =-.()1e x g x a +'=,故曲线()y g x =在2x x =处的切线方程为()22112e e x x y a a x x ++-=-,整理得()22112ee 1x x y a x a x ++=--.故()()()2211121212e 2e 1x x x a x a x ++⎧=⎪⎨-=--⎪⎩由(1)再结合0a >知1>0x ,将(1)代入(2),得21122(1)x x x -=--,解得122(1)x x =-且21x >,将122(1)x x =-代入(1),解得()21241e x x a +-=且21x >,即()22141e x x a +-=且21x >,令21t x =+,则()42e tt a -=,2t >.令()()42ett h t -=,()()43ett h t ='-,则()h t 在区间(2,3)单调递增,在区间(3,)+∞单调递减,且()343e h =,又两曲线有且只有一条公切线,所以()42e tt a -=只有一个根,由图和0a >知34e a =.故答案为:34e .【对点训练25】(2024·福建南平·统考模拟预测)已知曲线ln y a x =和曲线2y x =有唯一公共点,且这两条曲线在该公共点处有相同的切线l ,则l 的方程为________.【答案】2e e 0y --=【解析】设曲线()ln g x a x =和曲线2()f x x =在公共点00(,)x y 处的切线相同,则()()2,af x xg x x''==,由题意知()()()()0000,f x g x f x g x ''==,即002002ln a x x x a x⎧=⎪⎨⎪=⎩,解得0e ,2e a x ==故切点为(e,e),切线斜率为()02e k f x '==,所以切线方程为e 2e(e)y x -=,即2e e 0x y --=,故答案为:2e e 0y --=方向4、已知切线求参数问题【对点训练26】(2024·江苏·校联考模拟预测)若曲线ln y x x =有两条过()e,a 的切线,则a 的范围是______.【答案】(),e -∞【解析】设切线切点为()00,x y ,因()000ln ln 1ln x x x y x x '⎧=+⎪⎨=⎪⎩,则切线方程为:()()()00000011ln ln ln y x x x x x x x x =+-+=+-.因过()e,a ,则()001ln e -a x x =+,由题函数()()1ln e -f x x x =+图象与直线y a =有两个交点.()1e e --x f x x x'==,得()f x 在()0,e 上单调递增,在()e,+∞上单调递减.又()()max e e f x f ==,()0,x f x →→-∞,(),x f x ∞∞→+→-.据此可得()f x 大致图象如下.则由图可得,当(),e a ∈-∞时,曲线ln y x x =有两条过()e,a 的切线.故答案为:(),e -∞【对点训练27】(2024·山东聊城·统考三模)若直线y x b =+与曲线e x y ax =-相切,则b 的最大值为()A .0B .1C .2D .e【答案】B【解析】设切点坐标为()00,x y ,因为e x y ax =-,所以e x y a '=-,故切线的斜率为:0e 1x a -=,0e 1x a =+,则()0ln 1x a =+.又由于切点()00,x y 在切线y x b =+与曲线e x y ax =-上,所以000e xx b ax +=-,所以()()()()01111ln 1b a x a a a ⎡⎤=+-+=+-+⎣⎦.令1a t +=,则()1ln b t t =-,设()()1ln f t t t =-,()1()1ln ln f t t t t t ⎛⎫=-+⋅-=- ⎪⎝⎭',令()0f t '=得:1t =,所以当()0,1t ∈时,()0f t '>,()f t 是增函数;当()1,t ∈+∞时,()0f t '<,()f t 是减函数.所以max ()(1)1f t f ==.所以b 的最大值为:1.故选:B.【对点训练28】(2024·重庆·统考三模)已知直线y =ax -a 与曲线ay x x=+相切,则实数a =()A .0B .12C .45D .32【答案】C 【解析】由a y x x =+且x 不为0,得21a y x'=-设切点为()00,x y ,则00000201y ax a a y x x a ax ⎧⎪=-⎪⎪=+⎨⎪⎪-=⎪⎩,即0002201a ax a x x x a x ⎧-=+⎪⎪⎨⎪=⎪+⎩,所以320022200000111x x x x x x x +-+++=,可得042,5x a =-=.故选:C【对点训练29】(2024·海南·校联考模拟预测)已知偶函数()()2131f x a x bx c d =--+--在点()()1,1f 处的切线方程为10x y ++=,则a bc d-=-()A .1-B .0C .1D .2【答案】A【解析】因为()f x 是偶函数,所以()()()2131f x a x bx c d f x -=-++--=,即0b =;由题意可得:()()113111f a b c d c d a a b =--+--=-+⇒-=-=-+,所以1a bc d-=--.故选:A【对点训练30】(2024·全国·高三专题练习)已知M 是曲线21ln 2y x x ax =++上的任一点,若曲线在M 点处的切线的倾斜角均是不小于π4的锐角,则实数a 的取值范围是()A .[)2,+∞B .[)1,-+∞C .(],2-∞D .(],1-∞-【答案】B【解析】函数21ln 2y x x ax =++的定义域为()0,∞+,且1y x a x'=++,因为曲线21ln 2y x x ax =++在其上任意一点M 点处的切线的倾斜角均是不小于π4的锐角,所以,1πtan 14y x a x '=++≥=对任意的0x >恒成立,则11a x x-≤+,当0x >时,由基本不等式可得12x x +≥=,当且仅当1x =时,等号成立,所以,12a -≤,解得1a ≥-.故选:B.【对点训练31】(2024·全国·高三专题练习)已知0m >,0n >,直线11ey x m =++与曲线ln 2y x n =-+相切,则11m n+的最小值是()A .16B .12C .8D .4【答案】D【解析】对ln 2y x n =-+求导得1y x'=,由11e y x '==得e x =,则1e 1ln e 2em n ⋅++=-+,即1m n +=,所以()11112224n m m n m n m n m n ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当12m n ==时取等号.故选:D .方向5、切线的条数问题【对点训练32】(2024·河北·高三校联考阶段练习)若过点(,)m n 可以作曲线2log y x =的两条切线,则()A .2log m n >B .2log n m>C .2log m n<D .2log n m<【答案】B【解析】作出函数2log y x =的图象,由图象可知点(,)m n 在函数图象上方时,过此点可以作曲线的两条切线,所以2log n m >,故选:B.【对点训练33】(2024·全国·高三专题练习)若过点(,)a b 可以作曲线ln y x =的两条切线,则()A .ln a b <B .ln b a<C .ln b a<D .ln a b<【答案】D【解析】设切点坐标为00(,)x y ,由于1y x'=,因此切线方程为0001ln ()y x x x x -=-,又切线过点(,)a b ,则000ln a x b x x --=,001ln ab x x +=+,设()ln a f x x x =+,函数定义域是(0,)+∞,则直线1y b =+与曲线()ln af x x x =+有两个不同的交点,221()a x af x x x x-'=-=,当0a ≤时,()0f x '>恒成立,()f x 在定义域内单调递增,不合题意;当0a >时,0x a<<时,()0f x '<,()f x 单调递减,x a >时,()0f x '>,()f x 单调递增,所以min ()()ln 1f x f a a ==+,结合图像知1ln 1b a +>+,即ln b a >.故选:D.【对点训练34】(2024·湖南·校联考二模)若经过点(),a b 可以且仅可以作曲线ln y x =的一条切线,则下列选项正确的是()A .0a ≤B .ln b a=C .ln a b=D .0a ≤或ln b a=【答案】D【解析】设切点()00,ln P x x .因为ln y x =,所以1y x'=,所以点P 处的切线方程为()0001ln y x x x x -=-,又因为切线经过点(),a b ,所以()0001ln b x a x x -=-,即001ln a b x x +=+.令()ln (0)a f x x x x =+>,则1y b =+与()ln (0)af x x x x=+>有且仅有1个交点,()221a x a f x x x x'-=-=,当0a ≤时,()0f x ¢>恒成立,所以()f x 单调递增,显然x →+∞时,()f x →+∞,于是符合题意;当0a >时,当0x a <<时,()0f x '<,()f x 递减,当x a >时,()0f x ¢>,()f x 递增,所以()min ()ln 1f x f a a ==+,则1ln 1b a +=+,即ln b a =.综上,0a ≤或ln b a =.故选:D方向6、切线平行、垂直、重合问题【对点训练35】(2024·全国·高三专题练习)若函数()ln f x x x =+与2()1x mg x x -=-的图象有一条公共切线,且该公共切线与直线21y x =+平行,则实数m =()A .178B .176C .174D .172【答案】A【解析】设函数()ln f x x x =+图象上切点为00(,)x y ,因为1()1f x x'=+,所以001()12f x x '=+=,得01x =,所以00()(1)1y f x f ===,所以切线方程为12(1)y x -=-,即21y x =-,设函数()21x mg x x -=-的图象上的切点为11(,)x y 1(1)x ≠,因为222(1)(2)2()(1)(1)x x m m g x x x ----'==--,所以1212()2(1)m g x x -'==-,即211244m x x =-+,又11111221()1x m y x g x x -=-==-,即211251m x x =-+-,所以221111244251x x x x -+=-+-,即2114950x x -+=,解得154x =或11x =(舍),所以25517244448m ⎛⎫=⨯-⨯+= ⎪⎝⎭.故选:A【对点训练36】(2024·全国·高三专题练习)已知直线980x y --=与曲线32:3C y x px x =-+相交于,A B ,且曲线C 在,A B 处的切线平行,则实数p 的值为()A .4B .4或-3C .-3或-1D .-3【答案】B【解析】设1122(,),(,)A x y B x y ,由323y x px x =-+得2323y x px =-+',由题意221122323323x px x px -+=-+,因为12x x ≠,则有1223x x p +=.把89x y -=代入323y x px x =-+得32992680x px x -++=,由题意112,3x p x -都是此方程的解,即32111992680x px x -++=①,321112229()9()26()80333p x p p x p x ---+-+=,化简为32311145299268033x px x p p -++--=②,把①代入②并化简得313120p p --=,即(1)(3)(4)0p p p ++-=,1,3,4p =--,当1p =-时,①②两式相同,说明12x x =,舍去.所以3,4p =-.故选:B .【对点训练37】(2024·江西抚州·高三金溪一中校考开学考试)已知曲线()e 1(1)x f x x =->-在点()()()()()112212,,,A x f x B x f x x x <处的切线12,l l 互相垂直,且切线12,l l 与y 轴分别交于点,D E ,记点E 的纵坐标与点D 的纵坐标之差为t ,则()A .220et -<<B .22e 0t -<<C .22et <-D .2e 2t >-【答案】A【解析】由题意知12x x <,当10x -<<时,()()1e ,e x xf x f x '=-=-,当0x >时,()()e 1,e x xf x f x =-'=,因为切线12,l l 互相垂直,所以()()121f x f x ''=-,所以12121210,e e e 1x x x xx x +-<<<-=-=-,所以1220,01x x x +=∴<<,直线1l 的方程为()()1111e e x x y x x --=--,令0x =,得()111e 1xy x =-+,故()()110,1e 1xD x -+,直线2l 的方程为()()222e 1e x x y x x --=-,令0x =,得()221e 1xy x =--,故()()220,1e 1xE x --,所以()()()()212221221e 1e 21e 1e 2x x x xt x x x x -=----=-++-,设()()()1e 1e 2,(01)x xg x x x x -=-++-<<,则()()e e 0x x g x x -'=-+<,()g x 在()0,1上单调递减,所以()()1()0g g x g <<,即220et -<<,故选:A.【对点训练38】(2024·全国·高三专题练习)若函数()sin f x ax x =+的图象上存在两条相互垂直的切线,则实数a 的值是()A .2B .1C .0D .1-【答案】C【解析】因为()sin f x ax x =+,所以()cos f x a x '=+,因为函数()sin f x ax x =+的图象上存在两条相互垂直的切线,不妨设函数()sin f x ax x =+在1x x =和2x x =的切线互相垂直,则()()12cos cos 1a x a x ++=-,即()22121cos cos 1cos cos 0a a x x x x ++++=①,因为a 一定存在,即方程①一定有解,所以()()22121cos cos 41cos cos 0x x x x ∆=+-+≥,即()212cos cos 4x x -≥,解得12cos cos 2x x -≥或12cos cos 2x x -≤-,又|cos |1x ≤,所以12cos 1,cos 1x x ==-或12cos 1,cos 1x x =-=,Δ0=,所以方程①变为20a =,所以0a =,故A ,B ,D 错误.故选:C.【对点训练39】(2024·上海闵行·高三上海市七宝中学校考期末)若函数()y f x =的图像上存在两个不同的点,P Q ,使得在这两点处的切线重合,则称()f x 为“切线重合函数”,下列函数中不是“切线重合函数”的为()A .421y x x =-+B .sin y x =C .cos y x x =+D .2sin y x x=+【答案】D【解析】对于A ,()421f x x x =-+显然是偶函数,()'32242422f x x x x x x ⎛⎫⎛⎫=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,当x <时,()'0f x <,单调递减,当0x <<时,()'0f x >单调递增,当02x <<时,()'0f x <,单调递减,当2x >时,单调递增;在2x =时,()'0f x =,都取得极小值,由于是偶函数,在这两点的切线是重合的,故A 是“切线重合函数”;对于B ,()sin f x x =是正弦函数,显然在顶点处切线是重合的,故B 是“切线重合函数”;对于C ,考察()(),1,3,31A B ππππ--两点处的切线方程, '1sin y x =-,,A B ∴两点处的切线斜率都等于1,在A 点处的切线方程为()()11y x ππ--=- ,化简得:1y x =+,在B 点处的切线方程为()()3113y x ππ--=- ,化简得1y x =+,显然重合,∴C 是“切线重合函数”;对于D ,'2cos y x x =+,令()2cos g x x x =+,则()'2sin 0g x x =->,()g x 是增函数,不存在12x x ≠时,()()12g x g x =,所以D 不是“切线重合函数”;故选:D.【对点训练40】(2024·全国·高三专题练习)已知A ,B 是函数()2,0ln ,0x x a x f x x x a x ⎧++≤=⎨->⎩,图象上不同的两点,若函数()y f x =在点A 、B 处的切线重合,则实数a 的取值范围是()A .1,2∞⎛⎫- ⎪⎝⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .()0,+∞D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】B【解析】当0x ≤时,()2f x x x a =++的导数为()21f x x '=+;当0x >时,()ln f x x x a =-的导数为()ln 1f x x '=+,设()()11,A x f x ,()()22,B x f x 为函数图象上的两点,且12x x <,当120x x <≤或120x x <<时,12()()f x f x ''≠,故120x x ≤<,当10x ≤时,函数()f x 在()()11,A x f x 处的切线方程为:21111()(21)()y x x a x x x -++=+-;当20x >时,函数()f x 在()()22,B x f x 处的切线方程为2222ln (ln 1)().y x x a x x x -+=+-两直线重合的充要条件是21ln 121x x +=+①,221x a a x --=-②,由①②得:12211(e )2xa x =-,10x ≤,∴令221()(e )(0)2x g x x x =-≤,则2()e x g x x '=-,令2()()e x h x g x x '==-,则2()12e x h x '=-,由()0h x '=,得11ln 22x =,即11ln 22x =时()h x 有最大值11111(ln )ln 022222h =-<,()g x ∴在(],0-∞上单调递减,则1()(0)2g x g ≥=-.∴a 的取值范围是1,2⎡⎫-+∞⎪⎢⎣⎭.故选:B.方向7、最值问题【对点训练41】(2024·全国·高三专题练习)设点P 在曲线1e x y +=上,点Q 在曲线1ln y x =-+上,则||PQ 最小值为()A B .C 2)ln +D 2)ln -【答案】B【解析】1e x y += 与1ln y x =-+互为反函数,其图像关于直线y x =对称先求出曲线1e x y +=上的点到直线y x =的最小距离.设与直线y x =平行且与曲线1e x y +=相切的切点0(P x ,0)y .1e x y +'=,01e 1x +=,解得01x =-.110e 1y -+∴==.得到切点(1,1)P -,点P 到直线y x =的距离d =||PQ ∴最小值为故选:B .【对点训练42】(2024·全国·高三专题练习)设点P 在曲线2e x y =上,点Q 在曲线1ln 2y x =上,则||PQ 的最小值为()A ln 2)2-B ln 2)-C ln 2)+D .(1ln 2)2+【答案】D【解析】2e x y =与1ln 2y x =互为反函数,它们图像关于直线y x =对称;故可先求点P 到直线y x =的最近距离d ,又22e x y '=,当曲线上切线的斜率022e 1x k ==时,得01ln 22x =-,0201e 2xy ==,则切点11ln 2,22P ⎛⎫- ⎪⎝⎭到直线y x =的距离为ln 2)4d =+,所以||PQ 的最小值为2ln 2)d =+.故选:D .【对点训练43】(2024·全国·高三专题练习)设点P 在曲线2e x y =上,点Q 在曲线ln ln 2y x =-上,则||PQ 的最小值为()A .1ln 2-B ln 2)-C .2(1ln 2)+D ln 2)+【答案】D【解析】2e x y = 与ln ln 2y x =-互为反函数,所以2e x y =与ln ln 2y x =-的图像关于直线y x =对称,设()2()x f x e x x R =-∈,则()2e 1x f x '=-,令()0f x '=得1ln 2x =,则当1ln2x <时,()0f x '<,当1ln 2x >时,()0f x '>,所以()f x 在1(,ln )2-∞单调递减,在1(ln ,)2+∞单调递增,所以11()(ln )1ln 022f x f ≥=->,所以2e x y =与y x =无交点,则ln ln 2y x =-与y x =也无交点,下面求出曲线2e x y =上的点到直线y x =的最小距离,设与直线y x =平行且与曲线2e x y =相切的切点0(P x ,0)y ,2e x y '= ,02e 1x ∴=,解得01ln ln 22x ==-,1ln202e1y ∴==,得到切点(ln 2,1)P -,到直线y x =的距离ln 2)2d +==,||PQ的最小值为2ln 2)d +,故选:D .【对点训练44】(2024·全国·高三专题练习)已知实数a ,b ,c ,d 满足|ln(1)||2|0a b c d --+-+=,则22()()a c b d -+-的最小值为()A .B .8C .4D .16。

2023年新高考数学大一轮复习专题14 导数的概念与运算(原卷版)

2023年新高考数学大一轮复习专题14 导数的概念与运算(原卷版)

专题14 导数的概念与运算【考点预测】知识点一:导数的概念和几何性质1.概念 函数()f x 在0x x =处瞬时变化率是0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.知识点诠释:① 增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有 多近,即|0|x ∆-可以小于给定的任意小的正数;② 当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近; ③ 导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时 刻的瞬间变化率,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 2.几何意义 函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.3.物理意义 函数)(t s s =在点0t 处的导数)(0t s '是物体在0t 时刻的瞬时速度v ,即)(0t s v '=;)(t v v =在点0t 的导数)(0t v '是物体在0t 时刻的瞬时加速度a ,即)(0t v a '=.知识点二:导数的运算 1.求导的基本公式x(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±; (2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. 3.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为 x u x y y u '''=: 【方法技巧与总结】 1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩.2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.【题型归纳目录】 题型一:导数的定义 题型二:求函数的导数 题型三:导数的几何意义 1.在点P 处切线 2.过点P 的切线 3.公切线4.已知切线求参数问题5.切线的条数问题6.切线平行、垂直、重合问题7.最值问题 【典例例题】题型一:导数的定义例1.(2022·全国·高三专题练习(文))函数()y f x =的图像如图所示,下列不等关系正确的是( )A .0(2)(3)(3)(2)f f f f ''<<<-B .0(2)(3)(2)(3)f f f f ''<<-<C .0(3)(3)(2)(2)f f f f ''<<-<D .0(3)(2)(2)(3)f f f f ''<-<<例2.(2022·河南·南阳中学高三阶段练习(理))设函数()f x 满足000(2)()lim 2x f x x f x x∆→-∆-=∆,则()0f x '=( )A .1-B .1C .2-D .2例3.(2022·新疆昌吉·二模(理))若存在()()00000,,limx f x x y x y f x ∆→+-∆∆,则称()()00000,,limx f x x y xy f x ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对x 的偏导数,记为()00,x f x y ';若存在()()00000,,limy f x y yy f x y ∆→+-∆∆,则称()()00000,,lim y f x y yy f x y ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对y 的偏导数,记为()00,y f x y ',已知二元函数()()23,20,0f x y x xy y x y =-+>>,则下列选项中错误的是( )A .()1,34x f '=-B .()1,310y f '=C .()(),,x y f m n f m n ''+的最小值为13-D .(),f x y 的最小值为427-例4.(2022·贵州黔东南·一模(文))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式,()2524s t t =+--,则当1t =时,该质点的瞬时速度为( ) A .2-米/秒B .3米/秒C .4米/秒D .5米/秒例5.(2022·全国·高三专题练习)已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20例6.(2022·浙江·高三专题练习)已知函数()()2223ln 9f x f x x x '=-+(()f x '是()f x 的导函数),则()1f =( ) A .209-B .119-C .79D .169例7.(2022·浙江·高三专题练习)已知函数()f x 的导函数为()f x ',且满足()()32121f x x x f x '=++-,则()2f '=( ) A .1B .9-C .6-D .4【方法技巧与总结】对所给函数式经过添项、拆项等恒等变形与导数定义结构相同,然后根据导数定义直接写出. 题型二:求函数的导数例8.(2022·天津·耀华中学高二期中)求下列各函数的导数: (1)ln(32)y x =-; (2)e xxy =; (3)()2cos f x x x =+例9.(2022·新疆·莎车县第一中学高二期中(理))求下列函数的导数: (1)22ln cos y x x x =++; (2)3e x y x = (3)()ln 31y x =-例10.(2022·广东·北京师范大学珠海分校附属外国语学校高二期中)求下列函数的导数: (1)5y x =; (2)22sin y x x =+; (3)ln xy x=; (4)()211ln 22x y e x -=+.【方法技巧与总结】对所给函数求导,其方法是利用和、差、积、商及复合函数求导法则,直接转化为基本函数求导问题. 题型三:导数的几何意义1.在点P 处切线例11.(2022·河北·模拟预测)曲线e sin x y x =在0x =处的切线斜率为( ) A .0B .1C .2D .2-例12.(2022·安徽·巢湖市第一中学模拟预测(文))曲线22x ay x +=+在点()1,b 处的切线方程为60kx y -+=,则k 的值为( ) A .1-B .23-C .12D .1例13.(2022·海南·文昌中学高三阶段练习)曲线e 2x y x =-在0x =处的切线的倾斜角为α,则sin 2πα⎛⎫+=⎪⎝⎭( )A .BC .1D .-1例14.(2022·安徽·巢湖市第一中学高三期中(理))已知()()2cos 0cos 2f x x f x π⎛⎫=-+ '⎪⎝⎭,则曲线()y f x =在点33,44f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为( )A B .C .D .-例15.(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,且32()23(1)f x x ax f x '=-+-,则函数()f x 的图象在点(2,(2))f --处的切线的斜率为( ) A .21-B .27-C .24-D .25-例16.(2022·广西广西·模拟预测(理))曲线31y x =+在点()1,a -处的切线方程为( ) A .33y x =+B .31yxC .31y x =--D .33y x =--例17.(2022·河南省浚县第一中学模拟预测(理))曲线ln(25)y x x =+在2x =-处的切线方程为( ) A .4x -y +8=0 B .4x +y +8=0 C .3x -y +6=0D .3x +y +6=02.过点P 的切线例18.(2022·四川·广安二中二模(文))函数()2e xf x x =过点()0,0的切线方程为( )A .0y =B .e 0x y +=C .0y =或e 0x y +=D .0y =或e 0x y +=例19.(2022·四川省成都市郫都区第一中学高三阶段练习(文))若过点1(,0)2的直线与函数()e x f x x =的图象相切,则所有可能的切点横坐标之和为( ) A .e 1+B .12-C .1D .12例20.(2022·陕西安康·高三期末(文))曲线2ln 3y x x =+过点1,02⎛⎫- ⎪⎝⎭的切线方程是( )A .210x y ++=B .210x y -+=C .2410x y ++=D .2410x y -+=例21.(2022·广东茂名·二模)过坐标原点作曲线ln y x =的切线,则切点的纵坐标为( ) A .eB .1CD .1e例22.(2022·山东潍坊·三模)过点()()1,P m m ∈R 有n 条直线与函数()e xf x x =的图像相切,当n 取最大值时,m 的取值范围为( ) A .25e em -<< B .250e m -<< C .10em -<<D .e m <3.公切线例23.(2022·全国·高三专题练习)若函数()ln f x x =与函数2()(0)g x x x a x =++<有公切线,则实数a 的取值范围是( ) A .1ln ,2e ⎛⎫+∞ ⎪⎝⎭B .()1,-+∞C .()1,+∞D .()2,ln +∞例24.(2022·全国·高三专题练习)已知曲线()1:=e x C f x a +和曲线()()22:ln(),C g x x b a a b =++∈R ,若存在斜率为1的直线与1C ,2C 同时相切,则b 的取值范围是( ) A .9,4⎡⎫-+∞⎪⎢⎣⎭B .[)0,+∞C .(],1-∞D .9,4⎛⎤-∞ ⎥⎝⎦例25.(2022·江苏·南京外国语学校模拟预测)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为( ) A .(]0,2eB .(]0,eC .[)2,e +∞D .(],2e e例26.(2022·河南·南阳中学高三阶段练习(理))若直线()111y k x =+-与曲线e x y =相切,直线()211y k x =+-与曲线ln y x =相切,则12k k 的值为( ) A .12B .1C .eD .2e例27.(2022·河北省唐县第一中学高三阶段练习)已知函数()ln f x a x =,()e xg x b =,若直线()0y kx k =>与函数()f x ,()g x 的图象都相切,则1a b+的最小值为( )A .2B .2eC .2eD 例28.(2022·重庆市育才中学高三阶段练习)若直线:l y kx b =+(1k >)为曲线()1x f x e -=与曲线()ln g x e x =的公切线,则l 的纵截距b =( )A .0B .1C .eD .e -例29.(2022·全国·高三专题练习)若两曲线ln 1y x =-与2y ax =存在公切线,则正实数a 的取值范围是( ) A .(]0,2eB .31e ,2-⎡⎫+∞⎪⎢⎣⎭C .310,e 2-⎛⎤⎥⎝⎦D .[)2e,+∞例30.(2022·全国·高三专题练习)若仅存在一条直线与函数()ln f x a x =(0a >)和2()g x x =的图象均相切,则实数=a ( )A .eB C .2eD .4.已知切线求参数问题例31.(2022·湖南·模拟预测)已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)⎡⎣B .)⎡⎣C .(,-∞D .(,-∞例32.(2022·广西·贵港市高级中学三模(理))已知曲线e ln x y ax x =+在点()1,e a 处的切线方程为3y x b =+,则( ) A .e a =,2b =- B .e a =,2b = C .1e a -=,2b =-D .1e a -=,2b =例33.(2022·江苏苏州·模拟预测)已知奇函数()()()()220f x x x ax b a =-+≠在点()(),a f a 处的切线方程为()y f a =,则b =( )A .1-或1B .C .2-或2D .例34.(2022·云南昆明·模拟预测(文))若函数()ln f x x =的图象在4x =处的切线方程为y x b =+,则( )A .3a =,2ln 4b =+B .3a =,2ln 4b =-+C .32a =,1ln 4b =-+ D .32a =,1ln 4b =+ 例35.(2022·河南·方城第一高级中学模拟预测(理))已知直线l 的斜率为2,l 与曲线1C :()1ln y x x =+和圆2C :2260x y x n +-+=均相切,则n =( ) A .-4B .-1C .1D .45.切线的条数问题例36.(2022·全国·高三专题练习)若过点(,)a b 可以作曲线ln y x =的两条切线,则( ) A .ln a b <B .ln b a <C .ln b a <D .ln a b <例37.(2022·河南洛阳·三模(理))若过点()1,P t 可作出曲线3y x =的三条切线,则实数t 的取值范围是( )A .(),1-∞B .()0,∞+C .()0,1D .{}0,1例38.(2022·河南洛阳·三模(文))若过点()1,0P 作曲线3y x =的切线,则这样的切线共有( ) A .0条B .1条C .2条D .3条例39.(2022·河北·高三阶段练习)若过点(1,)P m 可以作三条直线与曲线:e xxC y =相切,则m 的取值范围为( )A .23,e ⎛⎫-∞ ⎪⎝⎭B .10,e ⎛⎫⎪⎝⎭C .(,0)-∞D .213,e e ⎛⎫ ⎪⎝⎭例40.(2022·内蒙古呼和浩特·二模(理))若过点()1,P m -可以作三条直线与曲线C :e x y x =相切,则m 的取值范围是( ) A .23,e ⎛⎫-+∞ ⎪⎝⎭B .1,0e ⎛⎫- ⎪⎝⎭C .211,e e ⎛⎫-- ⎪⎝⎭D .231,ee ⎛⎫-- ⎪⎝⎭例41.(2022·广东深圳·二模)已知0a >,若过点(,)a b 可以作曲线3y x =的三条切线,则( ) A .0b <B .30b a <<C .3b a >D .()30b b a -=6.切线平行、垂直、重合问题例42.(2022·安徽·合肥一中模拟预测(文))对于三次函数()f x ,若曲线()y f x =在点(0,0)处的切线与曲线()y xf x =在点(1,2)处点的切线重合,则(2)f '=( )A .34-B .14-C .4-D .14例43.(2022·山西太原·二模(理))已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( )A .B .C D 例44.(2022·全国·高三专题练习)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( ) A .12 B .1 C .32D .2例45.(2022·全国·高三专题练习)若直线x a =与两曲线e ,ln x y y x ==分别交于,A B 两点,且曲线e x y =在点A 处的切线为m ,曲线ln y x =在点B 处的切线为n ,则下列结论: ①()0,a ∞∃∈+,使得//m n ;②当//m n 时,AB 取得最小值; ③AB 的最小值为2;④AB 最小值小于52. 其中正确的个数是( ) A .1B .2C .3D .4例46.(2022·全国·高三专题练习)已知函数22(0)()1(0)x x a x f x x x ⎧++<⎪=⎨->⎪⎩的图象上存在不同的两点,A B ,使得曲线()y f x =在这两点处的切线重合,则实数a 的取值范围是( )A .1(,)8-∞-B .1(1,)8-C .(1,)+∞D .1(,1)(,)8-∞⋃+∞例47.(2022·全国·高三专题练习(文))若曲线x y e x =+的一条切线l 与直线220210x y +-=垂直,则切线l 的方程为( )A .210x y -+=B .210x y +-=C .210x y --=D .210x y ++=7.最值问题例48.(2022·全国·高三专题练习)若点P 是曲线232ln 2y x x =-上任意一点,则点P 到直线3y x =-的距离的最小值为( ) A.4BCD例49.(2022·山东省淄博第一中学高三开学考试)动直线l 分别与直线21y x =-,曲线23ln 2y x x =-相交于,A B 两点,则AB 的最小值为( )ABC .1 D例50.(2022·江苏·高三专题练习)已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则22a b-的取值范围是( ) A .(0,)+∞B .(0,1)C .1(0,)2D .[1,)+∞例51.(2022·全国·高三专题练习)曲线2x y e =上的点到直线240x y --=的最短距离是( ) ABCD .1例52.(2022·河北衡水·高三阶段练习)已知函数2ln ()2xf x x x=-在1x =处的切线为l ,第一象限内的点(,)P a b 在切线l 上,则1111a b +++的最小值为( ) ABCD.34+ 例53.(2022·山东聊城·二模)实数1x ,2x ,1y ,2y 满足:2111ln 0x x y --=,2240x y --=,则()()221212x x y y -+-的最小值为( ) A .0B.C.D .8例54.(2022·河南·许昌高中高三开学考试(理))已知函数21e x y +=的图象与函数()ln 112x y ++=的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为( )A .22B 24C .)4ln 22+D )4ln 2+例55.(2022·河南·灵宝市第一高级中学模拟预测(文))已知直线y kx b =+是曲线1y =的切线,则222k b b +-的最小值为( )A .12-B .0C .54D .3【方法技巧与总结】函数()y f x =在点0x 处的导数,就是曲线()y f x =在点00(,())P x f x 处的切线的斜率.这里要注意曲线在某点处的切线与曲线经过某点的切线的区别.(1)已知()f x 在点00(,())x f x 处的切线方程为000()()y y f x x x '-=-.(2)若求曲线()y f x =过点(,)a b 的切线方程,应先设切点坐标为00(,())x f x ,由000()()y y f x x x '-=-过点(,)a b ,求得0x 的值,从而求得切线方程.另外,要注意切点既在曲线上又在切线上.【过关测试】 一、单选题1.(2022·河南·高三阶段练习(理))若曲线()ln a xf x x=在点(1,f (1))处的切线方程为1y x =-,则a =( ) A .1B .e2C .2D .e2.(2022·云南曲靖·二模(文))设()'f x 是函数()f x 的导函数,()f x ''是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是( )A .0(3)(3)(2)(2)f f f f ''<<-<B .0(3)(2)(2)(3)f f f f ''<-<<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(2)(3)(3)(2)f f f f ''<<<-3.(2022·全国·高三专题练习)设()f x 为可导函数,且()()112lim1x f f x x→--=-△△△,则曲线()y f x =在点()()1,1f 处的切线斜率为( )A .2B .-1C .1D .12-4.(2022·河南·模拟预测(文))已知3()ln(2)3xf x x x =++,则曲线()y f x =在点()()3,3f 处的切线方程为( )A .21010ln510x y -+-=B .21010ln510x y ++-=C .1212ln5150x y -+-=D .1212ln5150x y ++-=5.(2022·贵州黔东南·一模(理))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式23(43)=-s t t ,则当1t =时,该质点的瞬时速度为( ) A .5米/秒 B .8米/秒 C .14米/秒D .16米/秒6.(2022·全国·高三专题练习)已知函数()ln f x x x =,()()2g x x ax a =+∈R ,若经过点1,0A 存在一条直线l 与()f x 图象和()g x 图象都相切,则=a ( ) A .0B .1-C .3D .1-或37.(2022·湖南·长郡中学高三阶段练习)m 对任意a ∈R ,()0,b ∈+∞恒成立,则实数m 的取值范围是( )A .1,2⎛⎤-∞ ⎥⎝⎦B .2⎛-∞ ⎝⎦C .(-∞D .(],2-∞8.(2022·辽宁沈阳·二模)若直线11y k x b =+与直线()2212y k x b k k =+≠是曲线ln y x =的两条切线,也是曲线e x y =的两条切线,则1212k k b b ++的值为( ) A .e 1- B .0 C .-1D .11e-二、多选题9.(2022·辽宁丹东·模拟预测)若过点()1,a 可以作出曲线()1e xy x =-的切线l ,且l 最多有n 条,*n ∈N ,则( ) A .0a ≤B .当2n =时,a 值唯一C .当1n =时,4ea <-D .na 的值可以取到﹣410.(2022·浙江·高三专题练习)为满足人们对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示,则下列结论中正确的有( )A .在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强B .在2t 时刻,甲企业的污水治理能力比乙企业强C .在3t 时刻,甲、乙两企业的污水排放都已达标D .甲企业在[]10,t ,[]12,t t ,[]23,t t 这三段时间中,在[]10,t 的污水治理能力最强11.(2022·全国·高三专题练习)已知函数()xf x e =,则下列结论正确的是( )A .曲线()y f x =的切线斜率可以是1B .曲线()y f x =的切线斜率可以是1-C .过点()0,1且与曲线()y f x =相切的直线有且只有1条D .过点()0,0且与曲线()y f x =相切的直线有且只有2条12.(2022·全国·高三专题练习)过平面内一点P 作曲线ln y x =两条互相垂直的切线1l 、2l ,切点为1P 、2P (1P 、2P 不重合),设直线1l 、2l 分别与y 轴交于点A 、B ,则下列结论正确的是( ) A .1P 、2P 两点的横坐标之积为定值 B .直线12PP 的斜率为定值;C .线段AB 的长度为定值D .三角形ABP 面积的取值范围为(]0,1三、填空题13.(2022·山东·肥城市教学研究中心模拟预测)已知函数()3ln f x x x x =-,则曲线()y f x =在点()()e,e f 处的切线方程为_______.14.(2022·全国·模拟预测(文))若直线l 与曲线2yx 和2249x y +=都相切,则l 的斜率为______. 15.(2022·湖北武汉·模拟预测)已知函数2()(0)e e x x f x f -'=-,则(0)f =__________.16.(2022·全国·赣州市第三中学模拟预测(理))已知()()()222cos 22cos sin f x xf x x x x x '+=++,且0x >,52f π⎛⎫= ⎪⎝⎭,那么()f π=___________. 四、解答题17.(2022·全国·高三专题练习(文))下列函数的导函数 (1)42356y x x x --=+; (2)2sin cos 22xx x y =+;(3)2log y x x =-; (4)cos x y x=.18.(2022·辽宁·沈阳二中二模)用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若fx 是()f x 的导函数,()f x ''是fx 的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''='+⎡⎤⎣⎦.(1)若曲线()ln f x xx =+与()g x =()1,1处的曲率分别为1K ,2K ,比较1K ,2K 大小; (2)求正弦曲线()sin h x x =(x ∈R )曲率的平方2K 的最大值.19.(2022·全国·高三专题练习)设函数()()2ln f x ax x a R =--∈. (1)若()f x 在点()()e,e f 处的切线为e 0x y b -+=,求a ,b 的值; (2)求()f x 的单调区间.20.(2022·浙江·高三专题练习)函数()321f x x x x =+-+, 直线l 是()y f x =在()()0,0f 处的切线.(1)确定()f x 的单调性;(2)求直线l 的方程及直线l 与()y f x =的图象的交点.21.(2022·北京东城·三模)已知函数()e x f x =,曲线()y f x =在点(1(1))f --,处的切线方程为y kx b =+.(1)求k ,b 的值;(2)设函数()1ln 1.kx b x g x x x +<⎧=⎨≥⎩,,,,若()g x t =有两个实数根12,x x (12x x <),将21x x -表示为t 的函数,并求21xx -的最小值.22.(2022·贵州贵阳·模拟预测(理))已知a ∈R ,函数()()ln 1f x x a x =+-,()e xg x =.(1)讨论()f x 的单调性;(2)过原点分别作曲线()y f x =和()y g x =的切线1l 和2l ,求证:存在0a >,使得切线1l 和2l 的斜率互为倒数.。

考向14 导数的概念及应用(重点)-备战2022年高考数学一轮复习考点微专题(新高考地区专用)

考向14 导数的概念及应用(重点)-备战2022年高考数学一轮复习考点微专题(新高考地区专用)

考向14 导数的概念及应用1.(2021·全国高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a << D .0e a b <<【答案】D 【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果; 解法二:画出曲线xy e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.【详解】在曲线xy e =上任取一点(),tP t e,对函数xy e=求导得e xy '=,所以,曲线xy e =在点P 处的切线方程为()tty e e x t -=-,即()1tty e x t e =+-,由题意可知,点(),a b 在直线()1tty e x t e =+-上,可得()()11tttb ae t e a t e =+-=+-,令()()1tf t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增, 当t a >时,()0f t '<,此时函数()f t 单调递减, 所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点. 故选:D.解法二:画出函数曲线xy e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D. 【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法. 2.(2021·北京高考真题)已知函数()232xf x x a-=+. (1)若0a =,求()y f x =在()()1,1f 处切线方程;(2)若函数()f x 在1x =-处取得极值,求()f x 的单调区间,以及最大值和最小值.【答案】(1)450x y +-=;(2)函数()f x 的增区间为(),1-∞-、()4,+∞,单调递减区间为()1,4-,最大值为1,最小值为14-. 【分析】(1)求出()1f 、()1f '的值,利用点斜式可得出所求切线的方程;(2)由()10f '-=可求得实数a 的值,然后利用导数分析函数()f x 的单调性与极值,由此可得出结果. 【详解】(1)当0a =时,()232xf x x -=,则()()323x f x x-'=,()11f ∴=,()14f '=-, 此时,曲线()y f x =在点()()1,1f 处的切线方程为()141y x -=--,即450x y +-=; (2)因为()232xf x x a -=+,则()()()()()()222222223223x a x x x x a f x xa xa -+----'==++,由题意可得()()()224101a f a -'-==+,解得4a =,故()2324x f x x -=+,()()()()222144x x f x x +-'=+,列表如下:()f x增 极大值 减 极小值 增所以,函数()f x 的增区间为(),1-∞-、()4,+∞,单调递减区间为()1,4-. 当32x <时,()0f x >;当32x >时,()0f x <.所以,()()max 11f x f =-=,()()min 144f x f ==-.1.求函数导数的总原则:先化简解析式,再求导.注意以下几点:连乘形式则先展开化为多项式形式,再求导;三角形式,先利用三角函数公式转化为和或差的形式,再求导;分式形式,先化为整式函数或较为简单的分式函数,再求导;复合函数,先确定复合关系,由外向内逐层求导,必要时可换元2.利用导数研究曲线的切线问题,一定要熟练掌握以下三点:(1)函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标. (2)切点既在曲线上,又在切线上,切线还有可能和曲线有其它的公共点.(3)曲线y =f(x)“在”点P(x 0,y 0)处的切线与“过”点P(x 0,y 0)的切线的区别:曲线y =f(x)在点P(x 0,y 0)处的切线是指点P 为切点,若切线斜率存在,切线斜率为k =f′(x 0),是唯一的一条切线;曲线y =f(x)过点P(x 0,y 0)的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 3.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.4.求解与导数的几何意义有关问题时应注意的两点(1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.1.导数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0ΔyΔx =lim Δx →0 f x 0+Δx -f x 0Δx ,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或0|x x y '=,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0f x 0+Δx -f x 0Δx.(2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间(a ,b )内的导函数.简称导数,记作f ′(x )或y ′. 2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率, 相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q ,α≠0)f ′(x )=αx α-1f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0且a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x4.导数的运算法则 若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′=f ′(x )±g ′(x ); [f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f x g x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0); [cf (x )]′=cf ′(x ). 【知识拓展】复合函数的定义及其导数(1)一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )与u =g (x )的复合函数,记作y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.(2021·河南南阳市·高二其他模拟(理))已知函数2()62f x x x =-+,且()02f x '=,则0x =( ) A .2B .22C .32D .422.(2021·千阳县中学高三二模(理))已知21()(21)x f x x x e =++,21()[()]f x f x '=,32()[()]f x f x '=,…,1()[()]n n f x f x +'=,*n N ∈.设2()()x n n n n f x a x b x c e =++,则100c =( )A .9903B .9902C .9901D .99003.(2021·全国高三其他模拟(文))曲线()1f x x b x=++在点()(),a f a 处的切线经过坐标原点,则ab =___________.4.(2021·新沂市第一中学高三其他模拟)已知函数2()ln f x a x bx =+的图象在点(1,1)P 处的切线与直线10x y -+=垂直,则a 的值为___________1.(2021·河南新乡市·高三三模(文))已知函数()4f x x ax =+,若()()2lim =12x f x f x x→--△△△△,则a =( )A .36B .12C .4D .22.(2021·千阳县中学高三其他模拟(理))已知函数()f x 的定义域为()0,∞+,且满足:(1)()0f x >,(2)()()()23f x xf x f x ''<<,则(1)(2)f f 的取值范围是( ) A .()10,e-B .3(,)e -+∞C .31,()e e --D .3(,)e e -3.(2021·全国高三月考(文))拉格朗日中值定理又称拉氏定理,是微积分学中的基本定理之一,它反映了函数在闭区间上的整体平均变化率与区间某点的局部变化率的关系,其具体内容如下:若()f x 在[],a b 上满足以下条件:①在[],a b 上图象连续,②在(),a b 内导数存在,则在(),a b 内至少存在一点c ,使得()()()()f b f a f c b a '-=-(()f x '为()f x 的导函数).则函数()1e x f x x -=在[]0,1上这样的c 点的个数为( ) A .1B .2C .3D .44.(2021·云南红河哈尼族彝族自治州·高三三模(文))丹麦数学家琴生是19世纪对数学分析做出卓越贡献的巨人,特别是在函数的凹凸性与不等式方面留下了很多宝贵的成果.定义:函数()f x 在(),a b 上的导函数为()f x ',()f x '在(),a b 上的导函数为()f x '',若在(),a b 上()0f x ''<恒成立,则称函数()f x 在(),a b 上的“严格凸函数”,称区间(),a b 为函数()f x 的“严格凸区间”.则下列正确命题的序号为______.①函数()3232x x f x -++=在()1,+∞上为“严格凸函数”;②函数()ln x f x x =的“严格凸区间”为320,e ⎛⎫ ⎪⎝⎭;③函数()22xm f x e x =-在()1,4为“严格凸函数”,则m 的取值范围为[),e +∞. 5.(2021·江苏高二专题练习)设函数()e x f x x a -=,若()21e2f '=,则a =______. 6.(2021·合肥市第六中学高三其他模拟(理))已知()f x 为奇函数,当0x <时,()1xf x e -=+,则曲线()y f x =在点()()1,1f 处的切线方程是___________.7.(2021·河北饶阳中学高三其他模拟)曲线()31()e x f x x mx -=-在点(1(1))f ,处的切线与直线410x y --=垂直,则该切线的方程为__________.8.(2021·吉林松原市·高三月考)已知,0x y ∈≠R ,则()221()2x x y y++-最小值为___________. 9.(2021·广东佛山市·高三其他模拟)已知函数21()ln 2f x x x x =++,则()f x 所有的切线中斜率最小的切线方程为_________.10.(2021·全国高三其他模拟)函数()xf x e x =+在(0,(0))f 处的切线与坐标轴围成的图形面积为___________.11.(2021·全国高三其他模拟(文))已知函数()()2,xf x ae x b a b R =-+∈在1x =处的切线方程为()210e x y --+=,则()ln 2f '=___.12.(2021·四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +.(1)求a 的值; (2)证明:()0f x >.1.(2013·全国高考真题(文))已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-2.(2020·全国高考真题(理))若直线l 与曲线y x 和x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1B .y =2x +12C .y =12x +1 D .y =12x +123.(2019·全国高考真题(理))已知曲线e ln xy a x x =+在点()1,ae 处的切线方程为2y x b =+,则 A .,1a e b ==-B .,1a e b ==C .1,1a e b -==D .1,1a e b -==-4.(2016·四川高考真题(文))设直线l 1,l 2分别是函数f(x)= ln ,01,{ln ,1,x x x x -<<>图象上点P 1,P­2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)5.(2021·全国高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______.6.(2021·全国高考真题(理))曲线212x y x -=+在点()1,3--处的切线方程为__________. 7.(2019·江苏高考真题)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____.8.(2019·江苏高考真题)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.9.(2017·天津高考真题(文))已知a R ∈,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为________ .10.(2021·全国高考真题(理))已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.1.【答案】B 【分析】依题意求出函数的导函数,再解方程即可; 【详解】解:由题意可得()622f x x '=-+,因为()006222f x x '=-+=,所以022x = 故选:B 2.【答案】C【分析】求出前几项的导数,计算数列{}n c ,找到规律,代入数值计算. 【详解】解:因为21()(21)xf x x x e =++,()221()[()]43x f x f x x x e '∴==++, ()232()[()]67x f x f x x x e '==++, ()243()[()]813x f x f x x x e '==++,数列{}n c 为1,3,7,13,,每一项为上一项的常数与上一项的一次项的系数之和,即12n n c c n -=+,且11c =,所以()2124211n c n n n =++++-=-+,则1009901c =. 故选:C. 【点睛】思路点睛:本题考查数列的应用:计算前几项的导数,发现每一项的常数都为上一项的常数与上一项中一次项的系数的和,写出递推关系式,然后求得通项公式,代入计算. 3.【答案】2- 【分析】利用导数的几何意义即可求解. 【详解】由()1f x x b x =++,则()211f x x '=-, 所以()211f a a'=-,所以()()()22011110f a f a b f a a a a a a-'=-===++-, 化简整理可得2ab =-. 故答案为:2-4.【答案】3- 【分析】根据点P在函数的图象上,求得b的值,得到2()ln f x a x x =+,利用导数的几何意义和直线垂直的条件求得3a =-. 【详解】由已知可得(1,1)P 在函数()f x 的图象上,所以(1)1f =,即2ln111a b +⨯=,解得1b =,所以2()ln f x a x x =+,故()2af x x x'=+.则函数()f x 的图象在点(1,1)P 处的切线的斜率(1)2k f a '==+,因为切线与直线10x y -+=垂直,所以21a +=-, 即3a =-. 故答案为:3-.1.【答案】C 【分析】根据函数()f x 在0x 处的导数的定义将()()2limx f x f x x→--△△△△变形为()()()023lim303x f x f x f x→--'=△△△△即可求解.【详解】解:根据题意,()4f x x ax =+,则()34f x x a '=+,则()0f a '=,若()()2lim=12x f x f x x→--△△△△,则()()()()()022lim=3lim30123x x f x f x f x f x f xx→→----'==△△△△△△△△,则有312a =,即4a =,故选:C . 2.【答案】C 【分析】根据题意构造函数2()()x f x g x e=与213()()x f x h x e=,利用二者的单调性即可得到结果.【详解】222222()()2()()2()()()0()x xxx xf x f x e xf x e f x xf xg x g x e e e '''--=⇒==<,∴()g x 在()0,∞+上单调递减,34(1)(2)(1)(1)(2)(2)f f fg g e e e f ->⇒>⇒>, ()()()()()()()222221133121133322330x x x x x f x e xf x e f x xf x f x h x h x e e e --=⇒==>⎛'⎪'⎫ ⎝⎭' ∴()h x 在(0,)+∞上单调递增,11433(1)(2)(1)(1)(2)(2)f f f h h e f ee-<⇒<⇒<. 故选:C 【点睛】方法点睛:本题主要考查利用导数研究函数的单调性,需要构造函数,一般:(1)条件含有()()f x f x '+,就构造()()xg x e f x =,(2)若()()f x f x -',就构造()()x f x g x e=,(3)()()2f x f x +',就构造()()2x g x e f x =,(4)()()2f x f x -'就构造()()2xf xg x e=,等便于给出导数时联想构造函数. 3.【答案】A 【分析】用已知定义得到存在点[0c ∈,1],使得(1)(0)()110f f f c -'==-,转化为研究函数数1c y e -=和11y c=+图象的交点个数,作出函数图象即可得到答案. 【详解】函数1()x f x xe-=,则1()(1)x f x x e-'=+,由题意可知,存在点[0c ∈,1],使得(1)(0)()110f f f c -'==-,即1(1)1c c e -+=,所以111c ec-=+,[0c ∈,1], 作出函数1c y e -=和11y c=+的图象,如图所示,由图象可知,函数1c y e -=和11y c=+的图象只有一个交点, 所以111c ec-=+,[0c ∈,1]只有一个解,即函数1()x f x xe -=在[0,1]上c 点的个数为1个. 故选:A 4.【答案】①② 【分析】根据题干中给出的定义逐项检验后可得正确的选项. 【详解】()3232x x f x -++=的导函数()236f x x x '=-+,()66f x x ''=-+,故()0f x ''<在()1,+∞上恒成立, 所以函数()3232x x f x -++=在()1,+∞上为“严格凸函数”,所以①正确;()ln x f x x =的导函数()21ln x f x x -'=,()32ln 3x f x x-''=, 由()0f x ''<可得2ln 30x -<,解得320,x e ⎛⎫∈ ⎪⎝⎭,所以函数()ln xf x x =的“严格凸区间”为320,e ⎛⎫ ⎪⎝⎭,所以②正确;()22x m f x e x =-的导函数()x f x e mx '=-,()x f x e m ''=-, 因为()f x 为()1,4上的“严格凸函数”,故()0f x ''<在()1,4上恒成立, 所以0x e m -<在()1,4上恒成立,即x m e >在()1,4上恒成立, 故4m e ≥,所以③不正确. 所以正确命题为:①②. 故答案为:①②. 5.【答案】2 【分析】 先对()ex f x x a-=求导,将2x =代入()f x '即可求解. 【详解】 由()e x f x x a -=可得,()e 1x a f x x -+'=,所以()22e 211ea f '-+==,解得2a =. 故答案为:2. 【点睛】本题主要考查导数的运算,属于基础题. 6.【答案】10ex y ++= 【分析】由条件求得当0x >时的函数解析式,求导,通过导数几何意义求得在点()()1,1f 处的切线方程. 【详解】由题知,当0x >时,()1()xf x e f x -=+=-,即()1xf x e =--则()xf x e '=-,()1f e '=-,又()11f e =--则在点()()1,1f 的切线方程为:(1)(1)y e e x ---=--, 即10ex y ++= 故答案为:10ex y ++=7.【答案】410x y +-= 【分析】根据导数的几何意义,先求切线斜率142k m =-,而直线410x y --=的斜率214k =,根据两条直线垂直则121k k =-,代入即可得解. 【详解】由题意得()321()3e x f x x x mx m ---'=+,则(1)42f m '=-,所以切线的斜率142k m =-.直线410x y --=的斜率214k =. 因为两直线相互垂直,所以121(42)14k k m =-=-,解得4m =,则1(1)4k f '==-.所以()31()4e x f x x x -=-,则(1)3f =-,故该切线的方程为34(1)y x +=--,即410x y +-=. 故答案为:410x y +-= 8.【答案】4 【分析】 将()221()2x x y y ++-看作两点(,)A x x ,1(,2)B y y-之间距离的平方,然后根据几何意义进行求解即可. 【详解】()221()2x x y y ++-看作两点(,)A x x ,1(,2)B y y-之间距离的平方,点A 在直线y x =上,点B 在曲线2,0y x x=-≠上,222()y x x ''=-=,令221x =,解得x =(B ,所以||2AB ≥=,2||4AB ∴≥,即()221()2x x y y ++-最小值为4. 故答案为:4.9.【答案】332y x =- 【分析】求得函数导数,由基本不等关系求得导数的最小值,即函数()f x 所有切线中斜率最小值,进而求得切线方程. 【详解】 由1()1f x x x'=++,0x >,则1()113f x x x '=++≥+=,1x =时等号成立, 则函数()f x 所有切线中斜率最小为3,且过点3(1,)2, 则切线方程为332y x =- 故答案为:332y x =- 10.【答案】14【分析】根据导数的几何意义可求得切线方程,进而确定与坐标轴的交点坐标,从而求得面积. 【详解】切点(0,1),()e 1,2xf x k =+=', 切线:12y x -=,即21y x =+, 与y 轴交点(0,1),与x 轴交点1,02⎛⎫-⎪⎝⎭, 故1111224S =⨯⨯=, 故答案为:14. 11.【答案】0 【分析】根据导数的几何意义可知()12f e '=-,又()()1,1f 在切线上,可解得,a b 的值,进而可求()ln 2f '的值.【详解】由()2xf x ae x b =-+,得()2xf x ae '=-,()12f ae '∴=-,()12f ae b =-+,又切线方程为:()210e x y --+=,即()21y e x =-+,故22221ae e ae b e -=-⎧⎨-+=-+⎩,解得1a b ==,故()21xf x e x =-+,()2xf x e '=-,即()ln2ln 220f e '=-=,故答案为:0.12.【答案】(1)2a =;(2)证明见解析. 【分析】(1)求出函数的导函数,再代入计算可得;(2)依题意即证()()2222ln 0x f x x x e ex e x =-+->,即()12ln 2x x x e e x--+>,构造函数()()222x g x x e e -=-+,()ln xh x x=,利用导数说明其单调性与最值,即可得到()()>g x h x ,从而得证; 【详解】解:(1)因为()()222ln xf x x x e aex e x =-+-,所以()()222xef x x e ae x'=-+-,()22332222e ef ae e =+=+',解得2a =.(2)由(1)可得()()2222ln xf x x x e ex e x =-+-即证()()()2212ln 22ln 02x x x f x x x e ex e x x e e x-=-+->⇔-+>. 令()()222x g x x ee-=-+,()()21x g x x e -=-',于是()g x 在()0,1上是减函数,在()1,+∞上是增函数,所以()()11g x g e≥=(1x =取等号).又令()ln x h x x =,则()21ln xh x x -'=,于是()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以()()1h x h e e≤=(x e =时取等号).所以()()>g x h x ,即()0f x >.1.【答案】D 【分析】作出函数()y f x =的图像,和函数y ax =的图像,结合图像可知直线y ax =介于l 与x 轴之间,利用导数求出直线l 的斜率,数形结合即可求解. 【详解】由题意可作出函数()y f x =的图像,和函数y ax =的图像.由图像可知:函数y ax =的图像是过原点的直线, 当直线介于l 与x 轴之间符合题意,直线l 为曲线的切线,且此时函数()y f x =在第二象限的部分的解析式为22y x x =-,求其导数可得22y x '=-,因为0x ≤,故2y '≤-, 故直线l 的斜率为2-,故只需直线y ax =的斜率a []2,0∈-. 故选:D 【点睛】本题考查了不等式恒成立求出参数取值范围,考查了数形结合的思想,属于中档题. 2.【答案】D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x =-,即00x x -+=, 由于直线l 与圆2215x y +== 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 故选:D. 【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题. 3.【答案】D 【分析】通过求导数,确定得到切线斜率的表达式,求得a ,将点的坐标代入直线方程,求得b .【详解】详解:ln 1,xy ae x '=++1|12x k y ae ='==+=,1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D . 【点睛】本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系. 4.【答案】A 【详解】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为221111112222111121211,ln .1,1,0111211PAB A B P PAB x x x x P x x S y y x S x x x x ∆∆⎛⎫-++>∴=-⋅=<=∴<< ⎪++++⎝⎭,故选A . 考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围. 5.【答案】0,1 【分析】结合导数的几何意义可得120x x +=,结合直线方程及两点间距离公式可得1A x M =,2B x N =,化简即可得解.【详解】由题意,()1011,0,xx x e x f x e e x <=⎧---≥⎪=⎨⎪⎩,则()0,,0xx x f x e e x ⎧-⎪=<>⎨'⎪⎩,所以点()11,1xA x e -和点()22,1xB x e -,12,x xAM BN k e k e =-=,所以12121,0xx e ex x -⋅=-+=,所以()()111111,0:,11xxxxe e x x e AM e y M x -+=---+,所以1x AM ==,同理2B x N =,所以()10,1x e NAM B ===∈=. 故答案为:0,1 【点睛】 关键点点睛:解决本题的关键是利用导数的几何意义转化条件120x x +=,消去一个变量后,运算即可得解. 6.【答案】520x y -+= 【分析】先验证点在曲线上,再求导,代入切线方程公式即可. 【详解】由题,当1x =-时,3y =-,故点在曲线上. 求导得:()()()()222221522x x y x x +--==++',所以1|5x y =-='.故切线方程为520x y -+=. 故答案为:520x y -+=. 7.【答案】(e, 1). 【分析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值可得切点坐标. 【详解】设点()00,A x y ,则00ln y x =.又1y x'=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 代入点(),1e --,得001ln 1ex x ---=-, 即00ln x x e =,考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()'ln 1H x x =+,当1x >时,()()'0,>H x H x 单调递增,注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =, 故点A 的坐标为(),1A e . 【点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点. 8.【答案】4. 【分析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离 【详解】当直线0x y +=平移到与曲线4y x x=+相切位置时,切点Q 即为点P 到直线0x y +=的距离最小. 由2411y x '=-=-,得)x =,y =即切点Q ,则切点Q 到直线0x y +=4=,故答案为4. 【点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题. 9.【答案】1 【详解】函数f (x )=ax −ln x ,可得()1'f x a x=-,切线的斜率为:()'11k f a ==-, 切点坐标(1,a ),切线方程l 为:y −a =(a −1)(x −1),l 在y 轴上的截距为:a +(a −1)(−1)=1.故答案为1.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.10.【答案】(1)2p =;(2) 【分析】(1)根据圆的几何性质可得出关于p 的等式,即可解出p 的值;(2)设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求出直线PA 、PB ,进一步可求得直线AB 的方程,将直线AB 的方程与抛物线的方程联立,求出AB 以及点P 到直线AB 的距离,利用三角形的面积公式结合二次函数的基本性质可求得PAB △面积的最大值. 【详解】(1)抛物线C 的焦点为0,2p F ⎛⎫⎪⎝⎭,42p FM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y , 直线PA 的方程为()1112x y y x x -=-,即112x x y y =-,即11220x x y y --=, 同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=, 所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=, 由韦达定理可得1202x x x +=,1204x x y =,所以,AB ===,点P 到直线AB的距离为d =,所以,()3220011422PABS AB d x y =⋅==-△, ()()2222000000041441215621x y y y y y y -=-+-=---=-++,由已知可得053y -≤≤-,所以,当05y =-时,PAB△的面积取最大值321202⨯=【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.。

求导数的定义和性质

求导数的定义和性质

定义法:根据导数的定义, 通过求极限来确定函数的导 数。
链式法则:对于复合函数, 使用链式法则计算导数。
乘积法则:对于两个函数的 乘积,使用乘积法则计算导
数。
公式法
定义:根据导数的定义和性质,通过公式计算导数的值
适用范围:适用于已知函数表达式的情况
计算步骤:求导公式,确定自变量和因变量的关系,代入公式进行计算
乘积法则
定义:两个函数的乘积的导数等于第一个函数的导数乘以第二个函数加上第一个函数 乘以第二个函数的导数。
公式:(uv)' = u'v + uv'
应用:用于计算复合函数的导数,简化计算过程。
注意事项:在使用乘积法则时,需要注意每个函数的导数和乘积的符号。
04 导数的应用
导数在几何中的应用
导数可以用来研究函数的单调性, 从而解决一些几何问题。
导数在经济中的应用
边际分析:导数可以用来分析经济函数的边际变化,帮助企业做出更好的决策。
最优问题:导数可以帮助解决最优问题,例如在生产、运输和分配等方面找到最优解。
弹性分析:导数可以用来分析经济函数的弹性,帮助企业了解市场需求和价格变化对销 售的影响。
经济增长和预测:导数可以用来分析经济增长的规律和趋势,帮助预测未来的经济走势。
导数在工程中的应用
优化设计:导数可 以用于优化工程设 计,例如最小化材 料使用或最大化结 构稳定性。
控制理论:导数在 控制系统理论中用 于描述系统的动态 行为,例如航空航 天器的姿态控制。
流体动力学:导数 在计算流体动力学 中用于模拟流体流 动,例如计算流体 阻力或升力。
结构分析:导数可 以用于分析结构的 应力分布和位移, 例如桥梁或建筑物 的稳定性评估。

高数课件-导数的概念

高数课件-导数的概念

导数的四则运算规则
加法规则:导数相加等于导数之和
乘法规则:导数相乘等于导数之积
添加标题
添加标题
添加标题
添加标题
减法规则:导数相减等于导数之差
除法规则:导数相除等于导数之商
复合函数的导数计算
复合函数的定 义:由两个或 多个函数组成
的函数
复合函数的导 数计算方法:
链式法则
链式法则:将 复合函数分解 为多个简单函 数,分别计算 导数,然后将
导数的性质定理
导数的定义:导数是函数在某一点的切线斜率 导数的性质:导数是连续的,可导函数在定义域内处处可导 导数的公式:导数的基本公式包括导数的四则运算、复合函数求导公式、隐函数求导公式等 导数的应用:导数在微积分、函数极限、函数极值、函数凹凸性等方面有广泛应用
感谢观看
汇报人:
导数的定理与公式
导数的定义:导数是函数在某一点 的切线斜率
导数的基本定理
导数的公式:导数公式包括基本导 数公式、复合函数导数公式、隐函 数导数公式等
添加标题
添加标题
添加标题
添加标题
导数的性质:导数是函数在某一点 的极限值
导数的应用:导数在微积分、函数 分析、=lim(h>0)(f(x+h)-f(x))/h
导数的推导公式
导数的定义:函数在某一点的导数是该函数在该
01
点附近曲线的切线斜率 导数的基本公式:f'(x)=lim(h->0) [f(x+h)-
02
f(x)]/h 导数的四则运算法则:f'(x)=f(x)+g'(x),
03
f'(x)=f(x)-g'(x),f'(x)=f(x)*g'(x),f'(x)=f(x)/g'(x) 04 导数的复合函数公式:f'(g(x))=f'(g(x))*g'(x)

导数定义运算知识点总结

导数定义运算知识点总结

导数定义运算知识点总结一、导数的定义在微积分中,导数是描述函数变化率的一个重要概念。

具体来说,如果一个函数在某一点处的导数存在,那么这个导数就描述了函数在该点处的变化速率。

导数的定义可以通过极限的概念来给出,具体来说,对于函数y=f(x),如果在某一点x处函数f(x)的变化率为:f'(x) = lim(h->0) (f(x+h) - f(x)) / h其中f'(x)表示函数f(x)在x处的导数,lim表示极限运算,h表示自变量x的增加量。

上面的定义是导数的一般形式,通过这个定义可以得到一些常用的导数计算方法。

比如对于幂函数、指数函数、对数函数、三角函数等一些基本函数,我们可以通过导数的定义来计算它们在某一点处的导数。

另外,还可以通过导数的定义来证明某一函数在某一点处的导数的存在性和计算导数的值。

二、导数的基本运算法则导数的基本运算法则是微积分中的一个重要内容,它包括导数的四则运算法则、复合函数的导数、反函数的导数、隐函数的导数等方面的内容。

1. 导数的四则运算法则对于两个函数y=f(x)和y=g(x),它们的导数满足一些基本运算法则。

具体来说,如果函数f(x)和函数g(x)分别在某一点x处的导数存在,那么它们的和、差、积、商的导数可以通过以下公式求得:- (f(x) ± g(x))' = f'(x) ± g'(x)- (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)- (f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x)) / [g(x)]^2这些公式可以帮助我们在实际计算中求解复合函数的导数、隐函数的导数等问题。

2. 复合函数的导数复合函数是指一个函数中包含了另一个函数。

如果函数y=f(g(x))是一个复合函数,那么它的导数可以通过链式法则来求解。

导数的概念及运算知识点讲解(含解析)

导数的概念及运算知识点讲解(含解析)

导数的概念及运算一、知识梳理1.函数y =f(x)在x =x 0处的导数(1)定义:称函数y =f(x)在x =x 0处的瞬时变化率0lim x ∆→f (x 0+Δx )-f (x 0)Δx=lim x ∆→ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0limx ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx称为函数y =f (x )在开区间内的导函数.3.导数公式表4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1) [f (x )±g (x )]′=f ′(x )±g ′(x ); (2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3) ⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为 y x ′=y u ′·u x ′.知识点小结:1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2. ⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2. 3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (4)曲线的切线与曲线不一定只有一个公共点.( ) 解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错.(3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错. 答案 (1)× (2)× (3)× (4)√2.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9B.-3C.9D.15解析 因为y =x 3+11,所以y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9. 答案 C3.在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________ m/s ,加速度a =______ m/s 2.解析 v =h ′(t )=-9.8t +6.5,a =v ′(t )=-9.8. 答案 -9.8t +6.5 -9.84.(2019·青岛质检)已知函数f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A.e 2B.1C.ln 2D.e解析 f ′(x )=2 018+ln x +x ×1x =2 019+ln x .由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1. 答案 B5.(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.解析 由题意得f ′(x )=e xln x +e x·1x ,则f ′(1)=e.答案 e6.(2017·全国Ⅰ卷)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +1考点一 导数的运算角度1 根据求导法则求函数的导数 【例1-1】 分别求下列函数的导数: (1)y =e x ln x ; (2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)f (x )=ln 1+2x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e xx =e x ⎝⎛⎭⎪⎫ln x +1x .(2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x 3. (3)因为y =ln1+2x =12ln ()1+2x ,所以y ′=12·11+2x ·(1+2x )′=11+2x .角度2 抽象函数的导数计算【例1-2】 (2019·天津河西区调研)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1x ,则f (1)=( ) A.-eB.2C.-2D.e解析 由已知得f ′(x )=2f ′(1)-1x ,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1)=2. 答案 B【训练1】 (1)若y =x -cos x 2sin x2,则y ′=________. (2)已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 解析 (1)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .(2)∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2.∴f ′(x )=2x -4,∴f ′(0)=-4. 答案 (1)1-12cos x (2)-4考点二 导数的几何意义 角度1 求切线方程【例2-1】 (2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( ) A.y =-2x B.y =-x C.y =2xD.y =x解析 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以a -1=0,则a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x . 答案 D角度2 求切点坐标【例2-2】 (1)(2019·聊城月考)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ) A.3B.2C.1D.12(2)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________. 解析 (1)设切点的横坐标为x 0(x 0>0),∵曲线y =x 24-3ln x 的一条切线的斜率为12, ∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意),即切点的横坐标为3. (2)∵函数y =e x 的导函数为y ′=e x ,∴曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x 2,∴曲线y =1x (x >0)在点P 处的切线的斜率k 2=-1x 20,由题意知k 1k 2=-1,即1·⎝ ⎛⎭⎪⎫-1x 20=-1,解得x 20=1,又x 0>0,∴x 0=1.又∵点P 在曲线y =1x (x >0)上,∴y 0=1,故点P 的坐标为(1,1). 答案 (1)A (2)(1,1)角度3 求参数的值或取值范围【例2-3】 (1)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A.(-∞,2] B.(-∞,2) C.(2,+∞)D.(0,+∞)(2)(2019·河南六市联考)已知曲线f (x )=x +ax +b (x ≠0)在点(1,f (1))处的切线方程为y =2x +5,则a -b =________.解析 (1)由题意知f ′(x )=2在(0,+∞)上有解. ∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x . 因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). (2)f ′(x )=1-ax 2,∴f ′(1)=1-a ,又f (1)=1+a +b ,∴曲线在(1,f (1))处的切线方程为y -(1+a +b )=(1-a )(x -1),即y =(1-a )x +2a +b ,根据题意有⎩⎪⎨⎪⎧1-a =2,2a +b =5,解得⎩⎪⎨⎪⎧a =-1,b =7,∴a -b =-1-7=-8. 答案 (1)B (2)-8规律方法 1.求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·东莞二调)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A.(0,0)B.(1,-1)C.(-1,1)D.(1,-1)或(-1,1)(2)(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________.解析 (1)由f (x )=x 3+ax 2,得f ′(x )=3x 2+2ax . 根据题意可得f ′(x 0)=-1,f (x 0)=-x 0,可列方程组⎩⎪⎨⎪⎧x 30+ax 20=-x 0, ①3x 20+2ax 0=-1, ②解得⎩⎪⎨⎪⎧x 0=1,a =-2或⎩⎪⎨⎪⎧x 0=-1,a =2.当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1. ∴点P 的坐标为(1,-1)或(-1,1). (2)由题意得y ′=2x +1.在点(0,0)处切线斜率k =y ′|x =0=2.∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 答案 (1)D (2)y =2x三、课后练习1.(2019·深圳二模)设函数f (x )=x +1x +b ,若曲线y =f (x )在点(a ,f (a ))处的切线经过坐标原点,则ab =( ) A.1B.0C.-1D.-2解析 由题意可得,f (a )=a +1a +b ,f ′(x )=1-1x 2,所以f ′(a )=1-1a 2,故切线方程是y -a -1a -b =⎝⎛⎭⎪⎫1-1a 2(x -a ),将(0,0)代入得-a -1a -b=⎝ ⎛⎭⎪⎫1-1a 2(-a ),故b =-2a ,故ab =-2. 答案 D2.已知函数f (x )=|x 3+ax +b |(a ,b ∈R ),若对任意的x 1,x 2∈[0,1],f (x 1)-f (x 2)≤2|x 1-x 2|恒成立,则实数a 的取值范围是________. 解析 当x 1=x 2时,f (x 1)-f (x 2)≤2|x 1-x 2|恒成立;当x 1≠x 2时, 由f (x 1)-f (x 2)≤2|x 1-x 2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f (x )在[0,1]上的导函数f ′(x )满足|f ′(x )|≤2,函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎪⎨⎪⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1]. 答案 [-2,-1]3.函数g (x )=ln x 图象上一点P 到直线y =x 的最短距离为________. 解析 设点(x 0,ln x 0)是曲线g (x )=ln x 的切线中与直线y =x 平行的直线的切点,因为g ′(x )=(ln x )′=1x ,则1=1x 0,∴x 0=1,则切点坐标为(1,0),∴最短距离为(1,0)到直线y =x 的距离, 即为|1-0|1+1=22. 答案 224.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).答案 [2,+∞)。

导数的概念及运算

导数的概念及运算

探究二
例2 求下列函数的导数 (1)y=(3x3-4x)(2x+1); (2)y=x2sinx; (3)y=3xex-2x+e; lnx (4)y= 2 x +1 (5)y=e2xcos3x; (6)y=ln x2+1
导数运算
【解析】 (1)方法一 y=(3x3-4x)(2x+1) =6x4+3x3-8x2-4x,∴y′=24x3+9x2-16x-4. 方法二 y′=(3x3-4x)′· (2x+1)+(3x3-4x)(2x+ 1)′=(9x2-4)(2x+1)+(3x3-4x)· 2 =24x3+9x2-16x-4. (2)y′=(x2)′sinx+x2(sinx)′=2xsinx+x2cosx.
1 3 4 ∴切线方程为y-( x0+ )=x2(x-x0), 0 3 3 2 3 4 2 即y=x0· x0+ . x- 3 3 2 3 4 2 ∵点P(2,4)在切线上,∴4=2x0- x0+ , 3 3
3 即x0-3x2+4=0,解得x0=-1或x0=2. 0
故所求切线方程为4x-y-4=0或x-y+2=0;
题型三
导数的几何意义
1 3 4 例3 已知曲线y=3x +3. (1)求曲线在点P(2,4)处的切线方程; (2)求曲线过点P(2,4)的切线方程; (3)求满足斜率为1的曲线的切线方程.
【解析】 (1)∵y′=x2, ∴在点P(2,4)处的切线的斜率k=y′|x=2=22=4, ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2), 即4x-y-4=0; 1 3 4 (2)设曲线y= x + 与过点P(2,4)的切线相切于点 3 3 1 3 4 2 A(x0,3x0+3),则切线的斜率k=y′| x=x0=x0.
s′(t0)

导数的定义与基本运算法则

导数的定义与基本运算法则

导数的定义与基本运算法则导数是微积分中一个重要概念,它描述了函数在某一点处的变化率。

本文将介绍导数的定义以及基本运算法则,并通过具体例子来加深理解。

一、导数的定义导数是用极限来定义的。

对于函数f(x),在点x处的导数表示为f'(x),它的定义如下:f'(x) = lim(h→0) (f(x+h) - f(x))/h二、基本运算法则1. 常数规则如果f(x) = c,其中c是一个常数,那么f'(x) = 0。

2. 常数倍规则如果f(x) = c * g(x),其中c是一个常数,g(x)是一个可导函数,那么f'(x) = c * g'(x)。

3. 和差规则如果f(x) = g(x) ± h(x),其中g(x)和h(x)是可导函数,那么f'(x) =g'(x) ± h'(x)。

4. 乘法规则如果f(x) = g(x) * h(x),其中g(x)和h(x)是可导函数,那么f'(x) =g'(x) * h(x) + g(x) * h'(x)。

5. 商法则如果f(x) = g(x) / h(x),其中g(x)和h(x)是可导函数,且h(x)不等于0,那么f'(x) = (g'(x) * h(x) - g(x) * h'(x)) / (h(x))^2。

6. 复合函数规则如果f(x) = g(h(x)),其中g(x)和h(x)是可导函数,那么f'(x) = g'(h(x)) * h'(x)。

三、例题分析1. 求函数f(x) = x^2的导数。

根据导数的定义,我们可以计算:f'(x) = lim(h→0) ((x+h)^2 - x^2)/h= lim(h→0) (x^2 + 2xh + h^2 - x^2)/h= lim(h→0) (2x h + h^2)/h= lim(h→0) 2x + h= 2x所以,f'(x) = 2x。

【2021新高考数学】导数的概念及计算导数的概念及计算(含答案)

【2021新高考数学】导数的概念及计算导数的概念及计算(含答案)

等函数的导数公式
基本初等函数
导函数
f(x)=c(c 为常数) f(x)=xα(α∈Q*)
f(x)=sin x f(x)=cos x
f(x)=ex f(x)=ax(a>0)
f(x)=ln x
f(x)=logax (a>0,a≠1)
三.导数的运算法则 若 f′(x),g′(x)存在,则有: (1)[f(x)±g(x)]′=f′(x)±g′(x); (2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);
f′(x)=ex f′(x)=axlna
f′(x)=1 x
f′(x)= 1 xln a
(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);
f(x) (3) g(x) ′=f′(x)g(x)-f(x)g′(x)(g(x)≠0).
[g(x)]2
四.复合函数的导数
复合函数 y=f(g(x))的导数和函数 y=f(u),u=g(x)的导数间的关系为 yx′=yu′·ux′.
【举一反三】
1.下列求导运算正确的是( )
A.㺀 ʒ산 ᙰ ʒ ʒ
B.㺀 ʒ산 ᙰ ʒ(其中 e 为自然对数的底数)
C.㺀ʒ ͳ ʒ 산 ᙰ ʒ ͳ ʒ 【答案】B
D.㺀
ʒ cosʒ


cosʒ ʒsinʒ cos ʒ
【解析】分析:运算导数的加减乘除的运算法则进行计算.
详解:㺀 ʒ산 ᙰ ʒln ,㺀 ʒ산 ᙰ 㺀 ʒ산 ᙰ

;②若
ʒ

ʒ,则

⚪㺀ʒ산 ᙰ ʒ,则 ⚪ 㺀 산 ᙰ ,其中正确的个数是________________.
ʒ;③若 ᙰ ʒ ,则 ᙰ

2024年高考数学总复习第三章《导数及其应用》导数的概念及运算

2024年高考数学总复习第三章《导数及其应用》导数的概念及运算

2024年高考数学总复习第三章《导数及其应用》§3.1导数的概念及运算最新考纲1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵.2.通过函数图象直观理解导数的几何意义.3.能根据导数定义求函数y =c (c 为常数),y =x ,y =x 2,y =1x 的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|0x x =,即f ′(x 0)=lim Δx →ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx.(2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间(a ,b )内的导函数.记作f ′(x )或y ′.2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0).3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=0f (x )=x α(α∈Q *)f ′(x )=αx α-1f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=e xf ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln a f (x )=ln xf ′(x )=1xf(x)=log a x(a>0,a≠1)f′(x)=1 x ln a4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)f(x)g(x)′=f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).概念方法微思考1.根据f′(x)的几何意义思考一下,|f′(x)|增大,曲线f(x)的形状有何变化?提示|f′(x)|越大,曲线f(x)的形状越来越陡峭.2.直线与曲线相切,是不是直线与曲线只有一个公共点?提示不一定.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.(×)(2)f′(x0)=[f(x0)]′.(×)(3)(2x)′=x·2x-1.(×)题组二教材改编2.若f(x)=x·e x,则f′(1)=.答案2e解析∵f′(x)=e x+x e x,∴f′(1)=2e.3.曲线y=1-2x+2在点(-1,-1)处的切线方程为.答案2x-y+1=0解析∵y′=2(x+2)2,∴y′|x=-1=2.∴所求切线方程为2x-y+1=0.题组三易错自纠4.如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是()答案D解析由y =f ′(x )的图象知,y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.5.若f (x )=sin xx ,则f ′π2=________.答案-4π2解析∵f ′(x )=x cos x -sin xx 2,∴f ′π2=-4π2.6.(2017·天津)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为.答案1解析∵f ′(x )=a -1x,∴f ′(1)=a -1.又∵f (1)=a ,∴切线l 的斜率为a -1,且过点(1,a ),∴切线l 的方程为y -a =(a -1)(x -1).令x =0,得y =1,故l 在y 轴上的截距为1.题型一导数的计算1.已知f (x )=sin x 21-2cos 2x4f ′(x )=.答案-12cos x 解析因为y =sin x 2-cos x2=-12sin x ,所以y ′=-12sin x ′=-12(sin x )′=-12cos x .2.已知y =cos xe x,则y ′=________.答案-sin x +cos x e x解析y ′=cos xe x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos xe x.3.f (x )=x (2019+ln x ),若f ′(x 0)=2020,则x 0=.答案1解析f ′(x )=2019+ln x +x ·1x=2020+ln x ,由f ′(x 0)=2020,得2020+ln x 0=2020,∴x 0=1.4.若f (x )=x 2+2x ·f ′(1),则f ′(0)=.答案-4解析∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2,∴f ′(x )=2x -4,∴f ′(0)=-4.思维升华1.求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,尽量避免不必要的商的求导法则,这样可以减少运算量,提高运算速度减少差错.2.(1)若函数为根式形式,可先化为分数指数幂,再求导.(2)复合函数求导,应由外到内逐层求导,必要时可进行换元.题型二导数的几何意义命题点1求切线方程例1(1)(2018·湖北百所重点高中联考)已知函数f (x +1)=2x +1x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为()A .1B .-1C .2D .-2答案A解析由f (x +1)=2x +1x +1,知f (x )=2x -1x =2-1x .∴f ′(x )=1x2,∴f ′(1)=1.由导数的几何意义知,所求切线的斜率k =1.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为.答案x -y -1=0解析∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴0=x 0ln x 0,0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0.命题点2求参数的值例2(1)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b =.答案1解析由题意知,y =x 3+ax +b 的导数为y ′=3x 2+a ,3+a +b =3,×12+a =k ,+1=3,由此解得k =2,a =-1,b =3,∴2a +b =1.(2)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m =.答案-2解析∵f ′(x )=1x,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,∴m =-2.命题点3导数与函数图象例3(1)已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是()答案B解析由y =f ′(x )的图象是先上升后下降可知,函数y =f (x )图象的切线的斜率先增大后减小,故选B.(2)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=.答案0解析由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,∴g ′(3)=1+30.思维升华导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值k =f ′(x 0).(2)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),1=f (x 1),0-y 1=f ′(x 1)(x 0-x 1)求解即可.(3)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况.跟踪训练(1)(2018·全国Ⅰ)已知f (x )=x 2,则曲线y =f (x )过点P (-1,0)的切线方程是.答案y =0或4x +y +4=0解析设切点坐标为(x 0,x 20),∵f ′(x )=2x ,∴切线方程为y -0=2x 0(x +1),∴x 20=2x 0(x 0+1),解得x 0=0或x 0=-2,∴所求切线方程为y =0或y =-4(x +1),即y =0或4x +y +4=0.(2)设曲线y =1+cos xsin x 在点x -ay +1=0平行,则实数a =.答案-1解析∵y ′=-1-cos xsin 2x,∴y ′π2x ==-1.由条件知1a=-1,∴a =-1.(3)(2018·开封模拟)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是.答案(-∞,2)解析函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x<2,所以a 的取值范围是(-∞,2).1.已知函数f (x )=1x cos x ,则f (π)+f ()A .-3π2B .-1π2C .-3πD .-1π答案C解析因为f ′(x )=-1x 2cos x +1x (-sin x ),所以f (π)+f =-1π+2π×(-1)=-3π.2.(2018·衡水调研)设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为()A .e 2B .e C.ln 22D .ln 2答案B解析由f (x )=x ln x ,得f ′(x )=ln x +1.根据题意知,ln x 0+1=2,所以ln x 0=1,即x 0=e.3.曲线y =sin x +e x 在点(0,1)处的切线方程是()A .x -3y +3=0B .x -2y +2=0C .2x -y +1=0D .3x -y +1=0答案C解析y ′=cos x +e x ,故切线斜率k =2,切线方程为y =2x +1,即2x -y +1=0.4.设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数f ′(x )的图象可能是()答案C解析原函数的单调性是当x <0时,f (x )单调递增;当x >0时,f (x )的单调性变化依次为增、减、增,故当x <0时,f ′(x )>0;当x >0时,f ′(x )的符号变化依次为+,-,+.故选C.5.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是()A.3π4, B.π4,,3π4 D.0答案A解析求导可得y ′=-4e x +e -x +2,∵e x +e -x +2≥2e x ·e -x +2=4,当且仅当x =0时,等号成立,∴y ′∈[-1,0),得tan α∈[-1,0),又α∈[0,π),∴3π4≤α<π.6.(2018·广州调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为()A .eB .-e C.1eD .-1e答案C解析y =ln x 的定义域为(0,+∞),且y ′=1x,设切点为(x 0,ln x 0),则y ′|0x x ==1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1e.7.(2018·鹰潭模拟)已知曲线f (x )=2x 2+1在点M (x 0,f (x 0))处的瞬时变化率为-8,则点M 的坐标为.答案(-2,9)解析∵f (x )=2x 2+1,∴f ′(x )=4x ,令4x 0=-8,则x 0=-2,∴f (x 0)=9,∴点M 的坐标是(-2,9).8.已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点的横坐标为________.答案2解析设切点坐标为(m ,n )(m >0),对y =14x 2-3ln x 求导得y ′=12x -3x ,可令切线的斜率为12m-3m =-12,解方程可得m =2(舍去负值).9.若曲线y =ln x 的一条切线是直线y =12x +b ,则实数b 的值为.答案-1+ln 2解析由y =ln x ,可得y ′=1x,设切点坐标为(x 0,y 0),由曲线y =ln x 的一条切线是直线y=12x +b ,可得1x 0=12,解得x 0=2,则切点坐标为(2,ln 2),所以ln 2=1+b ,b =-1+ln 2.10.(2018·云南红河州检测)已知曲线f (x )=x ln x 在点(e ,f (e))处的切线与曲线y =x 2+a 相切,则a =______.答案1-e解析因为f ′(x )=ln x +1,所以曲线f (x )=x ln x 在x =e 处的切线斜率为k =2,则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e.由于切线与曲线y =x 2+a 相切,故y =x 2+a 可联立y =2x -e ,得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e.11.已知f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,且它们在同一平面直角坐标系内的图象如图所示.(1)若f (1)=1,则f (-1)=;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为.(用“<”连接)答案(1)1(2)h (0)<h (1)<h (-1)解析(1)由题图可得f ′(x )=x ,g ′(x )=x 2,设f (x )=ax 2+bx +c (a ≠0),g (x )=dx 3+ex 2+mx +n (d ≠0),则f ′(x )=2ax +b =x ,g ′(x )=3dx 2+2ex +m =x 2,故a =12,b =0,d =13,e =m =0,所以f (x )=12x 2+c ,g (x )=13x 3+n ,由f (1)=1,得c =12,则f (x )=12x 2+12,故f (-1)=1.(2)h(x)=f(x)-g(x)=12x2-13x3+c-n,则有h(-1)=56+c-n,h(0)=c-n,h(1)=16+c-n,故h(0)<h(1)<h(-1).12.已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.解(1)∵f′(x)=3x2-8x+5,∴f′(2)=1,又f(2)=-2,∴曲线在点(2,f(2))处的切线方程为y+2=x-2,即x-y-4=0.(2)设曲线与经过点A(2,-2)的切线相切于点P(x0,x30-4x20+5x0-4),∵f′(x0)=3x20-8x0+5,∴切线方程为y-(-2)=(3x20-8x0+5)·(x-2),又切线过点P(x0,x30-4x20+5x0-4),∴x30-4x20+5x0-2=(3x20-8x0+5)(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或1,∴经过点A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.13.已知函数f(x)=e x-mx+1的图象为曲线C,若曲线C存在与直线y=e x垂直的切线,则实数m的取值范围是()D.(e,+∞)答案B解析由题意知,方程f′(x)=-1e有解,即ex-m=-1e有解,即ex=m-1e有解,故只要m-1e>0,即m>1e即可,故选B.14.(2018·泰安模拟)若曲线f(x)=a cos x与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,求a+b的值.解依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,f ′(0)=g ′(0),即-a sin 0=2×0+b ,得b =0.又m =f (0)=g (0),即m =a =1,因此a +b =1.15.给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.已知函数f (x )=5x +4sin x -cos x 的“拐点”是M (x 0,f (x 0)),则点M ()A .在直线y =-5x 上B .在直线y =5x 上C .在直线y =-4x 上D .在直线y =4x 上答案B 解析由题意,知f ′(x )=5+4cos x +sin x ,f ″(x )=-4sin x +cos x ,由f ″(x 0)=0,知4sin x 0-cos x 0=0,所以f (x 0)=5x 0,故点M (x 0,f (x 0))在直线y =5x 上.16.已知函数f (x )=x -3x.(1)求曲线f (x )过点(0,-3)的切线方程;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解(1)f ′(x )=1+3x2,设切点为(x 0,y 0),则曲线y =f (x )在点(x 0,y 0)处的切线方程为y -y 0x -x 0),∵切线过(0,-3),∴-30-x 0),解得x 0=2,∴y 0=12,∴所求切线方程为y -12=74(x -2),即y =74x -3.(2)设P (m ,n )为曲线f (x )上任一点,由(1)知过P 点的切线方程为y -n x -m ),即y x -m ),令x =0,得y =-6m,从而切线与直线x =0令y =x ,得y =x =2m ,从而切线与直线y =x 的交点为(2m,2m ),∴点P (m ,n )处的切线与直线x =0,y =x 所围成的三角形的面积S =12·|-6m |·|2m |=6,为定值.。

导数综合运算知识点总结

导数综合运算知识点总结

导数综合运算知识点总结一、导数的定义及意义:1. 导数的定义:函数f(x)在点x=a处的导数,记为f'(a),定义为极限$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$其中f'(a)表示函数f(x)在点x=a处的导数。

2. 导数的几何意义:函数f(x)在点x=a处的导数f'(a)表示函数f(x)在点x=a处的切线斜率。

也即在点x=a处,函数f(x)的变化率。

3. 导数的物理意义:如果函数f(x)表示某一物理量y关于另一物理量x的变化规律,那么函数f'(x)表示物理量y关于物理量x的变化率。

4. 导数的符号:函数f(x)在点x=a处的导数f'(a)的符号表示函数f(x)在点x=a处的增减情况。

当f'(a)>0时,函数f(x)在点x=a处是增加的;当f'(a)<0时,函数f(x)在点x=a处是减小的;当f'(a)=0时,函数f(x)在点x=a处是不变的。

二、导数的运算法则:1. 基本导数法则:(常数函数规则、幂函数规则、指数函数规则、对数函数规则、三角函数规则、反三角函数规则、双曲函数规则)。

2. 复合函数的导数法则:函数f(g(x))的导数等于f'(g(x))g'(x)。

链式法则。

3. 反函数的导数法则:如果函数y=f(x)在区间I上单调、可导,并且在区间I上f'(x)≠0,则有反函数x=f^(-1)(y)在区间J上也可导,并且在区间J上f^(-1)'(y)=1/f'(f^(-1)(y))。

4. 参数方程的导数:如果x=f(t)、y=g(t)是参数方程,且函数f(t)、g(t)在t处可导,则参数方程x=f(t)、y=g(t)的导数dx/dt=f'(t)、dy/dt=g'(t)。

5. 隐函数的导数:若函数F(x,y)=0表示隐函数,且F(x,y)在点P(x0,y0)的邻域内具有连续偏导数,则隐函数y=f(x)的导数dy/dx可用偏导数表示:dy/dx=-∂F/∂x/∂F/∂y。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11节 导数的定义及导数的计算 (14)
一.知识要点:
1.导数的定义:割线1l 的斜率=00()()
f x x f x y x x +∆-∆=∆∆,当x ∆ 趋于0时得到()f x 在0x 处切线的斜率:0000()()lim
lim l x x f x x f x y
k x x
∆→∆→+∆-∆==∆∆也称()f x 在0x 处的导数。

2.导函数的定义:若()f x 在区间(,)a b 上的每一点x 处都有导数,导数记为
()f x ',则0
()()
()lim
x f x x f x f x x
∆→+∆-'=∆,称()f x '为()f x 的导函数。

3.导数的几何意义:()f x 在0x 处的导数值等于曲线()f x 在点00(,())P x f x 处切线的斜率。

即:0()l k f x '=.
4.常见导数公式:0C '= 1
()x x
α
αα-'=
(sin )cos x x '= (cos )sin x x '=-
()ln x x a a a '=()x x
e e '= 1(log )ln a x x a '=
1
(ln )x x
'= 5.导数运算法则:
(1).[]()()()()f x g x f x g x '''±=±
(2)[]()()()()()()f x g x f x g x f x g x '''⋅=⋅+⋅
(3)2
()()()()()()()f x f x g x f x g x g x g x '''
⎡⎤-=⎢⎥⎣⎦
6.复合函数求导:(理)
(()),(),()y f g x y f u u g x ===设,则()().y f u u x '''=⋅
二.考点评析
例1.利用导数定义求函数的导数
(1)2
348y x x =-+ (2)1y x x
=+
y x
l 1
l f(x 0)
f(x 0+x)
y
x
x 0x 0+x
O
y
x
L
f(x)
P(x 0,f(x 0))
o x 0
例2.利用公式求导
1
3
(1)ln ;x y x =+ 1
31
(2);
x y e x x =-+
(3)ln y x x =
(4)sin ;y x x = 2(5);
x y x e =- 1(6);1
x y x -=+
(7)x
e y x
= 2(8)(23)(32)y x x =+- (9)()sin(1)y x =-+理
21(10)()x y e -+=理
例3.(利用导数求切线方程)
3(1)-112f x 1600x
y x x x =
-+=+-求曲线在点(,)处的切线方程.
(2)求函数()过点(,)的切线方程.
三.学生练习
1.如果质点A 按规律3
2s t =运动。

则在t=3s 时的瞬时速度为( ) A.6 B.18 C.54 D.81 2.曲线321y x x =-+在点(1,0)处的切线方程为( )
A.y=x-1
B.y=-x+1
C. Y=2x-2
D.y=-2x+2 3.若曲线2y x ax b =++在点(0,b)处的切线方程是x-y+1=0,则( ) A. a=1,b=1 B.a=-1,b=1 C.a=1 D.b=-1
x
4.-1-1x 2
.21;.21;,21;.22
A y x
B y x
C y x
D y x +=+=-=-+=--曲线y=
在点(,)处的切线方程为( )
5.如图所示,函数()y f x =的图像在点p 处的切线方程是y=-2x+9, 则(4)(4)f f '+的值为( ) A.0 B.1 C.-1 D.2
6.已知曲线ln y x x x =-在点(e,0)处的切线与直线ax+2y+1=0平行,则a=( ) A.2 B.-2 C.12-
D.1
2
7.32
()32f x ax x =++,若(1)4f '-=,则a 的值为( )
A.
103 B.133 C.163 D.193
8.若f(x)=x 2-2x-4lnx,,则()0f x '>的解集为( )
.(0,);
(1,0)(2,);.(2,);.(1,0)A B C D +∞-+∞+∞-
9.若曲线4
y x =的一条切线L 与直线x+4y-8=0垂直,则L 的方程是( ) A.4x-y-3=0 B.x+4y-5=0 C.4x-y+3=0 D.x+4y+3=0 10.已知1
sin 2sin 2
y x x =
+,则y '是( ) A.是奇函数 B. 是偶函数 C. 非奇非偶函数 D.无最值 四.作业:
1.21sin ;
(2)32x x x y x x y e e
==-+求下列函数的导函数()
ln (3):(4)ln(25)21
x
y y x x =
=++
322.(1)3121
2(2)34
y x x y x y x =-+==-+求曲线在点(,)处的切线方程。

如果曲线的某一切线方程与直线垂直,求切点坐标与切线方程。

2323.(1)()(2)()15336x f x x e f x x x x ==--+求函数的单调区间
求的单调区间。

相关文档
最新文档