单片机12-2、3独立按键和矩阵键盘(实训)

合集下载

单片机 矩阵键盘实验 实验报告

单片机 矩阵键盘实验 实验报告

单片机矩阵键盘实验实验报告一、实验目的本次实验的目的是掌握原理和方法,利用单片机识别矩阵键盘并编程实现键码转换功能,控制LED点亮显示。

二、实验原理矩阵键盘是一种由多路单向控制器输入行选择信号与列选择信号连接而形成的一一对应矩阵排列结构。

它广泛应用于电子游戏机、办公自动化设备、医疗仪器、家电控制及书籍检索机器等方面。

本次实验采用的矩阵键盘是一个4 x 4矩阵,用4段数码管显示按键编码,每个按键都可以输入一个代码,矩阵键盘连接单片机,实现一个软件算法来识别键码转化。

从而将键盘中的按键的按下信号转换成程序能够识别的代码,置于相应的输出结果中,控制LED点亮,从而可以实现矩阵键盘按键的转换功能。

三、实验方法1.硬件搭建:矩阵键盘(4行4列)与单片机(Atmel AT89C51)相连,选择引脚连接,并将数码管和LED与单片机相连以实现显示和点亮的功能。

2.程序设计:先建立控制体系,利用中断服务子程序识别和码值转换,利用中断服务子程序实现从按键的按下信号转换为程序能够识别的代码,然后将该代码段编写到单片机程序中,每次按下矩阵键盘按键后单片机给出相应的按键编码输出,用数码管显示,控制LED点亮。

四、实验结果经过实验,成功实现了矩阵键盘与单片机之间的连接,编写了中断服务子程序,完成了按键编码输出与LED点亮的功能。

实验完成后,数码管显示各种按键的编码,同时LED会点亮。

本次实验介绍了矩阵键盘的原理,论述了键码转换的程序设计步骤,并实验完成矩阵键盘与单片机的连接,实现用LED点亮以及数码管显示按键的编码。

通过本次实验,受益匪浅,使我对使用单片机编写算法与程序有了更深入的认识,同时丰富了课堂学习的内容,也使我更加热爱自己所学的专业。

单片机矩阵键盘

单片机矩阵键盘

按键在闭合和断开时,触点会存在抖动现象:

数码管前三位显示一个跑表,从000到999之间以1%秒速度运行,当按下一个独立键盘时跑表停止,松开手后跑表继续运行。(用定时器设计表)。
在上题的基础上,用另外三个独立键盘实现按下第一个时计时停止,按下第二个时计时开始,按下第三个是计数值清零从头开始。
键盘处理程序就作这么一个简单的介绍,实际上,键盘、显示处理是很复杂的,它往往占到一个应用程序的大部份代码,可见其重要性,但说到,这种复杂并不来自于单片机的本身,而是来自于操作者的习惯等等问题,因此,在编写键盘处理程序之前,最好先把它从逻辑上理清,然后用适当的算法表示出来,最后再去写代码,这样,才能快速有效地写好代码
ANL A,#0FH
CJNE A,#0FH,KCODE;
MOV A,R1
SETB C RLC A JC NEXT2 NEXT3: MOV R0,#00H RET KCODE: MOV B,#0FBH NEXT4: RRC A INC B JC NEXT4 MOV A,R1 SWAP A NEXT5: RRC A INC B INC B INC B INC B 。
按下16个矩阵键盘依次在数码管上显示1-16的平方。如按下第一个显示1,第二个显示4...
识别方法
04
03
01
02
3、若有键被按下,应识别出是哪一个键闭合。方法是对键盘的行线进行扫描。P1.4-P1.7按下述4种组合依次输出: P1.7 1 1 1 0 P1.6 1 1 0 1 P1.5 1 0 1 1 P1.4 0 1 1 1 在每组行输出时读取P1.0-P1.3,若全为“1”,则表示为“0”这一行没有键闭合,否则有键闭合。由此得到闭合键的行值和列值,然后可采用计算法或查表法将闭合键的行值和列值转换成所定义的键值 4、为了保证键每闭合一次CPU仅作一次处理,必须去除键释放时的抖动。

单片机c语言程序设计---矩阵式键盘实验报告

单片机c语言程序设计---矩阵式键盘实验报告

单片机c语言程序设计---矩阵式键盘实验报告课程名称:单片机c语言设计实验类型:设计型实验实验项目名称:矩阵式键盘实验一、实验目的和要求1.掌握矩阵式键盘结构2.掌握矩阵式键盘工作原理3.掌握矩阵式键盘的两种常用编程方法,即扫描法和反转法二、实验内容和原理实验1.矩阵式键盘实验功能:用数码管显示4*4矩阵式键盘的按键值,当K1按下后,数码管显示数字0,当K2按下后,显示为1,以此类推,当按下K16,显示F。

(1)硬件设计电路原理图如下仿真所需元器件(2)proteus仿真通过Keil编译后,利用protues软件进行仿真。

在protues ISIS 编译环境中绘制仿真电路图,将编译好的“xxx.hex”文件加入AT89C51。

启动仿真,观察仿真结果。

操作方完成矩阵式键盘实验。

具体包括绘制仿真电路图、编写c源程序(反转法和扫描法)、进行仿真并观察仿真结果,需要保存原理图截图,保存c源程序,总结观察的仿真结果。

完成思考题。

三、实验方法与实验步骤1.按照硬件设计在protues上按照所给硬件设计绘制电路图。

2.在keil上进行编译后生成“xxx.hex”文件。

3.编译好的“xxx.hex”文件加入AT89C51。

启动仿真,观察仿真结果。

四、实验结果与分析void Scan_line()//扫描行{Delay(10);//消抖switch ( P1 ){case 0x0e: i=1;break;case 0x0d: i=2;break;case 0x0b: i=3;break;case 0x07: i=4;break;default: i=0;//未按下break;}}void Scan_list()//扫描列{Delay(10);//消抖switch ( P1 ){case 0x70: j=1;break;case 0xb0: j=2;break;case 0xd0: j=3;break;case 0xe0: j=4;break;default: j=0;//未按下break;}}void Show_Key(){if( i != 0 && j != 0 ) P0=table[ ( i - 1 ) * 4 + j - 1 ];else P0=0xff;}五、讨论和心得。

矩阵式键盘设计实训报告

矩阵式键盘设计实训报告

一、实验目的1. 掌握矩阵式键盘的工作原理及电路设计方法。

2. 熟悉单片机与矩阵键盘的接口连接及编程技巧。

3. 提高动手实践能力,培养创新意识。

二、实验设备1. 单片机实验平台2. 矩阵键盘模块3. 数字多用表4. 编译器(如Keil51)5. 连接线三、实验原理矩阵键盘是一种常用的键盘设计方式,通过行列交叉点连接按键,从而实现多个按键共用较少的I/O端口。

矩阵键盘通常采用逐行扫描的方式检测按键状态,当检测到按键按下时,根据行列线的电平状态确定按键位置。

四、实验内容1. 矩阵键盘电路设计2. 矩阵键盘编程3. 矩阵键盘测试与调试五、实验步骤1. 电路设计(1)根据矩阵键盘的规格,确定行线和列线的数量。

(2)将行线和列线分别连接到单片机的I/O端口。

(3)在行线上串联电阻,防止按键抖动。

(4)连接电源和地线。

2. 编程(1)初始化单片机的I/O端口,将行线设置为输出,列线设置为输入。

(2)编写逐行扫描程序,逐行拉低行线,读取列线状态。

(3)根据行列线状态判断按键位置,并执行相应的操作。

3. 测试与调试(1)将编写好的程序下载到单片机中。

(2)连接矩阵键盘,观察按键是否正常工作。

(3)使用数字多用表检测行列线电平,确保电路连接正确。

(4)根据测试结果,对程序进行调试,直到矩阵键盘正常工作。

六、实验结果与分析1. 电路连接正确,按键工作正常。

2. 逐行扫描程序能够正确检测按键位置。

3. 按键操作能够触发相应的程序功能。

七、实验总结1. 通过本次实训,掌握了矩阵式键盘的工作原理及电路设计方法。

2. 熟悉了单片机与矩阵键盘的接口连接及编程技巧。

3. 提高了动手实践能力,培养了创新意识。

八、心得体会1. 在实验过程中,遇到了电路连接错误和程序调试困难等问题,通过查阅资料、请教老师和同学,最终成功解决了问题。

2. 本次实训让我深刻体会到理论知识与实际操作相结合的重要性,同时也认识到团队合作的重要性。

九、改进建议1. 在电路设计过程中,可以考虑增加去抖动电路,提高按键稳定性。

单片机 矩阵键盘实验 实验报告

单片机 矩阵键盘实验 实验报告

实验五矩阵键盘实验一、实验内容1、编写程序,做到在键盘上每按一个数字键(0-F)用发光二极管将该代码显示出来。

按其它键退出。

2、加法设计计算器,实验板上有12个按键,编写程序,实现一位整数加法运算功能。

可定义“A”键为“+”键,“B”键为“=”键。

二、实验目的1、学习独立式按键的查询识别方法。

2、非编码矩阵键盘的行反转法识别方法。

三、实验说明1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。

2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。

3、识别键的闭合,通常采用行扫描法和行反转法。

行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。

行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。

然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。

这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。

由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。

行反转法识别按键的过程是:首先,将4个行线作为输出,将其全部置0,4个列线作为输入,将其全部置1,也就是向P1口写入0xF0;假如此时没有人按键,从P1口读出的值应仍为0xF0;假如此时1、4、7、0四个键中有一个键被按下,则P1.6被拉低,从P1口读出的值为0xB0;为了确定是这四个键中哪一个被按下,可将刚才从P1口读出的数的低四位置1后再写入P1口,即将0xBF写入P1口,使P1.6为低,其余均为高,若此时被按下的键是“4”,则P1.1被拉低,从P1口读出的值为0xBE;这样,当只有一个键被按下时,每一个键只有唯一的反转码,事先为12个键的反转码建一个表,通过查表就可知道是哪个键被按下了。

单片机实验五报告_单片机键盘实验

单片机实验五报告_单片机键盘实验

单片机实验五报告_单片机键盘实验一、实验目的本次单片机键盘实验的主要目的是让我们深入了解单片机与键盘的接口技术,掌握如何通过编程实现对键盘输入的检测和响应,从而提高我们在单片机应用开发中的实际操作能力。

二、实验原理在单片机系统中,键盘通常是作为输入设备使用的。

常见的键盘有独立式键盘和矩阵式键盘两种类型。

独立式键盘是每个按键单独占用一根 I/O 线,其优点是电路简单,编程容易,但缺点是占用较多的 I/O 口资源。

矩阵式键盘则是将按键排列成矩阵形式,通过行线和列线的交叉来识别按键。

这种方式可以有效地节省 I/O 口资源,但电路和编程相对复杂一些。

在本次实验中,我们采用了矩阵式键盘。

其工作原理是通过逐行扫描或者逐列扫描的方式,检测行线和列线的电平状态,从而确定按下的按键。

三、实验设备及材料1、单片机开发板一块2、计算机一台3、编程软件(如 Keil C51)4、下载工具(如 STCISP)四、实验步骤1、硬件连接将矩阵式键盘与单片机的 I/O 口进行连接,注意行线和列线的对应关系。

连接好电源和地线,确保硬件电路正常工作。

2、软件编程打开编程软件,创建一个新的工程。

编写初始化程序,包括设置 I/O 口的工作模式、中断等。

编写键盘扫描程序,通过循环扫描行线和列线的电平状态,判断是否有按键按下。

当检测到按键按下时,根据按键的编码执行相应的操作,如在数码管上显示按键值、控制 LED 灯的亮灭等。

3、编译和下载对编写好的程序进行编译,检查是否有语法错误。

如果编译成功,使用下载工具将程序下载到单片机中。

4、实验调试观察硬件电路的工作状态,看是否有异常现象。

按下不同的按键,检查程序的响应是否正确。

如果出现问题,通过调试工具(如单步调试、断点调试等)查找并解决问题。

五、实验代码以下是本次实验的部分关键代码:```cinclude <reg51h>//定义键盘的行和列define ROW_NUM 4define COL_NUM 4//定义行线和列线的端口sbit ROW1 = P1^0;sbit ROW2 = P1^1;sbit ROW3 = P1^2;sbit ROW4 = P1^3;sbit COL1 = P1^4;sbit COL2 = P1^5;sbit COL3 = P1^6;sbit COL4 = P1^7;//定义按键值的编码unsigned char code KeyCodeMapROW_NUMCOL_NUM ={{'1','2','3','A'},{'4','5','6','B'},{'7','8','9','C'},{'','0','','D'}};//键盘扫描函数void KeyScan(){unsigned char i, j, temp;unsigned char keyValue = 0;//逐行扫描for (i = 0; i < ROW_NUM; i++){//先将所有行线置高电平ROW1 = ROW2 = ROW3 = ROW4 = 1;//将当前行线置低电平switch (i){case 0: ROW1 = 0; break;case 1: ROW2 = 0; break;case 2: ROW3 = 0; break;case 3: ROW4 = 0; break;}//读取列线的电平状态temp = COL1 | COL2 | COL3 | COL4;//如果有列线为低电平,则表示有按键按下if (temp!= 0xF0){//延迟去抖动delay_ms(10);//再次读取列线的电平状态temp = COL1 | COL2 | COL3 | COL4; if (temp!= 0xF0){//确定按下的按键for (j = 0; j < COL_NUM; j++){if ((temp &(1 << j))== 0){keyValue = KeyCodeMapij;break;}}//执行相应的操作switch (keyValue){case '1'://具体操作break;case '2':break;//其他按键的操作}}}}}//主函数void main(){while (1){KeyScan();}}```六、实验结果及分析在实验过程中,我们成功地实现了对矩阵式键盘的输入检测,并能够根据不同的按键执行相应的操作。

单片机矩阵键盘实验

单片机矩阵键盘实验

单片机独立按键和矩阵键盘操作[实验要求]独立按键操作: 试操作P3.4~P3.7控制的四个独立按键中的某一个, 每按一次, 数码管上显示数字作一次加1或减1变化, 显示数字在0~9之间.矩阵键盘操作: 依次按下4*4 矩阵键盘上从第1 到第20 个键,同时在六位数码管上依次显示0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F。

[实验原理](1) 按键识别去抖动原理:我们在手动按键的时候, 由于机械抖动或是其它一些非人为的因素很有可能造成误识别, 一般手动按下一次键然后接着释放, 按键两片金属膜接触的时间大约为50ms 左右,在按下瞬间到稳定的时间为5-10ms,在松开的瞬间到稳定的时间也为5-10ms,如果我们在首次检测到键被按下后延时10ms 左右再去检测,这时如果是干扰信号将不会被检测到,如果确实是有键被按下,则可确认,以上为按键识别去抖动的原理。

(2) 独立按键识别: 判断是否按下键盘,当单片机上电时所有I/O 口为高电平,参照实验电路图, S2 键一端接地另一端接P3.4,所以当键被按下时P3.4 口直接接地,此时检测P3.4 肯定为低电平。

(3) 矩阵键盘识别: 参照实验电路图, 矩阵键盘的四行分别与P3.0-P3.3 连接,四列分别与P3.4-P3.7 连接。

如识别第1列按键, 可给P3.4送低电平,其余为高电平, 把P3口数据读回, 判断其第4位是否全为1, 如果全为1,则该列无键按下, 可继续判断下1列, 如有某位为0, 则有键按下,并可根据其位置识别按键所在行,从而确定该按键位置和键值. 其它各列按键识别类同.[实验目的](1)掌握独立按键的识别方法.(2)掌握按键去抖动的基本原理。

(3)了解矩阵键盘检测的操作方法。

(4)进一步巩固掌握数码管的显示操作方法.[硬件电路]图1 独立键盘和矩阵键盘电路图图2 矩阵键盘接口图。

矩阵按键实训报告

矩阵按键实训报告

一、实训背景随着电子技术的飞速发展,按键技术在电子设备中的应用越来越广泛。

矩阵按键因其结构紧凑、易于扩展等优点,被广泛应用于各类电子设备中。

为了提高学生对矩阵按键原理和应用的理解,本次实训选取了矩阵按键作为实训内容。

二、实训目的1. 理解矩阵按键的原理和结构;2. 掌握矩阵按键的驱动程序编写;3. 学会使用矩阵按键实现简单功能;4. 提高学生的动手能力和实践能力。

三、实训内容1. 矩阵按键原理与结构矩阵按键是一种利用行列交叉原理来检测按键状态的按键电路。

它由若干行和列组成,通过行列交叉的交叉点连接按键。

当按键被按下时,相应的行和列被连接,从而实现按键的识别。

2. 矩阵按键驱动程序编写以51单片机为例,介绍矩阵按键驱动程序的编写方法。

(1)初始化矩阵按键:设置行线为输出,列线为输入,并对行线进行上拉。

(2)扫描按键:从第一行开始,依次将行线置低电平,其他行线置高电平,然后读取列线的状态。

如果列线为低电平,则表示该行对应的按键被按下。

(3)消抖处理:为了避免按键抖动引起的误判,需要对按键状态进行消抖处理。

3. 使用矩阵按键实现简单功能以一个简单的计算器为例,介绍使用矩阵按键实现计算器功能的方法。

(1)设计计算器界面:根据计算器的功能需求,设计按键布局。

(2)编写按键扫描程序:根据按键布局,编写按键扫描程序,实现按键的识别。

(3)编写功能实现程序:根据计算器的功能需求,编写功能实现程序,如加、减、乘、除等。

四、实训过程1. 实训准备:准备51单片机开发板、矩阵按键模块、电源等实验器材。

2. 矩阵按键原理与结构学习:通过查阅资料,了解矩阵按键的原理和结构。

3. 矩阵按键驱动程序编写:根据实训要求,编写矩阵按键驱动程序。

4. 矩阵按键功能实现:使用矩阵按键实现计算器功能,包括按键扫描、消抖处理、功能实现等。

5. 实验调试:对实验程序进行调试,确保程序正常运行。

五、实训总结通过本次实训,我掌握了矩阵按键的原理和结构,学会了矩阵按键驱动程序的编写,以及使用矩阵按键实现简单功能的方法。

矩阵键盘实验报告

矩阵键盘实验报告

矩阵键盘实验报告矩阵键盘实验报告引言:矩阵键盘是一种常见的输入设备,广泛应用于电子产品中。

本实验旨在通过对矩阵键盘的研究和实验,深入了解其原理和工作机制,并探索其在实际应用中的潜力。

本文将从实验目的、实验步骤、实验结果和讨论四个方面进行论述。

实验目的:1. 理解矩阵键盘的工作原理;2. 掌握矩阵键盘的接线方法;3. 通过实验验证矩阵键盘的可靠性和稳定性。

实验步骤:1. 准备实验材料:矩阵键盘、电路板、导线等;2. 连接电路:将矩阵键盘与电路板通过导线连接;3. 编写程序:使用C语言编写程序,实现对矩阵键盘的扫描和按键检测;4. 烧录程序:将编写好的程序烧录到单片机中;5. 运行实验:按下矩阵键盘上的按键,观察电路板上的指示灯是否亮起。

实验结果:经过实验,我们成功地完成了矩阵键盘的接线和程序烧录,并进行了按键测试。

在按下不同的按键时,电路板上相应的指示灯亮起,证明了矩阵键盘的正常工作。

讨论:1. 矩阵键盘的工作原理:矩阵键盘是由行线和列线组成的,每个按键都与行线和列线相连。

当按下某个按键时,对应的行线和列线会短接,从而使得电流流过该按键,被检测到。

2. 矩阵键盘的接线方法:在本实验中,我们采用了常见的4行4列的接线方式,即将矩阵键盘的4个行线连接到单片机的4个输入引脚上,将4个列线连接到单片机的4个输出引脚上。

3. 矩阵键盘的可靠性和稳定性:通过实验,我们发现矩阵键盘具有较高的可靠性和稳定性。

即使在长时间使用和频繁按键的情况下,矩阵键盘仍能正常工作,并且按键的检测准确率较高。

4. 矩阵键盘的应用潜力:矩阵键盘广泛应用于各种电子产品中,如计算机、手机、电视遥控器等。

它具有结构简单、成本低廉、易于集成等优点,因此在电子产品设计中具有广阔的应用前景。

结论:通过本次实验,我们对矩阵键盘的工作原理和接线方法有了更深入的了解,并验证了其可靠性和稳定性。

矩阵键盘作为一种常见的输入设备,在电子产品设计中具有重要的地位和潜力。

第7章实验-独立按键与矩阵按键实验

第7章实验-独立按键与矩阵按键实验

第七章实验
实验一:使用矩阵键盘配合数码管完成如下要求,当按下矩阵键盘上任意一个按键时,要求能够在数码管上显示其对应的键值。

(例如:按下第一个按键,数码管上显示数字1;按下第二个按键,数码管上显示数字2;…… 以此类推)
实验二:使用矩阵键盘配合数码管写一个简易数字倒计时器(精确到十分秒位),倒计时器具有“设置时间”、“启动”、“停止”、“清零”的功能。

具体要求如下:
(1)要求当上电时,倒计时器显示“00.0”字样;
(2)当第一次按下“设置时间”按键时,倒计时器可以通过连续按三次0~9这十个按键开始设定十秒位数字、个秒位数字以及十分秒位的数字(注意:当进行时间设置时,如果按到0~9与功能按键之外的任意一个无关按键时,数码管闪烁“-Error-”字样三次以报警提示),当第二次按下“设置时间”按键时,倒计时器锁定之前所设置的数据;(3)按下“启动”按键时,倒计时器开始倒计时(注意:此时如果按到除了功能键之外的任何按键时,倒计时器均在数码管闪烁“-Error-”字样三次以报警提示,同时返回之前倒计时界面继续倒计时)。

当计时结束,即计时器计到0时,屏幕显示“00.0”字样并闪烁,同时蜂鸣器发出报警;
(4)按下“停止”按键时,停止计时;
(5)按下“清零”按键时,倒计时器清零为“00.0”。

实验5-独立键盘和矩阵键盘

实验5-独立键盘和矩阵键盘

实验5 独立键盘和矩阵键盘一、实验目的1、学会用C语言进行独立按键应用程序的设计。

2、学会用C语言进行矩阵按键应用程序的设计。

二、实验内容1、独立按键:对四个独立按键编写程序:当按k1时,8个LED同时100ms闪烁;当按k2时,8个LED从左到右流水灯显示;当按k3时,8个LED从右到左流水灯显示;当按k4时,8各LED同时从两侧向中间逐步点亮,之后再从中间向两侧逐渐熄灭;2、矩阵按键:采用键盘扫描方式,顺序按下矩阵键盘后,在一个数码管上顺序显示0~F,采用静态显示即可。

3、提高部分(独立按键、定时器、数码管动态扫描):编写程序,实现下面的功能。

用数码管的两位显示一个十进制数,变化范围为00~59,开始时显示00,每按一次k1,数值加1;每按一次k2,数值减1;每按一次k3,数值归零;按下k4,利用定时器功能使数值开始自动每秒加1;再按一次k4,数值停止自动加1,保持显示原数。

三、实验步骤1、硬件连接(1)使用MicroUSB数据线,将实验开发板与微型计算机连接起来;(2)在实验开发板上,用数据线将相应接口连接起来;2、程序烧入软件的使用使用普中ISP软件将HEX文件下载至单片机芯片内。

查看结果是否正确。

四、实验结果——源代码1. #include "reg52.h"typedef unsigned char u8;typedef unsigned int u16;#define LED P2sbit key1=P3^1;sbit key2=P3^0;sbit key3=P3^2;sbit key4=P3^3;const char tab[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f}; u8 code begMid[]={0x7e, 0xbd,0xdb,0xe7, 0xdb, 0xbd, 0x7e}; void Delay(u16 i){ while(i--);}void KeyDown(){u8 i;if(key2==0){Delay(1000);if(key2==0){for(i=0;i<8;i++){LED=tab[i];Delay(50000);}while(!key2);}LED=0xff;}else if(key1==0){Delay(1000);if(key1==0)for(i=0;i<3;i++){LED=0x00;Delay(10000);LED=0xff;Delay(10000);}}}}void Int0Init(){IT0=1;EX0=1;EA=1;}void Int1Init(){IT1=1;EX1=1;EA=1;} void main(){Int0Init();Int1Init();while(1){KeyDown();}}void Int0() interrupt 0{u8 i;if(key3==0){Delay(1000);if(key3==0)for(i=7;i>=0;i--){LED=tab[i];Delay(50000);}}}}void Int1() interrupt 2{u8 i;if(key4==0){Delay(1000);if(key4==0){for(i=0;i<=6;i++){LED=begMid[i];Delay(50000);}}}}2.#include "reg52.h"typedef unsigned int u16;typedef unsigned char u8;#define GPIO_DIG P0#define GPIO_KEY P1sbit LSA=P2^2;sbit LSB=P2^3;sbit LSC=P2^4;u8 KeyValue;u8 code smgduan[17]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};//??0~F?? void delay(u16 i){while(i--);}void KeyDown(void){char a=0;GPIO_KEY=0x0f;if(GPIO_KEY!=0x0f){delay(1000);if(GPIO_KEY!=0x0f){GPIO_KEY=0X0F;switch(GPIO_KEY){case(0X07): KeyValue=0;break;case(0X0b): KeyValue=1;break;case(0X0d): KeyValue=2;break;case(0X0e): KeyValue=3;break;}GPIO_KEY=0XF0;switch(GPIO_KEY){case(0X70): KeyValue=KeyValue;break;case(0Xb0): KeyValue=KeyValue+4;break;case(0Xd0): KeyValue=KeyValue+8;break;case(0Xe0): KeyValue=KeyValue+12;break;}while((a<50)&&(GPIO_KEY!=0xf0)){delay(1000);a++;}}}}void main(){LSA=0;LSB=0;LSC=0;while(1){KeyDown();GPIO_DIG=smgduan[KeyValue];}}3.#include <reg52.h>typedef unsigned int u16;typedef unsigned char u8;#define KEYPORT P3sbit LSA=P2^2;sbit LSB=P2^3;sbit LSC=P2^4;sbit key1=P3^1;sbit key2=P3^0;sbit key3=P3^2;sbit key4=P3^3;u16 t;u8 sec;u8 DisplayData[2];u8 code smgduan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; void Time1Init(){TMOD |= 0x10;TH1=0Xd8;TL1=0Xf0;EA=1;ET1=1;}void delay(u16 i){while(i--); }void DigDisplay(){u8 i;for(i=0;i<2;i++){switch(i){case 0:LSA=0;LSB=0;LSC=0;break;case 1:LSA=1;LSB=0;LSC=0;break;}P0=DisplayData[i];delay(100);P0=0x00;}}void datapros(){DisplayData[0]=smgduan[sec%10];DisplayData[1]=smgduan[sec/10];}void main(){Time1Init();while(1){if(key4==0){delay(1000);if(key4==0){TR1=!TR1;while(key4==0);}}if(key3==0){delay(1000);if(key3==0){sec=0;while(key3==0);}}if(key2==0){delay(1000);if(key2==0){sec--;while(key2==0);}}if(key1==0){delay(1000);if(key1==0){sec++;while(key1==0);}}}}void Time1() interrupt 2{TH1=0Xd8;TL1=0Xf0;t++;if(t==100){t=0;sec++;if(sec>=60){sec=0;}}datapros();DigDisplay();}五、实验体会——结果分析1、独立按键:位定义四个按键key1、key2、key3、key4,宏定义LED为P2口,tab数组保存流水灯D0-D7依次点亮的数值,begMid数组保存流水灯同时从两侧向中间逐步点亮,之后再从中间向两侧逐渐熄灭的赋值方式。

矩阵式键盘实验报告范文

矩阵式键盘实验报告范文

矩阵式键盘实验报告学生:何绍金学号:8专业班级:自动化1202指导老师:杨东勇2014年12月一、实验目的1.学习矩列式键盘工作原理;2.学习矩列式接口的电路设计和程序设计。

二、实验设备统一电子开发平台。

三、实验要求要求实现:在矩阵式键盘中的某个键被按下时,8 位LED 动态显示器上最低位显示该键对应的字符。

注意,在进行该项实验之前,请先进行实验三“定时器实验” 。

四、实验原理1.工作原理:矩阵式由行线和列线组成,按键位于行、列的交叉点上。

如图所示,一个4*4 的行、列结构可以构成一个由16 个按键的键盘。

很明显,在按键数量较多的场合,矩阵式键盘与独立式键盘相比,要节省很多的I/0 口。

(1)矩阵式键盘工作原理按键设置在行、列交节点上,行、列分别连接到按键开关的两端。

行线通过下拉电阻接到GND 上。

平时无按键动作时,行线处于低电平状态,而当有按键按下时,行线电平状态将由与此行线相连的列线电平决定。

列线电平如果为低,行线电平为高,列线电平如果为高,则行线电平则为低。

这一点是识别矩阵式键盘是否被按下的关键所在。

因此,各按键彼此将相互发生影响,所以必须将行、列线信号配合起来并作适当的处理,才能确定闭合键的位置。

(2)按键识别方法下面以3 号键被按下为例,来说明此键是如何被识别出来的。

前已述及,键被按下时,与此键相连的行线电平将由与此键相连的列线电平决定,而行线电平在无键按下时处于高电平状态。

如果让所有列线处于高电平那么键按下与否不会引起行线电平的状态变化,始终是高电平,所以,让所有列线处于高电平是没法识别出按键的。

现在反过来,让所有列线处于低电平,很明显,按下的键所在行电平将也被置为低电平,根据此变化,便能判定该行一定有键被按下。

但我们还不能确定是这一行的哪个键被按下。

所以,为了进一步判定到底是哪—列的键被按下,可在某一时刻只让一条列线处于低电平,而其余所有列线处于高电平。

当第1 列为低电平,其余各列为高电平时,因为是键 3 被按下,所以第 1 行仍处于高电平状态;当第 2 列为低电平,其余各列为高电平时,同样我们会发现第1 行仍处于高电平状态,直到让第 4 列为低电平,其余各列为高电平时,因为是3 号键被按下,所以第 1 行的高电平转换到第 4 列所处的低电平,据此,我们确信第1 行第 4 列交叉点处的按键即3 号键被按下。

单片机 矩阵键盘实验 实验报告

单片机 矩阵键盘实验 实验报告

单片机矩阵键盘实验实验报告
实验名称:单片机矩阵键盘实验
实验目的:掌握单片机矩阵键盘的原理和应用,能够使用单片机按键输入
实验内容:利用Keil C51软件,采用AT89C51单片机实现一个4x4的矩阵键盘,当按下任何一个按键时,将相应的键值传输到液晶显示屏上进行显示。

实验步骤:
1、搭建实验电路,将矩阵键盘与单片机相连,连接好电源正负极,然后将电路焊接成一个完整的矩阵键盘输入电路。

2、打开Keil C51软件,新建一个单片机应用工程,然后编写代码。

3、通过代码实现对矩阵键盘输入的扫描功能,当按下任何一个按键时,将相应的键值传输到液晶显示屏上进行显示。

4、编译代码,生成HEX文件,下载HEX文件到单片机中,将单片机与电源相连,然后就可以测试了。

5、测试完成后,根据测试结果修改代码,重新编译生成HEX 文件,然后下载到单片机中进行验证。

实验结果:
经过测试,实验结果良好,能够准确地输入按键的值,显示在液晶屏上。

实验感想:
通过这次实验,我深深地认识到了矩阵键盘技术的重要性以及应用价值,同时也更加深入了解单片机的工作原理和应用技术,这对我的学习和工作都有很好的帮助。

矩阵键盘密码锁实训报告

矩阵键盘密码锁实训报告

一、实训背景随着科技的不断发展,电子产品的安全性越来越受到重视。

矩阵键盘密码锁作为一种常见的电子安全设备,具有操作简单、可靠性高、成本低等优点,在众多领域得到了广泛应用。

为了提高学生对电子技术及单片机应用的理解和实践能力,我们开展了矩阵键盘密码锁的实训。

二、实训目的1. 熟悉矩阵键盘的工作原理及按键扫描方法;2. 掌握单片机在密码锁系统中的应用;3. 培养学生动手实践能力和团队合作精神;4. 提高学生对电子产品的安全性认识。

三、实训内容1. 硬件设计(1)主控芯片:选用STC89C52单片机作为核心控制单元;(2)矩阵键盘:采用4x4矩阵键盘,共16个按键;(3)显示屏:选用1602LCD液晶显示屏,用于显示密码及提示信息;(4)其他元件:按键、蜂鸣器、电阻、电容等。

2. 软件设计(1)按键扫描:采用逐行扫描法,对矩阵键盘进行扫描,检测按键状态;(2)密码设置与验证:设置四位密码,用户输入密码后,系统进行验证;(3)开锁与上锁:当密码正确时,系统解锁;当密码错误时,蜂鸣器报警;(4)定时器:设置一个定时器,用于控制密码输入错误次数,若连续输入错误三次,则锁定系统。

3. 系统实现(1)搭建电路:按照设计图纸,将各元件焊接在电路板上;(2)编写程序:使用C语言编写程序,实现矩阵键盘扫描、密码设置与验证、开锁与上锁等功能;(3)下载程序:将编写好的程序下载到单片机中;(4)调试与测试:对系统进行调试,确保各功能正常。

四、实训过程1. 电路搭建:按照设计图纸,将各元件焊接在电路板上,注意焊接质量,确保电路的可靠性;2. 程序编写:使用C语言编写程序,实现矩阵键盘扫描、密码设置与验证、开锁与上锁等功能,并进行调试;3. 系统调试:将编写好的程序下载到单片机中,对系统进行调试,确保各功能正常;4. 功能测试:测试密码设置、密码验证、开锁与上锁等功能,验证系统性能。

五、实训结果与分析1. 矩阵键盘扫描:通过逐行扫描法,成功实现了对矩阵键盘的扫描,并能准确检测按键状态;2. 密码设置与验证:成功实现了四位密码的设置与验证,当密码正确时,系统解锁;当密码错误时,蜂鸣器报警;3. 开锁与上锁:成功实现了开锁与上锁功能,当密码正确时,系统解锁;当密码错误时,蜂鸣器报警,并锁定系统;4. 定时器:成功设置了定时器,当连续输入错误三次密码时,系统锁定,直至系统复位。

单片机12 矩阵键盘控制数码管

单片机12  矩阵键盘控制数码管
方法
独立按键控制单个数码管的显示
矩阵式键盘由P3口控制,P3.0、P3.1、P3.2、P3.3 引脚分别控制第一、二、三、四行(从上到下), P3.4、P3.5、P3.6、P3.7引脚分别控制第一、二、 三、四列(从左到右)。动态数码管由P0口和P2 口控制,P0口控制数码管的数值,P2口控制数码 管的位码。
(2)若P1.0至P1.3有引脚产生了电平变化,则说明被拉低 电平那一列有按钮被按下,用变量(这里假设是变量a) 将IO口的二进制信息存储起来(a=P0;),其中高四位为 行信息,所以一定为0,低四位为有效信息(反应出那一 列有按钮按下),一共有以下四种情况:
P1.0 0 0 0 0 1 1 1 0 第一列有按钮按下0x0e; P1.1 0 0 0 0 1 1 0 1第二列有按钮按下0x0d; P1.2 0 0 0 0 1 0 1 1第三列有按钮按下0x0b; P1.3 0 0 0 0 0 1 1 1第四列有按钮按下0x07;
程序编写及讲解
程序较长(略),参照课本程序讲解
矩阵式键盘的工作原理
当单片机高电平的引脚与低电平的引脚相连接,高电平的 引脚将被低电平的引脚“拉”至低电平。根据这个规律, 我们常用“行扫描法”对矩阵式键盘进行识别,过程如下:
(1)引脚P1.4至P1.7输出底电平,引脚 P1.0至P1.3输出高 电平(P0=0x0f;),观察引脚 P1.0至P1.3引脚有没有电 平变化,若无,则无按键被按下。
的位置,将按钮行与列的信息存于同一变量中 (c=a|b),此时c变量中存储的就是被按下按键的键 码,从键码就能判断按钮的位置,
(31.0至P1.3输出低电 平(P0=0xf0;),这时,有按键按下的那一行将 会把该行的引脚电平拉低,将此时的IO口的二进 制信息存于另一变量中(假设是变量b).

单片机与矩阵键盘接口电路设计实验报告

单片机与矩阵键盘接口电路设计实验报告

单片机与矩阵键盘接口电路设计实验报告姓名:林蔼龄学号:1060601007班级:10级物理系电子信息工程A班单片机与矩阵键盘接口电路设计实验报告一:实验内容使用单片机的P1口与矩阵式键盘连接时,可以将P1口低4位的4条端口线定义为行线,P1口高4位的4条端口线定义为列线,形成4*4键盘,可以配置16个按键,将单片机P2口与七段数码管连接,当按下矩阵键盘任意键时,数码管显示该键所在的键号。

二:电路图三:程序流程图四:程序org 0000hljmp mainmain:mov p1,#0fh;列线输出0,行线设为输入mov a,p1;读P1口anl a,#0fh;屏蔽高4位,留下行线状态cjne a,#0fh,look;有按键按下,转lookret;无按键按下,返回主程序look:lcall dlay10;延时10msmov a,p1;读P1口anl a,#0fh;屏蔽高4位,留下行线状态cjne a,#0fh,rank ;确认键已按稳,转RANK ljmp main;是抖动,未按稳,重新扫描rank:mov r2,#00h ;窜键标志寄存器请0mov r3,#04h ;查列次数mov r4,#0f7h ;列扫描字初值mov r5,#0ffh ;列号处值rloop1:inc r5 ;开始列扫描,列号加1mov a,r4 ;列扫描字送Arl a ;列扫描字左移一位mov r4,a ;暂存列扫描字mov p1,a ;送出列扫描字mov a,p1 ;读P1口anl a,#0fh ;屏蔽高4位,留下行线状态cjne a,#0fh,next1 ;当前列有键按下,转next1rloop2:djnz r3,rloop1 ;列扫描未完,继续sjmp line ;列扫描完,转行扫描next1:inc r2 ;窜键标志加1mov 20h,r5 ;暂存有按键的列号sjmp rloop2 ;继续列扫描line:cjne r2,#01h,main ;若已窜键,转main,重新扫描mov r2,#00h ;开始查行,窜键标志寄存器清0mov r3,#04h ;行扫描次数mov r6,#0ffh ;行号初值mov p1,#0fh ;列线送0,准备读行线mov a,p1 ;读P1口,获取行线状态lloop1:inc r6 ;行号加1rrc a ;从第0行开始,判断有无按键jnc next2 ;本行有按键,转next2lloop2:djnz r3,lloop1 ;无按键,继续查下一行sjmp next3 ;查完,转next3next2:inc r2 ;窜键标志加1mov 21h,r6 ;暂存有按键的行号sjmp lloop2 ;继续行扫描next3:cjne r2,#01h,main ;若窜键,转main,重新扫描gainky:mov a,21h ;无窜键,取出行号mov b,#04h ;键盘列数mul ab ;行号*键盘列数add a,20h ;乘积与列号相加,得到键号mov b,#03h;为执行键处理程序做准备mul ab ;键号*3mov dptr,#ptab ;键处理程序表首地址送DPTRjmp @a+dptr ;散转至与键号对应的键处理程序ptab:ljmp prog0;键处理程序表ljmp prog1ljmp prog2ljmp prog3ljmp prog4ljmp prog5ljmp prog6ljmp prog7ljmp prog8ljmp prog9ljmp prog10ljmp prog11ljmp prog12ljmp prog13ljmp prog14ljmp prog15prog0:mov p2,#3fhretprog1:mov p2,#06hretprog2:mov p2,#5bhretprog3:mov p2,#4fhretprog4:mov p2,#66hretprog5:mov p2,#6dhretprog6:mov p2,#7dhretprog7:mov p2,#07hretprog8:mov p2,#7fhretprog9:mov p2,#6fhretprog10:mov p2,#77hretprog11:mov p2,#7chretprog12:mov p2,#39hretprog13:mov p2,#5ehretprog14:mov p2,#79hretprog15:mov p2,#71hretdlay10:mov r0,#100 ;约10ms延时dlay1:mov r1,#50dlay2:djnz r1,dlay2djnz r0,dlay1retend五:实验结果当矩阵键盘的3号键被按下时,P2口的七段数码管显示的数据为3.如下图1所以:图1当矩阵键盘的A号键被按下时,P2口的七段数码管显示的数据为A.如下图2所以:图2当矩阵键盘的D号键被按下时,P2口的七段数码管显示的数据为d.如下图3所以:图3当矩阵键盘的F号键被按下时,P2口的七段数码管显示的数据为F.如下图4所以:图4。

单片机 矩阵键盘实验 实验报告

单片机 矩阵键盘实验 实验报告

实验五矩阵键盘实验一、实验内容1、编写程序,做到在键盘上每按一个数字键(0-F)用发光二极管将该代码显示出来。

按其它键退出。

2、加法设计计算器,实验板上有12个按键,编写程序,实现一位整数加法运算功能。

可定义“A”键为“+”键,“B”键为“=”键。

二、实验目的1、学习独立式按键的查询识别方法。

2、非编码矩阵键盘的行反转法识别方法。

三、实验说明1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。

2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。

3、识别键的闭合,通常采用行扫描法和行反转法。

行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。

行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。

然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。

这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。

由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。

行反转法识别按键的过程是:首先,将4个行线作为输出,将其全部置0,4个列线作为输入,将其全部置1,也就是向P1口写入0xF0;假如此时没有人按键,从P1口读出的值应仍为0xF0;假如此时1、4、7、0四个键中有一个键被按下,则P1.6被拉低,从P1口读出的值为0xB0;为了确定是这四个键中哪一个被按下,可将刚才从P1口读出的数的低四位置1后再写入P1口,即将0xBF写入P1口,使P1.6为低,其余均为高,若此时被按下的键是“4”,则P1.1被拉低,从P1口读出的值为0xBE;这样,当只有一个键被按下时,每一个键只有唯一的反转码,事先为12个键的反转码建一个表,通过查表就可知道是哪个键被按下了。

单片机矩阵按键实训报告

单片机矩阵按键实训报告

一、实训目的1. 理解矩阵键盘的工作原理和电路设计。

2. 掌握矩阵键盘的编程方法,实现按键的检测和响应。

3. 培养实际动手能力和团队协作能力。

二、实训内容1. 矩阵键盘电路设计2. 矩阵键盘编程3. 矩阵键盘应用实例三、实训环境1. 单片机开发板:51单片机开发板2. 矩阵键盘:4x4矩阵键盘3. 编程软件:Keil uVision54. 仿真软件:Proteus四、实训过程1. 矩阵键盘电路设计矩阵键盘由行线和列线组成,通过行列交叉连接的按键阵列实现按键功能。

在4x4矩阵键盘设计中,共有4条行线和4条列线,共16个按键。

电路设计如下:(1)行线连接:将单片机的P1.0至P1.3端口作为行线输出,用于控制行线电平。

(2)列线连接:将单片机的P2.0至P2.3端口作为列线输入,用于检测按键状态。

(3)按键连接:将16个按键分别连接到行线和列线交叉处。

2. 矩阵键盘编程(1)初始化:设置P1端口为输出模式,P2端口为输入模式。

(2)按键检测:通过逐行扫描的方式检测按键状态。

首先将P1端口的所有行线设置为低电平,然后逐行检查P2端口列线的状态,如果某列线为低电平,则表示该行对应列的按键被按下。

(3)消抖处理:为了避免按键抖动引起的误读,需要进行消抖处理。

通常采用软件消抖方法,即在检测到按键按下后,延时一段时间(如10ms)再次检测按键状态,如果按键仍然被按下,则确认按键操作有效。

(4)按键处理:根据检测到的按键,执行相应的操作。

例如,当按键按下时,在LCD1602显示屏上显示对应的按键值。

3. 矩阵键盘应用实例以LCD1602显示屏为例,实现按键与显示内容的关联。

(1)LCD1602显示屏初始化:设置LCD1602的显示模式、光标位置等。

(2)按键扫描:按照上述方法检测按键状态。

(3)按键处理:根据按键值,在LCD1602显示屏上显示对应的字符。

五、实训结果1. 成功设计并实现了4x4矩阵键盘电路。

2. 编写了矩阵键盘的检测和响应程序,实现了按键的检测和消抖处理。

独立键盘和矩阵键盘-PPT

独立键盘和矩阵键盘-PPT

图8.2 矩阵式键盘接口
特点:电路连接复杂,但提高了 I/O口利用率,软件编程较复 杂。适用于需使用大量按键 得场合。
U1
P10 1 P11 2 P12 3 P13 4 P14 5 P15 6 P16 7 P17 8
P10 P11 P12 P13 P14 P15 P16 P17
P00 P01 P02 P03 P04 P05 P06 P07
设第2行第 4列键按下
89C51 P1.0 P1.1 P1.2 P1.3 P1.4 11 11 11 1011 P1.5 P1.6 P1.7
+5V
101 110 110 01
行线输出 列线输入
0111 1011 1101 1110
1111 1110 1111 1111
(2)线反转法。 线反转法也就是识别闭合键得一种常用方法, 该 法比行扫描速度快, 但在硬件上要求行线与列线外 接上拉电阻。 先将行线作为输出线, 列线作为输入线, 行线输出 全“0”信号, 读入列线得值, 那么在闭合键所在得列 线上得值必为0;然后从列线输出全“0”信号,再读取 行线得输入值,闭合键所在得行线值必为 0。这样, 当一个键被按下时, 必定可读到一对唯一得行列值。 再由这一对行列值可以求出闭合键所在得位置。
独立键盘和矩阵键盘
通常,键盘有编码与非编码两种。编码键盘通过 硬件电路产生被按按键得键码与一个选通脉冲。选 通脉冲可作为CPU得中断请求信号。这种键盘使用 方便,所需程序简单,但硬件电路复杂,常不被单片机采 用。
非编码键盘按组成结构又可分为独立式键盘与 矩阵式键盘。独立式键盘得工作过程与矩阵式键盘 类似,无论就是硬件结构还就是软件设计都比较简单,。
…… else if (表达式n-1) (语句n-1;) else {语句n}

矩阵键盘实训报告心得(3篇)

矩阵键盘实训报告心得(3篇)

第1篇一、引言随着科技的不断发展,计算机键盘已经成为我们日常生活中不可或缺的输入设备。

矩阵键盘作为一种新型的键盘技术,因其高可靠性、低功耗、高集成度等优点,被广泛应用于计算机、手机、POS机等领域。

为了更好地掌握矩阵键盘的原理和应用,我参加了本次矩阵键盘实训课程。

以下是我对本次实训的心得体会。

二、实训内容本次实训主要包括以下内容:1. 矩阵键盘原理学习:通过学习矩阵键盘的原理,了解其组成结构、工作方式以及按键扫描方法。

2. 矩阵键盘电路设计:根据实训要求,设计一个矩阵键盘电路,包括按键电路、驱动电路、扫描电路等。

3. 矩阵键盘软件编程:编写程序实现矩阵键盘的功能,包括按键扫描、按键消抖、按键识别等。

4. 矩阵键盘实物制作与调试:将设计好的电路板焊接成实物,并进行调试,确保矩阵键盘能够正常工作。

三、实训心得1. 矩阵键盘原理的认识通过本次实训,我对矩阵键盘的原理有了更深入的了解。

矩阵键盘由行列线构成,行列交叉处放置按键。

当按键被按下时,会形成一条通路,使得行列线之间存在一定的关系。

通过扫描行列线,可以判断出哪个按键被按下,从而实现键盘的功能。

2. 电路设计能力的提升在实训过程中,我学会了如何设计矩阵键盘电路。

首先,根据实训要求,确定了电路的组成和功能。

然后,根据电路原理图,选择合适的元器件,并绘制出电路原理图。

最后,根据电路原理图,焊接电路板,并对电路进行调试。

通过这个过程,我的电路设计能力得到了很大的提升。

3. 软件编程能力的提高在实训过程中,我学会了编写矩阵键盘的软件程序。

首先,根据实训要求,确定了程序的功能和实现方式。

然后,使用C语言编写程序,实现按键扫描、按键消抖、按键识别等功能。

最后,将程序烧写到单片机中,并进行调试。

通过这个过程,我的软件编程能力得到了很大的提高。

4. 实物制作与调试的体会在实训过程中,我将设计好的电路板焊接成实物,并对实物进行调试。

在焊接过程中,我学会了如何正确焊接电路板,以及如何避免常见的焊接问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建交通职业技术学院(教案)首页课程: 单片机技术及应用 10~11 学年 第_2_学期 第 12 周 5 月 12 日教 学 内 容 备 注实训环境和器材1、单片机实训操作台1张;2、单片机实验板1套(含下载器);3、计算机1台;4、电源、通讯电缆、下载线等配件。

5、软件环境:Proteus Professional 7.1仿真软件、Keil 7.50A 编程软件一、独立按键扫描查询方式方式按键扫描:一般情况下,一个按键按下的时候,总是在按下的时刻存在着一定的干扰信号,按下之后就基本上进入了稳定的状态。

具体的一个按键从按下到释放的全过程的信号图如图所示。

从图中可以看出,我们在程序设计时,从按键被识别按下之后,延时 5ms 以 上 ,从而避开了干扰信号区域,我们再来检测一次,看按键是否真得已经按下, 若真得已经按下,这时肯定输出为低电平,若这时检测到的是高电平,证明刚才 是由于干扰信号引起的误触发,CPU 就认为是误触发信号而舍弃这次的按键识别 过程。

从而提高了系统的可靠性。

电路图:P32P34软件程序:该程序实现独立按键去控制 LED 灯 的亮灭,并讲叙了对按键的处理方法。

独立按键相应的IO 口平时为高电平,一旦按键按下,单片机便检测到低电平。

课程:单片机技术及应用 10~11学年第_2_学期第 12 周 5 月 12 日教学内容备注#include<reg52.h>#define uchar unsigned char#define uint unsigned intsbit KEY1 = P3^2;sbit KEY2 = P3^3;sbit KEY3 = P3^4;sbit LED1 = P0^0;sbit LED2 = P0^1;sbit LED3 = P0^2;/********************************************************************* 名称 : Delay()* 功能 : 延时,延时时间为 10ms * del* 输入 : del* 输出 : 无***********************************************************************/void Delay(uint del){uint i,j;for(i=0; i<del; i++)for(j=0; j<1827; j++);}/********************************************************************* 名称 : Delay()* 功能 : 实现按键功能,当按键按下时,相应的LED亮灭交替* 输入 : 无* 输出 : 无***********************************************************************/void KEY(){课程:单片机技术及应用 10~11学年第_2_学期第 12 周 5 月 12 日教学内容备注if(KEY1==0 || KEY2==0 || KEY3==0){Delay(2); //20毫秒软件防抖if(KEY1==0 || KEY2==0 || KEY3==0){if(KEY1 == 0){LED1 = ~ LED1; //LED显示取反}else if(KEY2 == 0){LED2 = ~ LED2;}else{LED3 = ~ LED3;}}Delay(50); //延时0.5秒再进行下次按键的检测}}/********************************************************************* 名称 : Main()* 功能 : 实现按键控制LED的亮灭* 输入 : 无* 输出 : 无***********************************************************************/void Main(void){while(1)课程:单片机技术及应用 10~11学年第_2_学期第 12 周 5 月 12 日教学内容备注{KEY();}}作业:试编程序,只有一个键有效,另外两个键无效。

二、矩阵键盘扫描独立按键具有编程简单但占用 I/O 口资源的特点,不适合在按键较多的场合应用。

在实际应用中经常要用到输入数字、字母等功能,如电子密码锁、电话机键盘等一般都至少有 12 到 16 个按键,在这种情况下如果用独立按键的话显然太浪费 I/O 口资源,为此我们就引入了矩阵键盘的应用。

矩阵键盘简介:矩阵键盘又称行列键盘,它是用四条 I/O 线作为行线,四条 I/O 线作为列线组成的键盘。

这种行列式键在行线和列线的每个交叉点上设置一个按键。

这样键盘上按键的个数就为 4*4 个。

盘结构能有效地提高单片机系统中I/O 口的利用率。

矩阵键盘的工作原理:最常见的键盘布局如图所示。

一般由 16 个按键组成,在单片机中正好可以用一个 P 口实现 16 个按键功能,这也是在单片机系统中最常用的形式,4*4 矩阵键盘的内部电路如图 2 所示。

当无按键闭合时,P10~P13 与 P14~P17 之间开路。

当有键闭合时,与闭合键相连的两条 I/O 口线之间短路。

判断有无按键按下的方法是:第一步,置列线 P14~P17 为输入状课程:单片机技术及应用 10~11学年第_2_学期第 12 周 5 月 12 日教学内容备注态,从行线 P10~P13 输出低电平,读入列线数据,若某一列线为低电平,则该列线上有键闭合。

第二步,行线轮流输出低电平,从列线 P14~P17 读入数据,若有某一列为低电平,则对应行线上有键按下。

综合一二两步的结果,可确定按键编号。

但是键闭合一次只能进行一次键功能操作,因此须等到按键释放后,再进行键功能操作,否则按一次键,有可能会连续多次进行同样的键操作。

软件程序:通过按下相应键后在一位数码管上显示出键值。

0到16个键分别对应显示0到 F。

根据电路原理图,键盘扫描方法是:行线 P10~P13为输出线,列线 P14~P17为输入线。

一开始单片机将行线(P10~P13)全部输出低电平,此时读入列线数据,若列线全为高电平则没有键按下,当列线有出现低电平时调用延时程序以此来去除按键抖动。

延时完成后再判断是否有低电平,如果此时读入列线数据还是有低电平,则说明确实有键按下。

最后一步确定键值。

现在我们以第二行的S5键为例,若按下 S5,当判断确实有键按下之后,行线轮流输出低电平,根据读入列线的数据可以确定键值。

首先,单片机将 P10输出为低电平,其它 P11~P13输出高电平,此时读取列线的数据全为高电平,说明没有在第一行有键按下;其次,单片机将 P11发现列线读到的数据有低输出低电平,其它 P10、P12、P13 仍为高电平,此时再来读取列线数据,数值为1011电平,,如果我们的键盘布局已经确定,那么0x0B 就代表 S5的值了。

转到 S5(0x0B)键功能处理子程序就可以达到目的。

程序清单:#include<reg51.h>#include<intrins.h>#define uint unsigned int#define uchar unsigned charUchar code table[10] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};/********************************************************************* 名称 : Delay_1ms()* 功能 : 延时子程序,延时时间为 1ms * x* 输入 : x (延时一毫秒的个数)* 输出 : 无***********************************************************************/课程:单片机技术及应用 10~11学年第_2_学期第 12 周 5 月 12 日教学内容备注void Delay_1ms(uint i){uchar x,j;for(j=0;j<i;j++)for(x=0;x<=148;x++);}/********************************************************************* 名称 : Keyscan()* 功能 : 实现按键的读取。

下面这个子程序是按处理矩阵键盘的基本方法处理的。

* 输入 : 无* 输出 : 按键值提示:1、P1 & temp全为0时,表示有键按下,即temp低4位中的“1”移位。

按下的键使P1低4位中相应位置,也使temp中相应“1”位相“与”后变为0,从而使P1 & temp全为0.2、有键按下时,j=0表示0-3(0+0、0+1、0+2、0+3),j=1表示4-7(4+0、4+1、4+2、4+3),j=2表示8-11(8+0、8+1、8+2、8+3),j=3表示12-15(12+0、12+1、12+2、12+3),***********************************************************************/uchar Keyscan(void){uchar i,j, temp, Buffer[4] = {0xef, 0xdf, 0xbf, 0x7f};for(j=0; j<4; j++){P1 = Buffer[j];/*以下三个_nop_();作用为让 P1 口的状态稳定*/_nop_();_nop_();_nop_();temp = 0x01;课程:单片机技术及应用 10~11学年第_2_学期第 12 周 5 月 12 日教学内容备注for(i=0; i<4; i++){if(!(P1 & temp)){return (i+j*4); //返回取得的按键值}temp <<= 1;}}}/********************************************************************* 名称 : Main()* 功能 : 主函数* 输入 : 无* 输出 : 无***********************************************************************/ void Main(void){uchar Key_Value; //读出的键值while(1){P1 = 0xf0;if(P1 != 0xf0){Delay_1ms(15); //按键消抖if(P1 != 0xf0){Key_Value = Keyscan();}}P0 = table[Key_Value / 10]; //显示高位键值课程:单片机技术及应用 10~11学年第_2_学期第 12 周 5 月 12 日教学内容备注P2 = 0x00;Delay_1ms(5);P0 = table[Key_Value % 10]; //显示低位键值P2 = 0x04;Delay_1ms(5);}}作业:试编写以下程序。

相关文档
最新文档