人带猫,鸡,米过河问题

合集下载

数学建模试题(带答案)四

数学建模试题(带答案)四

数学建模部分课后习题解答1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解:模型假设(1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。

这个假设相当于给出了椅子能放稳的必要条件(3) 椅子在任何位置至少有三只脚同时着地。

为了保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的。

因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。

模型建立在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。

首先,引入合适的变量来表示椅子位置的挪动。

生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。

然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。

于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。

注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。

把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。

于是,旋转角度θ这一变量就表示了椅子的位置。

为此,在平面上建立直角坐标系来解决问题。

设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。

椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。

其次,把椅脚是否着地用数学形式表示出来。

当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。

由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。

由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。

趣味数学知识竞赛

趣味数学知识竞赛

2*2*3*5=60 60-1=59(个)
有一个人带着猫、鸡、米过河,船 除需要人划外,至少能载猫、鸡、 米三者之一,而当人不在场时猫要 吃鸡,鸡要吃米。试设计一个安全 过河方案,并使渡船次数尽量减少。
1 带鸡过去, 空手回来 2 带猫过去 ,带鸡回来 3 带米过去 ,空手回来 4 带鸡过去
伊凡和彼得两位牧童相遇,伊凡向彼得说: “把1只羊给我吧!,那我的羊群数目就能成为 你的2倍了。”彼得摇摇头说:“不,还是你分1 只羊给我比较好,那么,我的羊就和你一样多 了。” 请问伊凡和彼得各有几只羊?
A风险10分题
1
6
2 7 12
3 8
4
5 10
15 20
9 14
19 21
11 16
13
18
17
22
24个人排成6列,要求5个人为 一列,你知道应该怎样来排列吗?
房间里有4个角落,每个角落 各有1只猫,而每只猫的对面各有3 只猫,同时每只猫的尾巴上面也各 有1只猫,请问这间房间里到底有 几只猫?
答案:(九)霄云外 +(千)钧(一)发 =(十)全(十)美
B风险20分题
1
6
2 7 12
17
3 8 13
4 9 14
5 10 15
11
16
18
19
20
1、
"六一"儿童节,妈妈给小华、小明、小刚 买了3种不同的礼品,分别是:魔方、智力 拼图、洋娃娃。现在知道小刚拿的不是智 力拼图,小明拿的不是洋娃娃,也不是智 力拼图,想一想,他们每人拿的是什么礼 物
答案:19607。
家猫鼠穗麦:
7 7 7 7 7 19607
2 3 4 5

小学趣味数学题及答案-整理版

小学趣味数学题及答案-整理版

⼩学趣味数学题及答案-整理版⼩学趣味数学题(⼀)1.⼩华的爸爸1分钟可以剪好5只⾃⼰的指甲。

他在5分钟内可以剪好⼏只⾃⼰的指甲2.⼩华带50元钱去商店买⼀个价值38元的⼩汽车,但售货员只找给他2元钱,这是为什么3.⼩军说:“我昨天去钓鱼,钓了⼀条⽆尾鱼,两条⽆头的鱼,三条半截的鱼。

你猜我⼀共钓了⼏条鱼”同学们猜猜⼩军⼀共钓了⼏条鱼匹马拉着⼀架⼤车跑了6⾥,每匹马跑了多少⾥6匹马⼀共跑了多少⾥5.⼀只绑在树⼲上的⼩狗,贪吃地上的⼀根⾻头,但绳⼦不够长,差了5厘⽶。

你能教⼩狗⽤什么办法抓着⾻头呢6.王某从甲地去⼄地,1分钟后,李某从⼄地去甲地。

当王某和李某在途中相遇时,哪⼀位离甲地较远⼀些7.时钟刚敲了13下,你现在应该怎么做8.在⼴阔的草地上,有⼀头⽜在吃草。

这头⽜⼀年才吃了草地上⼀半的草。

问,它要把草地上的草全部吃光,需要⼏年9.妈妈有7块糖,想平均分给三个孩⼦,但⼜不愿把余下的糖切开,妈妈怎么办好呢10.公园的路旁有⼀排树,每棵树之间相隔3⽶,请问第⼀棵树和第六棵树之间相隔多少⽶11.把8按下⾯⽅法分成两半,每半各是多少算术法平均分是____,从中间横着分是____,从中间竖着分是____.12.⼀个房⼦4个⾓,⼀个⾓有⼀只猫,每只猫前⾯有3只猫,请问房⾥共有⼏只猫13.⼀个房⼦4个⾓,⼀个⾓有⼀只猫,每只猫前⾯有4只猫,请问房⾥共有⼏只猫14.⼩军、⼩红、⼩平3个⼈下棋,总共下了3盘。

问他们各下了⼏盘棋(每盘棋是两个⼈下的)15.⼩明和⼩华每⼈有⼀包糖,但是不知道每包⾥有⼏块。

只知道⼩明给了⼩华8块后,⼩华⼜给了⼩明14块,这时两⼈包⾥的糖的块数正好同样多。

同学们,你说原来谁的糖多多⼏块16、五个连续⾃然数的和是350。

求出这五个⾃然数各是多少17、你今年()周岁,2028年1⽉1⽇,你就()周岁。

⼩学趣味数学题(⼆)1.妹妹今年6岁,哥哥今年11岁,当哥哥16岁时,妹妹⼏岁2.⼩明从学校步⾏到少年宫要25分钟,如果每⼈的步⾏速度相同,那么⼩明、⼩丽、⼩刚、⼩红4个⼈⼀起从学校步⾏到少年宫,需要多少分钟3.⼀张长⽅形彩纸有四个⾓,沿直线剪去⼀个⾓后,还剩⼏个⾓(画图表⽰)4.晚上停电,⼩⽂在家点了8⽀蜡烛,先被风吹灭了1⽀蜡烛,后来⼜被风吹灭了2⽀。

小学二年级数学有趣的火柴棒

小学二年级数学有趣的火柴棒

有趣的火柴棒问题月日姓名【知识要点】用火柴棒摆成有趣的图形,有的是移动规定的根数,使图形的形状,位置发生变化;有的是减少规定的根数,使图形的数量发生变化。

同学们你觉得怎么样?如果用方块或圆圈摆好了一个图形,要求你搬一搬,成为另外的图形,你会吗?小朋友,你注意观察过马路上红绿灯数字的形状吗?我们用火柴棒也能摆出来:这10数字也可以简单地摆出来:移动火柴棒,可以使数字发生变化。

例如:火柴棒不仅可以组成有趣的算式,还可以摆成各种各样的有趣的图形。

【解题策略】例1 移动一根,使下面的算式成立。

例 2 三只盛水的杯子放在左边,三只空杯子放在右边,如下图,请你只搬动一只杯子,使盛水的杯子与空杯子间隔排列。

例3 大伟把10个棋子在桌子摆成了三角形形状(如下图),请你搬动三个棋子,使三角形颠倒一下,你能做到吗?试试看。

【趣题】人带猫,鸡,米过河,船除需要人划外,至少能载猫,鸡,米三者之一,而当人不在场时猫要吃鸡,鸡要吃米,试设计一个安全过河方案并使渡船次数尽量减少。

随堂小测月日姓名家长签名1.请你只移动一根火柴棒,使下列算式成立。

(1)(2)2.下面每一题只能移动1根火柴棒,使等式成立。

(1)(2)3.看下图,请你移动最少的圆,使黑圆、白圆间隔开来。

4.小华用6个圆片摆成了一个三角形,如图,你能不能只搬移两个圆片,使这个三角形颠倒过来。

5.用5根火柴棒拼成了一把小方勺,请你只移动3根火柴棒,使勺把的方向正好与原来相反。

6.用火柴摆成的小船,请至少移动2根火柴棒,使小船的方向正好相反。

7.下图是12根火柴摆成的4个正方形,移动其中3根,使变成3个大小一样的正方形。

课后作业月日姓名家长签名1.下面用火柴棒摆放的两个错误算式,请移动一根火柴棒使算式成立。

(1)(2)2.由9枚硬币组成了一个三角形,要移动3枚硬币,使这个三角形方向相反。

3.下图是9根火柴棒摆成的3个三角形,移动其中的3根,使它变成5个三角形。

☆ 4.你能只移动4根火柴,就把下面的两只杯子的杯口朝上吗?。

2020小升初数学专题训练《数学竞赛》(通用含详解)

2020小升初数学专题训练《数学竞赛》(通用含详解)

专题训练《数学竞赛》一、单选题(共7题;共14分)1.“65+26 100-26”,比较大小,在里应填的符号是()A. >B. <C. =D. -2.“11-6 5”,比较大小,在里应填的符号是()A. >B. <C. =D. +3.一列火车长200米,以每分钟1200米的速度经过一座大桥,从车头进到车尾出一共用了2分钟。

求桥的长度是多少米?正确的算式是()A. 1200×2+200B. 1200×2-200C. (1200+200)×2D. (1200-200)×24.在单摆实验中,如果增加绳长,单位时间内单摆的摆动次数()A. 减少B. 增加C. 不变5.钟面上是()时。

A. 6时B. 12时30分C. 12时D. 6时5分6.三个人站成一排照相,有()种站法.A. 2B. 4C. 67.同学们到动物园去游玩,参观猴山的有28人,参观狮子馆的有32人,两个馆都参观的有18人,去动物园的一共有()人。

A. 60B. 42C. 50D. 46二、判断题(共7题;共16分)8.25+25×4=200。

()9.小动物们读得正确吗?(1)()(2)()10.芳芳中午12点睡觉,闹钟3点准时响起,则时针在这段时间旋转了60°。

()11.一个盒子里有同样大小的黄球和黑球各4个,只要摸出3个球,就可以保证一定有2个同色的球。

()12.和一样重。

()13.从1开始的连续10个奇数中任取6个,一定有两个数的和是20。

()14.一瓶纯牛奶,亮亮第一次喝了30%,然后在瓶里兑满水,又接着喝去30%.亮亮第一次喝的纯奶多.()三、填空题(共7题;共8分)15.在横线上填上“>”、“<”或“=”.100cm+200cm________3m 54÷9×2________24÷8×316.小东买了一个篮球和一个足球,篮球价格是足球的两倍。

大学《数学建模》考试题目汇总

大学《数学建模》考试题目汇总

答案:
解:设供应点 Ai 供应需求点 B j 的物资的数量为 xij (i 1,2,3; j 1,2,4) ,
则可建立运输问题的数学模型:
min Z x11 8x12 5x13 11x14 3x21 4x22 2x23 5x24 7x31 10x32 9x33 6x34
x11 x12 x13 x14 7 x11 x21 x31 3
3.2030 级新生入学后,大数据学院共有在校学生 600 人,其中数据分析及大数据 专业 320 人,人工智能专业 200 人,统计分析专业 80 人。要在全院推选 25 名学 生组成学生代表团,试用下面的方法分配各专业的学生代表: (1)按比例分配取整的方法,剩下的名额按惯例分配给小数部分较大者; (2)用 Q 值方法进行分配
9. 某厂生产甲、乙、丙三种产品,消耗两种主要原材料 A 与 B。每单位产品生 产过程中需要消耗两种资源 A 与 B 的数量、可供使用的原材料数量以及单位产 品利润如下表:



原料数量
A
60
30
50 4500 公斤
B
30
40
50 3000 公斤
产品利润 400 元 300 元 500 元
甲、乙、丙三种产品各生产多少使总利润最大? (1)建立线性规划问题数学模型。 (2)写出用 LINGO 软件求解的程序。 答案:(数据乘 10)
4.某商店每天要订购一批牛奶零售,设购进价 c1 ,售出价 c2(c2 c1) ,当天销售不 出去则削价处理,处理价 c3(c3 c1) 并能处理完所有剩余的牛奶。如果该商店每 天销售牛奶的数量 r 是随机变量,其概率密度函数为 f (r) 。如果商店每天订购牛 奶的数量为 n , L 该商店销售牛奶每天所得利润,则 L 是 r 与 n 的函数 L g(r) (1)建立利润函数 L g(r) ; (2)确定每天的购进量 n ,使该商店每天的期望利润最大。

趣味数学

趣味数学

1、人带猫、鸡、米过河,船除需要人划外,至少能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡,鸡要吃米。

试设计一个安全过河方案,并使渡船次数尽量减少。

答案: 1 带鸡过去空手回来 2 带猫过去带鸡回来 3 带米过去空手回来 4 带鸡过去2、甲乙两个长方形,它们的周长相等,甲的长与宽的比是3:2,乙的长与宽的比是3:5,那么甲乙的面积是多少?答案: 甲长为24宽为16,乙长为15,宽为25。

甲面积为384,乙面积为375。

答案不唯一。

三.一块合金中铜和锌的比是3:2,现在加6克锌,共得锌的合金36克,新的合金中铜和锌的比是多少? 答案: 铜锌是1:14、有只猴子在树林采了100根香蕉堆成一堆,猴子家离香蕉堆50米,猴子打算把香蕉背会家,每次最多能背50根,可是猴子嘴馋,每走一米要吃一根香蕉,问猴子最多能背回家几根香蕉?25根。

先背50根到25米处,这时,吃了25根,还有25根,放下。

回头再背剩下的50根,走到25米处时,又吃了25根,还有25根。

再拿起地上的25根,一共50根,继续往家走,一共25米,块A、5。

约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉 P先生,把这张牌的花色告诉Q先生。

这时,约翰教授问P先生和Q 先生:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,S先生听到如下的对话: P先生:我不知道这张牌。

Q先生:我知道你不知道这张牌。

P先生:现在我知道这张牌了。

Q先生:我也知道了。

听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。

请问:这张牌是什么牌?吃25根,还剩25根到家。

1、问5条直线最多将平面分为多少份?2、太阳落下西山坡,鸭儿嘎嘎要进窝。

四分之一岸前走,一半的一半随水波;身后还跟八只鸭,我家鸭子共几多?3、 9棵树种10行,每行3棵,问怎样种?4、数学谜语:(“/”是分数线) 3/4的倒数 7/8 1/100 1/2 3.4 1的任何次方以上每条打一成语。

趣味数学课件2

趣味数学课件2

比赛开始后,龟先到 a处后,兔再跑。 兔到a处需要时间t1,在t1时间内龟跑到b处; 兔跑到b处需要用时间t2,在t2时间内走到c处; 兔跑到c处需要时间t3,在t3时间内龟跑到d处, 依次类推,可得到兔只能无限接近龟, 但无法赶上龟,所以兔一定赢不了龟。 兔家族思考很久,没有发现龟的推理的问题。 后悔当初让龟先跑500米,后悔晚已,只能认输回家。
原来,所需麦粒总数 1+2+22+23+24+……+263=264-1 =18446744073709551615。 这些麦子究竟有多少?打个比方,如果造一个仓库来放这些麦 子,仓库高4米,宽10米,那么仓库的长度就等于地球到太阳的 距离的两倍。而要生产这么多的麦子,全世界要两千年。尽管印度 舍罕王非常富有,但要这样多的麦子他是怎么也拿不出来的。这么 一来,舍罕王就欠了宰相好大一笔债。要么是忍受达依尔没完没了 的讨债,要么是干脆砍掉他的脑袋。结果究竟如何,可惜史书上没 有记载。Leabharlann 原来如此简化这个问题:
1. 邻居一分钱都没有损失,这点大家都能明白. 2. 年轻人白白得到了79元和一个价值18元的商品. 3. 那么在这场交易中,王老板的损失就是年轻人的 白白所得. 即是:王老板损失了79+18=97元 所以,从数学的角度来讲,是97元。
A、B、C三人对一块矿石作以下判断: A:这不是铁,不是锰; B:这不是铁,是锡; C:这不是锡,是铁; 已知三人中一人全对,一人全错,一人半对, 请问这到底是什么物质?
但我们认真想一下,现实中兔是可以赶上龟的, 但这是为什么呢?龟的推理错在哪里呢?
开动脑筋: 有只猴子在树林采了100根香蕉堆成一堆, 猴子家离香蕉堆50米,猴子打算把香蕉背 回家,每次最多能背50根,可是猴子嘴馋 ,每走一米要吃一根香蕉,问猴子最多能 背回家几根香蕉?

人狗鸡米

人狗鸡米

人、狗、鸡、米过河人、狗、鸡、米均要过河,船需要人划,每次只能运载其中的一物和人本身,而当人不在时,狗要吃鸡,鸡要吃米。

问人、狗、鸡、米怎样过河?分析:问题的初始状态是人、狗、鸡、米均在本岸,要求经过一系列的过河运载(每次运载只能一人一物,而且不能把狗和鸡留在一起,也不能把鸡和米留在一起),最后达到目标状态,即人、狗、鸡、米均在对岸。

为了将问题数学化,我们用四元数组(即由4个数所组成的数组来表示初始状态,目标状态以及中间的各种可取状态。

当一物在本岸时,用数字“1”表示;在对岸时,用数字“0”表示。

于是,人、狗、鸡、米的状态可以用每个数取0或1的四元数组来表示。

例如,(1,0,1,0)表示人在本岸,狗在对岸,鸡在本岸,米在对岸,每个数取0或1的四元数组共有16个:(1,1,1,1)(0,0,0,0)(1,1,1,0)(0,0,0,1)(1,1,0,1)(0,0,1,0)(1,0,1,1)(0,1,0,0)(1,1,0,0)(0,0,1,1)(1,0,1,0)(0,1,0,1)(1,0,0,1)(0,1,1,0)(1,0,0,0)(0,1,1,1)由于鸡和米或者狗和鸡不能留在一起,所以(1,1,0,0),(0,0,1,1),(1,0,0,1),(0,1,1,0)(1,0,0,0),(0,1,1,1)所表示的状态都是不允许的,而其他10个状态都是允许存在的,也就是说,是可取状态,它们分别是(1,1,1,1)(0,0,0,0)(1,1,1,0)(0,0,0,1)(1,1,0,1)(0,0,1,0)(1,0,1,1)(0,1,0,0)(1,0,1,0)(0,1,0,1)我们用10个顶点分别表示以上10个可取状态。

如果一个可取状态可以经过一次过河运载转移到另一个可取状态,那么在表示这两个可取状态的顶点之间联结一条边,从而构成一个图(图29-1)。

例如,(1,0,1,1)和(0,0,1,0)之间联结一条边表示如果人把米从本岸运到对岸,那么可取状态(1,0,1,1)就转移到可取状态(0,0,1,0);反过来,如果人把米从对岸运到本岸,那么可取状态(0,0,1,0)就转移到可取状态(1,0,1,1)。

小学数学《和差问题》教案

小学数学《和差问题》教案

和差问题一、趣味数学导入,激发兴趣(1)、有一个人带着猫、鸡、米过河,船除需要人划外,至少能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡,鸡要吃米。

试设计一个安全过河方案,并使渡船次数尽量减少。

答案:1 带鸡过去 空手回来2 带猫过去 带鸡回来3 带米过去 空手回来4 带鸡过去(2)、24个人排成6列,要求5个人为一列,你知道应该怎样来排列吗? 5×6-24=6所以有6个人必须在交叉点上。

排成一个正六边形每条边5个,刚好6个顶点是交叉点。

二、例题讲解例1 甲、乙两班共有学生84人,如果从甲班调6人到乙班,则两班人数相等,原来甲、乙各有多少人?1、理解题意从题目中告诉我们的信息,可以通过画线段图来把题目中的已知信息和需要解决的信息清晰的表示出来。

乙: 甲:2、分析题意从题目中已知的条件可以知道,从甲板调6人,两个班人数相等,可以知道甲班比乙班多6×2=12人,也就知道了甲乙两班的人数之差是12,又因为题目中告诉我们甲乙两个班的学生共有84人,可以知道甲班有(84+12)÷2=48人,乙班的人数是48-12=36人。

3、整理解题思路学生叙述解题过程【思路点拨】如上图所示,根据“如果从甲班调6人到乙班,则两班人数相等”可以推出,甲班比乙班多6×2=12人,即甲、乙两班的人数之差是12,由“甲、乙两班共有学生84人”可以知道甲、乙两班的人数之和是84,根据和差问题的关系式即可以求出两个班原来各有学生多少人。

【解答】甲、乙两班的人数之差:6×2=12(人)甲班的人数:(84+12)÷2=48(人)乙班的人数:48-12=36(人)答:原来的甲班有学生48人,乙班有学生36人。

例2 把一根长100米的绳子剪成3段,要求第二段比第一段多16米,第三段比第一段少18米,三段绳子各应长多少米?1、题意理解根据题意,可以通过用画线段图的方法来题目中的已知条件和未知条件很清晰的反映出来,这种解题思想需要让学生学会,并且运用到平时的解题中。

二年级奥数趣味数学课件

二年级奥数趣味数学课件
叠被子3分钟——涮牙洗脸4分钟——烧开水10分钟(同时 吃早饭7分钟,洗碗筷1分钟,整理书包2分钟)——冲牛奶 1分钟。一共用去18分钟。
3+4+10+1=18(分)
练习
1、中午,爸爸做炒鸡蛋,要做的事情及时间是:打蛋10秒, 切葱花20秒,搅蛋20秒,洗锅30秒,烧热油1分钟,炒蛋3 分钟,装盘10秒,爸爸至少要用多长时间才能把鸡蛋炒好?
11-8+6=9厘米
一个人划一只小船过河,他带了三样东西,一只狗,一 只鸡,一篮青菜,他每次只能带一样东西过河,而且没 人的时候狗会吃鸡、鸡会吃青菜。这个人应该怎样过河 才能保证三样东西都完整?
先把鸡带过河,并把鸡放在对岸;返回,再把 狗带过河放在对岸,并把鸡随船带回,将鸡放 在岸上,带青菜过河,再返回,将鸡带过河即 可。
练习
一个大和尚带着两个小和尚去河对岸的寺院,河上没 有桥,他们又都不会游泳,为了过河,他们找来一只 空船,船最多载重50千克,而大和尚最多重50千克, 两个小和尚各重25千克,问他们怎样才能全部过河?
第一次两个小和尚一起过河,让一个小和尚把 船划回来; 第二次让一个大和尚一个人划船过去,另一个 小和尚划船回来; 第三次两个小和尚一起划船过去。
人带猫、鸡、米过河,船除需要人划外,至少能载猫、鸡、 米三者之一,而当人不在场时猫要吃鸡,鸡要吃米。试设 计一个安全过河方案,并使渡船次数尽量减少。
1 带鸡过去 空手回来 2 带猫过去 带鸡回来 3 带米过去 空手回来 4 带鸡过去
小明早上起床,叠被子用3分钟,刷牙洗脸用4分钟,烧 开水用10分钟,吃早饭用七分钟,洗碗筷用一分钟,整 理书包用2分钟,冲牛奶1分钟。请你安排一下,用尽可 能短的时间做完全部事情?
一个大和尚带着两个小和尚去河对岸的寺院河上没有桥他们又都不会游泳为了过河他们找来一只空船船最多载重50千克而大和尚最多重50千克两个小和尚各重25千克问他们怎样才能全部过河

数学建模综合练习

数学建模综合练习

数学建模综合练习第一章数学建模方法论1.举出两三个实例说明建立数学模型的必要性,包括实际问题的背景,建模目的,需要大体上什么样的模型以及怎样应用这种模型.2.怎样解决下面的实际问题.包括需要哪些数据资料,要作些什么观察、试验以及建立什么样的数学模型等.(1)估计一个人体内血液的总量.(2)为保险公司制定人寿保险计划(不同年龄的人应缴纳的金额和公司赔偿的金额).(3)估计一批日光灯管的寿命.(4)确定火箭发射至最高点所需的时间.(5)决定十字路口黄灯亮的时间长度.(6)为汽车租赁公司制订车辆维修、更新和出租计划.(7)一高层办公楼有4部电梯,早晨上班时间非常拥挤,试制订合理的运行计划3.下面是众所周知的智力游戏:人带猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米.试设计一个安全过河方案,并使渡河次数尽量地少.4.假定人口的增长服从这样的规律:时间t的人口为x (t),t到t+∆t时间内人口的增长与x m- x(t)成正比(其中x m为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.5.为了培养想象力、洞察力,考察对象时除了从正面分析外,还常常需要从侧面或反面思考,试尽可能迅速地回答下列的问题:(1)某甲早8:00从山下旅馆出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅馆.某乙说,甲必在2天中的同一时刻经过路径中的同一地点.为什么?(2)甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同,甲乙之间有一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站.问开往甲乙两站的电车经过丙站的时刻表是如何安排的?(3)某人住T市在他乡工作,每天下班后乘火车于6:00抵达T市车站,他的妻子驾车准时到车站接他回家.一日他提前下班搭乘早一班火车于5:30抵T市车站,随即步行回家,他的妻子像往常一样驾车前往,在半路上遇到他,即接他回家,此时发现比往常提前10分钟.问他步行了多长时间.6.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗?比如洁银牙膏50g装的每支1.50元,120g装的每支3.00元,二者单位重量的价格比是1.2:1.试用比例方法构造模型解释这个现象.(1)分析商品价格c与商品重量w的关系.价格由生产成本、包装成本和其它成本决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素.(2)给出单位重量价格c与w加c减小的程度变小.解释实际意义是什么?7.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角α应多大(如图1).若知道管道长度,需用多长布条(可考虑两端的影响).如果管道是其它形状呢?8.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,k >r .在每一生产周期T 内,开始的一段时间(0<t <T 0)一边生产一边销售,后来的一段时间(T 0<t <T )只销售不生产,画出贮存量)(t q 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期.讨论k 》r 和k ≈ r 的情况.第二章 初等数学模型1.在2.5节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.2.设某产品的售价为p ,成本为q ,售量为x (与产量相等),则总收入与总支出分别为px I =,qx C =.试在产销平衡的情况下建立最优价格模型.3.在最优价格模型中,如果考虑到成本q 随着产量x 的增加而降低,试做出合理的假设,重新求解模型.4.在考虑最优价格模型问题时,设销售期为T ,由于商品的损耗,成本q 随时间增长,设q =q 0 +βt ,β为增长率.又设单位时间的销售量为x = a – bp (p 为价格).今将销售期分为0< t <T /2和T /2< t <T 两段,每段的价格固定,记作p 1,p 2.求p 1,p 2的最优值,使销售期内的总利润最大.如果要求销售期T 内的总销售量为Q 0,再求p 1,p 2的最优值.第三章 微分方程模型1.对于技术革新的推广,在下列几种情况下分别建立模型.(1)推广工作通过已经采用新技术的人进行,推广速度与采用新技术的人数成正比,推广是无限的.(2)总人数有限,因而推广速度还会随着尚未采用新技术人数的减少而降低. (3)在(2)的前提下考虑广告等媒介的传播作用.2.建立铅球掷远模型.不考虑阻力,设铅球初速度为v ,出手高度为h ,出手角度为α(与地面夹角),建立投掷距离与v ,h ,α的关系式,并求v ,h 一定的条件下求最佳出手角度.3.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:xNrx t xln )(= ,其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为h =Ex .讨论渔场鱼量的平衡点及其稳定性,求最大持续产量h m 及获得最大产量的捕捞强度E m 和渔场鱼量水平x *0.4.在一种溶液中,化学物质A 分解而形成B ,其速度与未转换的A 的浓度成比例.转换A 的一半用了20分钟,把B 的浓度y 表示为时间的函数,并作出图象.第四章 运筹学模型1.一家保姆公司专门向顾主提供保姆服务.根据估计,下一年的需求是:春季6000人日,夏季7500人日,秋季5500人日,冬季9000人日.公司新招聘的保姆必须经过5天的培训才能上岗,每个保姆每季度工作(新保姆包括培训)65天,保姆从该公司而不从顾主那里得到报酬,每人每月工作800元.春季开始时公司拥有120名保姆,在每个季度结束后,将有15%的保姆自动离职. (1)如果公司不允许解雇保姆,请你为公司制定下一年的招聘计划.(建立数学模型) (2)如果在每个季度结束后允许解雇保姆,请为公司制定下一年的招聘计划.(建立数学模型)2.某工厂生产两种产品A、B分两班生产,每周生产总时间为80小时,两种产品的预测销售量、生产率和赢利如下表(1)充分利用现有能力,避免设备闲置;(2)周加班时间限制在10小时以内;(3)两种产品周生产品量应满足预测销售,满足程度的权重之比等于它们单位利润之比;(4)尽量减少加班时间.例3 医院为病人配制营养餐,要求每餐中含有铁不低于50单位,蛋白质不低于40单位,钙不低于42单位.假设仅有两种食品A和B可供配餐,相关数据见下表.试问,如何购买两种食品进行搭配,才能即使病人所需营养达到需求,又使总花费最低?第五章概率统计模型1.报童每天订购的报纸,每卖出一份赢利a元,如果卖不出去并将报纸退回发行单位,将赔本b元.每天买报人数不定,报童订报份数如超过实际需要,就要受到供过于求的损失;反之,要受到供不应求的损失.设P(m)是售出m份报纸的概率,试确定合理的订报份数,使报童的期望损失最小.2.血友病也是一种遗传疾病,得这种病的人由于体内没有能力生产血凝块因子而不能使出血停止.很有意思的是,虽然男人及女人都会得这种病,但只有女人才有通过遗传传递这种缺损的能力.若已知某时刻的男人和女人的比例为1:1.2,试建立一个预测这种遗传疾病逐代扩散的数学模型.3.假设有一笔1000万元的资金于依次三年年初分别用于工程A和B的投资.每年初如果投资工程A,则年末以0.4的概率回收本利2000万元或以0.6的概率分文不收;如果投资工程B,则年末以0.1的概率回收2000万元或以0.9的概率回收1000万元.假定每年只允许投资一次,每次只投1000万元;试确定第3年末期望资金总数为最大的投资策略.4.某石油公司必须就下一个打井位置作出决定.如果打出来的井什么也没有(既无油也无天然气),则投资费用(打井费用)全部赔掉.如果打出来的是气井,则可以说是部分成功,如果打出来的是油井,则是完全成功.由于结果的不确定性,更由于做某种测试(取样)只能得到不完全的信息,因而作出决定是困难的.试建立一个数学模型,使公司的预期收益最大参考答案第一章数学建模方法论1.解(略)2.解(1)注射一定量的葡萄糖,采集一定容量的血样,测量注射前后葡萄糖含量的变化,即可估计人体的血液总量.注意采集和测量的时间要选择恰当,使血液中的葡萄糖含量充分均匀,又基本上未被人体吸收.(2)调查不同年龄的人的死亡率,并估计其在未来一定时期的变化,还应考虑银行存款利率和物价指数,保险金与赔偿金之比大体上应略高于死亡率.(3)从一批灯管中取一定容量的样本,测得其平均寿命,可作为该批灯管寿命的估计值.为衡量估计的精度,需要从样本寿命确定该批灯管寿命的概率分布,即可得到估计值的置信区间.还可试验用提高电压的办法加速寿命测试,以缩短测量时间.(4)根据牛顿第二定律建立火箭向上发射后的运动方程,初速已知,若不考虑空气阻力,很容易算出到达最高点(即速度为零)时间;若考虑空气阻力,不妨设其与火箭速度(或速度的平方)成正比,并有试验及拟合方法确定阻力系数,再解方程得到结果.(5)司机看到黄灯后停车要有一定的刹车距离S 1,设通过十字路口的距离为S 2,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线S 1之内的汽车能通过路口,即t ≈(S 1+S 2)/v .S 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.(6)根据资料和经验确定维修费用随着车龄和行驶里程的增加而增加的关系,再考虑维修和更新费用,可以以一年为一个时段,结合租金决定应该维修或更新.(7)统计在各层上班的人数,通过数据或计算确定电梯运行时间,以等待的人数与时间乘积为目标,建立优化模型,确定每部电梯运行的楼层(有的从大厅直接运行到高层).3.解 人、猫、鸡、米分别记为i =1, 2, 3, 4,当i 在此岸时记x i =1,否则记x i =0,则此岸的状态可用s =(x 1, x 2, x 3, x 4)表示.记s 的反状态为s '=(1-x 1, 1-x 2, 1-x 3, 1-x 4),允许状态集合为S ={(1, 1, 1, 1),(1, 1, 1, 0),(1, 1, 0, 1),(1, 0, 1, 1)(1, 0, 1, 0)及它们的5个反状态}. 决策为乘船方案,记作d =(u 1, u 2, u 3, u 4),当i 在船上时记u i =1,否则记u i =0,允许决策集合为D ={(1, 1, 0, 0),(1, 0, 1, 0),(1, 0, 0, 1),(1, 0, 0, 0)}.记第k 次渡河前的状态为s k ,第k 次渡河的决策为d k ,则状态转移律为s k +1=s k +(-1)k d k ,设计安全过河方案归结为求决策序列d 1, d 2, …, d n ∈D ,使状态s n ∈S 按状态转移律由初始状态s 1=(1, 1, 1, 1)经n 步到达s n +1=(0, 0, 0, 0).一个可行方案如下:4.解 )(d d x x r txm -=,r 为比例系数,0)0(x x =,解为rtm m x x x t x ---=e )()(0,如图2中粗实线所示.当t 充分大时,它与Logistic 模型相近.5.解(1)设想有两个人一人上山,一人下山,同 一天同时出发,沿同一路径,必定相遇.(2)不妨设从甲站到乙站经过丙站的时刻表是: 8:00,8:10,8:20,…,那么从乙站到甲站经过丙 图2 站的时刻表应该是:8:09,8:19,8:29,….(3)步行了25分钟.设想他的妻子驾车遇到他后,先带他去车站,再回家,汽车多行驶了10分钟,于是带他去车站这段路程汽车跑了5分钟,而到车站的时间是6:00,所以妻子驾车遇到他的时刻是5:55.x x6.解 (1)生产成本主要与重量w 成正比,包装成本主要与表面积s 成正比,其它成本也包含与w 和s 成正比的部分,上述三种成本中都含有与w 和s 无关的成分.又因为形状一定时一般有s ∝w 2/3,故商品的价格可表为C = αw +β w 2/3+γ(α,β,γ为大 于0的常数).(2)单位重量价格131--++==w w wCc γβα,其简图 如图3所示.显然c 是w 的减函数,说明大包装商品比小包 装商品便宜;曲线是下凸的,说明单价的减少值随包装的变大是逐渐降低的,不要追求太大包装的商品. 图3 7.解 将管道展开如图4,可得απcos d w =,若d 一 定,0→w ,2πα→;d w π→,0→α.若管道长度为l ,不考虑两端的影响时布条长度显然为wdlπ,若考虑两端的影响,则应加上απsin dw.对于其它形状管道,只需将d π改为相应的周长即可. 图48.解 贮存量)(t q 的图形如图5.单位时间总费用KT r k r c T c T c 2)()(21-+=, 使)(T c 达到最小值的最优周期)(221r k r c kc T -=*.当k 》r 时,rc c T 212=*,相当 于不考虑生产的 图5 情况.当k ≈ r 时,∞→*T ,因为产量被销量抵消,无法形成贮存量.第二章 初等数学模型1.解 不妨设1)(+'=b b λλ,表示火势b 越大,灭火速度λ越小,分母b +1中的1是防止b →0x时λ→∞而加的.最优解为λβλβλ'++'+++'=)1()(21]()1(2[23221b c b b b c b c x . 2.解 因为售量x 依赖于价格p ,记作)(p f x =,称为需求函数,它是p 的减函数.由此可知收入I 和支出C 都是价格p 的函数,所以利润U 可以表示为)()()(p C p I p U -= (1)使利润U (p )达到最大的最优价格p *可以由0d d *==p p p U 得到,即**d d d d p p p p pC pI ===(2)其中p I d d 称为边际收入,pC d d 称为边际支出.(2)式表明最大利润在边际收入等于边际支出时达到. 假设需求函数是线性函数,即bp a p f -=)(,0,>b a (3)并且每件产品的成本q 与产量x 无关,将总收入函数、总支出函数、需求函数和(3)式代入(1)式可得))(()(bp a q p p U --=用微分法求出使U (p )达到最大的最优价格p *为baq p 22*+=(4) 在(3)式中a 可以理解为这种产品免费供应时(p = 0)社会的需求量,称为“绝对需求量”.pxb d d -=表示价格上涨一个单位时销售量下降的幅度.在实际工作中a ,b 可以由价格p 和售量x 的统计数据用最小二乘法拟合来确定.(4)式表明最优价格是两部分之和,一部分是成本q 的一半,另一部分与“绝对需求量”成正比,与市场需求对价格的敏感系数成反比. 3.不妨设kx q x q -=0)(,k 是产量增加一个单位时成本的降低.最优价格为bakb ka q p 2)1(20*+--=.4.总利润为 ⎰⎰--+--=TT T t bp a t q p t bp a t q p p p U 222201121d ))](([d ))](([),()]}43([)()]4([){(022011Tq p b bp a Tq p b bp a ββ+---++---= 由01=∂∂p U ,02=∂∂p U,可得最优价格 )]4([2101T q b a b p β++=,)]43([2102Tq b a b p β++= 设总销量为Q 0,)(2d )(d )(21222010p p bTaT t bp a t bp a Q T T T +-=-+-=⎰⎰在此约束条件下),(21p p U 的最大值点为8~01T bT Q b a p β--=,8~02T bT Q b a p β+-=第三章 微分方程模型1.解 设t 时刻采用新技术的人数为x (t ).(1)指数模型x t xλ=d d . (2)Logistic 模型)(d d x N ax tx-=,N 为总人数.(3)广告等媒介在早期作用较大,它对传播速度的影响与尚未采用新技术的人数成正比,在模型(2)的基础上,有))((d d x N b ax tx-+= (2)和(3)区别见图6.图6 2.解 在图7坐标下铅球运动方程为0=x,g y -= ,0)0(=x ,h y =)0(, αcos )0(v x= ,αsin )0(v y = . 解出)(t x ,)(t y 后,可以得铅球掷远为ααααcos )2sin (cos sin 212222v g hgv g v R ++=图7 这个关系还可表为 )tan (cos 2222ααR h v g R +=. 由此计算0d d =*ααR ,得最佳出手角度)(2sin 21gh v v +=-*α,和最佳成绩gh v gvR 22+=*.设h =1.5m ,v =10m/s ,则 4.41=*α,m 4.11=*R . 3.解 模型为Ex xNrx x F x-==ln )( ,如图8所rN/示,有2个平衡点:x = 0和x 0 =rE N -e.可证x = 0不稳定,x 0稳定(与E ,r 的大小无关).最大持续产量为h m = rN/e ,获得h m 的E m = r ,x *0 =e /N .4.解 记B 的浓度为时间t 的函数y (t ),A 的浓度为x (t ). 图8 一、假设1.1molA 分解后产生n molB . 2.容体的体积在反应过程中不变. 二、建立模型,求解有假设知,A 的消耗速度与A 的浓度成比例,故有下列方程成立kx tx-=d d 其中k 为比例系数.设反应开始时t = 0,A 的浓度为x 0,由题中条件知当t = 20(分)时,A 的浓度为021)20(x x =.解初值问题⎪⎩⎪⎨⎧==-)0(d d x x kx tx得 ktx t x -=e )(0它应满足020021e )20(x x x k ==⨯- 解得 2ln 201=k 所以得 )2ln 200e )((tx t x -=由于B 的浓度为x 浓度减少量的n 倍,故有)e1(]e[)(2ln 2002ln 2000ttnx x x n t y ---=-=三、作图(如图9) 图9第四章 运筹学模型1.解 (1)设4个季度开始时公司新招聘的保姆数量分别为x 1, x 2, x 3, x 4人,4个季度开始时nx保姆总数量分别为S 1, S 2, S 3, S 4人.以本年度付出的总报酬最少(即4个季度开始时保姆总数量之和最小)为目标,则模型为s .t .⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥+=+=+=+=+≥+≥+≥+≥+++=0,,,,,,,85.085.085.01205900065555006557500655600065min4321432143432321211443322114321S S S S x x x x x S S x S S xS S x S x S x S xS x S S S S S Z (2)设4个季度开始时公司新招聘的保姆数量分别为x 1, x 2, x 3, x 4人,4个季度结束时解雇的保姆数量分别为y 1, y 2, y 3, y 4人,4个季度开始时保姆总数量分别为S 1, S 2, S 3, S 4人.以本年度付出的总报酬最少(即4个季度开始时保姆总数量之和最小)为目标,则模型为s .t .⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥-+=-+=-+=+=+≥+≥+≥+≥+++=0,,,,,,,,,,85.085.085.01205900065555006557500655600065min4321321432134342323121211443322114321S S S S y y y x x x x y x S S y x S S yx S S x S x S x S xS x S S S S S Z 2.解 (1)建立模型设:①每班上班时间为8小时,在上班时间内只能生产一种产品; ②周末加班时间内生产哪种产品不限;③生产A 产品用x 班,生产B 产品用y 班,周加班时生产A 产品用x 1小时,生产B 产品用y 1小时.则有⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≤+=++≤+≤+=+且为整数0,,,101:2148:987084581011111111y x y x y x x x y y x x y y y x (2)求解现在求满足(1)中第2,3个方程可看出:8≤x ,5≥y ;将(1)中的第1个方程代入第4个方程得:1179720128y x y -+= 现在就是在满足5≤y ,1011≤+y x 条件下,使上式两端的取值尽量接近.显然5=y ,01=x ,101=y因此 5=x制定方案为,生产A ,B 两种产品所占总时间各一半,周加班10小时全用于生产产品B .3.解:设购买食品A 和B 依次为x 1和x 2(kg ),则有 营养最低要求满足:10x 1+5x 2≥50 (铁含量) 5x 1+8x 2≥40 (蛋白质含量)6x 1+5x 2≥42 (钙含量)总花费数记为Z ,则有数学模型2134min x x Z +=s .t .⎪⎪⎩⎪⎪⎨⎧≥≥+≥+≥+0,)3.3(,4256)2.3(,4085)1.3(,5051021212121x x x x x x x x 用图解法求解上述问题.首先以x 1,x 2为坐标轴,建立平面直角坐标系(如图3-10),由于x 1,x 2均非负,故只画出了第一象限.其次,将其余约束条件几何化.条件(3.1)表示的是一个半平面,先画出直线10x 1+5x 2=50,因为10x 1+5x 2≥50,故直线(3.1)的上方区域即条件(3.1)所满足的x 1,x 2的取值范围;同理将条件(3.2)、(4.3)也几何化,并注意到几个条件要同时满足,便求得一个以顶点A 、B 、C 、D 为顶点的右上方无界的五边形区域1x ABCD 2x .这个区域内的任一点(x 1,x 2)都是一个可行性配餐方案.图3—10图3—11最后,为了求出最优解,将目标函数也进行几何化,有11)4.3(33412Z x x +-=称为目标函数直线族,因为其中的Z 作为参数出现.易见,随着Z 的逐渐增大,目标函数直线(3.4)向右上方平行移动.也就是说,随着目标函数直线的逐渐往右上方平移,Z 的值越来越大,反之,Z 的值越来越小(如图3-11).又原问题是求函数Z 的最小值,故应令目标函数直线尽可能往左下方平移.但这种平移是有限制的,即点(x 1,x 2)必须在可行域内.于是两者的结合便可确定本例的最优解.通过上述斜率关系分析可知目标函数直线与直线(3.1)和直线(3.3)的交点(顶点C )相切,即直线(3.1)与直线(3.3)的交点即最优解点.于是问题就变成了求解方程组⎩⎨⎧=+=+.4256,505102121x x x x 易解得x 1=2,x 2=6为最优解,通常记作:Tx )6,2(62=⎪⎪⎭⎫⎝⎛=* 对应的目标函数值称为最优值,记作 Z *=26第五章 概率统计模型1.解 设报童每天订购Q 份报纸,则其收益函数为⎩⎨⎧>≤--=Q m am Qm b m Q am m y ,,)()( 利润的期望为∑∑∞+==+-+=1)()(])[()]([Q m Qm m aQP m P bQ m b a m y E比较各个m 的)]([m y E 值,使其最大者即为所求.若m 的取值过多,可将)]([m y E 当成m 的连续函数或借鉴连续函数求极值的方法令0d )]([d =mm y E .2.解 假设有α%的人患有血友病,并假设下一代与上一代虽人数可能不等,但所生男女比例一样.基于这样一个假设,不妨设下一代男女与上一代相同,设初始第一代男女分别占总人数的比例占总人数的比例为 a 0,b 0,由题设,a 0:b 0=1:1.2.注意到只有女人遗传血友病,由此,第一代将有%210αb 个女人及%210αb 个男人有血友病,血友病占总人数的百分比为 %2.22.1%0001αα=+=b a b c同理,第二代将有%21210αb ⋅个女人及%21210αb ⋅个男人有血友病,血友病占总人数的百分比为 %2.22.121%210002αα⋅=+=b a b c依次类推,第n 代将有%)21(0αb n个女人及%)21(0αb n个男人有血友病,血友病占总人数的百分比为%2.22.1)21(%)21(10001αα⋅=+=--n n n b a b c令∞→n ,则0→n c .3.解 建立决策树(如图13).图13在投资A 的决策树中,第一年投资A ,第二年投资B ,第三年投资B 的期望值最大. 在投资B 的决策树中(只在A 的决策树中②节点中的0.4,0.6分别换成0.1,0.9即可),可算得第一年投资B ,第二年投资B ,第三年投资B 的期望值是两个决策树中的最大者. 4.解 建立模型B 1——预测是油井,B 2——预测是气井,B 3——预测是无油气井.由于做取样只能得到不完全的信息,因此根据取样结果,计算出在B 1,B 2,B 3分别发生的条件下,B 1,B 2,B 3发生的概率.然后利用贝叶斯公式,计算出实际是油井、气井和废井情况下,而预测是B 1,B 2,B 3之一的概率值,若给出各种情况下的费用,计算出各个期望值即可.下面画出决策3000 0 20001000 2000 4000 4000 3000 1000 3000 3000 2000树(如图14).图14。

数学建模习题集

数学建模习题集
2.一家出版社准备在某市建立两个销售代理点,向7个区的大学生售书,每一个区的大学生(单位:千人)已经表示在图上.每个销售代理点只能向本区和一个相邻区的大学生售书,这两个销售代理点应该建在何处,才能使所能供应的大学生的数量最大建立该问题的整数线性规划模型并求解.
3.某储蓄所每天有营业时间是上午9:00到下午5:00根据经验,每天不同时间段所需要的服务员数量如下:
第一个月
第二个月
第三个月
第四个月
新飞机价格
闲置的熟练飞行员报酬
教练和新飞行员报酬(包括培训费用)
执行飞行任务的熟练飞行员报酬
休假期间的熟练飞行员报酬
如果每名熟练飞行员可以作为教练每个月指导不超过20名飞行员(包括他自己在内)进行训练,模型和结果有哪些改变
6.某公司将4种不同含硫量的液体原料(分别记为甲,乙,丙,丁)混合生产两种产品(分别记为A,B).按照生产工艺的要求,原料甲,乙,丁必须首先倒入混合池中混合,混合后的液体再分别与原料丙混合生产A,B.已知原料甲,乙,丙,丁的含硫量分别是3,1,2,1(%),进货价格分别为6,16,10,15(千元/吨);产品A,B的含硫量分别不能超过,1.5(%),售价分别为9,15(千元/吨).根据市场信息,原料甲,乙丙的供应没有限制,原料丁的供应量最多为50吨;产品A,B的市场需求量分别为100吨,200吨.问应如何安排生产
5.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗.比如洁银牙膏50g装的每支元,120g装的每支元,二者单位重量的价格比是:1,试用比例方法构造模型解释这个现象.
(1)分析商品价格C与商品重量w的关系.价格由生产成本、包装成本和其它成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。

数学建模过河

数学建模过河

一、模型假设由题中条件可解,不需假设其他外界条件二、模型构成记人、猫、鸡、米的数量分别为1x 、2x 、3x 、4x ,第k 次渡河前此岸的人、猫、鸡、米的数量分别为k S =(1x ,2x ,3x ,4x ),则彼岸的人、猫、鸡、米的数量分别为k S ’=(1-1x 、1-2x 、1-3x 、1-4x )由题中条件得在安全渡河条件下的允许状态合集S ={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0)}及其相对应的S ’。

不难验证,S 对此岸和彼岸都是安全的。

第k 次渡河时穿上的人、猫、鸡、米的数量分别为1u 、2u 、3u 、4u ,决策方案即为乘船方案k d =(1u ,2u ,3u ,4u ),允许决策合集为D ={(1,1,0,0),(1,0,1,0),(1,0,0,1),(1,0,0,0)}因为k 为奇数时船从此岸驶向彼岸,k 为偶数时船由彼岸驶回此岸,所以状态k S 随决策k d 变化的规律是()kd k k s k s 11-+=+ 求决策k d ∈D (k=1,2,...,n ),使状态k s ∈S 按照上式,由初始状态1s =(1,1,1,1)经有限步n 到达状态1+n s =(0,0,0,0)。

三、模型求解1.由于搭载对象总量较小,我们可以得出以下可行解:2.若使用MATLAB编程A向量定义为状态变量B向量定义为运载变量(1)xduhe.m文件:clear;clc;A=[1,1,1,1];B=[1,0,1,0;1,1,0,0;1,0,0,1;1,0,0,0];M=[1,1,1,0;0,0,0,1;1,1,0,1;0,0,1,0;1,0,1,1;0,1,0,0;1,0,1,0;0,1,0,1]; duhe(A,B,M,1);(2)、duhe.m文件:function duhe(L,B,M,s); [h,l]=size(L);for k=s:hfor i=1:4C=mod(L(k,:)+B(i,:),2);if C==[0,0,0,0]print(B(i,:),C,s);fprintf('渡河成功\n\n');break;else if fuhe(C,M)==1print(B(i,:),C,s);S=[L;C];if Panduan(S)==1duhe(S,B,M,s+1);elsefprintf('此渡河方案不可行\n\n'); endendendendEnd(3)、fuhe.m文件:function y=fuhe(C,M)y=0;for i=1:8if(C==M(i,:))y=1;break;endend(4)、Panduan.m文件:function z=Panduan(S)z=1;[m,n]=size(S);for p=1:mfor q=(p+1):mif S(p,:)-S(q,:)==[0,0,0,0]z=0;break;endendend(5)、print.m文件:function print(K,C,s)fprintf('第%d次渡河:',s);if K(1)==1fprintf('人, ');endif K(2)==1fprintf('猫, ');endif K(3)==1fprintf('鸡, ');endif K(4)==1fprintf('米, ');endif C(1)==0fprintf('从左岸到达右岸\n');elsefprintf('从右岸回到左岸\n');End四、模型分析该问题的最优方案是:①人先带鸡过河,然后人再回来,把米带过河,然后把鸡运回河岸,人再把猫带过河,最后人回来把鸡带过去。

数学模型程序代码-Matlab-姜启源-第一章-建立数学模型

数学模型程序代码-Matlab-姜启源-第一章-建立数学模型

数学模型程序代码-M a t l a b-姜启源-第一章-建立数学模型-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第1章 建立数学模型1.(求解,编程)如何施救药物中毒p10~11人体胃肠道和血液系统中的药量随时间变化的规律(模型):d ,(0)1100d (,0)d ,(0)0d xx x ty x y y tλλμλμ⎧=-=⎪⎪>⎨⎪=-=⎪⎩ 其中,x (t )为t 时刻胃肠道中的药量,y (t )为t 时刻血液系统中的药量,t =0为服药时刻。

1.1(求解)模型求解p10~11要求:① 用MATLAB 求解微分方程函数dsolve 求解该微分方程(符号运算)。

② 用MATLAB 的化简函数simplify 化简所得结果。

③ 结果与教材P11上的内容比较。

提示:dsolve 和simplify 的用法可用help 查询。

建议在命令窗口中操作。

1.2(编程)结果分析p11已知λ=0.1386, μ=0.1155,将上题中得到x (t )和y (t )两条曲线画在同一个图形窗口内。

参考图形如下。

MATLAB命令plot, fplot, hold on/off, grid on/off, xlabel, ylabel, text 。

★ 编写的程序和运行结果:2.(编程,验证)商人们怎样安全过河p8~9三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行。

随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。

但是如何乘船的大权掌握在商人们手中。

商人们怎样才能安全渡河呢?[模型构成]决策:每一步(此岸到彼岸或彼岸到此岸)船上的人员。

要求:在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。

x k第k次渡河前此岸的商人数y k第k次渡河前此岸的随从数x k , y k=0,1,2,3; k=1,2,⋯过程的状态s k=(x k , y k)允许状态集合S={(x, y)|x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}u k第k次渡船上的商人数v k第k次渡船上的随从数u k , v k=0,1,2; k=1,2,⋯决策d k=(u k , v k)允许决策集合D={(u , v)|u+v =1, 2}状态转移律s k+1=s k+(-1)k d k[多步决策问题]求d k∈D(k=1, 2, ⋯, n), 使s k∈S, 并按转移律由s1=(3,3) 到达s n+1=(0,0)。

人、猫、鸡、米安全过河问题

人、猫、鸡、米安全过河问题

实验一 人、猫、鸡、米安全过河问题摘要:人带着猫、鸡、米过河,除了需要人划船外船至多能载猫、鸡、米三者之一。

而当人不在场时,猫吃鸡,鸡吃米。

请设计一个过河方案,使人、猫、鸡、米安全渡过河。

一、问题的重述人带着猫、鸡、米过河,船触需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。

试设计一个安全过河方案,并使渡河次数尽量地少。

二、基本假设及符号说明基本假设:(1)当人不在场的时候,动物在没有可以吃的东西时是不会离开的。

符号说明:人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。

记s 的反状态为()4321'1,1,1,1x x x x s ----=,决策为乘船方案,记作()4321,,,u u u u d =,当i 在船上时记1=i u ,否则记0=i u , 记第k 次渡河前此岸的状态为k s ,第k 次渡河的决策为k d ,三、 问题分析安全过河问题可以看着是一个多部决策的过程。

每作出一步决策,都必须保证船、人、猫、鸡、米能满足题设条件。

否则,不仅难以实现过河的最优化,而且还容易出现事物的不安全性。

因此,在保证安全的前提下,即猫、鸡在一起时,人要在场,鸡、米在一起时,人也要在场,用状态变量s 表示某一岸的状况,决策变量d 表示是乘船方案,我们容易得到s 和d 的关系,其中问题的转化要在允许变化范围内,确定每一步的决策关系,从而达到渡河的最优目标。

四、模型的建立建立模型:人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。

记s 的反状态为()4321'1,1,1,1x x x x s ----=,允许状态集合为()()()()(){}0,1,0,1,1,1,0,1,1,0,1,1,0,1,1,1,1,1,1,1=S (1) 以及他们的5个反状态。

人狼鸡脑筋急转弯

人狼鸡脑筋急转弯

人狼鸡脑筋急转弯
有一个农夫带着一袋米、一只鸡和一只狼,要过河,河上有一条船,可是一次农夫只能拿一样东西过去,到底要怎么办呢?
1、先带鸡到对岸。

(防鸡吃米)
2、再带狼到对岸,返回时把第一次带到对岸的鸡带回来。

(防狼吃鸡)
3、把米带到对岸,鸡留在原地。

(狼不吃米)
4、最后再把鸡带到对岸。

楚楚的生日在三月三十日,请问是哪年的三月三十日?答案:每年的三月三十日。

大灰狼拖走了羊妈妈,小羊为什么也不声不响地跟了去?答案:小羊还没有出生。

一只鸡,一只鹅,放冰箱里,鸡冻死了,鹅却活着,为什么?答案:是企鹅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人带猫,鸡,米过河问题?
姓名:刘浩
学号:0504100105
专业:统计学
1,问题的提出
模仿”商人过河”模型,做下面游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米。

设计一个过河方案,建立数学模型,并使渡河次数尽量地少。

2问题的分析
因为这是个简单问题,研究对象少所以可以用穷举法,简单运算和图论即可解题。

从状态(1,1,1,1)经过奇数次运算变为状态(0,0,0,0)的状态转移过程为什么是奇数次?我们注意到过河有两种,奇数次的为从南岸到北岸,而偶数次的为北岸回到南岸,因此得到下述转移方程,所以最后应该是事件结束时状态转移数为奇数次。

3基本假设:
3,1假设船,划船的人外至多能载猫、鸡、米三者之一。

3,2当人不在场时,猫一定会吃鸡、鸡一定会吃米。

4定义符号说明:
我们将人,狗,鸡,米依次用四维向量中的分量表示,当一物在此岸时,相应分
量记为1,在彼岸时记为0.如向量(1,0,1,0)表示人和鸡在此案,狗和米在彼岸,并将这些向量称为状态向量。

5模型的建立:
我们将人,狗,鸡,米依次用四维向量中的分量表示,!即(人, 狗, 鸡, 米)。

状态向量:各分量取1表示南岸的状态,例如(1,1,1,1)表示它们都在南岸,(0,1,1,0)表示狗,鸡在南岸,人,米在北岸;由于问题中的限制条件,有些状态是允许的,有些状态是不允许的。

凡问题可以允许存在的状态称为可取状态。

对本问题来说,可取状态向量可以用穷举法列出来:
(1, 1, 1, 1),(1, 1, 1, 0),(1, 1, 0, 1),(1, 0, 1, 1),(1, 0, 1, 0);(,0, 0, 0, 0),(0, 0, 0, 1),(0, 0, 1, 0),(0, 1, 0, 0),(0,1,0,1).
6 模型的求解:
经过连线求解可以知道有以下图形:
上图又可以简化为:
既:
7 结果分析
从图看出有二解,分别是经过(0,0,0,1)到(0,0,0,0)和经过(0,1,0,0)到(0,0,0,0)而它们是等优的。

8 模型的评价与改进:
本算法将研究对象用四维向量中的分量表示运用穷举法找出所有可取状态向量再用一些基础运算方法将结果列出来再以图形表示出来。

整个过程易懂合理。

这里用的是图论方法解题。

可以用别的方法试试!。

相关文档
最新文档