半导体器件电子学教学大纲(精)
电子电路分析与设计-半导体器件及其基本应用第三版教学设计
电子电路分析与设计-半导体器件及其基本应用第三版教学设计一、教学目标本次课程教学旨在使学生理解半导体器件的基本工作原理、常用类型、主要特性参数和基本应用,以及掌握半导体器件的基础电路计算方法和应用技巧,为后续电路设计与分析课程打下基础。
二、教学内容1. 半导体物理基础1.1 常见的半导体材料和性质分析1.2 PN结的基本构成、硅PN结的特性及其工作原理1.3 热平衡状态下PN结结电容、逆向击穿及其应用1.4 光电二极管和光敏电阻的基本原理及其应用2. 半导体二极管及其应用2.1 硅PN结二极管的基本特性参数、符号标志和重要性能指标2.2 压敏二极管、稳压二极管和二极管电路的设计和分析2.3 高频二极管应用技术、振荡器和测量仪器中的应用3. 半导体三极管及其应用3.1 NPN和PNP三极管的基本结构和性质分析3.2 放大三极管和稳压三极管的工作原理和应用技巧3.3 交流工作状态下的三极管单管和共射/共基/共集放大电路分析4. 可控硅和场效应晶体管4.1 可控硅的基本原理、结构和性能参数分析4.2 可控硅的应用:触发电路和直流控制电路4.3 动态场效应晶体管和MOSFET的特性、工作原理及其应用技巧5. 电路计算和分析5.1 半导体器件的基本电路计算方法和步骤5.2 基于器件的实际参数,设计和计算半导体电路的基本原理和技巧5.3 通过电路仿真软件验证理论设计的正确性和实用性三、教学方法本课程采用网络课堂教学的方式,学生通过在线观看视频,完成在线测验和互动交流,深入理解课程核心内容的基本原理和实践操作技巧。
四、教学资源本课程的主要教学资源包括以下内容:1.讲授视频:通过网络课堂教学平台提供,供学生随时观看和复习。
2.电子教材:根据教学大纲编写的电子教材,方便学生随时查阅和学习。
3.实验器材和电路仿真软件:为学生提供必要的实验器材和电路仿真软件,帮助学生深入理解半导体器件的工作原理和应用技巧。
4.课后作业:通过网络课堂教学平台提交,检验学生对课程内容的理解和应用能力。
半导体光电子材料与器件教学大纲
附件2:《半导体光电子材料与器件》教学大纲(理论课程及实验课程适用)一、课程信息课程名称(中文):半导体光电子材料与器件课程名称(英文):Semiconductor Optoelectronic materials and devices课程类别:选修课课程性质:专业方向课计划学时:32(其中课内学时:40 ,课外学时:0)计划学分:2先修课程:量子力学、物理光学、固体物理、激光原理与技术、半导体物理等选用教材:《半导体物理学简明教程》,孟庆巨胡云峰等编著,电子工业出版社,2014年6月,非自编;普通高等教育“十二五”规划教材,电子科学与技术专业规划教材开课院部:理学院适用专业:光电信息科学与工程、微电子学等专业课程负责人:梁春雷课程网站:无二、课程简介(中英文)《半导体光电子材料与器件》是光电信息科学与工程本科专业的专业课。
学习本课程之前,要求学生已经具有量子力学、热力学与统计物理、固体物理和半导体物理方面的知识。
本课程论述基于电子的微观运动规律为基础的各种半导体器件的工作原理。
其核心内容是硅光电子器件的工作原理和设计方法。
本课程的目的是让学生了解和掌握半导体器件相关的物理知识,熟练掌握各种常见半导体器件参数与器件的结构参数和材料参数之间的关系。
能够使用典型的光电子器件进行光电探测。
初步具备新型器件的跟踪研究能力和自主开发能力。
Semiconductor Optoelectronic Materials and Devices is the course designed for the undergraduate students of optoelectronic information science and engineering specialty. Before taking this class, the students are required to have the knowledge of quantum mechanics, thermodynamics and statistical physics, solid state physics and semiconductor physics.The class will discuss the principles of working of all kinds of Semiconductor devices based on the microscopic movement of electron. The main content will be the principle of working and the method of design of optoelectronic devices base on silicon. The purpose is to let the students understand and master physical knowledge related to the semiconductor devices, skillfully master all kinds of relations of semiconductor devices parameters with structural parameter and material parameter. The students are requires to be able to employ some typical devices for photoelectric detection, also they will be able to have the basic ability to follow and develop new devices.三、课程教学要求序号专业毕业要求课程教学要求关联程度1 工程知识本课程注重培养学生理论联系实际的能力、科学研究的思想方法、创新能力以及工程实践能力等。
18_功率半导体器件应用教学大纲
《功率半导体器件应用》课程教学大纲课程编号:课程名称:功率半导体器件应用/ Applications of Power Semiconductor Devices 课程总学时/学分:48/3.0(其中理论36学时,实验12学时)适用专业:电子科学与技术专业一、教学目的和任务功率半导体器件应用是电子科学与技术本科专业必修的一门专业核心课程。
功率半导体器件应用讲述功率器件(分立的和集成)的结构、功能、特性和特征,在此基础上分析当前电力电子技术中使用的各种类型功率半导体器件,包括功率晶体管、晶闸管、各类晶闸管及其应用、静电感应功率器件、双极-MOS功率器件,并包含了可靠工作条件,更进一步讲述其重要应用。
根据电子科学与技术本科专业的特点和应用需要,在掌握功率半导体器件基本原理的基础上,使学生对功率半导体器件的应用有一个全面而系统的认识,并培养学生在工程实践中的应用能力,提高学生的创新能力。
二、教学基本要求通过对计算机控制技术课程的学习,要求学生:(1)了解如何使用和选择功率半导体,以及半导体和PN结的物理特性以及功率器件可靠工作的条件。
(2)熟悉功率器件的可靠工作条件以及在电力电子中的应用。
(3)掌握功率晶体管、晶闸管、各类晶闸管及其应用、金属-氧化物-半导体场效应功率晶体管、双极-MOS功率器件的结构、功能及其应用。
(4)掌握功率晶体管、晶闸管、各类晶闸管及其应用、金属-氧化物-半导体场效应功率晶体管、双极-MOS功率器件的结构、功能及其应用。
三、教学内容与学时分配第一章(知识领域1):功率半导体器件应用概述(2学时)。
(1)知识点:轨道交通系统中的应用;新能源技术中的应用;智能电网中的应用。
(2)重点与难点:重点是轨道交通系统中的应用、新能源技术中的应用和智能电网中的应用。
第二章(知识领域2):双极结型功率晶体管(2学时)。
(1)知识点:双极结型晶体管结构的基本特性;功率晶体管的基本特性;功率晶体管的动态行为;功率达林顿组合;功率晶体管的应用。
半导体物理教学大纲
半导体物理教学大纲
一、 半导体材料的基本概念与性质
1. 半导体的定义、特点及分类
2. 半导体材料的晶体结构和晶体生长方法
3. 掺杂及其对半导体性质的影响
二、 pn结及其应用
1. pn结的成因和特性
2. pn结的电学特性和优点
3. pn结的应用:二极管、光电二极管、太阳能电池等
三、 半导体器件及其原理
1. 晶体管的结构和工作原理
2. 晶体管的DC特性和AC特性
3. 晶体管的应用:放大器、开关等
4. 其他半导体器件:场效应晶体管、可控硅、二极管阵列等
四、 光电子学与半导体激光器
1. 光电子学基础知识:光的本质、光与电磁波理论、波粒二象性等
2. 半导体激光器的结构和工作原理
3. 半导体激光器的分类和应用
五、 纳米半导体物理
1. 纳米半导体的概念和特性
2. 纳米半导体的制备方法和表征技术
3. 纳米半导体的应用:量子点太阳能电池、量子点发光等
六、 实验教学
1. pn结的特性实验
2. 晶体管的放大和开关实验
3. 光电二极管和半导体激光器实验
4. 半导体物理模拟实验
以上为半导体物理教学大纲,旨在培养学生对半导体材料、器件及其应用的基本认识与理解,掌握半导体物理的基本原理,熟练掌握半导体器件的设计与实现。
通过实验教学,培养学生的实验操作能力和分析解决问题的能力,增强学生的探究精神和创新意识,助力学生在未来的学习和研究中取得更好的成绩与实践经验。
17_功率半导体器件基础教学大纲
《功率半导体器件基础》课程教学大纲课程编号:课程名称:功率半导体器件基础/ Fundamentals of Power Semiconductor Devices 课程总学时/学分:48/3.0(其中理论36学时,实验12学时)适用专业:电子科学与技术专业一、教学目的和任务功率半导体器件基础是电子科学与技术本科专业必修的一门专业核心课程。
功率半导体器件基础讲述功率半导体器件的原理、结构、特性和可靠性技术,在此基础上分析当前电力电子技术中使用的各种类型功率半导体器件,包括二极管、晶闸管、MOSFET、IGBT和功率集成器件,并包含了制造工艺、测试技术和损坏机理分析。
根据电子科学与技术本科专业的特点和应用需要,使学生对功率半导体器件的基础理论和最新发展有一个全面而系统的认识,并培养学生在工程实践中的应用能力,提高学生的创新能力。
二、教学基本要求通过对计算机控制技术课程的学习,要求学生:(1)了解如何使用和选择功率半导体,以及半导体和PN结的物理特性以及功率器件的工艺。
(2)熟悉功率器件的可靠性和封装,以及在电力电子系统中的应用。
(3)掌握pin二极管、双极型晶体管、晶闸管、MOS晶体管、IGBT的结构与功能模式及物理特性。
三、教学内容与学时分配第一章(知识领域1):功率半导体器件概述(2学时)。
(1)知识点:装置、电力变流器和功率半导体器件;使用和选择功率半导体;功率半导体的应用。
(2)重点与难点:重点是装置、电力变流器和功率半导体器件;使用和选择功率半导体;功率半导体的应用。
第二章(知识领域2):半导体的性质(2学时)。
(1)知识点:晶体结构;禁带和本征浓度;能带结构和载流子的粒子性质;掺杂的半导体;电流的输运;半导体器件的基本功式。
(2)难点与重点:重点是晶体结构、禁带和本征浓度和载流子的粒子性质第三章(知识领域3):PN结(2学时)。
(1)知识点:热平衡状态下的PN结;PN结的I-V特性;PN结的阻断特性和击穿;发射区的注入效率;PN结的电容。
17_功率半导体器件基础教学大纲
功率半导体器件基础》课程教学大纲课程编号:课程名称:功率半导体器件基础/ Fundamentals of Power Semiconductor Devices 课程总学时/ 学分:48/3.0 (其中理论36 学时,实验12 学时) 适用专业:电子科学与技术专业一、教学目的和任务功率半导体器件基础是电子科学与技术本科专业必修的一门专业核心课程。
功率半导体器件基础讲述功率半导体器件的原理、结构、特性和可靠性技术,在此基础上分析当前电力电子技术中使用的各种类型功率半导体器件,包括二极管、晶闸管、MOSFET 、IGBT 和功率集成器件,并包含了制造工艺、测试技术和损坏机理分析。
根据电子科学与技术本科专业的特点和应用需要,使学生对功率半导体器件的基础理论和最新发展有一个全面而系统的认识,并培养学生在工程实践中的应用能力,提高学生的创新能力。
二、教学基本要求通过对计算机控制技术课程的学习,要求学生:(1)了解如何使用和选择功率半导体,以及半导体和PN结的物理特性以及功率器件的工艺。
( 2)熟悉功率器件的可靠性和封装,以及在电力电子系统中的应用。
( 3)掌握pin 二极管、双极型晶体管、晶闸管、MOS 晶体管、IGBT 的结构与功能模式及物理特性。
三、教学内容与学时分配第一章(知识领域1):功率半导体器件概述( 2 学时)。
( 1)知识点:装置、电力变流器和功率半导体器件;使用和选择功率半导体;功率半导体的应用。
( 2)重点与难点:重点是装置、电力变流器和功率半导体器件;使用和选择功率半导体;功率半导体的应用。
第二章(知识领域2):半导体的性质( 2 学时)。
( 1)知识点:晶体结构;禁带和本征浓度;能带结构和载流子的粒子性质;掺杂的半导体;电流的输运;半导体器件的基本功式。
( 2)难点与重点:重点是晶体结构、禁带和本征浓度和载流子的粒子性质第三章(知识领域3):PN 结(2 学时)。
(1)知识点:热平衡状态下的PN结;PN结的I-V特性;PN结的阻断特性和击穿;发射区的注入效率;PN 结的电容。
半导体物理与器件教学大纲
半导体物理与器件教学大纲半导体物理与器件教学大纲随着科技的迅猛发展,半导体技术在各个领域都起到了重要的作用。
从电子设备到通信系统,从太阳能电池到医疗仪器,半导体器件无处不在。
因此,对于学习半导体物理与器件的教学大纲的设计变得尤为重要。
本文将探讨半导体物理与器件教学大纲的设计原则和内容。
一、教学大纲的设计原则1. 结合实践与理论:半导体物理与器件是一门实践性很强的学科,学生需要通过实验和实际操作来加深对理论知识的理解。
因此,在教学大纲的设计中,要充分考虑实践环节的安排,使学生能够亲自动手进行实验和操作。
2. 渐进式教学:半导体物理与器件的知识体系庞大而复杂,学生需要逐步建立起完整的知识框架。
因此,在教学大纲的设计中,要将知识点按照难易程度进行合理的排序,循序渐进地进行教学。
3. 理论与应用相结合:半导体物理与器件的理论知识需要与实际应用相结合,才能更好地培养学生的创新能力和实践能力。
因此,在教学大纲的设计中,要注重理论知识与实际应用的结合,引导学生将所学知识应用于实际问题的解决中。
4. 多媒体辅助教学:半导体物理与器件的教学内容较为抽象,通过多媒体辅助教学可以更好地帮助学生理解和掌握知识。
因此,在教学大纲的设计中,要充分利用多媒体技术,设计适合学生学习的教学资源。
二、教学内容的安排1. 半导体物理基础知识:介绍半导体物理的基本概念、半导体材料的特性、能带理论等。
通过理论知识的学习,学生可以对半导体物理有一个整体的认识。
2. 半导体器件的基本原理:介绍半导体器件的基本结构和工作原理,包括二极管、晶体管、场效应管等。
通过学习器件的基本原理,学生可以了解半导体器件的基本构造和工作方式。
3. 半导体器件的制造工艺:介绍半导体器件的制造工艺,包括晶体生长、掺杂、薄膜沉积、光刻等。
通过学习制造工艺,学生可以了解半导体器件的制造过程和关键技术。
4. 半导体器件的应用:介绍半导体器件在各个领域的应用,包括电子设备、通信系统、太阳能电池、医疗仪器等。
半导体光电子学第三版教学大纲
半导体光电子学第三版教学大纲课程介绍半导体光电子学是材料科学家、电子工程师和物理学家中非常重要的一个课程。
本课程将涵盖各种半导体光电子学的基础知识和基本理论,包括材料结构、能带理论、载流子输运和激子。
此外,本课程还会介绍半导体激光器、探测器、光伏器件和光通讯器件等方面的知识。
教材说明本课程教材为《半导体光电子学》第三版,作者包括马丁·A·格林、C·J·中村和古尔德·卡尔。
该教材是半导体光电子学领域的经典教材之一,内容非常丰富,对于深入了解半导体光电子学相关知识非常有用。
课程安排以下是本课程的课程安排:第一周:材料结构和元素半导体此周主要介绍了半导体的基础知识,包括材料结构、材料的各种特性以及基于半导体的各种器件技术。
第二周:能带理论本周主要介绍了半导体中的能带理论,这是理解半导体物理学中非常重要的一部分,学习过后能够帮助学生更好地理解激子与载流子的作用。
第三周:载流子输运和复合本周将介绍载流子输运和复合的基本知识,这是半导体物理学中比较复杂的部分之一。
我们将讨论电场、热平衡、掺杂和多子参与的物理模型。
第四周:激子本周将介绍激子的基本知识,激子是光电器件中非常重要的一部分,学习过后能够帮助学生深入了解激光器件和其他光电器件。
第五周:激光器件本周将介绍激光器件和半导体器件的制造工艺,包括简单的半导体激光器件、半导体激光器设备和高速半导体激光器件。
第六周:探测器本周将介绍光探测器,包括简单的PIN探测器、法布里-珀罗型光发射器探测器、双异质结探测器、Ge探测器、量子阱探测器、光电流探测器等探测器。
第七周:光伏器件本周将介绍太阳能电池、照明器件以及其他光伏器件,包括多结太阳能电池、有机太阳能电池、半导体发光二极管、有机发光二极管等。
第八周:光通讯器件本周将介绍光通讯器件,包括LED和LD的基本原理、光收发模块的结构等。
总结本课程将覆盖半导体光电子学的基础知识和基本理论,为想深入了解该领域的学者们提供了有力的支持和指导。
《半导体材料与器件》课程教学大纲(本科)
《半导体材料与器件》课程教学大纲课程编号:课程名称:半导体材料与器件英文名称: Semiconductor materials and devices课程类型:专业课课程要求:选修学时/学分:32/2 (讲课学时:32 )适用专业:功能材料一、课程性质与任务半导体材料与器件是现代自动化、微电子学、计算机、通讯等设备仪器研制生产的基础材料及核心部件,具有专门的生产设备、工艺和方法,在现代各方面得到大量的研究和应用,半导体材料与器件是功能材料工程专业一门主要的专业方向课。
通过本课程的学习使学生掌握半导体材料与器件的基础理论、主要的生产技术、工艺原理和方法。
为今后从事相关工作奠定良好的基础。
二、课程与其他课程的联系本课程涉及功能材料的晶体结构和物理性能,应在《材料科学基础》《功能材料物理基础》和《材料物理化学》课程之后进行授课。
三、课程教学目标1.掌握半导体材料物理的基本理论,硅、信和化合物半导体材料结构和性能。
(支撑毕业能力要求1, 4, 5)2.了解和掌握常见半导体材料的结构与性能的关系,能够正确选择和使用半导体材料,能够提高和改善常见半导体材料的相关性能。
(支撑毕业能力要求1, 3, 4, 5, 7)3.掌握利用各种电子材料制备双极性晶体管、MOS场效应晶体管、结型场效应晶体管及金属-半导体场效应晶体管、功率MOS场效应晶体管、绝缘栅双极晶体管IGBT、LED和厚、薄膜集成电路的技术及生产工艺,能够对设计和实验结果进行综合分析。
(支撑毕业能力要求3, 4, 5, 12)4.能够使学生充分利用所学的半导体材料知识,在半导体和微电子材料领域研究、开发、生产高质量器件,为信息行业发展提供基础硬件支持,为国民经济服务。
(支撑毕业能力要求3, 4, 5, 7)四、教学内容、基本要求与学时分配五、其他教学环节(课外教学环节、要求、目标)无六、教学方法本课程以课堂理论教学为主,通过理论讲授、提问、讨论、演示等教学方法和手段让学生理解授课的基本内容,结合完成作业等教学手段和形式完成课程教学任务。
半导体集成电路课程教学大纲
《半导体集成电路》课程教学大纲(包括《集成电路制造基础》和《集成电路原理及设计》两门课程)集成电路制造基础课程教学大纲课程名称:集成电路制造基础英文名称:The Foundation of Intergrate Circuit Fabrication课程类别:专业必修课总学时:32 学分:2适应对象:电子科学与技术本科学生一、课程性质、目的与任务:本课程为高等学校电子科学与技术专业本科生必修的一门工程技术专业课。
半导体科学是一门近几十年迅猛发展起来的重要新兴学科,是计算机、雷达、通讯、电子技术、自动化技术等信息科学的基础,而半导体工艺主要讨论集成电路的制造、加工技术以及制造中涉及的原材料的制备,是现今超大规模集成电路得以实现的技术基础,与现代信息科学有着密切的联系。
本课程的目的和任务:通过半导体工艺的学习,使学生掌握半导体集成电路制造技术的基本理论、基本知识、基本方法和技能,对半导体器件和半导体集成电路制造工艺及原理有一个较为完整和系统的概念,了解集成电路制造相关领域的新技术、新设备、新工艺,使学生具有一定工艺分析和设计以及解决工艺问题和提高产品质量的能力。
并为后续相关课程奠定必要的理论基础,为学生今后从事半导体集成电路的生产、制造和设计打下坚实基础。
二、教学基本要求:1、掌握硅的晶体结构特点,了解缺陷和非掺杂杂质的概念及对衬底材料的影响;了解晶体生长技术(直拉法、区熔法),在芯片加工环节中,对环境、水、气体、试剂等方面的要求;掌握硅圆片制备及规格,晶体缺陷,晶体定向、晶体研磨、抛光的概念、原理和方法及控制技术。
2、掌握SiO2结构及性质,硅的热氧化,影响氧化速率的因素,氧化缺陷,掩蔽扩散所需最小SiO2层厚度的估算;了解SiO2薄膜厚度的测量方法。
3、掌握杂质扩散机理,扩散系数和扩散方程,扩散杂质分布;了解常用扩散工艺及系统设备。
4、掌握离子注入原理、特点及应用;了解离子注入系统组成,浓度分布,注入损伤和退火。
《电子技术》课程教学大纲(本科)
《电子技术》课程教学大纲一、课程的地位与课程目标(-)课程地位《电子技术》是自动化、电气信息类专业的重要学科基础课,通过本课程的学习,使学生掌握常用半导体器件的特性、参数及模型,掌握基本电子电路的组成、工作原理和基本分析方法和工程计算方法,具备对简单电子系统进行分析、计算和实验研究的初步能力,为有关后续课程打下坚实的、必要的电子电路的基础。
(二)课程目标1.课程从半导体的基本概念出发,使学生掌握常用电子器件的工作特性和主要参数,掌握放大电路、集成运算放大器、反馈及振荡电路、直流电源、门电路及组合逻辑电路、触发器及时序电路的典型形式、基本知识和分析方法,并具有简单电子线路分析、计算及设计能力。
2.课程使学生掌握阅读和分析电子线路图的方法,初步具备查阅电子器件和集成电路手册的能力,从而认识单元电路、集成电路在实际电路中的应用,建立分析、计算和设计电子线路的基本思路和方法,达到提高学生综合分析问题和实际解决问题的能力。
3.通过本课程的学习,进一步树立学生严肃认真的科学作风和理论联系实际的工程观点,注重电子线路分析及设计能力的培养,培养学生具有科学思维、分析计算、实验研究及科学归纳的能力,培养学生求真务实、踏实严瑾、实践创新、追求卓越的精神。
二、课程目标达成的途径与方法1.课程教学以课堂教学为主,结合自主学习和后续的实验教学,使学生获得电子技术方面的基本理论、基本知识和基本技能,培养学生分析问题和解决问题的能力。
在课堂教学中,充分引入互动环节和大班上课小班讨论等形式,提高教学效果。
2.针对某些较为容易或先期讲解较为充分的知识点,列出部分内容作为学生自主学习环节, 训练、形成良好的专业知识学习方法,培养学生自主学习意识和能力。
3.充分利用各种网络教学平台、教学视频、教学辅助材料及网络资源链接等不断提高教学质量。
三、课程目标与相关毕业要求的对应关系注:1.支撑强度分别填写H、M或L (其中H表示支撑程度高、M为中等、L为低);2.毕业要求须根据课程所在专业培养方案进行描述(见培养方案)。
《半导体物理与器件》教学大纲
《半导体物理与器件》课程教学大纲一、课程基本信息英文名称 Semiconductor Physics and Devices 课程代码 PHY2028课程性质 专业必修课程 授课对象 物理学 学 分 4学分 学 时 72学时 主讲教师 修订日期 2021.9指定教材 施敏,李明达(著)王明湘,赵鹤鸣(译),《半导体器件物理与工艺》,苏州大学出版社,2014年二、课程目标(一)总体目标:本课程的知识目标:掌握半导体物理学的基础知识;掌握典型半导体器件的工作原理和制备方法;了解半导体科学的发展历史和未来发展趋势;了解半导体物理与器件在现代科技中的重要意义。
能力目标:掌握半导体科学的研究方法和前沿进展,提高解决交叉学科领域复杂问题的能力,锤炼科学思维能力和科研创新能力。
素质目标:掌握辩证唯物主义基本原理,建立科学的世界观和方法论;富有科学精神,勇于在物理学前沿及交叉领域探索、创新与攀登。
(二)课程目标:课程目标1:了解半导体科学的发展历史和未来发展趋势;了解半导体物理与器件在现代科技中的具体应用;了解半导体科学前沿进展和应用前景;使学生认识到半导体理论在现代科学研究领域的重要性,掌握辩证唯物主义基本原理,建立科学的世界观和方法论。
课程目标2:掌握半导体物理基本原理,学会运用能带理论分析半导体的光电特性;掌握载流子在平衡和非平衡状态下的性质;训练学生运用物理学基本原理分析复杂系统的能力,培养和提高学生建立物理图像的能力和解决交叉学科领域问题的能力。
课程目标3:掌握典型半导体器件的工作原理和制备方法;了解典型半导体器件的独特性和应用范围;了解先进半导体制造关键工艺技术;帮助学生建立科学观念和科学素养;培养和提高学生对应用物理科学的兴趣,锤炼科学思维能力和科研创新能力。
(三)课程目标与毕业要求、课程内容的对应关系表1:课程目标与课程内容、毕业要求的对应关系表课程目标对应课程内容对应毕业要求课程目标1 第一章 能带和热平衡载流子浓度第二章 载流子输运现象第三章 p-n结毕业要求3:了解物理学前沿和发展动态,新技术中的物理思想,熟悉物理学新发现、新理论、新技术对社会的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《半导体器件电子学》教学大纲
课程编号:MI3221009
课程名称:半导体器件电子学英文名称:Electronics of Semiconductor Devices 学时:46 学分:3
课程类型:限选课程性质:专业课
适用专业:微电子学先修课程:固体物理,半导体物理
开课学期:6 开课院系:微电子学院
一、课程的教学目标与任务
目标:本课程是微电子学专业的基础课。
通过本课程的学习,掌握金属-半导体接触、半导体表面及MIS结构、异质结,半导体的光、热、磁和压阻等物理物理与电学特性,为后续课程的学习打好基础。
任务:以半导体的晶体结构和能带理论、载流子的输运理论为基础,系统掌握金属半导体接触、异质结、半导体表面及MIS结构等的基本概念、基本物理与电学特性,熟悉半导体光、热、磁、压阻等各种物理现象,了解金属-半导体接触、MIS结构、异质结的应用及其当前的技术发展。
二、本课程与其它课程的联系和分工
本课程的先修课程是固体物理、半导体物理。
三、课程内容及基本要求
(一) 金属和半导体的接触 ( 8学时)
具体内容:金属半导体接触及其能级图,金属半导体接触整流理论,少数载流子的注入和欧姆接触。
1.基本要求
(1)掌握金属半导体接触所形成的能级图。
(2)掌握金属半导体接触整流理论。
(3)熟悉少数载流子的注入和欧姆接触。
2.重点、难点
重点:掌握金属半导体接触所形成的能级图。
难点:金属半导体接触整流特性。
3.说明:金属半导体接触在半导体器件和集成电路的制作中具有很重要的作用,在超高
频和大功率器件中,欧姆接触是设计和制造中的关键问题之一。
(二)半导体表面与MIS结构(10学时)
具体内容:表面态、表面电场效应,MIS结构的电容-电压特性,硅-二氧化硅系统的性质,表面电导及迁移率,表面电场对p-n结特性的影响。
1.基本要求
(1)熟悉表面态的概念及引起表面态的原因。
(2)掌握理想MIS结构在各种外加电压下的表面势和空间电荷分布。
(3)掌握MIS结构的电容-电压特性。
(4)掌握硅-二氧化硅系统的性质。
(5)了解表面电导及迁移率以及表面电场对p-n结特性的影响。
2.重点、难点
重点:了解半导体表面状态,表面电场效应及MIS的电容-电压特性。
难点:半导体表面势与表面状态。
3.说明:研究半导体表面现象对于改善器件性能、提高器件稳定性,以及指导人们探索
新型器件等有着十分重要的意义。
(三)异质结( 8学时)
具体内容:异质结及其能带图,异质结的电流输运机构,异质结在器件中的应用,半导体超晶格。
1.基本要求
(1)熟练掌握异质结的定义、特征和类型。
(2)掌握异质结的能带结构和电流输运机构。
(3)了解异质结在器件中的应用。
(4)了解超晶格的基本概念。
2.重点、难点
重点:异质结的能带图,电流输运机构。
难点:异质结的能带结构,异质结的电流输运机构
3.说明:异质结器件具有高速/高性能优势,是新型的、有发展前途的半导体器件。
(四)半导体的光学性质和光电与发光现象( 10学时)
具体内容:半导体的光学常数,半导体的光吸收,半导体的光电导,半导体的光生伏特效应,半导体发光,半导体激光。
1.基本要求
(1)掌握半导体的光吸收、光电导、光生伏特效应、半导体发光等物理概念。
(2)掌握半导体的吸收、光电导、光生伏特效应和发光等效应。
(3)了解半导体激光的基本原理和物理过程。
2.重点、难点
重点:掌握半导体的光电特性。
难点:半导体的光生伏特效应、半导体发光。
3.说明:半导体的官学特性是半导体光电子器件的基础。
(五)半导体的热电性质(4学时)
具体内容:热电效应的一般描述,半导体的温差电动势率,半导体的珀耳帖效应,半导体的汤姆孙效应及半导体的热导率。
1.基本要求
(1)熟悉赛贝克效应、珀耳帖效应和汤姆孙效应的一般描述。
(2)掌握产生赛贝克效应、珀耳帖效应和汤姆孙效应的机理。
(3)掌握半导体的热导率。
2.重点、难点
重点:产生赛贝克效应、珀耳帖效应和汤姆孙效应的机理,半导体的热导率。
难点:产生赛贝克效应、珀耳帖效应和汤姆孙效应的机理。
3.说明:半导体的热电性质在温差发电、温差致冷方面获得了发展。
(六)半导体磁和压阻效应(6学时)
具体内容:半导体的霍耳效应、磁阻效应、磁光效应、量子化霍耳效应、热磁效应、光磁电效应、压阻效应和声电效应。
1.基本要求
(1)掌握半导体的霍耳效应、磁阻效应、热磁效应、光磁电效应和压阻效应。
(2)了解磁光效应、量子化霍耳效应和声电效应。
2.重点、难点
重点:掌握霍耳效应、磁阻效应、热磁效应、光磁电效应和压阻效应。
难点:半导体的霍耳效应、磁阻效应。
3.说明:半导体磁和压阻效应在半导体的应用方面是很重要的,常见的有传感器与探测
器。
四、教学安排及方式
五、考核方式
笔试(闭卷)。
各教学环节占总分的比例:平时测验及作业:20%,期末考试:80%
六、推荐教材与参考资料
刘恩科、朱秉生等编《半导体物理学》(第四版),北京:国防工业出版社,1994。
(执笔人:张军琴审核人:柴常春)
2005年8月20日
【本文由大学生电脑主页[ ]—大学生的百事通收集整理】。