深基坑围护结构监测工作方法与技术
深基坑监测及应急措施
深基坑监测及应急措施一、监测的目的和原则施工监测是深基坑施工信息化的一项重要内容,现场施工中,要求通过适当的监测手段,随时掌握周边环境的变化以及基坑内部情况与设计模型之间的差异,以及支护土体的稳定状态和安全程度、基坑渗透水量的大小等等,及时反馈信息,现场工程师根据信息反馈情况及时修改施工方案,改善施工工艺。
此时现场工程师的施工经验和临场应变能力对预防事故的发生显得尤为重要,同时监测资料还可以作为检验和评价支护结构稳定性的依据。
二、监测内容房屋的沉降、倾斜,道路、地下管线的沉降、位移;支护结构的变形,土体的位移;渗透流量的大小,渗透量的大小,水位的高低等等都是监测的内容。
1、对周边房屋的沉降观测,初步确定为每一天进行一次,待土方开挖全部完成以后每2天观测一次。
待基坑回填完成以后不再观测。
观测范围是周围50米以内的建筑物。
2、对道路、地下管线的观测初步确定为每5天进行一次,待土方开挖全部完成以后每10天观测一次。
待基坑回填完成以后不再观测。
主要是沿河路的观测。
3、对支护结构的观测每天进行两次,并一直坚持到土方回填。
4、对土体渗透的观测每天进行四次,一直坚持到基础混凝土浇筑完成。
三、监测方法本工程基坑监测由建设单位委托专业监测机构进行监测,监测前编制专业监测方案,经监理单位审批后严格按方案内容执行检测。
四、应急措施1、当监测发出监测报警后,如变形(或内力)继续增加,且变形增加速率有加大的趋势,应采取相应应急措施。
(详见应急预案)2、根据监测单位的监测点埋设交底,了解监测点的埋设方法及注意点,以便监测单位有效开展监测工作。
3、对监测点派专人进行保护,对易人为损坏的监测点,可封闭保护。
4、挖土期间组织相应的决策机构及工作程序。
土方开挖施工期间,本工程各相关单位组成土方开挖应急领导小组,该小组为挖土期间的决策机构,成员由建设单位、基坑围护设计单位、主体结构设计单位、监理公司、基坑围护监测单位、施工总承包相关负责人组成。
阐述深基坑施工的监测方法及特点
阐述深基坑施工的监测方法及特点摘要:该文主要论述了深基坑施工中的变形监测的特点、精度要求、监测项目及监测方法。
关键词:深基坑变形监测特点精度监测方法随着城市现代化的进程加快,城市交通也日益拥挤,修建地下铁道和地下隧道是城市建设可持续发展,大幅度改善城市交通状况的重要途径。
在地铁和隧道工程中,当需开挖基坑进行地下施工时,由于场地的局限,在基坑平面范围以外通常不可能有足够的空间供放坡开挖,必须设计规模较大的开挖围护系统。
监测工作既是检验深基坑设计理论正确性和发展设计理论的重要手段,同时又是及时指导正确施工,避免基坑工程事故发生的必要措施。
目前常用的监测方法有:(1)采用钢丝,钢卷尺两用式位移收敛计对围护结构顶部进行收敛量测;(2)用精密光学经纬仪进行观测;(3)前方交会法。
1 深基坑施工监测的特点1.1时效性基坑监测通常是配合降水和开挖过程,有鲜明的时间性。
测量的结果是动态变化的,一天以前或几个小时之间的测量结果都将会失去直接的意义,因此深基坑施工中监测需随时进行通常是1次/d,在测量对象变化快的关键时期,可能每天需进行数次。
1.2高精度普通工程测量中的误差限值通常保持在数毫米之内,而正常情况下基坑施工中的环境变形速率可能会在0.1mm/d以下,要测到这样的变形精度,普通的测量方法和仪器都不能胜任,因此在测量基坑施工中的通常采用一些特殊的高精度仪器。
1.3等精度基坑施工中的监测通常只要求测得相对应的变化值,而不要求测量的绝对值。
在基坑边壁变形测量中,只要求测定边壁相对于原来基准位置的位移即可,而边壁的绝对位置可以完全不需要知道。
由于这个鲜明的特点,使得深基坑施工监测有其自身规律。
2 监测的基本要求无论采用何种具体的监测方法,都要满足下列技术要求:2.1观测工作是必须有计划的,要严格按照有关的技术文件执行。
2.2监测数据必须是可靠的。
2.3观测必须要及时。
2.4对于观测的项目,应按照工程的具体情况预先设定好预警值,预警值应包括变形值、内力值以及其它变化速率。
深基坑工程施工监测方案
施施工工监监测测方方案案1 施工监测目的及意义基坑开挖、支护施工将不可避免地对地层、地下管线、建(构)筑物等造成一定的影响。
为确保基坑周边建筑物及管线安全,做到信息化安全施工,必须对地表、地下管线和周边建筑物进行全面系统的监控量测。
通过监控量测可以达到如下目的:1、了解基坑周围土体在施工过程中的动态变化,明确施工对原始地层的影响程度以及可能产生失稳的薄弱环节。
2、了解支护结构的受力和变位状态,并对其安全稳定性进行评价。
3、了解工程施工对地下管线、建筑物等周边环境条件的影响程度,确保它们仍处于安全的工作状态。
4、了解施工降水效果对周围地下水位的影响程度。
5、将量测结果反馈到施工中,及时修改施工参数和步骤进行信息化施工。
2仪器选择和精度要求1、基坑位移监测采用拓普康TKS-202全站仪,精度2秒。
仪器在检验有效期内作业,并在作业期间进行检查校核。
2、沉降观测使用徕卡N2精密水准仪(带测微器)及2米铟钢水准标尺。
仪器最小分辨率为0.01mm 。
仪器及标尺在检验有效期内作业,并在作业期间进行检查校核。
沉降观测按二等水准精度要求进行观测,执行的各项规定和限差如下:等级 仪器类型视线长度前后视距差任一测站上前后距差视线高度 二等DS0.5≤30m≤1.0m≤0.5m>0.3m项目 等级基、辅分划读数差基、辅分划所测高差之差检测间歇点高差之差上下丝读数平均值与中丝读数之差基辅尺分划读数差≤0.3mm,闭合差≤±0.3√N mm(N代表测站数)。
3监测项目及控制标准3.1监测项目1、本次基坑安全等级为一级,基坑监测按《建筑基坑工程监测技术规》(GB50497-2009)执行。
2、本次监测可分为基坑工程主体监测和周围环境及地下管线监测,施工监测项目和内容有:3、水位观测、钢筋应力等监测见第三方监测方案。
3.2监测控制标准1、基坑监测控制标准及报警指标如下表所示:2、水位变化控制标准为:要求水位变化值累计值不大于1m或每天变化值不大于0.50m。
9.7深基坑施工监测技术
9.7深基坑施工监测技术镇江万达广场十项新技术应用总结之11 深基坑施工监测技术二0一一年八月目录一、工程概况 (4)二、监测目的、依据、原则 (4)三、监测内容及代表照片 (5)四、监测实施 (5)五、测量精度 (6)六、仪器设备 (7)七、测量周期 (7)八、预警报告 (7)九、预防措施、应急措施以及质量安全措施 (8)十、经济和社会效益以及应用体会 (11)一、工程概况镇江万达广场位于镇江市润州区,地处庄泉路东侧,庄泉东路西侧,北府路北侧,黄山南路西。
镇江万达广场地块总面积约为8万平方米,总建筑面积约38.88万平方米,地上面积约30万平方米,地下面积约8.88万平方米,分为写字楼、公寓、商业及酒店等。
公寓由3栋酒店式公寓和商业用房组成,其中公寓31层,面积7.47万平方米,框剪结构;商业用房2—二、监测目的、依据、原则2.1监测目的在基坑开挖期间,随着取土的深入,围护结构由于受到土压力和周围道路动载力作用,会产生比较明显的变形。
如果超过一定的范围,会引起基坑的倒塌和对周围道路及管线的破坏。
因此应对基坑在开挖期间进行必要的监测,及时提供基坑及周围附属物的变形数据,指导施工的顺利进行,保证施工的安全。
2.2监测依据2.3监测原则基坑开挖是基坑卸荷过程。
由于卸荷而引起坑底土体产生以向上为主的位移,同时也引起围护墙在两侧压力差的作用下而产生的水平方向位移和因此产生的墙外侧土体的位移,基坑变形包括维护墙的变形坑底隆起及基坑周围地层位移等,加强基坑在开挖期间的监测工作可以保证基坑及周围附属设施的安全,并可合理地利用土体自身在基坑开挖过程中控制土体位移的潜力而达到保护环境的目的,根据本工程自身特点和现场施工的具体情况,监测方案按以下原则进行。
1、设置的监测内容及监测点必须满足本工程设计要求及各有关规范要求,并能客观全面反映工程施工过程中周围环境及基坑维护体系的变化情况。
2、监测过程中采用的方法、设备、频率,均应符合设计要求和有关规范要求,能及时、准确地提供监测数据,满足现代化、信息化施工要求。
深基坑施工监测方案
深基坑施工监测方案一、工程概述本次深基坑工程位于_____,周边环境较为复杂,临近既有建筑物、道路及地下管线。
基坑开挖深度为_____米,面积约为_____平方米。
基坑支护形式采用_____。
二、监测目的1、及时掌握基坑围护结构和周边环境的变形及受力情况,确保施工安全。
2、为优化施工方案提供依据,实现信息化施工。
3、对可能发生的危险情况进行预警,以便采取相应的应急措施。
三、监测内容1、围护结构水平位移监测在围护结构顶部设置监测点,采用全站仪或经纬仪进行观测,监测其水平位移变化情况。
2、围护结构竖向位移监测通过水准仪测量围护结构顶部的竖向位移。
3、深层水平位移监测在围护结构内埋设测斜管,使用测斜仪测量深层土体的水平位移。
4、支撑轴力监测在支撑结构上安装轴力计,监测支撑轴力的变化。
5、地下水位监测在基坑周边布置水位观测井,使用水位计测量地下水位的变化。
6、周边建筑物沉降及倾斜监测在周边建筑物上设置沉降观测点和倾斜观测点,分别使用水准仪和全站仪进行观测。
7、周边道路及地下管线沉降监测沿周边道路及地下管线布置沉降观测点,采用水准仪进行观测。
四、监测点布置1、围护结构水平位移和竖向位移监测点沿围护结构顶部每隔_____米布置一个监测点,转角处应加密布置。
2、深层水平位移监测点在基坑周边的关键部位埋设测斜管,每边不少于_____根。
3、支撑轴力监测点选择具有代表性的支撑构件,每个构件上布置不少于_____个轴力计。
4、地下水位监测点在基坑周边每隔_____米布置一个水位观测井。
5、周边建筑物沉降及倾斜监测点在建筑物的四角、长边中点及变形缝两侧设置沉降观测点,倾斜观测点布置在建筑物的顶部和底部。
6、周边道路及地下管线沉降监测点沿道路及地下管线每隔_____米布置一个沉降观测点。
五、监测频率1、在基坑开挖期间,每天监测不少于_____次。
2、当变形速率较大或出现异常情况时,应加密监测频率。
3、在主体结构施工期间,监测频率可适当降低,每周不少于_____次。
建筑深基坑工程监测项目、频率、数量及方法
建筑深基坑工程监测项目、频率、数量及方法建筑深基坑工程监测项目、频率、数量及方法监测项目监测周期测点数量测点的布置监测方法及精度监测频率桩墙顶(支护结构圈梁围檩、冠梁、基坑坡顶等)水平位移、垂直沉降全过程每一边不少于3点,且每20m不少于1点,每一基坑不少于8点沿基坑周边布置,每边中部和端部均应布置观测点,且用水准仪、经纬仪、观测点间距不宜大于20米。
全站仪监测,精度不观测点设置在与支护结构低于1mm刚性连接钢筋混凝土冠梁上,或钢筋混凝土护顶上开挖深度≤5m及基础底板完成后,1次/2天;其它1次/天支撑轴力支撑设置至拆除构件的10 %,且不少于3个,每一支撑不少于3点设置在主撑等重要支撑的跨中部位,每层支撑都应选择几个有代表性的截面进行测量用安装在混凝土支撑内部、与受力钢筋串联连接的应力传感器测试。
钢支撑采用与支撑串联连接的、与支撑断面尺寸相同的应力传感器测试。
精度不低于0(F·S)xx变形全过程不少于构件的20 %,且不少于3个直接布置在xx上方的支撑面上,每根xx的垂直及水平位移均应测量,多个支撑交汇、受力复杂处的xx应作为重点观测点坑内地下水位的观测井(xx)在基坑每边中间和基坑中央设置,埋深与降水井点相同。
坑外地下水位观测井(xx)设置在止水帷幕以外,沿基坑周边布设水准仪、xx监测。
精度不低于1mm坑外地下水位、坑内地下水及基坑渗漏水状况降水过程每边不少于1点通过水位观测井用水位计观测检查或测量检查。
最小读数值不大于10mm1次/2天邻近房屋沉降、倾斜、裂缝开挖至±0.00沉降观测点的布置:沿建筑物四角外墙每10-15m或每隔2-3根柱设置一点;裂缝、沉降缝、伸缩缝的两侧及新每一建(构)旧建筑物、高低建筑物的交筑物或重要接处均应设置点。
裂缝点的设施不少于6布置:在裂缝两测布置;倾点斜点的布置:应沿对应观测点的主体竖直线布置,整体倾斜按顶部、底部上下对应布置;分层倾斜按分层部位、底部上下对应布置在管线的端点、转角点和必要的中间部位设置;具体的观测点应设置在管线本身或靠近管线底面的土体中用水准仪、经纬仪等进行测量。
深基坑监测专项施工方案
一、工程概况本工程为深基坑施工项目,基坑深度约8米,占地面积约500平方米。
基坑周边环境复杂,包括地下管线、周边建筑物等。
为确保施工安全和工程质量,特制定本深基坑监测专项施工方案。
二、监测目的1. 监测基坑围护结构的变形和稳定性,确保施工安全;2. 监测周边地下管线和建筑物的沉降,防止对周边环境造成影响;3. 为施工提供实时数据,指导施工方案的调整。
三、监测内容1. 基坑围护结构水平位移监测;2. 基坑围护结构竖向位移监测;3. 周边地下管线沉降监测;4. 周边建筑物沉降监测。
四、监测方法1. 水平位移监测:采用测斜仪进行监测,测量基坑围护结构水平位移;2. 竖向位移监测:采用水准仪进行监测,测量基坑围护结构竖向位移;3. 地下管线沉降监测:采用精密水准仪进行监测,测量地下管线沉降;4. 周边建筑物沉降监测:采用精密水准仪进行监测,测量周边建筑物沉降。
五、监测频率1. 基坑围护结构水平位移和竖向位移监测:每日监测一次;2. 地下管线沉降监测:每周监测一次;3. 周边建筑物沉降监测:每周监测一次。
六、监测数据处理1. 对监测数据进行实时记录,确保数据的准确性;2. 对监测数据进行整理和分析,发现异常情况及时报告;3. 对监测数据进行统计和评估,为施工方案的调整提供依据。
七、监测设备配置1. 测斜仪:用于监测基坑围护结构水平位移;2. 水准仪:用于监测基坑围护结构竖向位移、地下管线沉降和周边建筑物沉降;3. 数据采集器:用于实时记录监测数据;4. 软件系统:用于监测数据分析和处理。
八、监测人员要求1. 监测人员应具备相关专业知识和技能,熟悉监测设备的操作和维护;2. 监测人员应严格遵守监测规程,确保监测数据的准确性;3. 监测人员应定期参加培训和考核,提高监测技能。
九、监测安全管理1. 监测现场应设置警示标志,防止人员误入;2. 监测设备应妥善保管,防止损坏和丢失;3. 监测人员应遵守安全操作规程,确保自身安全。
深基坑施工中的基坑监测技术
深基坑施工中的基坑监测技术摘要:在我国城市建设发展过程中,随着地价的逐渐增加。
由于地下土体性质、荷载条件、施工环境的复杂性,基坑开挖过程中的不确定性较大,因而对施工的影响也越来越大。
基于此,本文对新形势下基坑监测技术的重要意义以及深基坑施工中的基坑监测技术的措施进行了分析。
关键词:基坑监测;深基坑;施工;技术在社会经济与科技飞速进步的背景下,各类基础工程建设项目也在不断扩张。
由于受到原始地质环境和施工技术的影响,在施工过程中要加强关注对地基基坑的建设和监测,这样有利于维护工程建设质量与建设安全性。
基坑监测技术在目前的建筑工程项目中应用较多,不仅可以实现不同方向上的基坑变形监测,还可以对地质结构进行检测,并通过与其他技术的结合,发挥监测技术在建工项目中的重要价值。
1 新形势下基坑监测技术的重要意义建筑基坑是建筑施工的基础,起着承载建筑的重要作用。
新形势下,建筑行业在发掘土地资源的过程中,不断加深基坑的深度,使得建筑基坑的建设施工难度加大,同时也对建筑周边的环境造成了一定的影响。
为了确保建筑本身的安全性、稳定性以及保护周边环境,基坑监测技术由此得到了进一步加强。
基坑监测技术的主要工作是检查和监控建筑基坑和周边环境,保证基坑的建设施工进度和在整个施工过程中的施工质量。
该技术对于基坑施工的监测从施工前就已开始,通过详细了解建筑工程所在位置范围的地质条件,基坑监测技术以真实的施工规划数据承担起了为基坑施工提供指导的任务。
相关数据中包括施工区域地质土体的分析数据和负荷数据等,这为基坑的施工排除了诸多不确定因素,使得后期施工的开展具有更明确的施工方向。
在施工的过程中,基坑监测技术通过对施工具体情况的实时监测,收集、分析基坑施工的各项数据,从而得到基坑强度的相关结果,为工程施工进行成本控制提供科学依据。
在施工的过程中,基坑监测技术还可为相关技术、施工人员提供基坑的具体情况,如地下管道和线路的分布等,为避免基坑施工破坏地下设施提供重要参考。
浅析深基坑支护工程监理工作要点及监控措施
浅析深基坑支护工程监理工作要点及监控措施摘要:随着我国城市化建设的不断推进,高层建筑、轨道交通以及具有现代交通和商业等功能的地下综合体建设如火如荼,大城市的发展对地下空间的利用需求日益提高。
深基坑工程是地下空间开发的关键工程,其施工安全监理十分重要。
反过来,大型市政基础设施、高层建筑的建设也极大地促进了深基坑工程施工技术和安全监理的进步和发展。
关键词:深基坑;工程监理;工作要点1深基坑工程概述随着我国建筑行业的不断发展,高层和超高层建筑的建设已成为房屋建筑工程的主要组成部分,且多数建筑都会有一层或多层地下室,所以深基坑施工已成为必然。
深基坑工程的安全管理也成为项目监理工作的重要内容,在监理工作中必须高度重视深基坑的施工安全,并在深基坑施工过程中及时做好事前、事中、事后的各项监理工作,落实深基坑的支护施工、基坑降水、土方开挖等各个环节的安全措施,确保深基坑施工、周边建(构)筑物、道路和地下管线等的安全。
2深基坑工程施工风险分析2.1支护体系破坏有时设计失误,如地质勘察报告和实际不一致,坑底被动区抗力不足时而未进行加固处理,未在设计文件中注明涉及危大工程的重点部位和环节;施工管理不规范,如超挖、超堆载、坑底深厚软土未处理、支撑架设不及时等;对深基坑工程的安全风险认识不足,导致监督管理不到位,未严格按方案要求施工,支护结构材料强度、几何尺寸不足,施工质量差;安全检查及巡视形同虚设。
诸如此类因素均可能导致深基坑支护体系破坏,如围护结构抗剪、抗弯强度不足而折断;围护体整体倾覆或滑动失稳;围护结构发生踢脚破坏;坑内纵坡滑移,导致内支撑失稳等。
2.2土体渗透破坏水文地质条件复杂、降水效果差、基坑边地下管线渗漏、围护结构及止水帷幕质量差,特别是降雨后在基坑周边地下管线空间存留有高位水源等情况,易在岩土软弱结构面内形成特殊渗流通道,造成异常渗流作用,降低岩土抗剪强度、增加水土压力,发生坑壁流水流土破坏及基底突涌管涌等,导致基坑工程失稳破坏。
深基坑中基坑监测技术的应用
深基坑中基坑监测技术的应用摘要:基坑监测技术是深基坑施工技术的重要组成部分。
要借助各种监测技术,对深基坑支护结构变形进行监测,形成合理有效的监测系统,有效地提升深基坑施工的安全性以及稳定性,以全面提升深基坑施工的质量及效率。
关键词:深基坑;基坑监测技术;应用探讨引言基坑工程的施工风险系数较高,尤其是深基坑,一旦发生基坑坍塌事故,就可能造成无法挽回的损失。
因此,国家和建筑行业对基坑工程的施工质量和安全管理给予了极大的关注,并采取了多种措施来保证基坑施工质量与安全。
在当前的基坑监测工作中,大多数监测单位仍然采用传统的人工监测方式,这种监测方式成本高、效率低,容易受人为等因素的干扰。
有时候,人工操作会造成数据失真、监测数据难以及时共享等问题。
而将自动化监测系统与云平台等新技术结合在一起,可以实现监测技术的简单化,这也是基坑监测技术的重要发展趋势。
本文对基坑监测技术应用现状与发展方向进行了探讨。
1深基坑中基坑监测技术的应用现状1.1水平位移监测技术的应用(1)全站仪监测技术。
全站仪的全称是全站型电子速测仪,它是由机械、光学、电子元件等组成的测量仪器,可以对水平角、竖直角、斜距、平距以及高程的测量数据进行处理。
因为该测量仪器只需要安置一次就可以完成测站上所有的测量工作,所以被称为全站仪。
全站仪普遍应用于基坑水平位移监测中,其监测方法主要有极坐标法、小角法、自由设站法等。
其中,极坐标法是常用的测量方法,自由设站法能够解决不通视的问题。
近年来,随着全站仪测量精度的不断提高,加上测量理论的创新发展,人们在基坑竖向位移监测中也引入了全站仪进行监测。
相关的研究理论和测量实践也证明了全站仪监测技术的实用性。
(2)激光扫描仪监测技术。
随着科学技术的发展,借助激光扫描仪进行水平位移监测的技术在实践中逐步崭露头角。
在应用激光扫描仪监测技术的过程中,工作人员需要按照激光测距的基本理论,通过向被监测对象发射激光来获得反射信号,然后从反射信号中获取高密度点云数据,进而依照数据进行三维模型重构。
竖井基坑施工监测方案
竖井基坑施工监测方案
在深基坑的设计施工过程中,由于地质条件、荷载条件、材料性质、施工条件和外界其他条件的影响,以及当前土压力计算理论和边坡模型的局限性,很难单纯从理论上预测工程中可能遇到的问题。
所以需对基坑开挖施工中及主体结构施工中对支护结构、周围土体等在理论分析指导下有计划地进行必要的监测。
一.监测的目的
1.解基坑开挖引起地表水平位移及沉降变形情况;
2、止基坑四周土体破坏或发生极限状态,造成围护结构侧向变形;
3、止围护结构支撑不当导致土体丧失静力平衡,造成基底隆起;
4、通过了解孔隙水压力及地下水位,决定进一步需采取的措施。
5、了解基坑开挖过程中邻近建设物的沉降及倾斜。
二.监测的基本要求
1.监测方法、监测精度、测点布置、观测周期,上报监理审批后实施;
2、观测工作应及时,数据必须可靠;
3、对于观测的项目,按照工程具体情况预先设定预警值,当发现监测值超过预警值的异常情况,立即采取补救措施;
4、基坑支护监测,必须有完整的观测记录、形象图表、曲线和观测报告。
深基坑支护及监测施工工艺标准
深基坑支护及监测施工工艺标准一、使用条件及范围1、复合土钉墙的使用条件本施工工艺标准适用于地下水位以上或进行人工降水后可塑、硬塑或坚硬的粘性土、胶结或弱胶结粉土、填土,随着土钉墙理论与施工技术的不断成熟,土钉支护在杂填土、松散土、软弱土也得以应用,并可与混凝土灌注桩、微型钢管桩等配合进行支护,但土钉墙支护的基坑深度不易超过18米。
2、复合土钉墙的使用范围①、基坑或竖井的支挡②、基坑工程抢险③、斜坡面的稳定④、与预应力锚杆结合做斜面的防护二、施工准备1、深基坑支护材料要求:①、土钉杆体材料采用HRB400 Φ22、Φ25、Φ28钢筋,土钉墙面采用Q235 Φ6.5钢筋网,复合土钉锚索采用15。
2钢绞线(1860级),锚索端部在水平方向上采用腰梁(14#槽钢)。
②、土钉墙面层土钉灌浆采用P C 42.5R的水泥。
③、微型钢管桩采用Q235B 114×3.5钢管,灌注桩砼强度等级为C30。
④、钢筋、钢绞线、水泥、钢管必须有出厂检验报告,并及时抽样送检,合格后方可用于工程中。
槽钢必须有出厂检验报告.三、主要机具设备和监测仪器1、深基坑支护机具设备①、反循环钻机、台式电钻、电焊机、切割机、灰浆搅拌机、高压注浆泵、高压注浆管等施工机具。
2、深基坑监测仪器①、基坑竖向位移、周边环境沉降观测使用美国产天宝DINI03数字水准仪配一对2m条码尺。
②、基坑水平位移观测使用日本产索佳SET220K型全站仪进行观测。
四、复合土钉支护施工工艺1、施工准备:a、认真学习规范,熟悉设计图纸,根据甲方提供的地下障碍物和周边管线位置图.b、编制施工方案,经集团公司总工审批,报淄博市住建局专家论证后,方可进行施工.c、施工前应确定基坑开挖线、轴线定位点、水准基点、变形观测点等,并在设置后妥善保护。
d、施工前,由技术人员对班组进行技术和安全交底.2、工艺流程(1)、微型钢管桩支护施工工艺流程:平整场地→钢管桩制作焊接→测量放线→孔距定位→机械开挖循环集水坑、水沟和水坑→钻孔机就位钻孔→清洗钻孔→注浆机安装→安装下放钢管→安装注浆管→拌制水泥浆→注水泥浆→多次补浆直至上口翻浆。
用于深基坑悬臂围护桩桩体变形的监测方法
用于深基坑悬臂围护桩桩体变形的监测方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!用于深基坑悬臂围护桩桩体变形的监测方法引言随着城市建设的不断发展,深基坑工程在城市中的应用越来越广泛。
深基坑支护结构的监测
深基坑支护结构的监测摘要:在深基坑开挖中,要时刻跟踪深基坑的种种变化,为后续施工提供数据支撑,以保证工程安全质量。
关键词:深基坑;沉降观测;变形;监测方案一、监测工程概况融媒大厦主楼建筑高度为96.4m,共16层;裙楼建筑为2至4层的多层框架建筑,裙楼总建筑高度为18至24m。
地下结构为大底盘地下车库兼顾人防工程的地下室。
根据地质勘察报告说明。
融媒大厦基坑深度为4.4m至5.98m。
如基坑支护结构被破坏、周围土体失稳过大变形对基坑周边建筑环境影响一般,基坑安全等级为三级。
二、监测方案1、依据根据施工设计要求,基坑监测项目分为,基坑坡顶水平位移监测、基坑坡顶垂直位移监测、地下水位监测。
1.本基坑的支护形式融媒大厦深基坑支护形式为放坡开挖+土钉墙支护。
基坑开挖到首层土钉位置下0.5m时喷射第一层混凝土,钻孔施工土钉,外挂钢筋网片与土钉绑扎牢固,再喷射第二层混凝土。
基坑顶砌筑截水沟,基坑底部挖社排水沟,防止雨水、地表水影响基坑边坡安全。
3、基坑监测范围根据《建筑基坑工程监测技术规范》(GB 50497-2009)规定,结合考虑本基坑工程周边建筑环境特点,确定基坑周围环境监测范围为基坑边线外2倍深度范围,即为11.96m为外监测边线。
与此同时还需要在施工过程中对监测范围以外的高压线杆、地下管线、便道等进行日常巡查检查,现场巡查发现异常状况要及时向项目领导汇报。
必要时增加监测项目以保证监测项目安全。
4、基坑监测重点由于基坑开挖面与开挖深度较大、时间紧凑、对各工序先后衔接较高、基坑监测工程量大,因此对基坑监测工作要严格要求。
(1)基坑围护体系边坡土钉墙安全稳定作为本项目监测重点;(2)现场布测点是后续观测的前提,测点保护作为工作重点;(3)基坑上部挡水墙阻水效果作为重点监测对象;(4)各变形观测点的安装埋设作设计为工作重点;(5)基坑周围经常架设泵车位置加强监测作为重点之一。
三、基坑监测的方法1、现场巡视肉眼观察从基坑开挖开始至基坑回填结束,整个施工监测时间段内需专业测量人员以自身对基坑监测工程的经验对基坑边坡裂缝、渗水、流沙等情况进行肉眼观测并详细记录,从而第一时间判断可能出现的问题,为基坑安全建立第一道防线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深基坑围护结构监测工作方法与技术
根据工程实际情况精心选购技术可靠、经济合理且简单易行的仪器和元件。
仪器和元件进货时,需配备专业技术人员进行验收和试运行,检查各种技术资料,所有监测仪器使用前进行送检。
元件埋设前制定严格的实施细则。
监测采用仪器观测为主,同时辅以现场目测;测试元件(钢筋计、测斜管等)的埋设工作是基坑监测中的一个重点,繁琐而细致,务必做好;每项监测项目的初始值是以后每次监测成果分析的前提和基础,必须保证其准确性,可在基坑开挖前多次观测,取其均值或经过分析比较再行确定。
在每个工况施工前和结束时均都要专门读取一次数据。
观测数据用专用的表格记录,当出现读数异常有可疑现象时,应进行重读,并和上次的观测数据进行对比。
观测数据必须在现场当天处理完毕,如处理结束发现疑问时要立即复测,数据变化较大时及时报警。
实行监测日志制度,监测负责人必须记录每次监测时的大气、人数、仪器、设备、各测点的工作情况,以及各工作面的施工进展情况,也要观察记录地面积水、裂缝、超载等外部情况,以供数据分析时结合参考。
同时要观察邻近建筑物和围护体系的裂缝、渗漏水等情况,一般及时发现事故隐患,采取有效措施。
原则上监测现场负责人在监测全过程中不变,遇有特殊情况需变更时,应做好详细的交接工作。
1 水平位移监测
1)部位:支护桩桩顶。
2)基准点设置:在基坑四周寻找永久性基准点作为观测基准点,如没有,在周围建筑基角设置基准点,用于全站仪或经纬仪观测照准。
3)监测点埋设:在支护桩桩顶或基坑坡顶表面埋设膨胀螺丝。
4)测量方法:采用全站仪坐标法。
用全站仪测各观测点坐标,将本次坐标与初测坐标或上次坐标之差求出,即得到本次位移及累计位移。
5)测量仪器:全站仪。
2 围护结构测斜
1)部位:基坑两边围护结构桩身
2)测斜管埋设
测斜管底宜与钢筋笼底部持平或略低于钢筋笼底部,顶部到达地面(或导墙顶),与支护结构的钢筋笼绑扎埋设,绑扎间距不宜大于1.5米,测斜管的上下管间应对接良好,无缝隙,接头处牢固固定、密封,绑扎时应调正方向,使管内的一队测槽垂直于测量面(即平行于位移方向),封好底部和顶部,保持测斜管的干净、通畅和平直,做好清晰的标示和可靠的保护措施。
3)测量方法:测斜管内壁有二组90度的纵向导槽,导槽控制了测斜方位,垂直于基坑圈梁的一组导槽,实测位移指向基坑内为正,反之为负。
测试时,测斜仪探头沿导槽缓缓下沉至孔底,在温度稳定一段时间后,自下而上以0.5m为间隔逐段测出位移,测完后,将探头旋转180度,重新观测一次。
4)测量仪器:测斜仪。
3 沉降监测
1)部位:基坑坡顶、基坑边桥墩
2)测点埋设:用电钻在选定点处打孔,然后埋入隐蔽式监测标志,在上面拧上螺杆观测标志进行观测。
3)测量方法:在远离基坑区选择4个基准点,确定其中一个基准点的假定标高,用二等水准测量的方法分两次观测基高差,并推求出另一基准点的标高,作为垂直位移观测的高程基准。
各测点与基准点布设成附合或闭合水准网,采用逐次
趋近法严密平差程序,由计算机求出其各点的标高。
采取建筑变形测量二级精度进行观测,观测视线长度应小于规范规定值,一般不超过15m,标尺基辅分划读数之差≤0.3mm,基辅分划高差之差≤0.5mm,环线闭合差≤1.0n(n为测站数),每测站高差中误差≤0.5mm,水准仪I角≤10″,水准仪的实偿误差Δα≤≤0.2″,初始观测应单程双测观测,取其平均值作为初始值。
测量过程中应经常检核水准仪I角;观测时应使用同一根标尺,如使用两根标尺进行观测时,应注意观测点间采用偶数站观测,以消除标尺零点不等差。
本次标高减去上次标高为本期沉降量,本次标高减去初始标高为累计垂直位移量。
4)测量仪器:精密水准仪,标尺。
4 支撑轴力观测
1)部位:钢筋砼、钢支撑梁。
2)测点埋设:将钢筋计焊接在钢筋砼支撑梁内主筋上或将应力计粘帖在支撑钢管表面,将线缆绑好后仔细引出,放入预先做好的线盒或窨井内保护。
3)测量方法:开挖前先测出钢筋计的频率,作为初始频率;
4)测量仪器:频率读数仪。
5 水位监测
1)水位孔布设:在基坑外侧土体中,设置水位观测井。
2)测量方法:降水前测得各水位孔孔口高程及各孔水位面到孔口高度,再计算出各水位孔水位标高;埋设结束后约两天测其初始值,初始水位为连续两次均值。
本次水位观测值减去初始值即为水位累计变化量,本次水位观测值减去前次观测值即为本次水位变化量。
监测过程中要定期监测孔口标高。
3)测量仪器:电测水位计。