材料科学基础-第五章 材料的相结构及相图

合集下载

材料科学基础(第2版)石德珂-第5章材料的相结构及相图

材料科学基础(第2版)石德珂-第5章材料的相结构及相图
第五章 材料的相结构与相图
THE PHASE STRUCTURE AND PHASE DIAGRAMS OF MATERIALS
材料的相结构 二元相图及其类型 复杂相图分析 相图的热力学基础 三元相图及其类型
1
SCHOOL OF MATERIALS SCIENCE AND ENGINEERING OF XI`AN JIAOTONG UNIVERSITY
12
SCHOOL OF MATERIALS SCIENCE AND ENGINEERING OF XI`AN JIAOTONG UNIVERSITY
4. 固溶体中溶质原子的偏聚与有序
1) 溶质原子分布的微观不均匀性
A, B原子 间结合能
13
E AB
1 2 (EAA
EBB )
EAB
1 2
(EAA
EBB )
3. 陶瓷材料中的固溶方式
可间隙方式固溶 也可置换方式固溶
如: Mg[CO3]→(Mg,Fe)[CO3]→(Fe,Mg)[CO3]→Fe[CO3] 菱镁矿 含铁菱镁矿 含镁菱铁矿 菱铁矿
8
SCHOOL OF MATERIALS SCIENCE AND ENGINEERING OF XI`AN JIAOTONG UNIVERSITY
24
SCHOOL OF MATERIALS SCIENCE AND ENGINEERING OF XI`AN JIAOTONG UNIVERSITY
第二节 二元相图及其类型
THE BINARY PHASE DIAGRAM AND ITS TYPE
相图的基本知识 一元系相图 二元系相图 材料性能与相图的关系
一些溶质元素在一价Cu中的最大溶解度
溶质元素

第五章 相图

第五章 相图

材料科学基础材料科学基础-石德珂主编
第五章 材料的相结构及相图
电子浓度的定义是合金中各组成元素的价电子数总和与原子总数的比值 电子浓度的定义是合金中各组成元素的价电子数总和与原子总数的比值 ,记 作e/a e/a=VA(1-x)+VBx。 。 元素名称 Cu、Ag、Au 、 、 Be、Mg、Zn、Cd、Hg 、 、 、 、 Al、In、Ga 、 、 Sn、Si、Ge、Pb 、 、 、 As、Sb、Bi、P 、 、 、 Fe、Co、Ni 、 、 每个元素贡献的价电子 +1 +2 +3 +4 +5 0
性能:无论是置换固溶体还是间隙固溶体,均能引起固溶体的硬度、 性能:无论是置换固溶体还是间隙固溶体,均能引起固溶体的硬度、强度 硬度 升高。 升高。 对置换式固溶体,溶质原子与溶剂原子的尺寸差别越大, 对置换式固溶体,溶质原子与溶剂原子的尺寸差别越大,溶质原子的浓度 越高,其强化效果就越大。 越高,其强化效果就越大。这种由于溶质原子的固溶而引起的强化效应 , 称为固溶强化 称为固溶强化 。
材料科学基础材料科学基础-石德珂主编
第五章 材料的相结构及相图
3.陶瓷材料中的固溶方式 .
的方式溶入一些元素而形成固溶体, 无机非金属化合物也可以置换或间隙固溶 的方式溶入一些元素而形成固溶体,有些 甚至可以形成无限固溶体。 甚至可以形成无限固溶体。 如菱镁矿中的Mg 2+可以完全被 Fe 2+置换,形成如下系列矿物: 置换,形成如下系列矿物: 如菱镁矿中的 Mg[CO3]→(Mg, Fe) [CO3]→(Fe, Mg) [CO3 ]→Fe [CO3 ] 菱镁矿 含铁菱镁矿 含镁菱铁矿 菱铁矿
材料科学基础材料科学基础-石德珂主编

大学材料科学基础 第五章材料的相结构和相图(1)

大学材料科学基础 第五章材料的相结构和相图(1)

弗兰克尔空位
肖脱基空位
2) 为了保持电中性,离子间数量不等的置换会 在晶体内部形成点缺陷。 如:2Ca2+→Zr4+ ,形成氧离子空缺。 3) 陶瓷化合物中存在变价离子,当其电价改变 时,也会在晶体中产生空位。 如:方铁矿中,部分Fe2+被氧化为Fe3+时, 2FeO+O → Fe2O3中,产生阳离子空缺。 同理,TiO2中,部分Ti4+被还原为Ti3+时,产 生阴离子空缺。 这种由于维持电中性而出现的空位,可以 当作电子空穴。欠缺或多出的电子具有一定的 自由活动性,因而降低了化合物的电阻。这种 现象在材料的电性能方面有重要意义。
3.陶瓷材料中的固溶方式
陶瓷材料——一般不具备金属特性,属无机非金属。 无机非金属化合物可以置换或间隙固溶的方式溶入其 它元素而形成固溶体,甚至无限固溶体,但是一般形 成有限固溶体。 如:Mg[CO3] → (Mg,Fe)[CO3] →(Fe,Mg)[CO3] →Fe[CO3] 菱镁矿 含铁菱镁矿 含镁菱铁矿 菱铁矿 不改变原来的晶格类型,晶格常数略有改变。
(3) 多为金属间或金属与类金属间的化合物, 以金属键为主,具有金属性,所以也称金属 间化合物。 (4) 晶体结构复杂。 (5) 在材料中是少数相,分布在固溶体基体 上,起到改善材料性能、强化基体的作用。 中间相可分为以下几类: 正常价化合物;电子化合物;间隙相;间隙 化合物;拓扑密堆相。
1. 正常价化合物 • 通常是由金属元素与周期表中第Ⅳ、Ⅴ、 Ⅵ族元素形成,它们具有严格的化合比, 成分固定不变,符合化合价规律,常具有 AB、AB2、A2B3分子式。 • 它的结构与相应分子式的离子化合物晶体 结构相同,如分子式具有AB型的正常价化 合物其晶体结构为NaCl型。正常价化合物 常见于陶瓷材料,多为离子化合物。如 Mg2Si、Mg2Pb、MgS、AuAl2等。 • 在合金材料中,起弥散强化的作用。

《材料科学基础》课件——第五章相平衡与相图第一节第二节第三节第四节

《材料科学基础》课件——第五章相平衡与相图第一节第二节第三节第四节

相和相平衡
Байду номын сангаас四、自由度与相律
1、自由度:平衡系统中独立可变的因素
自由度数:独立可变的强度变量的最大数目
(强度变量与广度变量的区别)
2、相律:自然规律
在平衡系统中由于受平衡条件的制约,系统内
存在的相数有一定限制。 组元数 相数P≥1
吉布斯相律:不可为负数
f=c-p+n
外界影 响因素
通常外界影响因素只考虑T、P,所以f=c-p+2
• 掌握匀晶,包晶,共晶相图的特点,进而了解二元合金的一些平衡凝固,固 相转变的规律。
• 重点难点: • 二元系相图的建立,杠杆定律 • 包晶相图,共晶相图,共晶合金 • 相图分析,各种液固,固相转变的判断
材料的性能决定于内部的组织结构,而组织结构
又由基本的相所组成。
相:均匀而具有物理特性的部分,并和体系的其他 部分有明显界面。
晶型转变过程都是在恒温下进行,并伴随有体 积、密度的变化。 2、SiO2系统相图 α-石英与β-石英相变相当慢, β-石英常因冷却过快而被保留 到室温,在常压下,低于573℃
单元系相图
β-石英很稳定,所以自然界或低温时最常见的是 β-石英。晶型转变时,体积效应特别显著。 Al2O3、ZrO2也具有多晶型转变。 3、聚合物相图 (1)状态由分子间作用力决定,分子间约束力弱
共晶相图,平衡凝固,共晶合金,包晶相图,形成化合物的相图,含有双液 共存区的相图,熔晶相图等 ,二元相图的几何规律 ,单相,双相及三相共 存区,相图特征 ,二元系相图的分析,分析的方法与步骤,分析举例。
• 教学目的: • 学习相平衡与相图的基本知识,了解相图在材料科学学习中的重要性,学会
相图的使用。

第五章 材料的相结构及相图

第五章 材料的相结构及相图

11924F
第一节
材料的相结构
表5-4 钢中常见的间隙化合物
表5-5 钢中常见间隙化合物的硬度及熔点
11924F
第一节
材料的相结构
图5-7 MgCu结构
11924F
第一节
材料的相结构
图5-8 拉弗斯相中B原子分布和四面体堆垛方式
11924F
第二节
二元相图及其类型
一、相图的基本知识 1.相律 2.二元相图的成分表示方法与相图的建立
11924F
第一节
材料的相结构
图5-5 铜金合金电阻率与成分的关系
11924F
第一节
材料的相结构

图5-6 Ni-Mn合金的饱和磁矩
11924F
第一节
二、中间相 1.正常价化合物 2.电子化合物
材料的相结构
表5-2 铜合金中常见的电子化合物
3.尺寸因素化合物
11924F
第一节
材料的相结构
表5-3 简单结构的间隙化合物成分范围
11924F
第三节
复杂相图分析
图5-35 Cu-Sn相图
11924F
第三节
复杂相图分析
图5-36
Mg2SiO4-SiO2系相图
11924F
第三节
复杂相图分析
图5-37 ZrO2-SiO2系相图
11924F
第三节
复杂相图分析
三、铁-碳合金相图
图5-38 铁-碳相图
11924F
第三节
复杂相图分析
11924F
第三节
复杂相图分析
一、分析方法 1)相图中若有稳定中间相,可依此把相图分为几个部分, 根据需要选取某一部分进行分析。 2)许多相图往往只标注单相区,为了便于分析相图,应 根据“相区接触法则”填写各空白相区,也可用组织 组成物填写相图。 3)利用典型成分分析合金的结晶过程及组织转变,并利 用杠杆定律分析各相相对量随温度的变化情况。 二、复杂相图分析举例 1. Cu-Sn合金系相图(图5-44) 2. Mg2SiO4-SiO2系相图

第五章材料相结构和相图

第五章材料相结构和相图
材料科学基础材料的相结构固溶体中间相置换固溶体间隙固溶体正常价化合物电子化合物尺寸因素化合物间隙化合物置换固溶体间隙固溶体有限固溶体无限固溶体无序固溶体有序固溶体间隙相间隙化合物理解重点理解重点影响置换固溶体溶解度的因素陶瓷与金属固溶体的差别中间相和固溶体的区间隙固溶体间隙相间隙化合物的区别典型材料的相结构的辨别材料科学基础陶瓷与金属固溶体的差别形成弗兰克尔空位的可能性较小形成肖脱基空位时移出的正负离子总电价为零
一般认为热力学上平衡状态的无序固溶体溶质原子 分布在宏观上是均匀的,在微观上是不均匀的。
在一定条件下,溶质原子和溶剂原子在整个晶体中按 一定的顺序排列起来,形成有序固溶体。有序固溶体 中溶质原子和溶剂原子之比是固定的,可以用化学分 子式来表示,因此把有序固溶体结构称为超点阵。
例如:在Cu-Al合金中,Cu:Al原子比是1:1或3:1 时从液态缓冷条件下可形成有序的超点阵结构,用 CuAl或Cu3Al来表示。
HRTEM for Ni precipitate in 8YSZ/Ni Nanocomposites
size of precipitated Ni nanoparticle ~ 20 nm
pore Ni
10 nm
Ni nanoparticle and accompanied nano-pore in 8YSZ/0.6 vol%Ni Nanocomposite
中间相分类:正常价化合物、电子化合物(电子 相)、间隙化合物
材料科学基础
1. 材料的相结构
材料的 相结构
固溶体
置换固溶体 间隙固溶体 正常价化合物
中间相
电子化合物 尺寸因素化合物
间隙化合物 拉弗斯相
2.1 正常价化合物
材料科学基础

材料科学基础I 第五章 (相图)

材料科学基础I  第五章  (相图)

F = 0的含义是:在保持系统平衡状态不变的条件下,没有可以 的含义是:在保持系统平衡状态不变的条件下, 的含义是 独立变化的变量。 独立变化的变量。即,任何变量的变化都会造成系统平衡状态 的变化。 的变化。
纯水的PT相图: 纯水的 相图:在a点,水在 相图 点 水在1 大气压、 ℃ 条件下 保持液(水 条件下, 大气压、(0℃)条件下,保持液 水) –固(冰)二相平衡。温度升高,冰 二相平衡。 固 冰 二相平衡 温度升高, 溶化成水;温度降低, 溶化成水;温度降低,水结晶成 也就是说,此时水的液-固平 冰。也就是说,此时水的液 固平 衡转变是在恒温(0℃ 下进行的 下进行的。 衡转变是在恒温 ℃)下进行的。 b点是气 液二相平衡点,意义与 点是气–液二相平衡点 点是气 液二相平衡点,意义与a 点相似。 之间(0℃ 点相似。在a、b之间 ℃~100℃), 、 之间 ℃, 水是单一的液相(P =1),此时F =1, 水是单一的液相 ,此时 , 这说明在此范围内温度的变化不 会引起状态的改变。 会引起状态的改变。
二、相图的建立
建立相图的方法有两种: 建立相图的方法有两种: 利用已有的热力学参数,通过热力学计算和分析建立相图; 利用已有的热力学参数,通过热力学计算和分析建立相图; 依靠实验的方法建立相图。 依靠实验的方法建立相图。 目前计算法还在发展之中,实际使用的相图都是实验法建立的。 目前计算法还在发展之中,实际使用的相图都是实验法建立的。 实验法建立相图的原理和步骤: 实验法建立相图的原理和步骤: 二元合金相图的建立为例。 以A-B二元合金相图的建立为例。 二元合金相图的建立为例 首先, 首先,将A-B二元合金系分成 二元合金系分成 若干种不同成分的合金。 若干种不同成分的合金。 1) 合金成分间隔越小,合金数目 合金成分间隔越小, 越多,测得的相图越精确; 越多,测得的相图越精确; 2) 合金成分间隔不需要相等。 合金成分间隔不需要相等。

材料科学基础(讲稿5章)

材料科学基础(讲稿5章)

Cu-Ni合金的铸态组织 ×50 树枝状
39
3)特点 (ⅰ) 冷却速度较快. (ⅱ) 开始结晶温度低于液相线. (ⅲ) 结晶中,剩余液相特别是晶粒内部成分不 均匀,先结晶的部分含高熔点组元较多,后 结晶的部分含低熔点组元较多;固相平均成 分偏离固相线,液相平均成分是否偏离液相 线随冷却速度而异. (ⅳ) 结晶终了温度低于固相线. (ⅴ) 通常不能应用杠杆定律. (ⅵ) 室温铸态有晶内偏析,形成树枝状组织.
Zn 2+、Ga 3+、Ge 4+、As 5+在Cu+中的最大固溶度(摩尔分数) 分别为38%、20%、12%、7%
6
Zn 2+、Ga 3+、Ge 4+、As 5+在Cu+中达最大 固溶度时所对应的e/a≈1.4→极限电子浓度


超过极限电子浓度,固溶体就不稳定,会 形成新相。 计算电子浓度时,元素的原子价指的是: 原子平均贡献出的共有电子数,与该元素 在化学反应时的价数不完全一致。

不平衡共晶形成原因分析
56
3)离异共晶——合金中 先共晶相的量很多,共晶 体的量很少时,共晶体中 与先共晶相相同的相依附 于先共晶相生长,将共晶 体中的另一相孤立在先共 晶相的晶界处.这种共晶 体两相分离的组织称为离 异共晶.
57ቤተ መጻሕፍቲ ባይዱ
Pb-Sb共晶离异组织(铸态)×400 α 相依附初生晶α 析出,形成离异的 白色网状β
58
3、包晶相图及其结晶
(1)相图分析 液相线 单相区 两相区 固相线 三相区 固溶度曲线 (2)包晶反应 在一定温度下,由一固定成分的液相与一个固定成 分的固相作用,生成另一个成分固定的固相的反应, 称为包晶反应。

材料科学基础 第五章 5.1-5.4相图

材料科学基础 第五章 5.1-5.4相图

5.2.3 杠杆定律
设成份为 X的合金的总重量为1,液相的相对重量为 QL,其 成份为 X1,固相相对重量为Qα,其成份为X2,则 :
5.2.4 相图的类型和结构 根据组元的多少,可分为单元系、二元系、三元 系 …. 相图。
二元系相图的类型有:
① 液态无限溶解,固态无限溶解 -匀晶相图; ②液态无限溶解,固态有限溶解 -共晶相图和包晶
共晶组织:共晶转变产物。(是两相混合物)
共晶合金的特殊性质: ①比纯组元熔点低,简化了熔化和铸造的操作; ②共晶合金比纯金属有更好的流动性,其在凝固之 中防止了阻碍液体流动的枝晶形成,从而改善铸造 性能; ③恒温转变(无凝固温度范围)减少了铸造缺陷, 例如偏聚和缩孔; ④共晶凝固可获得多种形态的显微组织,尤其是规 则排列的层状或杆状共晶组织可能成为优异性能的 原位复合材料(in-situ composite )。
5.2.2 相律
相律(phase rule)是表示在平衡条件下,系统的自 由度数、组元数和相数之间的关系,是系统的平 衡条件的数学表达式。 相律数学表达式:f = C – P + 2 式中 P—平衡相数 C—体系的组元数 f—体系自由度(degrees of freedom) 数 2-温度和压力 自由度数 f:是指不影响体系平衡状态的独立可 变参数(温度、压力、浓度等)的数目。 在恒压下,相律表达式: f = C – P + 1
相律的应用
① 利用它可以确定系统中可能存在的最多平衡相数 单元系,因f ≥0,故 P≤1-0+1=2,平衡相最大为二个。 注意:这并不是说,单元系中能够出现的相数不能超过二 个,而是说,某一固定 T下,单元系中不同的相只能有两 个同时存在,而其它相则在别的条件下存在。

上海交大-材料科学基础-第五章

上海交大-材料科学基础-第五章
固体有几种物质就有几个相,但固溶体时为一个相; 液体视其混溶程度而定
5. 自由度
在相平衡系统中,可以独立改变的变量(如温 度、压力或组分浓度等)称为自由度。
这些变量的数目叫自由度数,用f表示。
f=0,无变量系统; f=1,单变量系统; f=2,双变量系统
溶解曲线 升华曲线
蒸发曲线
6. 外界影响因素
重建型转变 位 移 型 转 变
复习:
• 什么叫组元?什么是相? • 何谓相律? • 凝聚系统的相律是什么?
水(冰、液、汽);碳(石墨、金刚石)
➢固体机械混合物中有几种物质就有几种相。
铁粉+碳粉
➢一个相可以连续成一个整体,也可以不连续。
水中的冰块
6. 相变:从一种相转变为另一种相的过程。若转变 前后均为固相,则成为固态相变。从液相转变为固相 的过程称为凝固。若凝固后的产物为晶体称为结晶。
二、相平衡
1. 平衡
第五章 单组元相图
第一节 相与相平衡
一、基本概念 1. 组元:组成材料最基本、独立的物质。可以是单
一元素也可以是稳定的化合物。 2.系统(体系):选择的研究对象称为系统;系统
以外的一切物质都称为环境。 凝聚系统:不含气相或气相可以忽略的系统 如: 合金、硅酸盐系统
例: (1)一般系统 水、空气、酒精溶液、水与油、水与冰 (2)凝聚系统 机械混合物、化合物、固溶体、同新材料的开发从相图可以了解该体系在各种温度和压力下所存在的相态相成分和各个相的含量以及当温度和压力变化时将发生什么类型的相转变在什么条件下转变等第二节单元系相图一单元系统相图的表示和实验测定方法单相系相律fcp21p23p单相状态p1f2两相状态p2f1三相状态p3f0二相图分析相相区

材料科学基础第五章 材料的相结构及相图

材料科学基础第五章 材料的相结构及相图

SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学 2)尺寸因素
化学与材料科学学院
溶质原子溶入溶剂晶格会引起晶格点阵畸变,使晶体能量升高。 晶格畸变能
能量越高,晶格越不稳定。
单位体积畸变能的大小与溶质原子溶入的数量及溶质原子的相对尺寸有关:
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
1)晶体结构因素
溶质与溶剂的晶格结构相同→固溶度大。 例如:具有面心立方结构的Mn、Co、Ni、Cu,在γ-Fe中 固溶度较大,而在α-Fe中固溶度较小。 溶质与溶剂的晶格结构相同是形成无限固溶体的必要条件。
贵州师范大学
化学与材料科学学院
1)无限固溶体
无限固溶体都是置换固溶体? 2)有限固溶体 间隙固溶体只能是有限固溶体?
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
按溶质原子分布分类 1)有序固溶体 2)无序固溶体
贵州师范大学
化学与材料科学学院
基本概念
组元:组成材料的最基本的、独立的物质,简称元。
金属元素:Cu、Al、Fe 非金属元素:C、N、O 化合物: Al2O3, MgO, Na2O, SiO2 单一组元组成:纯金属、 Al2O3晶体等 材料: 二元合金 多组元组成,含合金 三元合金
组元:
纯元素
合金:指由两种或两种以上的金属或金属与非金属 经熔炼或其它方法制成的具有金属特性的物质。

材料科学基础-第五章-材料的相结构及相图-PPT

材料科学基础-第五章-材料的相结构及相图-PPT
相图上为一条垂直线。
Mg2Si
Mg—Si相图
(2)电子化合物
由ⅠB族或过渡金属元素与ⅡB,ⅢB,ⅣB族元素
形成的金属化合物。
不遵守化合价规律,晶格类型随化合物电子浓度而
变化。
电子浓度为3/2时: 呈体心立方结构(b相);
电子浓度为21/13时:呈复杂立方结构(g相);
电子浓度为21/12时。呈密排六方结构(e相);
体。
III. 电负性差因素
IV. 两元素间电负性差越小,越易形成固溶体,且形
成的固溶体的溶解度越大;随两元素间电负性差
增大,固溶度减小。


1)电负性差值ΔX<0.4~0.5时,有利于形成固溶体
2)ΔX>0.4~0.5,倾向于形成稳定的化合物
IV. 电子浓度因素
V. 电子浓度的定义是合金中各组成元素的价电子数总
子的价电子数恰好使负离子具有稳定的电子层
结构。
金属元素与周期表中的ⅣA,ⅤA,ⅥA元素
形成正常价化合物。
有较高的硬度,脆性很大。
例如:Mg2Si、Mg2Sn、Mg2Pb、MgS、MnS等
(1)正常价化合物
正常价化合物的分子式只有AB,A2B或AB2两种。
常见类型:
NaCl型
CaF2型
Cu原子形成四面体(16个)。
每个镁原子有4个近邻镁原子和12个近邻铜原子;
每个铜原子有6个近邻的铜原子和6个近邻的镁原子

Cu
Mg
II. 拉弗斯(Laves)相
②MgZn2型:六方晶系。
Mg原子形成硫锌矿结构;Zn原子形成四面体。
每个Mg原子有4个近邻Mg原子和12个近邻Zn原
子。
每个Zn原子有6个近邻Zn原子和6个近邻Mg原子

5. 材料的相结构及相图

5. 材料的相结构及相图

相律在相图中的应用
组元数(C) 相数(P) f=C–P+1
含义 单相合金,成分和温度都可变 两相平衡,成分、相对量和温度 等因素中只有一个独立变量 三相平衡,三相的成分、相对 量及温度都确定 单相合金其中两个组元的含量 及温度三个因素均可变 两相平衡,两相的成分、数量 及温度中有两个独立变量 三相平衡,所有变量中只有一 个是独立变量 四相平衡所有因素都确定不变
<2>晶体结构因素 组元间晶体结构相 同时,固溶度一般都较大,而且有可能形成 无限固溶体。若不同只能形成有限固溶体。 <3>电负性差因素 两元素间电负性差 越小,越易形成固溶体,而且形成的固溶体 的溶解度越大;随两元素间电负性差增大, 固溶度减小,当溶质与溶剂的电负性差很大 时,往往形成比较稳定的金属化合物。
(1)不同成分的材料在不同温度下存 在哪些变化 (2)各稳定相的相对量是多少
(3)成分与温度变化时所可能发生的变 化
了解相图的分析和使用方法后,就可以 了解合金的组织状态,进而预测合金的 性能。另外,可以根据相图来制订合金 的锻造和热处理工艺。 组元——组成材料最基本的、独立的物 质。
合金——有两种或两种以上的金属、或 金属与非金属经熔炼或用其它方法制成 的具有金属特性的物质。
Lc m n ●共晶反应:
tc
固相线: amcnb
●组成
液相线: acb
me 的溶解度变化线
nf 的溶解度变化线
●凝固过程: L 合金1:L 合金2 : L L
●不平衡凝固
<4>电子浓度因素 电子浓度的定义是 合金中各组成元素的价电子数总和与原 子总数的比值,记作e/a。电子浓度有 一极限,超过这一极限,固溶体就不稳 定,会形成新相。 二、间隙固溶体

5 《材料科学基础》第五章 相平衡和相图

5 《材料科学基础》第五章 相平衡和相图

( p -T 图)
自由
一、水的相图
冰的熔融曲线 水的饱和蒸汽压曲线(蒸发曲线)
3个相区:
p=1, f=2 ,双变量系统(T、P) 3条界线: p=2 , f= 1,单变量系统(T或P) 1个无变量点(三相点):
T
p=3 , f=0 ,无变量系统
冰的饱和蒸汽压曲线(升华曲线)
??
注意:
•冰点和三相点O
第五章
第五章
§5.1
相平衡和相图
基本知识
§5.2
§5.3
单元系统
二元系统
§5.4
三元系统
§5.1
相平衡与相图的基本知识
一、相平衡的基本概念 二、相律 三、相平衡的研究方法
一、相平衡的基本概念
相平衡:是研究一个多组分(或单组分)多相系统中相的平
衡问题,即多相系统的平衡状态(包括相的个数、各相的状态、
二、二元凝聚系统相图的基本类型
三、复杂二元相图的分析步骤
四、二元系统专业相图
要求
一、二元系统相图的表示方法及杠杆规则
1、作为特种陶瓷的重要原料
由于7%~9%的体积效应,常加适量CaO或Y2O3稳定剂。
在>1500℃以上与四方型ZrO2形成立方晶型固溶体,称稳定
化立方ZrO2 。
2、熔点高(2680℃),作耐火材料 3、利用导氧导电性能,作氧敏传感器元件 4、利用体积效应,对陶瓷材料进行相变增韧。
增韧机理: 微裂纹增韧
实线部分: 四个单相区: 五条界线:
两个无变量点:
晶体的升华曲线(或延长线)与液体的蒸发曲线(或延长线) 的交点是该晶体的熔点。 两种晶型的升华曲线(或延长线)的交点是两种晶型的晶型转 变点。

材料科学基础材料的相结构与相图

材料科学基础材料的相结构与相图
第6页/共270页
共析钢:由F(铁素体相)+ Fe3C(渗碳体相)双相构成, 为双相合金。
第7页/共270页
4、合金的显微组织
在显微镜下,合金中各相的 形状、大小和分布所构成的综 合体称合金组织。
第8页/共270页
“相构成组织、组织决定性能”
第9页/共270页
例1:钢中的珠光体(P) 组织:
第65页/共270页
如果外界压力保持恒定(例如一个标 准大气压),那么单元系相图只要一个 温度轴来表示。 根据相律,在汽、水、冰的各单相区 内(f=1),温度可在一定范围内变动。 在熔点和沸点处,两相共存,f=0, 故温度不能变动,即相变为恒温过程。
第66页/共270页
在单元系中,除了可以出现气、 液、固三相之间的转变外,某些物 质还可能出现固态中的同素异构转 变。
第17页/共270页
2、溶解度(C):
固溶体在一定温度和压力下, 溶于溶质原子的极限浓度。 当溶质浓度小于溶解度时, 溶质浓度增加将导致固溶强化;
第18页/共270页
当溶质浓度大于溶解度时, 将析出第二相起作第二相强 化作用; 当析出的第二相非常细小时, 称弥散强化。
第19页/共270页
3、固溶体分类
第60页/共270页
在两相区,两相的质量比可以 用杠杆定律求得,即:
QL / Qα = bc/ab 即QL / Qα恰好与它们的杠杆 臂成反比关系。 杠杆定律只适用于两相区。
第61页/共270页
二、单元系相图
单元系相图:是通过几何图形描 述由单一组元构成的体系在不同温 度和压力条件下所可能存在的相及 多相的平衡。 现以水为例说明单元系相图的表 示和测定方法。
例2、合金渗碳体(Fe、

材料学基础第5章三元相图

材料学基础第5章三元相图

材料科学基础
第五章
5.6三元相图小结
材料科学基础
第五章
一、单相状态 f=3-1+1=3,而一个温度变量和两个成分变量之间没有任何
相互制约的关系,因此,不论是等温截面还是变温截面,单相区可能具 有多种多样的形状。 二、两相平衡 立体图:共轭曲面。 成分变化:蝶形规则。 等温图:共轭曲线(可用杠杆定律) 变温截面:判定转变温度范围和相转变过程,不能用杠杆定律。 三、三相平衡 立体图:三棱柱,棱边是三个平衡相单变量线。
二、投影图
材料科学基础
第五章
投影图的作用:合金结晶过程分析、相组成物相对量计算、组织组成 物相对量计算。
图8.17 三元共晶相图的投影区
表8.2 各典型区域合金的凝固组织过程及室温组织
材料科学基础
第五章

凝固过程
室温组织

L→α
α

L→α ,α→βⅡ
α+βⅡ

L→α ,α→βⅡ,α β
α+βⅡ+γⅡ
(1)当给定合金在一定温度下处于两相平衡状态时,若其中一相的成分 给定,则根据直线法则,另一相的成分点必位于两已知成分点连线的 延长线上。 (2)如果两个平衡相的成分点已知,则合金的成分点必然位于两平衡相 成分点的连线上,根据两平衡相的成分,可用杠杆定律求出合金的成 分。
5.2.2重心定律
x,y,z分别为α,β,γ成分点,则
材料科学基础
第五章
投影图有两种。一种是把空间相图中所有相区间的交线部投影到浓度 三角形中,借助对立体图空间构造的了解,可以用投影图来分析合 金的冷却和加热过程。另一种是把一系列水平截面中的相界线投影 到浓度三角形中。每一条线上注明相应的温度,这样的投影图叫等 温线投影图。等温线可反映空间相图中各种相界面的变化趋势,等 温线越密,表示这个相面越陡。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相律在相图中的应用
C
2 二元系
P 1 2
3 1
f 2 1 0
3 2 1 0
含义
单相合金,成分和温度都可变 两相平衡,成分、相对量和温度 等因素中只有一个独立变量 三相平衡,三相的成分、相对 量及温度都确定 单相合金其中两个组元的含量 及温度三个因素均可变 两相平衡,两相的成分、数量 及温度中有两个独立变量 三相平衡,所有变量中只有 一个是独立变量 四相平衡所有因素都确定不变
结构简单的具有极高的硬度及熔点,是合金工具钢和硬 质合金的重要组成相。
I. 间隙化合物
间隙化合物和间隙固溶体的异同点
相同点: 非金属原子以间隙的方式进入晶格。
不同点: 间隙化合物:间隙化合物中的金属组元大多与自 身原来的结构类型不同 间隙固溶体:间隙固溶体中的金属组元仍保持自 身的晶格结构
I. 尺寸因素
II. 晶体结构因素 组元间晶体结构相同时,固溶度一般都较大,而且有可 能形成无限固溶体。若不同只能形成有限固溶体。
III. 电负性差因素
两元素间电负性差越小,越易形成固溶体,且形成的 固溶体的溶解度越大;随两元素间电负性差增大,固 溶度减小。

1)电负性差值ΔX<0.4~0.5时,有利于形成固溶体 2)ΔX>0.4~0.5,倾向于形成稳定的化合物
Mg2Si
Mg—Si相图
(2)电子化合物
由ⅠB族或过渡金属元素与ⅡB,ⅢB,ⅣB族元素 形成的金属化合物。 不遵守化合价规律,晶格类型随化合物电子浓度 而变化。 电子浓度为3/2时: 呈体心立方结构(b相); 电子浓度为21/13时:呈复杂立方结构(g相); 电子浓度为21/12时。呈密排六方结构(e相);
NaCl型 CaF2型 闪锌矿型 硫锌矿型 (面心立方) (面心立方) (立方ZnS) (六方ZnS)
(1)正常价化合物
正常价化合物其稳定性与两组元的电负性差值大小有关,电负 性差值越大,稳定性越高,愈接近离子键合,反之趋向于金属 键合。 正常价化合物包括从离子键、共价键过渡到金属键为主的一系 列化合物,通常具有较高的强度和脆性,固溶度范围极小,在 相图上为一条垂直线。
间隙化合物通常可用一个化学式表示,并具有特定的结构。 此结构往往不同于纯组元的结构,而是取决于非金属元素X 与过渡族金属元素M的原子半径比。
I. 间隙化合物
当原子半径比小于0.59时,形成结构简单的间隙化合物,并具 有简单的化学式。如体心立方,面心立方,密排六方,简单立方
当原子半径比大于0.59时,形成结构复杂的间隙化合物。如钢
简单结构的间隙化合物虽然可以用化学式表示, 但其化学成分可在一定范围内变化
I. 间隙化合物 表5-4 钢中常见的间隙化合物
间隙化合物的键型不完全是金属键,而大多数是不同程 度的金属键与共价键的混合与杂交。 可见此类化合物形成时,电负性因素也起了一定作用。
I. 间隙化合物
表5-5 钢中常见间隙化合物的硬度及熔点
第二节 二元相图及其类型
相图(phase diagram):是一种能够描述给定材 料系中材料(合金)成分、温度(压力)与其组 织状态之间关系的图形。
利用相图可以:
1 可以了解各种成分材料(合金)的熔点和发生固态转变的温度; 2 用于研究材料(合金)的凝固过程和凝固后的组织; 3 是制定材料(合金)熔铸、压力加工、热处理工艺的重要依据; 4 相图是在平衡条件下测得的,也叫平衡状态图。
溶质原子一般是半径小于0.1mm的非金属元素 例如: H(0.046nm);O(0.061nm); N(0.071nm);C(0.077nm); B(0.097nm)
注意:
无论是置换固溶体还是间隙固溶体,均能引起 固溶体的硬度、强度升高。 对置换式固溶体,溶质原子与溶剂原子的尺寸 差别越大,溶质原子的浓度越高,其强化效果 就越大。 由于溶质原子的固溶而引起的强化效应,称为 固溶强化。
成分表示方法
二元合金相图的成分有两种表示方法: 质量分数(W)和摩尔分数(x)。
通常用质量分数 (W) 表示,在没有特别注明 时,合金成分都是指质量百分数。
成分表示方法
质量分数(W)和摩尔分数(x)可以进行换算
wA
wA
XA
MA MA
MA MB
XA
XA
MB
MB
100%
II. 拉弗斯(Laves)相
当组元间原子尺寸之差处于间隙化合物与 电子化合物之间时,会形成拉弗斯相。
拉弗斯相:借大小原子排列的配合而实现的密排 结构。
通式AB2,A和B均为金属原子 A:大原子;B:小原子 rA/rB的理论比值为1.225 rA/rB的实际比值为1.05-1.068
II. 拉弗斯(Laves)相
Cu
Mg
II. 拉弗斯(Laves)相 ②MgZn2型:六方晶系。
Mg原子形成硫锌矿结构;Zn原子形成四面体。 每个Mg原子有4个近邻Mg原子和12个近邻Zn原子。 每个Zn原子有6个近邻Zn原子和6个近邻Mg原子。
II. 拉弗斯(Laves)相
③MgNi2型:六方晶系。
介于MgCu22之间的结构。
间隙固溶体 有限固溶体 按固溶度的大小 无限固溶体
按溶质原子与溶剂 原子的相对分布情况
无序固溶体 有序固溶体
(1)置换固溶体
溶剂原子 溶质原子
溶质原子占据溶剂晶格某些
结点位置所形成的固溶体
(1)置换固溶体
溶质与溶剂可以有限互溶也可以无限互溶, 其溶解度与以下几个因素有关:
I. 尺寸因素 溶质原子半径与溶剂原子半径之差越大,一个溶质原 子引起的点阵畸变能就越大,溶质原子能溶入溶剂中 的数量就越少,固溶体 的溶解度就越小。 相反就越大。
Laves相三种类型
MgCu2型
MgZn2型 MgNi2型
II. 拉弗斯(Laves)相
①MgCu2型:立方晶系。每个晶胞有24个原子。
Mg原子形成闪锌矿型的结构(8个); Cu原子形成四面体(16个)。 每个镁原子有4个近邻镁原子和12个近邻铜原子; 每个铜原子有6个近邻的铜原子和6个近邻的镁原子。
中的Fe3C、Cr23C6、Fe4W2C、Cr7C3、Mn3C等原子半径比等于0.23时,非金属原子占据过渡族金属结构的 四面体间隙; 而当原子半径比在0.41和0.59之间时,非金属原子占据过渡族 金属结构则占据八面体间隙。
I. 间隙化合物 表5-3 简单结构的间隙化合物成分范围
第五章
材料的相结构及相图
第一节 材料的相结构 第二节 二元相图及其类型
第三节 复杂相图分析 第四节 相图的热力学基础
第五节 三元系相图及其类型
合金:根据性能要求,选用两种或两种 以上金属元素或金属与非金属元素,经 熔炼或烧结等方法形成具有金属性能的 材料称为合金。 例如:Fe-C钢铁;Cu-Zn铜合金;Mg合金; Al合金;Ni基合金等。
3
2 3 4
三元系
3. 二元相图建立:
二元系 (binary system) 由于合金有成分 (composition) 变 化 , 所 以 其 相 图 ( phase diagram)需用纵、横两个坐标轴表示,纵轴 表示温度,横轴表示成分。即T-x或T-w图
• 如果合金系由 A、 B两组元组成,横坐标一端 为组元 A,而另一端为组元 B,那么体系中任 一成分合金都可以在横坐标上找到相应的点。
2. 相律(phase rule):描述系统的组元数、相 数和自由度之间关系的法则。
Gibbs相律(Gibbs phase rule):f=C-P+2
f:自由度数目(the number of degrees of freedom); C:给定材料的组元数(the number of components); P:共存的平衡相数(the number of equilibrium phases); 2:压力、温度自由度
第二节 二元相图及其类型
平衡凝固过程(equilibrium solidification): 指在极缓慢凝固过程中,每个阶段都能达到平衡 的结晶过程
是理解、分析相图十分重要的理论依据。
相律:描述材料在不同条件下相平衡状态所遵循的法规, 注意:相图和相律只在热力学平衡条件下成立。相图和
相律不能反映各平衡相的结构、分布状态及具体形貌。
2. 中间相
两组元间的相对尺寸差、电子浓度及电负性差 都有一溶限,当溶质原子的加入量超过此溶限 时便会形成一种新相,这种新相称为中间相。 中间相一般具有较高的熔点及硬度,可使合 金的强度、硬度、耐磨性及热腐蚀性提高。 按中间相形成时起主要作用的因素分类: 正常价化合物;电子化合物;尺寸因素化合物
一、相图的基本知识
1. 相图的形式和种类: 温度-浓度图(T-x) 温度-压力-浓度图(T-p-x) 温度-压力图(T-p)
① 单元系相图: ② 二元系相图:
T-p图 T-p-x图,常固定压强p,即T-x图
P 冰
℃ 水 气
A
X
L
S+L
TA
S B
T 水的状态示意图
B%
③ 三元系相图:
考虑5个变量(三种组元 A、B、C,温度T和 压力p)。 常固定压强p, 即T-x( A、B、C )图, 三棱柱模型
第一节 材料的相结构
相:是合金中具有同一聚集状态,同一晶体 结构和性质并以界面相互隔开的均匀组成部 分。 固溶体 根据相的结构特点分为两大类: 中间相
1. 固溶体
以合金中某一组元作为溶剂,其它组元为溶质, 所形成的与溶剂有相同晶体结构、晶格常数稍有 变化的固相,称为固溶体。
固溶体的类型
按溶质原子在溶剂 晶体中所占位置 置换固溶体
IV. 电子浓度因素
电子浓度的定义是合金中各组成元素的价电子数总和与 原子总数的比值,记作e/a。电子浓度有一极限,超过 这一极限,固溶体就不稳定,会形成新相。
相关文档
最新文档