第二章 燃料及燃料燃烧计算
燃料燃烧空气量烟气量计算
6.70(m 3 N
/ kg)
②理论烟气量为:
CO2:54.75mol SO2:0.53mol H2O:16+5=21mol N2:3.78(54.75 0.53 8 0.72) 236.4(8 mol)
V fg
0
(54.75
0.53 21 1000
236.48)
22.4
7.00(m 3 N
✓ 烟气体积和密度旳校正 转化为标态下(273K、1atm)旳体积和密度 原则状态下旳烟气体积
VN VS * PS * TN PN TS
原则状态下烟气旳密度
PN PS * PN * TS PS TN
烟气体积及污染物排放量计算
❖ 过剩空气校正
以碳在空气中旳完全燃烧为例 C十O2+3.76N2——>C02+3.76N2
和SO2在烟气中旳浓度(以体积分数计)。
解: 元素
重量(g) 摩尔数(mol)需氧量(mol)
C
657
54.75
54.75
S
17
0.53
0.53
H
32
16
8
H2O
90
5
0
O
23
0.72
-0.72
污染物排放量旳计算
①理论空气量
Va 0
(54.75
0.53 8 0.72) 4.76 22.4 1000
CH4+2O2+7.52N2----->CO2+2H2O+7.52N2 空燃比为:
AF 2 32 7.56 28 17.2 116
烟气体积及污染物排放量计算
烟气体积计算 ✓ 理论烟气体积
燃料及燃烧2 燃烧计算及燃烧理论
Va0 VO0 2
100 8.9Car 26.7 H ar 3.3( Sar Oar )(Nm3 / kg) 21
洛阳理工学院
材料工程基础
②气体燃料
院系:材料科学与工程系
教师:罗伟
可燃组成有CO2、 CO、H2、CH4、CmHn、H2S、H2O、N2、O2(体积百 分含量)
0 百分含量,VO 和 VO0分别为生成RO2和H2O的需氧量( /m3) 2 2
0 0 (VO2 RO2 VO2 H 2 O ) O2
V
0 O2
RO2 V H 2 O
0 O2
令k
0 0 VO2 RO2 VO2 H 2O
RO2
K:单位燃料燃烧时的理论需氧量 与该烟气中RO2百分含量的比值。 组成变动不大的同种燃料的k值近 似为常数。列于表。
洛阳理工学院
材料工程基础
院系:材料科学与工程系
教师:罗伟
第三节
燃烧计算
洛阳理工学院
材料工程基础
院系:材料科学与工程系
教师:罗伟
在设计窑炉时(设计计算) 1、已知燃料的组成及燃烧条件, 2、需计算单位质量(或体积)燃料燃烧所需的空气量、烟气 生成量、烟气组成及燃烧温度 3、以确定空气管道、烟道、烟囱及燃烧室的尺寸,选择风机 型号。
CO2=
VCO2 0 V
0
×100(%)
洛阳理工学院
材料工程基础
② 气体燃料
院系:材料科学与工程系
教师:罗伟
可燃组成有CO2、CO、H2、CH4、CmHn、H2S、H2O、N2、O2(体积百 分含量)
CO + 1/2O2 → CO2 CO2 H2 + 1/2O2 → H2O CH4 + 2O2 → CO2 + 2H2O CmHn +(m+n/4)O2→ m CO2 + n/2 H2O 1Nm3 H2生成 1 Nm3 HO2 …… ...... 1Nm3 CO 生成 1 Nm3
燃料及燃烧
理论燃烧产物量
(二)实际空气需求量和实际燃烧产物量的计算 实际空气需要量 实际燃烧产物量 (三)燃烧产物成分和密度的计算 1.燃烧产物成分 用
烟煤 :烟煤比褐煤炭化更完全,水分和挥发分进一步减少,固体碳 增加。低发热量较高;一般都在23000~29300千焦/千克。 作冶金炉燃料时,主要考虑的指标是:挥发分和发热量;灰分 含量及其熔点;含硫量;煤的粒度大小。 分类:长焰煤、气煤、肥煤、结焦煤、瘦煤。 无烟煤 :无烟煤是炭化程度最完全的煤,其中挥发分很少。无烟煤 挥发分少,燃烧时火焰很短,故在冶金生产中很少使用。焦炭缺乏 时,可用无烟煤暂代。
②氢(H): H 2 1 O2 H 2O(汽) 119915( KJ / Kg )
③氧(O):有害元素 ④氮(N):惰性物质
1 C O2 CO 10258( KJ / Kg ) 2
2
⑤硫(S):有害杂质。S
O2 SO2 409930 KJ
存在形式:有机硫,黄铁矿硫硫酸盐 ⑥水分(W):有害成分。水分来源:外部水、吸附水、结晶水。 ⑦灰分(A):
2.焦炭 要求:①化学成分 ②机械强度
③块度
④灰分 ⑤反应能力 3.粉煤 将块煤或碎煤磨至0.05~0.07毫米的粒度称为粉煤。
任务2 燃烧计算
一 概述 1.完全燃烧与不完全燃烧 燃料中的可燃物全部与氧发生充分的化学反应,生成不能 燃烧的产物,叫完全燃烧。 燃料的不完全燃烧存在两种情况: ①化学性不完全燃烧:燃烧时燃料中的可燃物质没有得到足 够的氧,或者与氧接触不良,因而燃烧产物中还含有一部分 能燃烧的可燃物被排走,这种现象叫化学不完全燃烧。 ②机械不完全燃烧:燃料中的部分可燃成分未参加燃烧反应 就损失掉的那部分。如灰渣裹走的煤,炉栅漏下的煤,管道 漏掉的重油或煤气。
锅炉第二章题库答案
第二章燃料与燃烧计算一、名词解释1、发热量:单位质量的燃料在完全燃烧时所放出的热量。
2、高位发热量:1kg燃料完全燃烧后所产生的热量,包括燃料燃烧时所生成的水蒸气的汽化潜热。
3、低位发热量:高位发热量中扣除全部水蒸气的汽化潜热后的发热量。
4、标准煤:规定收到基低位发热量Qnet,ar =29308kJ/kg的煤。
6、煤的挥发分:失去水分的干燥煤样置于隔绝空气的环境下加热至一定温度时,煤中的有机物分解而析出的气态物质的百分数含量。
7、油的闪点:油气与空气的混合物与明火接触发生短暂的闪光时对应的油温。
8、完全燃烧:燃烧产物中不再含有可燃物的燃烧。
9、不完全燃烧:指燃料的燃烧产物中还含有某些可燃物质的燃烧。
10、理论空气量:1kg收到基燃料完全燃烧,而又无过剩氧存在时所需的空气量。
11、过量空气系数:实际供给的空气量与理论空气量的比值。
12、理论烟气量:供给燃料以理论空气量,燃料达到完全燃烧,烟气中只含有二氧化碳、二氧化硫、水蒸气及氮气四中气体时烟气所具有的体积13、烟气焓:1kg固体、液体燃料或标准状态下1m³气体燃料燃烧生成的烟气在等压下从0℃加热到某一温度所需的热量。
二、填空1、煤的元素分析法测定煤的组成成分有碳、氢、氧、氮、硫、灰分、水分,其中碳、氢、硫是可燃成分,硫是有害成分。
2、煤的工业分析成分有水分、挥发分、固定碳和灰分。
3、表征灰的熔融特性的四个特征温度为变形温度、软化温度、半球温度和流动温度。
4、煤的炭化程度越深,其挥发分含量越少,着火温度越高,点火与燃烧就越困难。
5、煤的成分分析基准常用的有收到基、空气干燥基、干燥基和干燥无灰基。
6、理论水蒸气体积,包括燃料中氢完全燃烧生成的水蒸气、燃料中水分受热蒸发形成的水蒸气、理论空气量带入的水蒸气三部分。
0带进烟气中的水蒸气体积为V k0 m3/kg。
7、随同理论空气量Vk8、烟气成分一般用烟气中某种气体的所占干烟气总体积的体积百分数含量来表示。
燃料及燃烧产物
动力燃料用煤的分类方法
煤种 无烟煤
干燥无灰基挥 发份含量 Vdaf[%]
≤8
贫煤
>8-19
低挥发份烟煤 20-30
高挥发份烟煤 30-40
褐煤
40-50
燃烧特性
难着火及燃烧完全 较难着火及燃烧完全 易着火及燃烧完全 易着火及燃烧完全 易着火及燃烧完全
用百分比表示煤的成份:
C + H + O + N + S + A + M = 100%
恩氏粘度(°E) (100℃不大 于)
闪点(开口)(℃) 不低于 80
5.5 ~ 9.5
100 120 130
凝固点(℃)不高于 灰分(%)不大于 水分(%)不大于
15 20 0.3 0.3 1.0 1.5
25 36 0.3 0.3 2.0 3.0
硫含量(%)不大于 机械杂质(%)不大于
1.0 1.5 1.5 2.0
粘度:温度对粘度的影响最大,影响流动和雾化 主 要 燃点和闪点:鉴别油着火、燃烧性能的重要指标 性 凝固点:凝固点的高低与石蜡的含量有关,含石蜡多 质 的凝固点高
硫分和杂质:硫将引起锅炉受热面的腐蚀和积灰,机 械杂质可能堵塞磨损喷嘴
项目 20
恩氏粘度(°E)(80℃不大于)5.0
重油牌号
60 100 200 11.0 15.5
优点:点火容易,易与空气混合达到完全燃烧,调节方便
用途:制取合成氨、炭黑、乙炔等化工产品的原料气,优 质的燃料气
液化石油气:开采和炼制石油过程中而获得的一部分炭氢化合 物,主要成分为C3H8,C3H6,C4H10,C4H8,习惯上称C3,C4 , 热值为91960~121220kJ/Nm3
第二章 燃料及燃料燃烧计算
(二)各类煤质的燃烧特性
烟煤 含碳量较无烟煤低 40%~70%; 挥发分含量较多 20%~40%,易点燃,燃烧快,火焰长; 氢含量较高 发热量较高。 褐煤
碳化程度低,含碳量低 约为40~50%,
水分及灰分很高 发热量低; 挥发分含量高 约40~50%,甚至60%,挥发分的析出温度 低,着火及燃烧均较容易。
热量。
约占2%~6%。 多以碳氢化合物的形式存在。
3、氧(O)和氮(N)
不可燃元素。 氧含量变化很大,少的约占1%~2%,多的占40% 氮的含量约占0.5%~2.5%。
5
一、煤的成分及分析基准
4、硫(S)
有害成分,约占2%,个别高达8%~10%。 存在形式:
① 有机硫(与C、H、O等结合成复杂的有机物)
第二章 燃料及燃料燃烧计算
燃料的成分及其主要特性 燃料燃烧计算 烟气分析方法 空气和烟气焓的计算
1
§2.1 燃料的成分及其主要特性
燃料:
核燃料 有机燃料 固体燃料(煤、木料、油页岩等)
有机燃料 :
液体燃料(石油及其产品) 气体燃料(天然气、高炉煤气、焦炉煤气等)
电厂锅炉以煤为主要燃料,并尽量利用水分和灰分含
Q Q 226 H d , n, et p d , gr d
干燥基 高位发热量与低位发热量之间的换算: 干燥无灰基 高位发热量与低位发热量之间的换算: Q Q 226 H daf , net , p daf , gr daf
18
(一)煤的发热量
高位发热量(Qgr) 各基准间的换算采用表2-1换算系数
为反映煤的燃烧特性,电厂煤粉锅炉用煤还以VAMST及Q法 分类
28
(二)各类煤质的燃烧特性
燃料燃烧、空气量、烟气量计算
元素 C
重量(g) 摩尔数(mol) 需氧量(mol)
855
71.25
71.25
H
113
56.5
28.25
S
10
0.31
0.31
O
20
0.625
—
N2
2
—
—
燃烧1kg重油所需要的氧气量为: 71.25 + 28.25 + 0.31 - 0.625 =99.185 (mol/kg)
则理论空气量Va0 =(3.78+1)×99.185×22.4/1000 = 10.62 (m3/kg)
气量和SO2在烟气中的浓度(以体积分数计)。
解:
元素
重量(g) 摩尔数(mol)需氧量(mol)
C
657
54.75
54.75
S
17
0.53
0.53
H
3216Leabharlann 8H2O90
5
0
O
23
0.72
-0.72
污染物排放量的计算
①理论空气量
Va 0
(54.75
0.53
8 0.72) 1000
4.76 22.4
所以实际烟气体积Vfg=V0fg + V0a(α-1) = 11.01+10.47×(1.2-1)= 13.10 m3N/kg
污染物排放量的计算
例3 普通煤的元素分析如下:C 65.7%;灰分18.1%;S 1.7%;H 3.2;
水分 9.0%;O 2.3%。(含N量不计)试计算燃煤1kg所需要的理论空
量时可以忽略; e)燃料中氮主要被转化成氮气N2; f)燃料的化学式设为CxHySzOw,其中下标x、y、z、w分别代
第2章 燃料及燃烧计算=长沙理工大学锅炉原理
煤的可磨性系数与磨损指数
煤的可磨性系数:
国际标准:哈德格罗夫法(Hardgrove法),测定哈氏可磨性指数HGI
煤的磨损性指数 表示磨损的轻重程度;旋转磨损试验仪;冲刷式磨损试验仪:Ke=E/At
Page 14
Principles of Boiler
2013-8-2
长沙理工大学能动学院
煤的分类
我国动力煤的分类(分类依据: Vadf)
氧)可通过燃料中可燃元素(C、H、S)的燃烧化学反应方程式求得
V 0 1 (1.866 C a r 5.56 H a r 0.7 S a r - 0.7 O a r ) 0.21 100 100 100 100
0.0889(Car 0.375Sar ) 0.265H ar 0.333Oar
0 O Vy0 VRO2 VN2 VH 2O
(Car 0.375Sar ) N 0.8 ar 0.79V 0 100 100 H ar M ar 11.1 1.24 0.0161V 0 , Nm3 / kg 100 100 1.866
Page 15 Principles of Boiler 2013-8-2
长沙理工大学能动学院
煤的类型
无烟煤
碳化程度高,含碳量很高,达95%,杂质很少,发热量很高,约 为25000~32500 kJ/kg;
挥发份很少,小于10%,Vdaf析出的温度较高(可达400℃),着 火和燃尽均较困难,储存时不易自燃 褐煤 碳化程度低,含碳量低,约为40~50%,水分及灰分很高,发热 量低, 约10000~21000 kJ/kg; 挥发分含量高,约40~50%,甚至60%,挥发分的析出温度低 (<200℃),着火及燃烧均较容易
锅炉题和答案
第一章:绪论1、计算1台1025t/h 亚临界压力自然循环锅炉的年耗煤量、灰渣排放量。
已知,锅炉每年的运行小时数为6000h ,每小时耗煤128t ,煤的收到基灰分为A ar =8%。
答:解:(1)每年的煤耗量Ba=6000×128=76.8×104×8/100=6.144×104(t/a )(2)每年的灰渣(飞灰、沉降灰、底渣之和)排放量44hz 876.810 6.14410(/)100100ar aA MB t a ==⨯⨯=⨯ 计算结果分析与讨论:(1)燃煤锅炉是一种煤炭消耗量很大的发电设备。
(2)1台300MW 机组每年排放的灰渣总量达到6.144万t ,应当对电厂燃煤锅炉排放的固体废弃物进行资源化利用,以便降低对环境的污染。
2、分析煤粉炉传热过程热阻的主要构成及提高煤粉炉容量的技术瓶颈。
答:传热系数的倒数2111()()()g m h K δδδαλλλα=++++ 其中,蒸汽或者水侧的对流放热系数α2=2000~4000W/(m2•K),烟气侧的对流放热系数α1=50~80W/(2m •K)。
导热热阻相对较小,可以忽略不计。
因此锅炉的主要热阻出现在烟气侧。
要提高锅炉的容量,必须设法增加烟气侧的对流换热系数或者受热面面积。
煤粉炉提高容量的技术瓶颈就是烟气侧对流放热系数太小。
3、分析随着锅炉容量增加,锅炉给水温度提高的原因。
答:(1)锅炉的容量越大(即蒸汽流量D 越大),水蒸气的压力就会越高。
根据水的热力学性质,压力越高,水的饱和温度越高。
(2)为了保证水冷壁的系热量主要用于蒸发,而不是用于未饱和水的加热。
进入水冷壁的水的温度与对应压力下的饱和温度之间的差值基本上是常数。
(3)水在省煤器中吸热提高温度基本上是常数。
(4)综合分析(1)、(2),随着锅炉容量增加、水蒸气的压力就会提高。
来自省煤器出口的水与未饱和温度之间的差值等于常数,因此省煤器出口的水温会随着锅炉的容量的提高而提高,有因为水在省煤器中吸热提高温度基本上是常数,所以省煤器的入口水温,即给水温度随着锅炉容量的提高而提高。
第2章 燃烧物理学基本方程
[
]
[
]
[
]
∂u 2 ∂v 2 ∂w 2 Φ = 2 µ + + ∂x ∂y ∂z ∂u ∂v 2 ∂v ∂w 2 ∂w ∂u 2 2 ∂u ∂v ∂w 2 + µ + + + ∂y ∂x ∂z ∂y + ∂x + ∂y − 3 µ ∂x + ∂y + ∂z
r ∂ρ + div (ρv ) = 0 ∂t
基本守恒方程
动量守恒方程 运动方程、 运动方程、Navier-Stokes方程 方程 体积力: 体积力:重力、磁力等
DV ρ = f Dt
表面力:压力、粘性力等 表面力:
基本守恒方程
动量守恒方程
∂u Du ∂u ∂u ∂u ρ = ρ + u +v +w ∂t Dt ∂x ∂y ∂z ∂p ∂ ∂u 2 ∂u ∂v ∂w = − + 2 µ − µ + ∂x ∂y + ∂z ∂x ∂x ∂x 3 ∂ ∂u ∂v ∂ ∂w ∂u + µ + + µ + + (∑ ρ i Fi )x ∂y ∂x ∂z ∂y ∂x ∂z
基本守恒方程
二维边界层守恒方程
普朗特提出了边界层的概念,假设: 普朗特提出了边界层的概念,假设:
在边界层内垂直于壁面的速度远小于平行于壁面的 速度; 平行于壁面方向的速度梯度、温度梯度以各组分浓 度梯度远小于垂直于壁面方向的相应梯度; 垂直于壁面的压力梯度近似等于零。
燃料与燃烧计算
3.凝点
• 燃料油由液态变为固态时的温度
• 复杂的混合物,没有一定的凝固点:随温度逐渐降 低时,变得越来越稠,直到完全丧失流动性
• 测定方法
• 将试样油放在试管中冷却,倾斜450,试管中的油面 经过5~10s保持不变时的油温 • 汽油:<-80℃;柴油:-30~-50℃;重油:15~36℃
• 低温下输送凝点高的油时,油管易阻塞不通, 应采取加热或防冻措施
二、燃料成分分析数据的基准与换算
• 燃料各成分百分数经常变化,提供或应用燃料成 分分析数据,须表明其分析基准(计算基数) • 元素分析和工业分析,常采用四种分析基准
稳定成分,用于判断煤的燃烧特性和分类 不受水分影响 实验室条件下风干后的成分 燃料的实际应用成分
各种基换算
• 已知Cdaf,求Car
• 爆炸上限、爆炸下限
• 轻质燃料油的爆炸范围较小,重质燃料油的爆 炸范围较大,即其爆炸危险性大
• 汽油1.4~8% • 原油1.7~11.3%
三、锅炉常用燃料油
• 锅炉常用燃料油分柴油、重油
• 柴油一般用于中、小型供热锅炉、生活锅炉以及大 型锅炉的点火和稳定燃烧 • 重油大多用于电站锅炉
• 燃料油成分与煤一样,主要元素是碳和氢—— 清洁型燃料
• 燃点
• 油温继续升高,当油面上的油气与空气的混合物遇明火能着 火持续燃烧(持续时间不少于5s) 时的油温
• 燃点高于闪点,重油的闪点为80~130℃,燃点比闪点 高10~30℃ • 闪点是防止油发生火灾的一个重要指标,燃料油的预 热温度必须低于闪点
6.爆炸极限
• 引发爆炸时空气中含有燃料油蒸气的体积分数 或浓度
4.比热容
• 1kg燃料油温度升高1℃所需要的热量 • Ct=1.73+0.002t kJ/(kg .℃)
第二章-燃料及燃料燃烧计算
灰分(Ash): 煤中不可燃矿物杂质,成分十分复杂,大多数煤的灰分 含量7%~40%。
1)A 可燃物减少,Qdw ,着火困难,灰渣量增加,运行 操作繁重;
2)A 且ST ,炉内易结渣,使受热面传热恶化, D
3)A
,烟气流速wy
wy wy
对流受热面磨损严重 对流受热面积灰、堵灰,传热系数K
Car+Har+Oar+Nar+Sar+Aar+Mar=100% 2.空气干燥基ad; 表示在不含外在水分的条件下,燃料各组成成分的质量 百分数总和, 是实验室煤质分析所用煤样的成分组成。
Cad+Had+Oad+Nad+Sad+Aad+Mad=100%
3. 干燥基d; 表示在不含水分的条件下干燥燃料各组成成分的质量百 分数总和 干基中各成分不受水分变化的影响
与燃烧容易。
VAMST分类标准
四、液体燃料和气体燃料
锅炉燃用的液体燃料主要是重油和渣油。
重油——是石油提炼汽油、煤油和柴油后的剩余物, 渣油——是进一步提炼后的剩余物。 重油
重油的成分与煤一样,也是由碳、氢、氧、氮、硫和灰 分、水分组成。它的主要元素成分是碳和氢,其含量甚 高(Car=81~87%,Har=11~14%),而灰分、水分的含量很
空气中只有O2和N2成分,其容积比为: 气体容积计算的单位均为Nm3/kg。
Cd+Hd+Od+Nd+Sd+Ad=100% 4. 干燥无灰基daf; 表示在不含水分和灰分的条件下,干燥无灰燃料各组成 成分的质量百分数总和, 干燥无灰基中只包含燃料的可燃成分,各成分不受水分 和灰分变化的影响, 煤炭交易。
燃烧学整理内容
第二章燃料的燃烧计算完全燃烧与不完全燃烧燃料燃烧时所需空气量及烟气生成量烟气分析燃烧设备的热平衡计算中的简化微量的稀有气体所有气体都作为理想气体不考虑烟气的热分解和灰质的热分解产物略去空气中和CO2第一节燃料燃烧所需空气量计算一、燃料燃烧所需理论空气量理论空气量即根据化学反应式计算出来的燃料完全燃烧时所需空气量。
Nm3干空气/kg燃料,Nm3干空气/Nm3燃料,V0液体燃料与固体燃料燃烧所需理论空气量气体燃料燃烧所需理论空气量二、燃料燃烧时实际空气需要量空气系数实际空气需要量第二节完全燃烧时烟气的计算一、液体燃料与固体燃料烟气的计算理论烟气量的计算实际烟气量的计算烟气焓的计算燃料理论燃烧温度二、气体燃料烟气的计算理论烟气量的计算实际烟气量的计算第三节不完全燃烧时烟气量的计算一、液体燃料与固体燃料二、气体燃料三、燃料不完全燃烧烟气量与完全燃烧烟气量的关系第四节烟气分析计算一、成分的检验方法二、空气系数的检测计算三、燃料不完全燃烧损失计算四、奥氏烟气分析器第五节燃烧设备的热平衡第三章燃烧化学反应动力学基础化学反应动力学是研究化学反应机理和化学反应速度及其影响因素的一门学科一·基本概念单相系统与单相反应:在一个系统内各个组成都是同一物态,则称此系统为单相系统。
在此系统内进行的化学反应,则称单相反应。
多相系统与多相反应:在一个系统内各个组成不属同一物态,则称此系统为多相系统。
在多相系统内进行的化学反应,则称多相反应。
分子反应:单分子反应------化学反应时只有一个分子参与反应,I2=2I双分子反应------反应时有两个不同种类或相同种类的分子同时碰撞而发生的反应,CO2+H2 CO+H2O三分子反应------反应时有三个不同种类或相同种类的分子同时碰撞而发生的反应,2CO+O2=CO2简单反应与复杂反应:一个反应是由若干个单分子或双分子间或三分子反应相继实现,成为复杂反应;而组成复杂反应的各基本反应则称之为简单反应或基元反映级反应:一级反应、二级反应、三级反应,反应速度与反应物浓度的几次方成比例就是几级反应,或反应级数是几就是几级反应浓度:摩尔浓度、千克浓度、分子浓度、相对浓度等。
燃料燃烧热量计算公式(二)
燃料燃烧热量计算公式(二)燃料燃烧热量计算公式燃料燃烧热量计算公式是用于计算燃料在完全燃烧时释放出的热量。
下面将列举一些相关的计算公式,并给出解释和示例。
1. 燃料燃烧热量的定义燃料燃烧热量,也称为燃料的热值,是指单位质量或单位体积的燃料在完全燃烧时所释放的热量。
其单位一般用千焦耳(kJ)或千卡(kcal)表示。
2. 公式1: 燃料燃烧热量的计算公式燃料燃烧热量的计算公式一般可以表示为:Q = m * HHV其中,Q是燃料燃烧热量(单位: kJ或kcal),m是燃料的质量(单位: kg或g),HHV是燃料的高位热值(单位: kJ/kg或kcal/g)。
公式中的质量可以是燃料的整体质量,也可以是单位体积的质量。
示例:假设有1千克的甲烷,它的高位热值为 MJ/kg,那么它的燃烧热量可以通过公式计算得到:Q = 1 kg * MJ/kg = MJ = 55,500 kJ所以甲烷的燃烧热量为55,500 kJ或 MJ。
3. 公式2: 燃料燃烧热量的计算公式(以体积为质量时)有时候,我们会以燃料的单位体积的质量来计算燃烧热量。
Q = V * HCV其中,Q是燃料燃烧热量(单位: kJ或kcal),V是燃料的体积(单位: m³或L),HCV是燃料的高位热值(单位: kJ/m³或kcal/L)。
示例:假设有100升的液化石油气(LPG),它的高位热值为24 MJ/m³,那么它的燃烧热量可以通过公式计算得到:Q = 100 L * 24 MJ/m³ = 2400 MJ = 2,400,000 kJ所以100升的液化石油气的燃烧热量为2,400,000 kJ或2400 MJ。
4. 公式3: 燃料燃烧热量的计算公式(以体积为质量时的液体燃料)对于液体燃料,如果以体积为质量时,则需要考虑燃料的密度。
Q = V * D * HCV其中,Q是燃料燃烧热量(单位: kJ或kcal),V是燃料的体积(单位: m³或L),D是燃料的密度(单位: kg/m³或g/mL),HCV是燃料的高位热值(单位: kJ/kg或kcal/g)。
第二章 燃料及燃烧计算
是燃料的主
建筑环境与设备专业
一、
挥发分析
残留IT(IT(变形温度变形温度变形温度) ST ) ST ) ST((软化温度软化温度)
)HT HT ((半球温度半球温度))FT FT((流动温度流动温度))
kJ/kg。
干燥无灰基
分等物质组成的复杂混合物分等物质组成的复杂混合物,
建筑环境与设备专业南京理工大学
第二章燃料与燃烧计算
时的纯水密度之比值为20τ
当油气
第二章燃料与燃烧计算
不完全燃烧方程式
燃料特性系数
建筑环境与设备专业南京理工大学
第二章燃料与燃烧计算
完全燃烧
建筑环境与设备专业
理论烟气量以
上次课回顾
上次课回顾。
2燃料概论
2.2 燃料的组成和特性
3)氧 氧是燃料中的不可燃元素; 常用的气体燃料和石油基液体燃料中一般均含有少量的氧; 煤中的氧则是以化合状态存在,在各种煤中的含量差别很大。 4)氮 氮是燃料中的惰性元素,一般情况下不参与燃烧过程; 燃料中的氮含量一般都不高。 5)硫 各种燃料中均含有一定量的硫; 液体燃料中的硫小部分为无机硫,大部分为硫与其它元素
低位热值之间的关系为: Qgr = Qnet+25 (9H+M) (2-18) H,M——燃料中氢和水分的质量百分数 ,%。
对于干燥基和干燥无灰基,由于不存在水分,又: Qgr,d = Qnet,d+225Hd (2-19) Qgr,daf = Qnet,daf+225Hdaf (2-20)
位热值换算成高位热值。
2.2 燃料的组成和特性
2)不同基准热值间的换算
一般燃料的热值
2.3 固体燃料
2.2 燃料的组成和特性
燃烧计算中以燃料收到基低位发热量(低热值)为基准。 对固体或液体燃料,水分以质量分数计:
Qgr Qnet Lm w
对气体燃料,水分以体积分数计: Q Q L
gr net v
(2-15)
(2-16)
水分以质量计量的汽化(潜)热Lm与以体积计量的汽化
(C、H、O等)结合成的复杂化合物; 气体中的硫主要以H2S的形式存在,且含量低,一般在0.5% 以下; 煤中的硫一般以三种形式存在:有机硫、黄铁矿硫和硫酸盐 硫。
2.2 燃料的组成和特性
6)水分 液体燃料的水分含量较低; 气体燃料在输送、储存过程中有时也混有少量水分;
固体燃料中的水分包括内在水分和外在水分两部分。 水分是燃料中不可燃的有害组分,它的存在降低了燃料中可 燃质的含量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-1 燃料的成分及其主要特
性
2-2 燃料燃烧计算 2-3 烟气分析方法 2-4 空气和烟气焓的计算
2-1 燃料的成分及其主要特性
燃料总类 核能燃料—可控核裂变与和聚变 有机燃料—以各种形式在自然界存在的碳氢化合物 一、煤的成分及分析基准 可燃成分和不可燃成分组成的复杂组合物,结构非常复杂。 各组成元素并不单独游离存在,而是以复杂的化合物存在, 成分十分不均匀。 煤的化学分析(元素分析)成分分为: C,H,O,N,S,A(ash),M(moisture)
灰的熔融特性 炉膛内温度很高,煤中灰颗粒一般呈熔化或软化状态, 对锅炉工作影响极大。 对锅炉的主要危害是造成锅炉受热面结渣,传热恶化, 掉渣灭火或事故。 灰分成分不同,发生熔化的温度也不同。 高熔点成分+低熔点成分,无固定的熔点, 灰分的组成: SiO2、Al2O3、各种氧化铁、 CaO、MgO、 K2O、Na2O 等,不是单一物质,无固定熔点,采用角锥 法测定特征温度 将灰制成特定形状的灰堆,加热升温 1300 ℃以上,采用 三个特征温度来表示灰的熔融特性。 变形温度DT,软化温度ST,流动温度FT 灰的熔融特性判别 长渣,短渣
可燃成分—C,H,部分S 不可燃成分—N,水分,灰分
C: 最主要的可燃质,煤是富含碳的燃料 一般含量:20%~70% 碳含量取决于碳富集程度,炭化及年龄。 燃烧产物主要是CO2 碳的发热量:7800 kcal/kg,4.182×7800 kJ/kg 关于热量单位: kcal(工程),kJ(国际), BTU(英制)…
焦结性对层燃炉燃烧过程的影响 1)粉状焦炭——堆积紧密,妨碍空气流动 ① 烟气流速过大,易被气流携带,形成火床火口; ② 烟气流速过小,燃烧通风不畅,易从通风孔隙中漏入 灰坑 2)强焦结性煤——挥发分逸出后,焦炭呈熔融状态,粘 结成片 ① 内部固定碳难于空气接触而燃尽; ② 燃烧层通风不畅
煤的成分分析基准及其换算 用各个成分的质量百分数来表示; 水分和灰分所占质量较大,且随外界条件有较大的波动; 采用四种不同的“基”准的质量成分表示: 1.收到基ar; 2.空气干燥基ad; 3.干燥基d; 4.干燥无灰基daf.
3. 干燥基d; 表示在不含水分的条件下干燥燃料各组成成分的质量百 分数总和 干基中各成分不受水分变化的影响 Cd+Hd+Od+Nd+Sd+Ad=100% 4. 干燥无灰基daf; 表示在不含水分和灰分的条件下,干燥无灰燃料各组成 成分的质量百分数总和, 干燥无灰基中只包含燃料的可燃成分,各成分不受水分 和灰分变化的影响, 煤炭交易。 Cdaf+Hdaf+Odaf+Ndaf+Sdaf=100%
2) 在烟气露点时,水蒸气与 SO2、SO3 生成亚硫酸和硫 酸,造成低温腐蚀;
3) M Vy Vpy q2
挥发份: 失去水分的煤样在隔绝空气的条件下加热到一定温度时, 煤分解逸出的部分可燃质和矿物质。 主要成分是CO、CO2、CmHn、H2等。 收到基挥发份含量在5%~40%之间。 挥发份的测定
水分(Water、Moisture): 燃料中的主要杂质,约占5~60%。 内部水分(固有水分)105~110 ℃ 外部水分(表面水分)45~50 ℃ 化合水分(结晶水)灰分的一部分 —瓷土Al2O3.2SiO2.2H2O 1) 水分进入炉内吸热汽化成水蒸气,对燃烧不利;
M Qdw l
水分来自:①H与氧的反应;②燃料中的含水量Mar 4.各成分分析的高、低位发热量间的关系 5.发热量的测定:采用氧弹测热仪
6.发热量的计算
标准煤 单纯以燃煤量的多少来比较不同锅炉的经济性不妥,须 折算到统一标准, 标 准 煤 的 概 念 , 规 定 低 位 发 热 量 为 7000kcal/kg (或 者 kJ/kg,MJ/kg)的煤为标准煤, 将发热量不是7000 kcal/kg的煤统一折算到7000 kcal/kg来 进行比较。 用于计算和比较标准煤耗等
N: 氮是一种不利的元素,在高温环境下,与氧形成氮氧化 物,对环境危害极大。 煤中氮的含量~1%。
S: 部分S属于可燃质, 发热量仅2160 kcal/kg, 对锅炉设备及环境的危害很大, 硫的含量0.2~5%,甚至更高,超过2%,既为高硫煤。
有机硫 全硫St 硫铁矿中硫S p 无机硫 硫酸盐中硫S s
H: 发热量很高,达28600 kcal/kg,极易燃烧, 煤中含量很少,仅为2%~5%, 液体燃料中可达到14%, 天然气中最多。 O: 1.氧不可燃,且不助燃,氧不以游离状态存在于煤中,与 煤中的氢和碳组成化合物,占据部分可燃质,使煤发热 量降低。 2.氧的含量1~15%,木柴中的氧含量达到20%~25%。
1.收到基ar; 表示燃料中全部成分的质量百分数总和 是锅炉燃料燃烧计算的原始依据。 Car+Har+Oar+Nar+Sar+Aar+Mar=100% 2.空气干燥基ad; 表示在不含外在水分的条件下,燃料各组成成分的质量 百分数总和, 是实验室煤质分析所用煤样的成分组成。
Cad+Had+Oad+Nad+Sad+Aad+Mad=100%
灰分(Ash): 煤中不可燃矿物杂质,成分十分复杂,大多数煤的灰分 含量7%~40%。
A 可燃物减少,Qdw ,着火困难,灰渣量增加,运行 1) 操作繁重;
D 2) A 且ST ,炉内易结பைடு நூலகம்,使受热面传热恶化,
wy 对流受热面磨损严重 3)A ,烟气流速wy wy 对流受热面积灰、堵灰,传热系数K , D
气体燃料的主要成分 1)天然气 甲烷约占 80~98%,其次是烷属重碳氧化合物和 H2S, 还含有少量N2、CO2、H2O和矿物杂质,发热量很高, Qdw = 33490~37680kJ/Nm3。 2)高炉煤气 是 炼 铁 的 副 产 品 , 产 量 大 。 可 燃 气 体 CO 约 占 20~30%,H2约占5~15%;惰性气体CO2约占5~15%,N2 约占45~55%,Qdw=4200~6300 kJ/Nm3。 Aar含量高达60~80g/Nm3。 3)焦炉煤气 是 冶 金 企 业 炼 焦 的 副 产 品 , H2 月 占 4 6 ~ 6 1 % , CH4=21~30%,N2=7~8%,CO2=2~3%, Qdw =16300~17200 kJ/Nm3。 4)液化石油气
气体燃料 气体燃料的种类
气田气(纯天然气) — —从气井开采出来 天然气 石油气(石油伴生气) — —伴随石油一起开采出来 凝析气田气 — —含石油轻质馏分 煤矿矿井气 — —从井下煤层抽出 干馏煤气 — —利用焦炉、炭化炉等对煤进行干馏而得到 人工燃气气化煤气 — —煤在高温下与气化剂反应所生产的燃气。如水煤气、发生炉煤气、压力气化 油制气 — —用石油系原料经热加工制成的燃气总称。采用重油或渣油,作掺混气或缓冲气 高炉煤气和转炉煤气 — —冶金企业炼铁、炼钢的副产气 液化石油气 — —从油、气开采或石油加工过程中获得。炼油厂催化裂化气中提取。 主要组分C3 H 8、C3 H 6等 — —各种有机物质在隔绝空气的条件下发酵,并在微生物作用下产生的可燃气体 生物气(沼气)
图2-1
二、煤 的主要特性 1.燃料的发热量Q:单位质量的固体、液体燃料,在完 全燃烧时所放出的热量(kJ/kg);单位容积的气体燃料在 完全燃烧时所发出的热量(kJ/Nm3) 2. 高位发热量 Q gw :每公斤燃料完全燃烧后所放出的热 量,含所生产水蒸汽汽化潜热,(kJ/kg)
3.低位发热量 Qdw :每公斤燃料完全燃烧后所放出的热 量,扣除随烟气带走的水蒸汽的汽化潜热的热量,(kJ/kg)
挥发份对煤的着火、燃烧的影响
焦炭的性质——焦结性 焦炭 —— 煤在隔绝空气加热时,水分蒸发、挥发分析出 后固体残余物质。 焦结性 —— 由于煤种不同,焦炭的物理性质、外观等各 不相同焦结性状
焦炭结构特征 1) 粉状 3) 弱粘结 5) 不膨胀熔融粘结 7) 膨胀熔融粘结
2) 4) 6) 8)
粘结 不熔融粘结 微膨胀熔融粘结 强膨胀熔融粘结
折算成分的表达式 要产生同样的热量,带入锅炉的灰量取决于煤灰分含量 与发热量, 与灰分含量成正比,与发热量成反比。 采用此比例式来代表带入的灰量, 因该比值很小,故乘1000。 M ar M ar zs 4 折算水分 M ar 10 g / MJ Qnet ,V ,ar Qnet ,V ,ar ( ) 1000 Aar Aar zs 折算灰分 Aar 10 4 g / MJ Qnet ,V ,ar Qnet ,V ,ar ( ) 1000 S ar S ar zs 4 折算硫分 S ar 10 g / MJ Qnet ,V ,ar Qnet ,V ,ar ( ) 1000
2)闪点和燃点 闪点——在大气压下,重油表面油气和空气的混合物在 标准条件下接触明火时,发生短暂的闪光(一闪即灭) 现象的最低油温。 燃点——当油面上的油气与空气的混合物遇明火能着火 持续燃烧(持续时间不少于5s)的最低油温。 重油的上闪点为80~130℃,燃点比闪点高10~30℃。 闪点是防止油发生火灾的一个重要指标,因此燃料油的 预热温度必须低于闪点。对于敞口容器中的油温至少应 比闪点低10℃,对于封闭的压力容器和管道内的油温则 可不受此限。 3)凝固点——重油在倾斜45º 的试管中,经过1min不发 生流动变化的最低温度。 重油凝固点与所含石蜡含量有关 ,含蜡量越高,油的凝固点 越高。
K km
K km 1.6 为易磨煤 K km 1.2 为难磨煤
煤的磨损指数
Eb Es
三、发电用煤的分类 根据煤的燃烧特性, 以挥发份、灰分、水分、硫分和灰熔融特性作为主要的 分类指标, 以煤的发热量作为辅助分类指标 无烟煤:Vdaf≤10%,含碳最多,发热量高,难以 点燃; 贫煤: Vdaf =10~20%,灰分较多; 烟煤: Vdaf =20~40%,含碳多,灰、水少,发热量高 褐煤: Vdaf >40%,水分与灰分高,发热量低,着火 与燃烧容易。 VAMST分类标准