控制图
控制图控制图

控制图1、概念控制图又叫做管制图,是用于分析和判断工序是否处于稳定状态所使用的带有控制界限的一种工序管理图。
控制图是一种对过程质量加以测定、记录从而进行控制管理的一种用科学方法设计的图,图上有中心线(CL )、上控制线(UCL )、下控制线(LCL ),并有按时间顺序抽取的样本计量值的描点序列。
控制图主要用于:过程分析及过程控制。
图1表示了控制图的基本形状:2、原理控制图的作图原理被称为“3σ原理”,或“千分之三法则”。
根据统计学可以知晓,如果过程受控,数据的分布将呈钟形正态分布,位于“μ±3σ”区域间的数据占据了总数据的99.73%,位于此区域之外的数据占据总数据的0.27%(约千分之三,上、下界限外各占0.135%),因此,在正常生产过程中,出现不良品的概率只有千分之三,所以我们一般将它忽略不计(认为不可能发生),如果一旦发生,就意味着出现了异常波动。
μ:中心线,记为CL ,用实线表示; μ+3σ:上界线,记为UCL ,用虚线表示; μ-3σ:下界线,记为LCL ,用虚线表示。
3、控制图的种类①、计量值控制图:控制图所依据的数据均属于由量具实际测量而得。
A R Chart ); B S Chart );C Chart );D 、单值控制图(X Chart );②、计数值控制图:控制图所依据的数据均属于以计数值(如:不良品率、不良数、缺点数、件数等)。
A 、不良率控制图(P Chart );质 量 特 性 数 据B、不良数控制图(Pn Chart);C、缺点数控制图(C Chart);D、单位缺点数控制图(U Chart)。
4、控制图的用途根据控制图在实际生产过程中的运用,可以将其分为分析用控制图、控制用控制图:①、分析用控制图(先有数据,后有控制界限):用于制程品质分析用,如:决定方针、制程解析、制程能力研究、制程管制之准备。
分析用控制图的主要目的是:(1)分析生产过程是否处于稳态。
控制图PPT

03 控制图的结构
04 控制图的功能
05 控制图的作用
二、什么是控制图?
二、什么是控制图?
二、什么是控制图?
• 2.3控制图结构
中间一条实线为中心线; 上、下两条虚线分别为 上控制界限和下控制界限; 并有按时间先后排列的 统计数值的描点序列。
控制界限不能驾驭过程,仅仅反应当前过程的状态。
2.92
2.65
2.82
151107
2.83
2.88
2.78
2.73
六、控制图的制作示例
x
xR
计量控制图常数 表
xR
x
当n=4时,A2=0.729;D4=2.282;D3=0
R
R
R
R
控制限 UCL CL LCL
极差UCL 极差CL 极差LCL
计算值 2.818 2.541 2.265 0.865 0.379
7
四、控制图的判稳与判异
①1个点落在A区外
②连续9点落在中心线同一侧
③连续6点递增或递减
④连续14点中相邻点交替上下
⑤连续3点中有2点落在中心线 同一侧的B区以外
⑥连续5点中有4点落在中心线 同一侧的C区以外
⑦连续15点落在中心线两侧C区 内
⑧连续8点落在中心线两侧且无 一在C区内
四、控制图的判稳与判异
二、什么是控制图?
二、什么是控制图?
三、控制图的分类
Contents
01 按数值质量特性分类
02 按控制图用途分类
三、控制图的分类
三、控制图的分类
x x ~x
三、控制图的分类
• 3.2按控制图的用途分类:
分析用控制图
控制用控制图
控制图

控制图控制图(Control chart)又称为管理图、休哈特图。
由美国贝尔实验室的休哈特博士于1924年发明。
控制图是以假设检验原理为基础设置统计控制线,按照时间坐标记录独立测量值、平均值或其他统计量的折线图,用以区分过程中的异常波动与正常波动,并判断过程是否处于统计过程控制状态的一种工具。
一. 控制图的类型根据控制图在过程控制中所处的阶段,可将控制图分为分析用控制图和管理用控制图,如图1所示。
分析用控制图主要用于分析过程是否处于统计过程控制状态,并对过程的总体参数进行估计。
若分析表明过程处于统计过程控制状态且满足预期的要求,则将分析用控制图的控制界限延长,用作管理用控制图,实现对产品生产过程进行连续监控,及时发现过程的异常波动。
图1 平均值-极差控制图控制图可以用来显示各种不同数据类型的质量特性的波动,常用的控制图类型与适用场合如表1所示。
表1 常用控制图类型与适用场合二. 控制图的基本原理控制图的设计原理可以概括为“正态性”假定、“3σ”原则、“小概率事件不发生”原理和“统计反证推断”思想。
具体说就是,假定所收集的质量特性数据服从正态分布,在此假定下,过程特性值落在分布中心上下各三倍标准差范围内的概率是99.73%,也就是说质量特性值落在上下三倍标准差之外的概率仅为0.27%,这是一个小概率事件,而“小概率事件不发生”原理认为小概率事件在一次观测中不发生,因此,一旦控制图出现“小概率事件发生”的现象,则表明过程发生了异常变化,这就是“统计反证推断”思想。
表2和表3分别表示计量值控制图和计数值控制图的中心线和控制界限的公式,以及样本量的确定。
表2 计量值控制图的中心线和控制界限表3 计量值控制图的中心线和控制界限三. 控制图的应用控制图显示随时间采集的数据和由这些数据计算出的波动;控制图与过程能力分析结合在一起称为统计过程控制(SPC)。
图2是一个典型的SPC的应用流程。
图2 典型的SPC的应用流程。
控制图

与均值-极差控制图类似,这种控制图也是用于观察连续数据的均值和变异性(标准差) 的变化情况。如果点子在控制限内随机分布,且无异常点,说明过程处于控制状态;如果 点子超出控制限或出现异常点,说明过程可能失控。
3. 单值-移动极差控制图
这种控制图用于观察单个数据值和连续数据的变化情况。如果点子在控制限内随机分布, 且无异常点,说明过程处于控制状态;如果点子超出控制限或出现异常点,说明过程可能 失控。
4. 观察控制图
观察控制图上的点 子分布情况,判断 过程是否处于控制 状态。
5. 采取行动
如果发现异常点或 过程失控,采取适 当的措施解决问题 并防止问题再次发 生。
控制图的局限性
1. 数据必须是连续的
控制图只能用于观察连续的数据,对于离散的数据或非连续的数 据,需要采用其他方法进行分析。
2. 需要足够的样本数量
控制图原理
控制图基于中心极限定理和概率统计原理。中心极限定理表明,当样本量足够大时,任何随机变量的 取值都会围绕一个中心值波动,且这个波动是有限的。因此,我们可以通过控制图的上下限来判断过 程是否处于控制状态。
控制图的原理是通过对过程进行多次抽样,计算统计量(如均值、中位数、极差等),并将这些统计 量绘制在图上。通过观察图的走势,我们可以判断过程是否受控,并发现异常情况。如果过程受控, 则说明过程的质量稳定;如果过程失控,则说明过程的质量存在问题。
平均数与标准差控制图
总结词
平均数与标准差控制图是一种常用的统计 控制图,用于监控一组数据的平均值和标 准差。
VS
详细描述
平均数与标准差控制图由两个图表组成: 一个图表显示平均数,另一个图表显示标 准差。这种控制图适用于需要了解数据分 布情况的应用场景,如科学研究、质量控 制和金融分析等。
控制图的工作原理及应用

控制图的工作原理及应用1. 控制图的定义控制图是一种统计工具,用于监控和评估过程的稳定性。
它可以通过绘制数据的变化趋势和异常情况,帮助我们判断一个过程是否受到控制,并提供指导改进和优化过程。
2. 控制图的工作原理控制图基于统计方法和概率理论,通过绘制上下控制限来显示过程的可接受变化范围,以便及时发现和纠正异常情况。
其主要原理包括以下几个方面:2.1. 过程稳定性的判断控制图通过收集过程中的数据,并计算出平均值、标准差等统计指标。
然后,根据预设的控制限范围,绘制出控制界限。
如果数据点在控制界限内,则表示该过程是稳定的;如果数据点超出控制界限,则表示该过程存在异常情况。
2.2. 异常情况的分析当控制图显示出异常情况时,我们可以进一步分析异常的原因,并采取相应的措施进行修正。
通过对异常情况的深入分析,我们可以识别出导致过程不稳定的因素,并采取相应的措施加以改进。
2.3. 过程改进和优化控制图不仅可以用来判断过程是否受到控制,还可以帮助我们进行过程改进和优化。
通过对过程的持续监测和分析,我们可以识别出问题所在,并采取相应的改进措施,从而提高过程的稳定性和效率。
3. 控制图的应用控制图在许多领域都有广泛的应用,在制造业、服务业、医疗等行业中都可以找到其身影。
以下是一些常见的控制图应用场景:3.1. 制造业中的控制图在制造业中,控制图通常用于监控生产过程中的关键指标,比如产品质量、生产效率等。
通过及时检测和纠正异常情况,可以提高产品的一致性和生产的稳定性,从而提高产品的质量和效率。
3.2. 服务业中的控制图在服务业中,控制图可以用于监控和评估服务质量,比如客户满意度、服务响应时间等。
通过对服务过程的持续监测和分析,可以及时发现服务异常和瓶颈,从而提供更好的服务体验。
3.3. 医疗中的控制图在医疗领域中,控制图可以用于监控和评估医疗过程中的关键指标,比如手术成功率、医疗事故率等。
通过对医疗过程的监测和分析,可以及时发现潜在的风险和问题,并采取措施加以修正,从而提高医疗质量和安全性。
控制图(control charts)

控制图(control charts)又名:统计过程控制( statistical process control)方法演变:EQ \o(\s\up5(-),\s\do2(x))计量值控制图:⎺X-R控制图(又名均值极差控制图),⎺X-s控制图,单值控制图(又名X 控制图,X-R控制图,IX-MR控制图,XmR控制图,移动极差控制图),移动均值-移动极差控制图(又名MA-MR控制图),目标偏差控制图(又名差异控制图、偏差控制图、名义值偏差控制图),CUSUM(又名累计和控制图),EWMA(又名指数加权移动平均控制图),多元控制图(又名Hotelling T2控制图)。
计数值控制图:p控制图(又名不良品率控制图),np控制图,c控制图(又名缺陷数控制图),u控制图。
两种数据都适用的控制图:短期过程控制图(又名稳定控制图或者Z控制图),组控制图(又名多属性值控制图)。
概述控制图是一种对过程变异进行分析和控制的图形工具。
数据按时间顺序绘制在图上,控制图一般有一条代表均值的中心线,一条上控制限位于中心线上方,一条下控制限位于中心线下方,这些线是根据过程数据确定的。
通过当前数据和由历史数据计算所得的控制限的比较,我们可以判定当前过程变异是稳定的(受控制)还是不稳定的(不受控制,受到某个特定因素的干扰)。
控制图分为很多种,不同的过程、不同的数据,我们采用不同的控制图。
计量值数据的控制图经常是成对应用,其中常绘制在上方的一张控制图监测均值,或者说过程数据的分布中心,而绘制在下方的一张控制图监测极差,或者说分布的波动程度。
如果借助于练习打靶的例子来说明,那么均值就是靶子上射击集中的地方,极差是射击点的离散程度。
计量值数据要成对使用控制图,计数值数据则通常只使用一张控制图就足够了。
适用场合·当你希望控制当前过程,问题出现时能察觉并能对其采取补救措施时;·当你希望对过程输出的变化范围进行预测时:·当你判断一个过程是否稳定(处于统计受控状态)时;·当你分析过程变异来源是随机性(偶然事件)还是非随机性(过程本身固有)时;·当你决定怎样完成一个质量改进项目时——防止特殊问题的出现,或对过程进行基础性的改变。
控制图

控制图控制图就是对生产过程的关键质量特性值进行测定、记录、评估并监测过程是否处于控制状态的一种图形方法。
根据假设检验的原理构造一种图,用于监测生产过程是否处于控制状态。
它是统计质量管理的一种重要手段和工具。
英文control chart定义控制图又称为管制图。
第一张控制图诞生于1924年5月16日,由美国的贝尔电话实验所的休哈特(W.A.Shewhart)博士在首先提出管制图使用後,管制图就一直成控制图为科学管理的一个重要工具,特别方面成了一个不可或缺的管理工具。
它是一种有控制界限的图,用来区分引起的原因是偶然的还是系统的,可以提供系统原因存在的资讯,从而判断生产过於受控状态。
控制图按其用途可分为两类,一类是供分析用的控制图,用来控制生产过程中有关质量特性值的变化情况,看工序是否处於稳定受控状;再一类的控制图,主要用於发现生产过程是否出现了异常情况,以预防产生不合格品。
作用在生产过程中,产品质量由于受随机因素和系统因素的影响而产生变差;前者由大量微小的偶然因素叠加而成,后者则是由可辨识的、作用明显的原因所引起,经采取适当措施可以发现和排除。
当一生产过程仅受随机因素的影响,从而产品的质量特征的平均值和变差都基本保持稳定时,称之为处于控制状态。
此时,产品的质量特征是服从确定概率分布的随机变量,它的分布(或其中的未知参数)可依据较长时期在稳定状态下取得的观测数据用统计方法进行估计。
分布确定以后,质量特征的数学模型随之确定。
为检验其后的生产过程是否也处于控制状态,就需要检验上述质量特征是否符合这种数学模型。
为此,每隔一定时间,在生产线上抽取一个大小固定的样本,计算其质量特征,若其数值符合这种数学模型,就认为生产过程正常,否则,就认为生产中出现某种系统性变化,或者说过程失去控制。
这时,就需要考虑采取包括停产检查在内的各种措施,以期查明原因并将其排除,以恢复正常生产,不使失控状态延续而发展下去。
通常应用最广的控制图是W.A.休哈特在1925年提出的,一般称之为休哈特控制图。
控制图的原理作用应用范围

控制图的原理、作用及应用范围1. 控制图的原理控制图是一种用于分析和监测过程稳定性的统计工具,它基于统计学原理和概念,并结合实际数据将过程的表现可视化呈现出来。
控制图的原理主要包括以下几点: - 随机性原理:过程中的变化是由随机因素引起的,控制图通过测量样本数据并计算统计量,与过程的预期稳定性进行对比,从而判断变异是否超出预期范围。
- 稳态原理:在一个稳定的过程中,所测量的样本数据会围绕着一个中心值进行随机波动。
通过指定上下控制限,控制图可以帮助识别超出正常变异范围的异常情况。
- 规范化原理:控制图将过程数据标准化为无量纲形式,这样可以直观地比较不同过程的稳定性和性能。
2. 控制图的作用控制图在质量管理和过程改进中起到了重要的作用,主要体现在以下几个方面:- 监测过程稳定性:通过控制图的使用,可以对过程的稳定性进行实时监测。
当过程的变异超出控制限时,可以及时采取相应的纠正措施,确保过程能够持续稳定地运行。
- 识别特殊因子:控制图能够帮助识别过程中的特殊因子,如异常事件、材料变化等。
通过对控制图的分析,我们可以及时发现潜在问题并进行解决,以提高过程的品质和效率。
- 指导决策:控制图提供了过程数据的可视化展示,有助于决策者快速了解过程的状况并作出相应的决策。
例如,当控制图显示过程稳定时,可以进一步优化操作流程;当控制图显示过程异常时,可以立即采取措施进行调整。
3. 控制图的应用范围控制图可以应用于各种不同类型的过程,尤其在生产制造和服务行业中具有广泛的应用范围。
以下是一些常见的应用领域: - 制造业:控制图可以用于监测生产线上的产品质量,帮助找出生产过程中的异常情况,并及时调整以提高产品质量和生产效率。
- 服务业:控制图可以用于监测服务过程的性能指标,如平均等待时间、客户满意度等,帮助提高服务质量和客户体验。
- 医疗领域:控制图可以应用于医疗过程的监测和改进,如手术时间、治疗效果等,有助于提高医疗质量和安全性。
控制图的原理与绘制

控制图的原理与绘制1. 引言控制图是一种用于监控过程稳定性和异常情况的工具。
它可以帮助我们了解一个过程是否处于控制状态,以及是否存在任何特殊原因造成了异常情况的发生。
控制图通常由上下限线和一系列的数据点组成,我们可以通过分析这些数据点的模式和分布来判断过程的稳定性和品质。
2. 控制图的原理控制图的原理基于统计学和过程控制的概念。
它使用统计方法来衡量过程的变异性,并将这些统计量与事先设定的控制线进行比较。
控制线一般由上限线(UCL)和下限线(LCL)组成,代表了过程的变异范围,在这个范围内的数据点被认为是正常的,而超出这个范围的数据点则可能表明过程存在异常情况。
控制图的主要原理是基于正态分布假设,也就是我们假设过程的数据是服从正态分布的。
基于这个假设,我们可以利用统计学的知识计算出各种控制统计量,比如平均值、标准差、极差等。
通过计算这些统计量,我们可以确定过程的中心线和控制线,并通过绘制数据点和控制线来进行过程的监控。
3. 控制图的绘制步骤3.1 数据收集和准备控制图的绘制首先需要收集一组数据,这些数据一般是从过程中抽样得到的。
在收集数据之前,需要确定抽样的方法、频率和样本量,并确保数据的准确性和可靠性。
3.2 计算统计量在绘制控制图之前,我们需要计算一些统计量,比如均值、标准差和极差。
这些统计量可以帮助我们了解数据的分布和变异性,并用于确定控制线的位置。
3.3 绘制控制图绘制控制图通常使用一些专门的软件工具,比如Excel或统计软件,也可以使用编程语言如Python来编写程序进行绘制。
在绘制控制图时,需要确定控制线的位置和数据点的标记方式,通常使用不同的颜色或标记来表示正常和异常的数据点。
3.4 分析结果绘制完成后,我们需要对控制图进行分析和解读。
可以观察数据点的分布模式和位置关系,判断过程的稳定性和异常情况。
如果数据点超出控制线的范围,我们需要进行进一步的调查和改进,以确定是否存在特殊原因和采取相应的措施。
控制图

控制图1:控制图定义:是对过程质量加以测量、记录并进行控制管理的一种用统计方法设计的图。
图上有中心线CL、上控制界限UCL和下控制界限LCL,并有按时间顺序抽取的样本统计量数值的描点序列。
UCL、CL、LCL 统称为控制线。
控制图应落在UCL 与LCL之间的随机图形。
U C LC LLC L2)控制图的原理:产品的波动分为正常波动和异常波动两类。
控制图就是用来及时反映和区分正常波动与异常波动的一种工具,控制图上的控制界限是区分正常波动与异常波动的理论界限。
3)控制线的计算方法:UCL---上偏差(不是零件公差上线)CL---平均值(抽样数平均值)LCL---下偏差(不是零件公差下线)R---允许偏差R---平均偏差a)计算平均值X的控制限:(X:过程平均值)CL=(X1+X2+X3+…..+Xn)/n=XUCL=CL+A2* RLCl= CL-A2* Rb)计算极差R的控制限:CL=(R1+R2+R3+….Rn)/nUCL=D4*RLCL=D3*RX-R管理图系数:(2---10为取样长度)4)管理图的分析:(1)管理图状态的判定:在管理图中,由于机械、材料等所造成的工序中的偏差,抽样误差或测量误差是按照时间顺序作图的,所以通过管理图可以统计和判断工序的状态,从而进行适当的处置。
因此,在管理中,必须善于识别图中的点或由几个点连成的点链垢含意。
所谓受控状态,工序偏差平均或无变化的状态。
通过管理图判断工序是否在管理状态下应注意:(1)点不应越出管理界限外。
(2)点的排列、分布不应有缺陷。
(界内点排列不随机性)(2)常规控制图(GB。
T4091-2001)的8种判异准则:(A)1点落在A区以外如计算错误,测量误差,原材料不合格,设备故障等。
这一类错误出现的概率平均为0.0027(B)连续9点落在中心线同一侧:如夹具定位误差、设备调整误差、刀具磨损,这一类错误出现的概率平均为0.0027(C)连续6点递增或递减:如工具磨损、设备的稳定性发生变化,操作人员的技能等方面。
控制图

控制图控制图(Control Chart )又称管理图、休哈特图,是一种将显著性统计原理应用于控制生产过程的图形方法。
控制图是区分过程中正常波动和一场波动,并判断过程是否处于控制状态的一种工具。
正常波动是由普通原因(偶然因素、随机因素)造成的,这些因素在生产过程中大量存在,对产品质量经常发生影响,但它造成的质量波动往往比较小,在生产过程中是允许存在的,如材料成分的微小变化、设备的轻微震动、刃具的正常磨损、夹具的弹性变型等;一场波动是由特殊原因(异常因素、系统因素造成的。
这些因素在生产过程中并不大量存在,对产品质量也不经常发生影响,一旦存在,它对产品质量的影响就比较显著,如机器设备带病运转,操作者违章操作等。
控制图的控制界限就是用来区分正常波动和异常波动的。
1、控制图的基本结构1)以随时间推移而变动着的样品号为横坐标,以质量特性值或其统计量为纵坐标; 2)三条具有统计意义的控制线:上控制线UCL 、中心线CL 、下控制线LCL ; 3)一条质量特性值或其统计量的波动曲线。
2、控制图原理的解释 第一种解释:“点出界就判异”小概率事件原理:小概率事件实际上不发生,若发生即判异常。
控制图就是统计假设检验的图上作业法。
第二种解释:“抓异因,弃偶因”控制限就是区分偶然波动与异常波动的科学界限。
休哈特控制图的实质就是区分偶然因素与异常因素的。
UCLLCL样本统计量数值x 或R14 15 16 17 18按用途分类1)分析用控制图——用于质量和过程分析,研究工序或设备状态;或者确定某一“未知的”工序是否处于控制状态;2)控制用控制图——用于实际的生产质量控制,可及时的发现生产异常情况;或者确定某一“已知的”工序是否处于控制状态。
4、R X -图的绘制1)确定控制对象(统计量)一般应选择技术上最重要的、能以数字表示的、容易测定并对过程易采取措施的、大家理解并同意的关键质量特性进行控制。
2)选择控制图对于计量数据而言,R X -控制图是最常用最基本的。
控制图

控制图
控制图又称管理图,是以控制图形式,判断和预报生产过程中质量状况是否发生波动的一种常用的质量控制统计方法。
控制图法是工序质量控制的主要手段,是一种动态的质量分析与控制的方法。
控制图不仅对判断质量稳定性、评定工艺过程质量状态以及发现和消除工艺过程的失控现象,预防废品发生有着重要作用,而且可以为质量评比提供依据。
控制图的纵坐标表示质量特性值,横坐标表示样本的编号,样本是按生产加工顺序进行编号,这与其他方法是完全不同的,样本的排序即是加工的过程。
图中CL叫中心线,是标准特性值;UCL是上控制线,LCL是下控制线。
把样品特性值绘到坐标系中,如果一组数据均在上下控制线内,且排序正常,则说明质量稳定。
否则,就是存在质量问题。
控制图是一种通过控制界限,对生产过程进行分析和控制的重要方法。
控制图主要用于工序质量诊断、工序质量控制、工序调查,还可用于正确制订工序质量标准和工序成本及质量成本的预测。
控制图的主要用途是判断生产过程是否处于稳定状态。
通常,控制图中用点子来反映生产过程的稳定程度。
如果生产过程处于控制状态,图中的点子就随机地分散在中心线的两侧附近,越接近上、下控制线,点子就越少。
具体地讲,当控制图同时满足下列两个条件时,可以认为生产过程处于稳定状态或控制状态,即点子没有超出控制界限;点子的排列没有
缺陷(异常)。
如果点子超出了控制界限,或虽未超出控制界限,但其排列出现缺陷(异常)时,可以判断生产过程受到了系统性因素的干扰,发生了异常变化。
控制图的作用与使用方法

03
自动调整与优化
通过算法和模型,自动判断数据 是否处于控制界限内,提高分析 的准确性和效率。
根据数据分析结果,自动调整控 制图的参数和阈值,优化控制效 果。
控制图与其他质量管理工具的整合
与六西格玛管理的整合
利用控制图识别并解决关键质量问题,推动六西格玛管理的实施 。
与精益生产的整合
结合控制图和精益生产理念,实现生产过程的持续改进和优化。
详细描述
控制图是一种统计工具,用于监控和分析过程数据,以便及时发现异常波动并采取相应措施。它通过将实际数据 点绘制在图上,并设置控制界限,来判断过程是否处于控制状态。控制图可以帮助企业识别异常波动,预防不良 品产生,提高产品质量和生产效率。
控制图的类型
总结词
控制图有多种类型,包括均值-极差控制图、均值-标 准差控制图、不合格品率控制图等。这些不同类型的 控制图适用于不同的情况和数据类型。
服务业流程改进
服务流程监控
01
控制图可用于服务业中,如酒店、餐饮、医疗等,对服务流程
的关键环节进行监控。
优化服务流程
02
通过分析控制图上的数据,发现服务流程中的瓶颈和问题,进
而优化流程,提高客户满意度。
提高服务效率
03
控制图的应用有助于提升服务效率,减少等待时间,提高整体
服务质量。
科研实验数据分析
控制图所依据的数据应来自可靠的来 源,避免数据误差对控制图的准确性 造成影响。
数据的准确性和完整性
数据应准确无误,且应完整收集,避 免遗漏或错误的数据影响控制图的判 断。
异常点的识别与处理
识别异常点
在控制图中,如果数据点超出控制限 或呈现异常趋势,应视为异常点。
控制图的基本知识介绍

控制图的基本知识介绍一、控制图的定义:1、控制图是用来表示一个过程特性的图象,图上标有根据此特性收集到的一些统计数据,和一条中心线及一条或两条控制线(或者说是由折线图及三条控制线所构成)。
2、分析和监控过程的工具,它有两个用途:一是用来判定一个过程是否一直受统计控制;二是帮助过程保持受控状态。
3、控制图是由美国贝尔试验室休哈特博士(Walter)在二十世纪二十年代发明,从此,美国及世界上其它国家广泛运用,特别是在日本得到了发展。
4、控制图是分类:计量型和计数型:✧计量型控制图是指所采用的数据是定量的数据,可直接测量并用来分析;✧计数型控制图指所用数据是可以用来记录和分析的定性数据,不可测量,通常以不合格或不合格的形式收集。
5、使用控制图所需了解的几个术语:1)过程:共同工作以产生输出的供方、生产者、人、设备、输入材料、方法和环境以及使用输出的顾客之集合。
2)变差:没有两件产品或特性是完全相同的,亦即过程的单个输出之间存在不可避免的差别,这种差别就称之谓变差;它分为两类:一类是普通原因引起的变差,即固有变差,用节来估计。
3)普通原因指的是造成随着时间的推移具有稳定的且可重复的分布过程中的许多变差的原因。
4)特殊原因指是造成不是始终作用于过程的变差,即当它们出现时将造成(整个)过程的分布改变。
5)受控:当过程仅存在普通原因引起的变差且不改变时,普通原因表现为一个稳定系统的偶然原因,过程的输出是可预测的,我们称之为“处于统计控制”、或有时简称为“受控”。
二、使用控制图:1、使用控制图来改进过程是一个重复的程序,多次重复收集、控制及分析几个基本步骤组成;1)按计划收集数据;2)利用数据可计算控制限;3)当过程受控时,控制限可用来解释过程能力;4)为了使过程在受控和能力的基础上得以改进,就必须识别变差的普通及特殊原因,并据此加以改进;5)当所有的特殊原因被消除后,过程在统计控制状态下运行,可继续使用控制图作为监控工具,也可计算过程能力。
控制图

控制图的基本概念1、控制图——过程控制的工具。
用来表示一个过程特性的图象。
它有两个基本用途:①用来判断过程是否一直受统计控制。
②用来帮助过程保持受控状态。
1 控制图的构成:①收集:收集数据并画在图上。
②控制:根据过程数据计算试验控制线识别变差特殊原因并采取措施。
③分析及改进:确定普通变差的大小,并采取减少它的措施。
重复三个阶段,从而不断改进过程。
2 控制图的益处:①供正在进行过程控制的操作者使用。
②有助于过程在质量上和成本上能持续地、可预见的保持下去。
③使过程达到:——更高的质量。
——更低的单件成本。
——更高的有效能力。
④为讨论过程的性能提供共同的语言。
⑤区分变差的特殊原因和普通原因,作为采取局部措施或对系统采取措施的指南。
常用的控制图相关公式及表格SPC控制图应用详细介绍2.1什么是控制图控制图由正态分布演变而来。
正态分布可用两个参数即均值μ和标准差σ来决定。
正态分布有一个结论对质量管理很有用,即无论均值μ和标准差σ取何值,产品质量特性值落在μ±3σ之间的概率为99.73%,落在μ±3σ之外的概率为100%-99.73%= 0.27%,而超过一侧,即大于μ+3σ或小于μ-3σ的概率为0.27%/2=0.135%≈1‰,休哈特就根据这一事实提出了控制图。
由于上下的数值大小不合常规,再把分布图上下翻转180°,这样就得到一个单值控制图,称μ+3σ为上控制限,记为UCL,称μ为中心线,记为CL,称μ-3σ为下控制限,记为LCL,这三者统称为控制线。
规定中心线用实线绘制,上下控制限用虚线绘制。
综合上述,控制图是对过程质量数据测定、记录从而进行质量管理的一种用科学方法设计的图。
图上有中心线(CL)、上控制限(UCL)和下控制限(LCL),并有按时间顺序抽取的样本统计量数值的描点序列。
2.2质量数据与控制图2.2.1计量型数所确定的控制对象即质量指标应能够定量。
所控制的过程必须具有重复性,即表现出统计规律性。
控制图培训课件

02
数据收集:收集数据,包括生产过程中的关键参数、质量指标等
03
数据分析:对收集到的数据进行分析,找出异常值和趋势
04
控制限设定:根据分析结果设定控制限,判断生产过程是否处于受控状态
05
控制图应用:根据控制图结果调整生产过程,确保产品质量稳定可靠
谢谢
U控制图:用于监控过程均值和标准差的同时变化
R控制图:用于监控过程均值和标准差的同时变化,但与U控制图不同,R控制图可以区分过程均值和标准差的变化。
2
控制图的制作方法
数据收集与整理
确定控制图的目的和范围
收集数据:包括原始数据、过程数据、结果数据等
整理数据:对数据进行分类、排序、筛选等处理
确定控制图的类型和参数:根据数据特点选择合适的控制图类型和参数
绘制控制图:将收集到的数据按照时间顺序绘制在控制图上,并在图上标注控制限
分析控制图:观察控制图上的数据点,判断是否存在异常情况,如数据点超出控制限、数据点分布不均匀等
采取措施:根据分析结果,采取相应的措施,如调整生产过程、改进质量管理等
2
3
4
控制图的分析
01
控制图类型:选择合适的控制图类型,如X-R控制图、P控制图等
监控生产过程:及时发现异常,确保产品质量
预测过程趋势:预测未来产品质量,提前采取措施
指导质量改进:确定改进方向,提高产品质量
控制图的类型
控制图类型:X-R控制图、P控制图、C控制图、U控制图、R控制图等
X-R控制图:用于监控过程均值和标准差的变化
P控制图:用于监控过程均值的变化
C控制图:用于监控过程标准差的变化
绘制控制图:根据控制图类型和参数绘制控制图
控制图

控制图一、定义1、控制图又叫管理图。
它是用来区分由异常原因引起的波动,或是由过程固有的随机原因引起的偶然波动的一种工具。
2、偶然波动是由随机原因引起的产品质量波动,一般在预计的界限内随机重复,是一种正常波动。
例如:原材料的成分和性能上的微小差异、机器设备的轻微振动、温度、温度的微小变化。
因此,一般情况下这些质量波动在生产过程中是允许存在的。
公差就是承认这种波动的产物。
我们把仅有下沉波动的生产过程称为牌统计控制状态。
3、异常波动是由系统原因引起的产品质量波动。
这些系统因素在生产过程中并不大量存在,对产品质量也不经常发生影响,一旦存在,它对产品质量的影响就比较显著。
比如:原材料的质量不符合规定要求;机器设备带病运转;操作者违反操作规程;测量工具系统性误差等等。
异常波动则表明需要对其影响因素加以判别调查,并使之处于受控状态。
质量管理的一项重要的工作就是要找出产品质量波动规律,把正常波动控制在范围内,消除系统原因引起的异常波动。
二、控制图的作用:1、在质量诊断方面,可以用来度量过程的稳定性,即过程是否牌统计控制状态。
2、在质量控制方面也可以用来确定什么时候需要对过程加以调整,而什么时候则需使过程保持相应的稳定状态。
3、在质量改进方面,可以用来确认某过程是否得到了改进。
三、控制图的种类:1、计量值控制图:a、平均值-极差控制图(X-R)b、中位数-极差控制图(Ũ-R)c、单值-移动极差控制图(X-Rs)2、计数值控制图:a、不合格品数控制图(pn)b、不合格品率控制图(p)c、缺陷数控制图(c)d、单位缺陷数控制图(u)。
四、应用控制图的步骤:1、选取控制图拟控制的质量特性。
如重量、不合格品数。
2、选用合适的控制图种类。
3、确定样本容量及抽样间隔。
在样本内,假定波动只由偶然原因所引起。
4、收集并记录至少20~25个样本的数据或使用以前所记录的数据。
5、计算各个样本的统计量,如样本平均值、样本极差和样本标准差等。
控制图的原理

控制图的原理控制图的原理是应用统计方法来监测和控制过程的稳定性和一致性。
它通常用于监测连续或离散变量的过程,例如生产线上的产品质量或服务交付的时间。
控制图的原理基于以下假设:1. 过程是稳定的:过程的平均水平和变异是恒定的,在一定的统计规则下呈正态分布。
2. 可测量的变异主要是由于常规因素的不确定性引起的,且随机分布。
这些因素可能包括材料、工具、操作员等。
3. 特殊原因的变异是不经常发生的,通常与异常情况或特殊事件相关。
控制图通过收集并分析过程数据,帮助识别和区分常规变异和特殊原因变异。
它包括以下几个主要元素:1. 过程数据收集:收集连续的过程数据或离散的抽样数据,例如测量某个指标的数值或记录某个事件的发生次数。
2. 统计指标计算:根据收集到的数据计算统计指标,例如平均数、标准差、范围等。
这些指标可以用于表示过程的中心位置和变异程度。
3. 控制限计算:根据统计理论和样本数据计算出控制限,分为上限和下限。
控制限用于界定过程的稳定性和异常情况。
4. 控制图绘制:将统计指标和控制限绘制在同一图表上,形成控制图。
控制图通常使用时间作为横轴,统计指标作为纵轴,同时绘制上限和下限。
5. 过程监测与分析:持续收集和更新过程数据,将新数据与控制限进行比较。
如果数据点在控制限范围内,则过程被认为是稳定的;如果数据点超出控制限,则可能存在特殊原因的变异,需要进行进一步的调查和改进。
通过控制图,人们可以实时监测过程的变化趋势和异常情况,及时采取措施进行调整和改进,以确保产品或服务的稳定性和一致性。
它是质量管理和过程改进中的重要工具之一,被广泛应用于各个行业和领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质量管理工具培训之五十二
Excel 2003制作控制图
一、控制图的定义:
又称“管制图”,是通过日常监测指标数据来判断质量是否处于稳定状态的一种图表。
二、控制图的组成:
由观察指标折线、中心线(CL)、上预警线(UCL)和下预警线(LCL)四条线组成。
三、控制图的目的:
通过观察监测指标数据分布状况,分析判断生产过程是否发生异常;一旦发现异常可及时采取必要措施加以消除,使生产过程恢复稳定状态。
四、控制图适用范围:
1.对某项监测指标变化范围进行下一步预测时;
2.判断某项监测指标是否稳定(处于统计受控状态)时;
3.控制当前过程,问题出现时能觉察并对其采取补救措施时。
五、Excel 2003制作控制图具体步骤:
1、将汇总后的数据导入Excel 2003表格中,如图1.1所示:
2、点击菜单栏【插入】菜单,出现下拉的子菜单,点击子菜单【函数】,计算压疮发生率的平均水平。
如图1.2.1、1.2.2所示:
3、点击菜单栏【插入】菜单,出现下拉的子菜单,点击子菜单【函数】,计算出该样本的标准差(标准偏差)。
如图1.3.1、1.3.2所示:
4、运用键盘中的适合函数直接以三倍标准差为例,计算此控制图的上/下预警线。
如图1.4.1、1.4.2所示:
5、将表制作为下列样式,如图1.5所示:
6、点击菜单栏【插入】菜单,出现下拉的子菜单,点击子菜单【图表】,弹出【图表向导-4 步骤之1-图表类型】对话框,选择“图表类型(c)”中的折线图后,点击“下一步”,如图1.6所示:
7、弹出【图表向导-4 步骤之2-图表源数据】对话框,单击【数据区域】后的折叠按钮,将对话框折叠,选择A2:E14单元格区域;如图1.7所示:
8、点击“下一步”,弹出【图表向导-4 步骤之3-图表选项】对话框,点击【标题】,在图表标题框中输入“某医院2015年每月压疮发生率”,如图1.8所示:
9、点击【图表选项】的相应子菜单,对控制图做修改。
如图1.9所示:
10、右键单击控制图相应区域,可以对控制图的“坐标轴格式”、“控制图颜色”等具体细节进行修改。
如图1.10.1、1.10.2所示:
11、点击【确定】按钮,控制图就OK 了。
(图示:该医院压疮发生率较为稳定) 某医院2015年每月压疮发生率
0.00%
0.10%
0.20%
0.30%0.40%
0.50%0.60%
0.70%
0.80%
1月2月3月4月5月6月7月
8月9月10月11月12月压疮发生率CL UCL LCL。