数学美欣赏 第1章 数学的简洁性
数学第一课:数学之美
数学第一课:数学之美当我们提及数学,你脑海中首先浮现的是什么?是复杂的公式?是枯燥的计算?还是令人头疼的考试?但其实,数学远不止如此。
数学,是一门充满魅力和美感的学科,它就像一座神秘的宝藏,等待着我们去发掘。
数学之美,首先体现在它的简洁性。
想象一下,纷繁复杂的世界,无数的现象和问题,而数学却能用几个简单的公式和定理就将其概括和描述。
比如,牛顿第二定律 F = ma,仅仅用这三个字母和一个等号,就揭示了力、质量和加速度之间的关系。
再比如勾股定理 a²+ b²= c²,如此简洁明了,却能解决无数与直角三角形相关的问题。
这种简洁并非是简单的删减和省略,而是一种高度的概括和提炼,是对事物本质的精准把握。
数学的美还在于它的逻辑性。
数学是一门建立在严密逻辑基础上的学科,每一个结论都有其严谨的推导过程,每一个定理都有其坚实的证明基础。
从最基本的定义和公理出发,通过一步步的推理和论证,最终得出令人信服的结论。
这种逻辑的严密性就像一座坚固的大厦,每一块基石都稳稳地支撑着整个结构。
比如在证明一个几何命题时,我们需要运用一系列的定理和公理,通过精确的推理,环环相扣,最终得出无可辩驳的结论。
这种逻辑的美感让人陶醉,让人感受到理性思维的力量。
数学的美也体现在它的对称性。
对称,是一种令人感到和谐与平衡的特征。
在数学中,对称无处不在。
几何图形中的轴对称、中心对称,函数图像的对称性,甚至是代数运算中的交换律、结合律,都体现了数学的对称之美。
以圆为例,它关于任何一条直径都是对称的,这种对称性不仅给人以视觉上的美感,更在数学的研究和应用中有着重要的意义。
而在代数中,加法和乘法的交换律 a + b = b + a,a × b = b × a,也体现了一种运算上的对称性。
数学之美还展现在它的无限性。
数学的世界是没有边界的,从自然数到有理数、无理数,从实数到复数,数的概念不断扩展;从平面几何到立体几何,再到拓扑学,几何的领域不断深化;从微积分的诞生到现代数学的各种分支,数学的发展永无止境。
数学书籍精美笔记摘抄(3篇)
第1篇一、引言《数学之美》是数学家陈景润先生所著的一部数学科普读物,以深入浅出的方式介绍了数学的基本概念、发展历程以及数学在各个领域的应用。
以下是对本书的一些精美笔记摘抄。
二、第一章:数学的起源与发展1. 数学起源于人类对自然现象的观察和总结,最初是经验的积累。
2. 古埃及人和巴比伦人是最早的数学家,他们发展了算术和几何。
3. 希腊数学家欧几里得提出了几何学的公理化体系,为数学的发展奠定了基础。
4. 欧洲中世纪的数学家们在天文学和建筑学等领域取得了重要进展。
5. 17世纪的牛顿和莱布尼茨发明微积分,标志着数学进入了新的时代。
三、第二章:数学的基本概念1. 数:数学的基本研究对象,包括自然数、整数、有理数、实数和复数。
2. 逻辑:数学的基石,包括命题、推理、证明等概念。
3. 概率论:研究随机现象的数学分支,是现代数学的重要分支之一。
4. 几何:研究空间形状和位置的数学分支,包括平面几何和立体几何。
5. 代数:研究数和方程的数学分支,包括线性代数、多项式代数等。
四、第三章:数学在各个领域的应用1. 天文学:数学在天文学中的应用极为广泛,如开普勒定律、牛顿万有引力定律等。
2. 物理学:数学是物理学的基础,如麦克斯韦方程组、相对论等。
3. 生物学:数学在生物学中的应用包括种群遗传学、生态学等。
4. 计算机科学:数学是计算机科学的基础,如算法、数据结构等。
5. 经济学:数学在经济学中的应用包括优化理论、博弈论等。
五、第四章:数学的美与魅力1. 数学之美在于其简洁、和谐和统一,如欧几里得的《几何原本》。
2. 数学之美在于其无穷性,如康托尔的集合论。
3. 数学之美在于其逻辑性,如哥德尔不完备定理。
4. 数学之美在于其应用性,如数学在各个领域的广泛应用。
六、第五章:数学家与数学故事1. 欧几里得:古希腊数学家,被誉为“几何之父”。
2. 拉格朗日:法国数学家,被誉为“现代数学之父”。
3. 高斯:德国数学家,被誉为“数学王子”。
数学欣赏
列表考察兔子的逐月繁殖情况
月 份 ⅠⅡ Ⅲ ⅣⅤⅥⅦ Ⅷ ⅨⅩ Ⅺ Ⅻ 大兔对数 1 1 2 3 5 8 13 21 34 55 89 144 小兔对数 0 1 1 2 3 5 8 13 21 34 55 89
6 = 21 (22 – 1) 28 = 22 (23 – 1) 496 = 24 (25 – 1) 8128 = 26 (27 – 1)
这些都展示着数学之美!
12 2014-8-18
第一节 数学与美
13 2014-8-18
一\、谈美学
美是自然,是一切事物 生存和发展的本质特征.
二、数学为何美?
自然规律—— 2、、e的联手
正态曲线是一条用来 描述自然与社会中的 许多现象 的 重要 曲 线 , 其标准正态曲线的函 数表达式为
y
1 2π
e
x2 / 2
2
黄金分割
定义:把任一线段分割成两段, 大段 小段 使 全段 大段 ,这样的分割叫黄 金分割,这样的比值叫黄金比。
黄金分割
兔子问题和斐波那契数列 兔子问题
数学是用简洁的方式(符号、公式)去 描述复杂的对象,用简单的道理(公理、定 理)去解释深奥的问题.
二、数学为何美?
3.如何欣赏数学之美
从浅层去看,自然之美、 艺术之美,只要靠人的感官 就能感受到.
3.如何欣赏数学之美
比如,风景、绘画 之美,是由眼睛看到的, 需要空间视觉,是三维 的美.
看得见的美
The Beauty of Mathematics
鉴赏数学中的美-PPT
创新美
数学在科技发展中的应用,不仅推动了科技 的进步,也展现了数学的实用之美和创新之 美。例如,微积分的创立,为物理学和工程
学的发展提供了重要的工具。
感谢您的观看
THANKS
数学在解决实际问题中的和谐美
工程设计
在工程设计中,数学的应用无处不在。通过精确的数学模型和计算,工程师可以设计出结构稳定、功 能完善的建筑、机械和电子产品。这种和谐美体现在精确性和实用性的完美结合。
金融预测
在金融领域,数学通过对市场数据的分析和预测,帮助投资者做出明智的决策。这种谐美体现在对 不确定性的掌控和未来的预见性。
数学理论的和谐美
公式之美
数学中有许多公式简洁而优美,如欧 拉公式、麦克斯韦方程组等。这些公 式在形式上简单对称,却能深刻揭示 自然规律的内在联系,展现出数学的 独特魅力。
抽象之美
数学的抽象性是其独特之处,通过抽 象的符号和逻辑推理,数学能够探索 现实世界中各种复杂现象的本质和规 律。这种抽象之美体现了人类思维的 创造性和无限可能性。
05
数学中的创新美
数学中的猜想与证明
猜想
数学中的猜想是对于未知数学规律的直 觉和想象,是推动数学发展的强大动力 。例如,费马猜想的提出和解决,推动 了数论的发展。
VS
证明
数学证明是对于猜想的严谨论证,通过严 密的逻辑推理,将猜想转化为确定的数学 定理。例如,欧几里得几何的五条公理和 五条公设,构成了整个平面几何的基础。
03
数学中的简洁美
数学公式的简洁美
公式表达的精炼
数学公式通常以简洁的形式表达 复杂的数学关系,如勾股定理、 欧拉公式等,展示了数学的简洁 美。
公式推导的逻辑性
数学公式的推导过程遵循严格的 逻辑,从已知条件出发,逐步推 导出结论,体现了数学的严谨和 简洁。
数学美欣赏第1章数学的简洁性
数学美欣赏(内容选自《数学美拾趣》、《数学聊斋》和《直观几何》)课程简介了解数学的趣味性,初步懂得数学在理论和实际中的应用,欣赏数学的绚丽多彩的艺术世界.学习要求1. 用U盘复制电子讲稿,并打印.2. 课后认真阅读讲稿.3. 适当安排若干次课堂独立作业. 做课堂作业时, 允许参考本讲稿, 可以摘录讲稿内容.考核要求1. 进行期中考试和期末考试,均为开卷.2. 期末总评成绩=期中考试成绩×50%+期末考试成绩×50%.3. 期中考试、期末考试和课堂独立作业中没有任何计算题和证明题,也没有填空题和选择题, 题型均为问答题.第1讲第1章数学的简洁性序言著名科学家伽利略说过:“数学是上帝用来书写宇宙的文字”.简洁本身就是一种美,而数学的首要特点在于它的简洁.数学家莫德尔说:在数学美的各个属性中,首先要推崇的大概是简单性了.自然界原本就是简洁的:光是沿直线方向传播的——这是光传播的最捷路线.植物的叶序排布是植物叶子通风、采光最佳的布局.某些攀缘植物如藤类,它们绕着攀依物螺旋式的向上生长,它们所选的螺线形状对于植物上攀路径来讲是最节省的.大雁迁徙时排成的人字形,一边与其飞行方向夹角是54448''',从空气动力学角度看,这个角度对于大雁队伍飞行是最佳的,即阻力最小(顺便一提:金刚石晶体中也蕴含这种角度).,这种比值在人体中,人的粗细血管直径之比总是的分支导流系统经流体动力学研究表明,它在输导液体时能量消耗最少.生物学家和数学家们(如著名科学家开普勒、数学家列厄木、柯尼希等)在研究蜂房构造时发现:在体积一定的条件下,蜂房的构造是最省材料的.这些最佳、最好、最省、……的事实,来自生物的进化与自然选择,然而它同时展现了自然界的简洁,而且也展现了自然界的和谐. 宇宙万物如此,数学,它作为用来描述宇宙的文字和工具也应当是简洁与和谐的.诗人但丁曾赞美道:“圆是最美的图形”.太阳是圆的、满月是圆的、水珠看上去(投影)是圆的、……,圆的线条明快、简练、对称.近代数学研究还发现圆的等周极值性质:在周长给定的封闭图形中,圆所围的面积最大.无论是古人,还是今人,人们对圆有着特殊亲切的情感,都因为圆的简洁美.数学中人们对于简洁的追求是永无止境的:建立公理体系时,人们试图找出最少的几条(抛弃任何多余的赘物);对命题的证明,人们力求严谨、简练(因而人们对某些命题的证明在不断地改进);对计算的方法,人们要求尽量便捷、明快(因而人们不断地在探索计算方法的创新),……,数学拒绝繁冗.正如牛顿所说:数学家不但更容易接受漂亮的结果,不喜欢丑陋的结论,而且他们也非常推崇优美与雅致的证明,而不喜欢笨拙与繁复的推理.数学大师欧拉曾研究过天平砝码最优(少)配置问题,并且证明了:若有1,2,22,32, (2)克的砝码,只允许其放在天平的一端,利用它们可称出1——()1122122221n n n +--=+++++之间的任何整数克重物体的重量.例如,当3n =时,我们有4个砝码:1克,2克,22克和32克,即1克,2克,4克和8克. 利用它们,我们可称出1克——3121+-克(即15克)之间的任何整数克重物体的重量, 即可称出1克,2克, 3克, …, 15克的重量. 这由下表可以明白.这个问题其实与数的二进制有关. 进而,欧拉还证明了(它与数的三进制有关):有1,3,23,33, (3)克重的砝码,允许其放在天平两端, 利用它们可以称出1----()11231333312n n n +--=+++++之间任何整数克重物体的重量.例如,当2n =时,我们有3个砝码:1克,3克和23克,即1克,3克和9克. 利用它们,我们可称出1克——21312+-克(即13克)之间的任何整数克重物体的重量, 即可称出1克, 2克, 3克, …,13克的重量. 这由下表可以明白.以上两个事实是“以少应付多”的典范,这也是数学简洁性使然. 下面的所谓“省刻度尺问题”, 尽管人们尚未对此得出一般结论,但目前仅有的结果也足以使人倍感兴趣:一根6cm 长的尺子,只须刻上两个刻度(在1cm 和4cm 处),就可量出1cm ——6cm 之间任何整数厘米长的物体长,即可量出1cm ,2cm ,3cm ,4cm ,5cm 和6cm 的长度(下简称“完全度量”).若用a b →表示从a 量到b 的话,那么具体度量如下:1(01→),2(46→),3(14→),4(04→),5(16→),6(06→).一根13cm 的尺子,只须在1cm ,4cm ,5cm 和11cm 四处刻上刻度,便可完成1——13cm 的完全度量. 具体度量如下:1(01→), 2(1113→), 3(14→), 4(04→), 5(05→), 6(511→), 7(411→), 8(513→), 9(413→), 10(111→), 11(011→), 12(113→), 13(013→).对于22cm的尺子,只须刻上六个刻度,即在:1cm,2cm,3cm,8cm,13cm和18cm;或者1cm,4cm,5cm,12cm,14cm 和20cm处刻上刻度,可完成1——22cm的完全度量.对于23cm的尺子来讲,也只须六个刻度:1cm,4cm,10cm,16cm,18cm和21cm,便可完成1——23cm的完全度量.一根36cm的尺子,只须在1cm,3cm,6cm,13cm,20cm,27cm,31cm和35cm处刻上八个刻度,便可完成1cm——36cm 的完全度量.对于40cm的尺子,刻上九个刻度:1cm,2cm,3cm,4cm,10cm,17cm,24cm,29cm和35cm,即可完成1——40cm 的完全度量.这类问题与应用数学中所谓最优化方法有关,这门学科的核心是最省、最好(对效益讲是最大).用“少”去表现“多”,或者求极大、极小等,均是数学简洁性的另类表现. 比如“植树问题”. 英国数学家、物理学家牛顿曾经很喜欢下面一类题目:9棵树栽9行,每行栽3棵,如何栽? 乍看此题似乎无解,其实不然,看了左下图(图中黑点表示树的位置,下同),你会恍然大悟!牛顿还发现:9棵树每行栽3棵,可栽行数的最大值不是9,而是10,见右上图. 左下图给出10棵树,栽10行,每行栽3棵的栽法.其实,10棵树,每行栽3棵,可栽的最多行数也不是10,而是12,见右上图.英国数学家、逻辑学家道奇生在其童话名著《艾丽丝漫游仙境》中也提出下面一道植树问题:10棵树,栽成5行,每行栽4棵,如何栽? 此题答案据说有300种之多,下面诸图给出了其中的几种.十九世纪末,英国的数学游戏大师杜登尼在其所著《520个趣味数学难题》中也提出了下面的问题:16棵树,栽成15行,每行栽4棵,如何栽? 杜登尼的答案见左下图.美国趣味数学大师山姆·洛伊德曾花费大量精力研究“20棵树,每行栽4棵,至多可栽多少行”,他给出了可栽18行的答案,见右下图.几年前人们借助于电子计算机给出了上述问题可栽20行的最佳方案,见左下图.稍后曾见报载,国内有人给出可栽21行的方案(右上图),然而严格的验证工作恐非易事——这些点是否真的共线?既便结论无误,但它是否是可栽的最多行数,人们尚不得而知.在英国数学家薛尔维斯特在临终前几年(1893年)提出了一个貌似简单的问题:对于在平面上不全共线的任意n个点,总可以找到一条直线,使其仅过其中的两个点.直到1933年,人们才找到一个繁琐的证明. 此后,1944年、1948年又先后有人给出了证明. 1980年前后,《美国科学新闻》杂志重提旧事时,又一次向人们介绍了薛尔维斯特问题和凯利于1948年给出的证明.我们很容易体会到:一个定理(或习题)证明(或解法)的简化,将认为是做了一件漂亮的工作,即它是美妙的. 由于简洁,数学语言(包括图形)不仅能描述世界上的万物,而且也能为世界上所有文明社会所接受和理解,甚至还将成为与其它星球上的居民(如果存在的话)交流思想的工具.在为美国发射的在茫茫太空中去寻觅地球外文明的“先驱者号飞船”(探测器)征集所携带的礼物时,我国已故著名数学家华罗庚曾建议带上数学中用以表示勾股定理(毕达哥拉斯定理)的简单、明快的数形图,它似乎应为宇宙所有文明生物所理解.22245+=2221517+=数学中的简洁性的例子是不胜枚举的:比如三角形,尽管它有千姿百态,但人们却可用12S ah =(a 为底边长,h 为该边上高)或海伦公式S =为三角形半周长)去表达所有三角形的面积.数学的简洁性系指其抽象性、概括性和统一性. 正是因为数学具有抽象性和统一性,因而其形式应当是简单的. 实现数学的简单性(抽象、统一)的重要手段是使用数学符号.附录 有趣的数制十进制数54321809306810000001000091000310001061810010910310010610.=⨯+⨯+⨯+⨯+⨯+⨯=⨯+⨯+⨯+⨯+⨯+⨯210123562.4083510610210410010810310.----=⨯+⨯+⨯+⨯+⨯+⨯+⨯特点: 十进制数由十个数字0 1 2 3 4 5 6 7 8 9,,,,,,,,,组成. 二进制数43210110111212021212=⨯+⨯+⨯+⨯+⨯.321012341110.11011212120212120212----=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯,特点: 二进制数由两个数字0和1组成. 三进制数4321012312101.2211323130313232313---=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯.特点: 三进制数由两个数字0,1和2组成. 前面讲过, 利用四个砝码: 1g , 2g,4g, 8g , 可以称出1g ——15g 的整数克重量. 把重量用二进制表示, 可以得到相应的砝码组合方式.用四个砝码1g ,2g, 4g , 8g 可以称出1g ——15g 的整数克重量前面还讲过, 利用三个砝码: 1g, 3g, 9g, 可以称出1g——13g的整数克重量(允许砝码放在天平的两个托盘中). 把重量用三进制表示, 可以得到相应的砝码组合方式. 下表中加下标3的数(如101)表示三进制数, 不加下标3的数为十进制数.3用三个砝码1g, 3g, 9g可以称出1g——13g的整数克重量1.1 数学符号人总想给客观事物赋予某种意义和价值,利用符号认识新事物,研究新问题,从而使客观世界秩序化,这便创造了科学、技术、文化、艺术、……. 符号就是某种事物的代号,人们总是探索用简单的记号去表现复杂的事物,符号也正是这样产生的. 文字是表达事物的符号,一个语种就是一个“符号系统”. 这些符号的组合便是语言. 人们试图用“精密”的方法研究艺术,这在很大程度上依靠符号.符号对于数学的发展来讲更是极为重要的,它可使人们摆脱数学自身的抽象与约束,集中精力于主要环节,这在事实上增加了人们的思维能力. 没有符号去表示数及其运算,数学的发展是不可想象的.数学语言是困难的,但又是永恒的(纽曼语). 数是数学乃至科学的语言,符号则是记录、表达这些语言的文字. 正如没有文字,语言也难以发展一样,几乎每一个数学分支都是靠一种符号语言而生存,数学符号是贯穿于数学全部的支柱.古代数学的漫长历程, 今日数学的飞速发展,十七世纪、十八世纪欧洲数学的兴起, 我国几千年数学发展进程的缓慢,这些在某种程度上都归咎于数学符号的运用得当与否. 简练、方便的数学符号对于书写、运算、推理来讲,是何等重要! 反之,没有符号或符号不恰当、不简练,势必影响到数学的推理和演算. 然而,数学符号的产生、使用和流传却经历了一个十分漫长的过程. 在这个过程中,始终贯穿着人们对于自然、和谐与美的追求.古埃及和我国一样,是世界上四大文明古国之一. 早在四千多年以前,埃及人已懂得了数学,在数的计算方面还会使用分数,不过, 他们用的是“单位分数”(分子是1的分数). 此外,他们还能计算直线形和圆的面积. 他们知道了圆周率约为3.16,同时也懂得了棱台和球的体积计算等. 可是,他们却是用下面的符号记数的:这样书写和运算起来都不方便,比如写数2314,就要用符号表示. 后来他们把符号作了简化而成为古代巴比伦人(巴比伦即当今希腊一带地方)计数使用的是六十进制,当然它也有其优点,因为60有约数2,3,4,5,6,10,12,15,30,60等,这样,在计算分数时会带来某种方便(现在时间上的小时、分、秒制及角度制,仍是六十进制).巴比伦人已经研究了二次方程和某些三次方程的解法,他们在公元前2000年就开始将楔形线条组成符号(称为楔形文字),且将它们刻在泥板上,然后放到烈日下晒干以备保存.同样,他们也是用楔形文字来表示数,无论是用来记录还是运算,都相对来说方便了许多.我国在纸张没有发明以前,已经开始用算筹进行记数和运算了. 算筹是指计算时使用的小竹棍(或木棍、骨棍),这也是世界上最早的计算工具. 用算筹表示数的方法是:记数时, 个位用纵式,其余位纵横相间,故有“一纵十横,百立千僵”之说. 数字中有0时,将其位置空出,比如86021可表示为:在甲骨文中,数字是用下面的符号表示的(形象、自如):码”的记数方法(方便、明快):在计数上欧洲人开始使用的是罗马数字:阿拉伯数字据说是印度人发明的,后传入阿拉伯国家,经阿拉伯人改进、使用,因其简便性而传遍整个世界,成为通用的记数符号.我们再来看看方程用符号表示的历史(代数学的产生与方程研究关系甚密) . 在埃及出土的3600年前的莱因特纸草上有下面一串符号:它既不是什么绘画艺术,也不是什么装饰图案,它表达的是一个代数方程式,用今天的符号表示,即211137327x ⎛⎫+++= ⎪⎝⎭. 宋、元时期我国也开始了相当于现代方程论的研究,当时记 数仍使用算筹. 在那时出现的数学著作中,就是用下图中的记号来表示二次三项式2412136x x -+的, 其中,x 的系数旁边注以“元”字,常数项注以“太”字,筹上画斜线表示“负数”.到了十六世纪,数学家卡尔达诺、韦达等人对方程符号有了改进. 直到笛卡儿才第一个提倡用x、y和z表示未知数,他曾用--+--∝xxx xx x926240表示32926240-+-=, 这与现在的方程写法几乎一致.x x x其实,数学表达式的演变正是人们追求数学的和谐、简洁、方便和明晰的审美过程. 笛卡儿的符号已接近现代通用的记号, 直到1693年, 沃利斯创造了现在人们仍在使用的记号:4320++++=.x bx cx dx e韦达是第一个引进字母系数的人,但他仍用希腊人的齐次原则、拉丁记号plano和solido分别表示平面数和立体数;用aequtur表示等于,in表示乘号,quad和cub分别表示平方和立方,这显然不简便. 笛卡儿的符号已有较大程度的简化.我们还想指出一点:数及其运算只有用符号去表示,才能更加确切和明了. 随着数学的发展,随着人们对于数的认识的深化,用原有符号去表示新的概念,有时竟会感到无能为力(没有根号如何表示某些无理数?),这需要创新.圆周率(圆的周长与直径的比)是一个常数,但它又是无限不循环小数. 1737年欧拉首先倡导用希腊字母π来表示它(早在1600年英国数学家奥特雷德曾用π作为圆周长的符号),且通用于全世界.用e 表示特殊的无理常数(也是超越数)——欧拉常数1lim 1 2.718281828459045n n n →∞⎛⎫+= ⎪⎝⎭的也是欧拉. 我们知道,要具体写出圆周率或欧拉常数,这是根本不可能的(它们无限且不循环),然而用数学符号却可精确地表示它们(1.41421356=表达一样).i 表示,还是数学家欧拉于1777年首创的(这也使我们想到:欧拉的成就与他对数学符号的创造不无关系). 在奇妙的等式10i e π+=中,所出现的五个数中的三个符号都是出自数学大师欧拉之手!从上面的例子我们可以看到:数学符号的重要在于它有无限的力量和手段来协助直觉,把社会和自然乃至宇宙中的数学关系联系起来,去解答一些已知或未知的问题,去创造更深、更新的思维形式.说到数学符号, 我们当然还不应忘记图形. 点、线、面、体的产生正是人们对客观事物的抽象和概括,欧几里得几何、非欧几何、解析几何正是研究这些图形的分支. 除此之外,还有许多精彩的例子. 首先我们会想到“哥尼斯堡七桥问题”.布勒格尔河流经哥尼斯堡市区,河中有两个河心岛,它们之间以及它们与河岸之间共有七座桥连接. 当地居民曾被一个问题搞得百思不得其解,这个问题是:你能否无遗漏又不重复地走遍七座桥而回到出发地?人们在不停地走着、试着,却无一人成功.数学大师欧拉接触此问题后,他巧妙地用数学手段将问题转化、化简,并成功地解决了这个难题. 首先,他将问题抽象成图形:用点代表河岸和小岛,用线代表桥(注意上面两个图中的A,B,C,D的对应),于是得到右上图这个简单的图形,同时问题相应地改为:能否一笔画出这个图形?为了解决这个问题,我们首先明确:一笔画就是从图形上某点出发,笔不离开纸,并且每条线都只画一次不重复.其次,我们定义:若从图中某点出发的线的条数是偶数,则称该点为偶点; 若从图中某点出发的线的条数是奇数,则称该点为奇点.在左图中,从每一点出发都有两条线. 因此,这四个点都是偶点. 在右图中有4个点,从③、④两点出发的线有2条,故③、④是偶点;从①、②两点出发的线有3条,故这两个点是奇点.一个图形能否一笔画成,关键在于图中的奇点的个数. 欧拉发现了一个图形可以一笔画成的判定准则:一个图形能一笔画成 图中的奇点的个数为0或2.奇点在一笔画中只能作为起点或终点. 在上述哥尼斯堡七桥问题中,所有的点都是奇点,因此,要想一笔画出下图是不可能的,也就是说,要想不重复地走过哥尼斯堡的七座桥,那是不可能的.欧拉的这项研究导致了拓扑学这门数学分支的诞生(在很大程度上讲,这也促进了图论这门学科的创立).例下面的图形能一笔画成吗?答第1图可以一笔画成.在第2图中,E点是偶点,其它点是奇点,所以第2图不能一笔画成. 第3图可以一笔画成.很难想象,如果欧拉不是运用了图形符号而是用河、桥去探讨这个问题,结果将会是怎样? 那样的话,解决问题的难度要变得很大,更谈不上新的数学分支的诞生.运用类似的方法,欧拉还证明了著名的关于多面体的顶点数V、棱数E和面数F之间的关系式——欧拉公式:由此人们发现了正多面体仅有五种:正四面体、正六面体(立方体)、正八面体、正十二面体和正二十面体.关于欧拉公式,我们可以用四面体和六面体来验证.六人相识问题:在任何6个人中, 必可从中找出3个人,使得他们要么彼此都相识,要么彼此都不相识.把这个抽象的问题转化成“点”与“染色直线”,从而巧妙地解答它,这不能不说是符号的一大功劳(要知道, 6人之间的相互关系的可能情况有26152232768C ==种).把六个人用点A 、B 、C 、D 、E 和F 表示. 若两个人相识,则用红线连接相应的点,若两人不相识, 则用黑线连接相应的点. 点A 与B 、C 、D 、E 和F 的连线(5条)中,必有三条线的颜色相同, 不妨设AB 、AC 和AD 为红色.再考虑B 、C 、D 三点间的连线. 若它们全为黑色,则B 、C 、D 三点为所求(左上图,它们代表的三个人彼此都不相识);若三点间的连线至少有一条为红色,设它为BC ,这时A 、B 、C三点为所求(右上图,它们代表的三个人彼此都相识). 我们还可以有进一步的结论:上述(彼此都相识或都不相识的)“三人组”在六个人中至少存在两组(证明见本节末附录).顺便讲一句:若要求彼此相识或不相识的人数是4,则总人数要增至18;若要求彼此相识或不相识的人数是5(这时有20010种组合方式),则总人数要增至43人——49人之间(具体人数至今不详);若要求彼此相识或不相识的人数是6,则总人数要增至102——165之间,确定它们是人们目前尚不可及的事.上面的事实,再次证明了数学符号的威力. 没有它, 至少问题的叙述会变得复杂而困难,或者根本无法表达清楚.世界原本是简洁的, 数学也是.没有数学语言(符号)的帮助,许多科学、技术的发展会变得迟缓,甚至停滞,这决非耸人听闻.我们说过:数、字母、代数式是符号,图同样也是符号,它们(数与形)之间的彼此借鉴与相互的通融,使得数学符号被赋予新意且更具魅力和美感. 为了更好地研究数学,人们必须创造且使用数学符号.如今,我们简直难以想象:如果没有现今的数学符号,数学乃至整个科学的面貌将会是何种模样!附录证明: 上述(彼此都相识或都不相识的)“三人组”在六个人中至少存在两组.证明为证该结论, 我们注意到, 在本节的证明中, 我们实际上已证了下列命题若从某点向其余三点所引线段同色, 则在上述四点中, 必有某三点, 使得以其为顶点的三角形的三边同色(为方便, 以下称三边同色的三角形为同色三角形).只需考虑下列两图所对应的情形.在左图中...., 若BE、BF同为红色,则在A、B、E、F中,可产生同色三角形(上述命题), 且它异于BCD∆. 所以结论成立. 若BE、BF同为黑色,则在B、D、E、F中,也可产生同色三角形, 且它异于BCD∆. 所以结论仍真. 若BE、BF一红一黑, 不妨设BE为红, BF为黑.设CF为红(否则, 有黑BCF BCD∆≠∆, 得证), AE为黑(否则, 有红ABE BCD∆≠∆, 得证), AF ∆≠∆, 得证), DF为红(否则, 有黑BDF BCD为黑(否则, 有红ACF BCD∆≠∆, 得证), EF为红(否则, 有红∆≠∆, 得证), DE为黑(否则, 有红DEF BCD∆≠∆, 得证), CE为AEF BCD红(否则, 有黑CDE BCD∆为红三角形. 故∆≠∆, 得证). 此时, CEF结论成立.在上面的..., 设CD为黑(否则, ABC....右图中∆均为红三∆和ACD角形, 结论成立).若CE、CF均为黑,则在C、D、E、F中,可产生同色三角形,且该三角形异于ABC∆. 所以结论成立. 若CE、CF均为红,则同理可证结论成立. 若CE、CF一红一黑,不妨设CE红, CF黑.设BE黑(否则, 有红BCE ABC∆≠∆, 得证), BD黑(否则, 有红∆≠∆, 得证), DF红(否∆≠∆, 得证), DE红(否则, 有黑BDE ABCABD ABC则, 有黑CDF ABC∆≠∆, 得证). 此时, 在A、D、E、F中,可产生同色三角形,且它异于ABC∆. 所以结论成立.31。
最新数学中的简洁美ppt课件
(3)简洁的奇异美
1、(蒲丰实验)取一张大纸,再取一根针,在纸上画出 一系列相距为两根针长的平行线,你随意把针投向纸 上,记下投的次数与针和平行线相交的次数,你能想 象,当投针的次数越来越大时,这两个数的比值有何 奇异变化;
---- 比值竟与圆周率 接近
(3)简洁的奇异美
(2)创造数学美
讨论题 1、一张三角形纸片内有 100 个点,连同原三角 形的顶点共 103 个,无任何三点共线。若以 这些点为三角形的顶点,把三角形纸片剪成 小三角形,则这样的小三角形共有_____个
(2)创造数学美
讨论题
2、已知函数
f
(x)
x2 ax 1 x2 x 1
的最大
值为 3,求实数 a 的值
幻灯片 24
“传记”的特征
• 通过若干事件,表现传记主人 公的人物性格形象。同时,可 能也含有写作者对主人公的评 价或情感态度。
• 分不清红糖和白糖 • 分不清山西和陕西 • 分不清十字和千字 • 分不清八点三十分和八点三十二分 • 分不清医人的汪医生和医牛的王医生
• 分不清红糖和白糖
• 分不清山西和陕西
• 分不清十字和千字
• 分不清八点三十分和八点三十二分 • (分不清今天和明天) • 分不清医人的汪医生和医牛的王医生 • (分不清生与死)
反复渲染
• 曹操小时候与叔父不和,在父亲面前装死 诬赖叔父。
• 曹操逃命时,误杀吕伯奢一家,声称—— 宁可我负天下人,不可天下人负我
• 曹操征讨袁绍时,粮草不济,用小斛分量 ,后来诬赖王垕克扣军粮
间的角距(即观察点到每对两颗星之间的夹角)
你能想象计算又有何惊奇且神秘结果;
---- 计算结果竟又与圆周率 接近
浅窥数学解题中的简洁美
浅窥数学解题中的简洁美由于数学反映的是自然的本质,因此,数学美本质上是自然美的抽象画,既有结论之美,也有方法之美,还有结构之美.与普通的自然美一样,归纳起来,数学美体现为以下几个特征:简洁性、和谐性、奇异性.数学的美妙之处在于能把混乱化为和谐,纷杂化为对称,繁复变为简单,还在于能将一个陌生的问题利用熟知的"相似问题"进行类比,使其得以解决.1.数学美的简洁性,包括符号美、抽象美、统一美、常数美.数学理论的过人之处之一就在于她能用简洁的方式揭示复杂的现象.数学美的简洁性是数学美的重要标志,它是指数学的证明方法、表达形式和理论体系结构的简单性.主要包括符号美、抽象美、统一美和常数美等.有人说,文学家能将一句话拓展成一本书,数学家则把一句话缩为一个符号,其简洁性无与伦比,体现为符号美;数学家关注万事万物的共同特质数与形,忽略其具体物质属性,高度的抽象性使数学内涵丰富、寓意深刻、应用广泛,展示着抽象美;数学家建立不同事物之间的联系,发现其相同点,表现为统一美;数学家寻求变化中的永恒,动态中的静止,用常数或不变量描述事物本质,带给人们常数美.比如,著名的欧拉恒等式,把自然界中5个最重要的常数0,1,i,eπ,通过数学的3个最基本的运算:加、乘、指数运算有机地联系起来,体现了数学的符号美、抽象美、统一美和常数美;反映多面体的顶点数v,棱数e、面数f关系的欧拉公式f-e+v=2体现了数学的统一美和常数美;全部二次曲线(椭圆、抛物线、双曲线)可以统一为圆锥曲线,而它们又分别表达了三种宇宙速度下物体运动的轨迹;笛卡尔通过坐标方法,用方程表示图形,用计算代替推理,实现几何、代数、逻辑的统一;高斯从曲率的观点把欧几里得几何、罗巴切夫斯基几何和黎曼几何统一;克莱因用变换群的观点统一了19世纪发展起来的各种几何学,认为不同的几何只不过是在相应的变换群下不变性质的科学,这些都反映了数学的统一美.简洁性的另一个值得强调的是常数美中的不变量问题,数学所关注的本质、共性、联系、规律等,归根结底都是某种不变性,而不变性的一个重要表现就是不变量,这种不变量是数学简洁美的一个重要体现.2.数学美的和谐性,包括对称美、序列美、节奏美、协调美.和谐即雅致、严谨或形式结构的无矛盾性.数学美的和谐性也是数学结构美的重要标志,数学的整体与部分、部分与部分之间的和谐协调性,具体体现为对称美、序列美、节奏美、协调美等.其中对称美反映的是万事万物变化中的某种不变性,它包含着匀称、平衡与稳定;序列美、节奏美和协调美反映的是万事万物变化中的某种秩序、联系和规律,它包含着有序(单调)、递归、循环(周期)、整齐与层次.和谐性是自然的本质反映,自然界本身是和谐的统一体;和谐性也是真理的客观表现——真的东西是美丽的,正如爱因斯坦所说:“形式上的美丽,意味着理论上的正确.”数学中的和谐美俯拾即是.比如:杨辉三角;几何学中的黄金分割比;反映角度函数值关系的各种三角恒等式等.3.数学美的奇异性.包括奇异美、有限美、神秘美、对比美等.数学美的奇异性是指研究对象不能用任何现成的理论解释的特殊性质.奇异是一种美,奇异到极致更是一种美.数学的奇异美包括有限美、神秘美、对比美.有限美是指以有限认识、表达与研究无限,具有神奇之功;神秘美是指某些结论不可思议、甚至无法验证,但却绝对正确无疑;对比美主要指数学中的突变现象形成巨大的反差,令人惊叹.比如,二进制中0与1的丰富含义,正多面体的个数有限性,数学归纳法的两步证明等都体现了有限美;抽屉原理证明的各种存在性,超越数、幻方等都体现了神秘美;所有分形图形的复杂与美丽,勾股定理产生的勾股方程与费马猜想的反差等都反映了对比美.在某种意义上,数学美的简洁性是数学抽象的体现,数学美的和谐性与奇异性是现实世界的统一性与多样性在数学中的反映.数学总被人们误以为是枯燥乏味的学科,让人提不起兴趣。
数学美的简洁性
数学美的简洁性数学简化了思维过程并使之更可*。
(弗赖伊T.C.Fry)算学中所谓美的问题,是指一个难以解决的问题;而所谓美的解答,则是指对于困难和复杂问题的简单回答。
(狄德罗D.Diderot)在数学里美的各个属性中,首先要推崇的大概是简单性了。
(莫德尔L.J.Mordell)1.符号美数学符号节省了人们的思维。
(莱布尼兹)符号常常比发明它们的数学家更能推理。
(克莱茵F.Klein)数学也是一种语言,且是现存的结构与内容方面最完美的语言……可以说,自然用这个语言讲话;造世主已用它说过话,而世界的保护者继续用它讲话。
(戴尔曼C.Dillmann)数学语言是困难的,但又是永恒的。
(纽曼M.H.A.Newman)2.抽象美就其本质而质而言,数学是抽象的;实际上它的抽象比逻辑的抽象更高一阶。
(克里斯塔尔G.Chrystal)数学家因为对发现的纯粹爱好和其对脑力劳动产品的美的欣赏,创造了抽象和理想化的真理。
(卡迈查尔R.D.Carmicheal)自然几乎不可能不对数学推理的美抱有偏爱。
(杨格C.N.Yang)数学虽不研究事物的质,但作一事物必有量和形,这样两种事物如有相同的量和形,便可用相同的数学方法,因而数学必然也必须抽象。
在数学的创造性工作中,抽象分析是一种常用的重要方法,这是基于数学本身的特点??抽象性。
数学中不少新的概念、新的学科、新的分支的产生,是通过“抽象分析”得到的。
数学的简捷性在很大的程度上是源自数学的抽象性,换句话说:数学概念正是从众多事物共同属性中抽象出来的,而在对日益扩展的数学知识总体进行简化、廓清和统一化时,抽象更是必有可少的。
3.统一美天得一以清;地得一以宁;万物得一以生。
(中国古代道家语)数学科学是统一的一体,其组织的活力依赖于其各部分之间的联系。
(希尔伯特)某些典型数学思维的美,实际上容易被人欣赏,例如一个干净利落的证明,比一个笨拙费力的证明要美,一个能代替许多特例的简明推广式更为从们所喜欢。
数学欣赏数学中的美
数学欣赏数学中的美数学欣赏:数学中的美数学,这个看似枯燥无味的学科,实则隐藏着无尽的美丽。
它是一种语言,一种逻辑,一种艺术,更是一种深刻的哲学。
它以简洁、对称、和谐与深邃的内涵吸引着我们去探索,去欣赏。
数学的简洁美是显而易见的。
诸如几何中的黄金分割,代数中的对数运算,微积分中的极限定义等,都以简洁的形式揭示了自然规律的深层结构。
在数学的简洁美中,我们看到了宇宙的秩序和智慧。
数学的对称美也无处不在。
从宏观的天体运动到微观的粒子运动,从建筑的均衡设计到艺术的图案绘制,对称性在数学中有着重要的地位。
这种对称美不仅赋予了数学本身的艺术价值,也为我们理解和描述世界提供了有力的工具。
再者,数学的和谐美体现在各个领域。
在物理学中,爱因斯坦的相对论揭示了空间、时间和重力的和谐;在化学中,元素的周期表体现了元素性质与原子序数的和谐;在生物学中,DNA的结构和生命的循环都体现了数学的和谐。
这种和谐美展示了数学在自然科学中的普遍性和基础性。
数学的深邃美引发我们对宇宙、生命和人类存在的深思。
从康德的《纯粹理性批判》到庞加莱的《科学与假设》,数学家们通过深邃的思考和探索,揭示了世界的奥秘。
这种深邃美使数学成为了一种哲学,一种思考世界的方式。
数学是一种美丽的科学。
无论简洁、对称、和谐还是深邃,这种美都使数学成为了人类文明的重要组成部分。
因此,我们应该欣赏数学,尊重数学,追求数学,让这种美照亮我们的生活。
数学欣赏建筑中的数学美建筑是艺术的一种表现形式,而数学则是建筑中不可或缺的一部分。
在建筑中,数学不仅是一种科学,更是一种美学。
从古至今,建筑师们运用数学知识,创造出令人惊叹的建筑作品,展现了数学与建筑的完美结合。
一、黄金分割比的美黄金分割比是一种被广泛运用于建筑的数学比例。
它的美学价值在于,当一个物体被分割成两个部分时,如果其中一部分与另一部分的比值等于整体与较大部分的比值,那么这个比例就被称为黄金分割比。
在建筑中,黄金分割比被用于确定建筑物的尺寸和形状,如帕台农神庙、罗马斗兽场等经典建筑就采用了这种比例。
数学之美:让学生欣赏数学中的美妙与魅力
数学的历史
数学源远流长,从古至今一直在不断发展。古代 数学家们为我们留下了许多珍贵的遗产和思想, 值得我们去探索和学习。
数学的应用
自然科学
物理学 化学 生物学
社会科学
经济学 心理学 社会学
工程技术
计算机科学 电子工程 建筑设计
91%
数学的分类
01 代数
方程、多项式、群论
02 几何
点、线、面、几何体
实践与探索
解决实际问 题
应用数学知识解 决生活中的问题
体会数学之 美
在实践中感受数 学的美妙
91%
开展数学实 验
通过实验深入理 解数学概念
创新思维
01 独立思考
鼓励学生勇于独立思考问题
02 尝试与探索
鼓励学生尝试不同的解题方法
03 展现创造力
培养学生在解决问题中展现创新能力
艺术与数学
联系密切
数学与艺术有着紧密的联 系
元素结合
艺术作品中常含数学元素
表现方式
数学之美在艺术中的表现 方式
91%
结语
通过培养学生对数学的兴趣,鼓励实践与探索, 培养创新思维,以及探索数学与艺术之间的联系, 我们可以帮助学生更好地欣赏数学之美,激发他 们的学习激情和创造力。
● 04
第4章 数学之美的启示
人类智慧的结晶
数学之美的反思与启示
学习、探索 和创新
数学之美启示我 们要以学习、探 索和创新的态度 面对生活和未来
91%
永无止境的 追求
数学之美的魅力 在于永
的可能性
数学之美的致谢
学者和科学家
感谢所有在数学领域做出 贡献的学者和科学家
启示和帮助
感谢数学之美给我们带来 的启示和帮助
欣赏数学之美
欣赏数学之美当你倘佯在音乐的殿堂,聆听优美动听的乐曲时,你会体会到音乐带给你的“美”的享受;当你漫步在文学的天地,欣赏着那“惊天地泣鬼神”的绝妙语句,一定能够领悟文学带给你的“美”……。
美的事物,总是被人们乐意醉心地追求着。
那数学呢?自古以来,数学就以其高度的抽象性、严密的逻辑性令许多人望而生畏。
但是,没有一门学科像数学那样,在大家的心目中其重要性和亲近性竟产生这么大的分歧:一方面:全世界所有国家的中小学生都把数学作为一门重要的基础课程学习着; 另一方面:大家却是对数学望而却步。
大部分学生学习数学是为了分数,是不得已,没有乐趣,没有得到享受,那数学真的就那么冰冷、枯燥、乏味吗?其实,并非如此。
前苏联国家元首加里宁说过:“数学是思维的体操。
”数学家克莱因说过“音乐能激发或抚慰情怀,绘画是人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。
”我国数学家华罗庚曾经说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学”。
还有人将数学比喻为吻醒经济学这个睡美人的白马王子,等等。
数学存在于我们的生活中,它无时无刻不在围绕着我们。
数学有其冰冷的美丽,也有其火热的情怀,今天让我们共同欣赏数学的美丽风采。
一、数学的简洁美(ppt)反映多面体的(顶)点、棱、面的数量关系的欧拉公式F –E+V=2数学美的简洁性是数学结构美的重要标志,它是指数学的表达形式和数学理论体系结构的简单性。
圆的周长公式:C=2πR,堪称“简单美”的典范。
1. 数学的简洁之美1. 数学的简洁之美二次曲线(椭圆、抛物线、双曲线)=圆锥曲线=三种宇宙速度下物体运动的轨迹1. 数学的简洁之美1. 数学的简洁之美1. 数学的简洁之美1. 数学的简洁之美二、数学的和谐美形式美一元二次方程20,(0)ax bx c a ++=≠的两个根是1x =, 2x =, 如果单独看这两根,有一种“孤立、游子”的感觉,但把它们合在一起来看:12b x x a +=-, 12c x x a=这样便有一种“珠联璧合、比翼双飞、连理枝”的感觉了。
小学数学教学中数学美的体现与欣赏
小学数学教学中数学美的体现与欣赏小学数学教学中数学美的体现与欣赏是数学教育的重要组成部分。
数学美是指数学中所蕴含的美的元素和特质,包括简洁美、对称美、和谐美、奇异美等。
在小学数学教学中,教师可以通过引导学生发现数学美、欣赏数学美,培养学生对数学的兴趣和热爱,提高他们的数学素养和审美能力。
一、简洁美数学的简洁美体现在其简洁明了的表述和推理过程中。
在小学数学教学中,教师可以通过展示数学公式、定理的简洁形式,让学生感受到数学的简洁美。
例如,加减法的交换律、结合律等,都是简洁明了的数学规律,教师可以通过举例和演示,让学生感受到这些规律的简洁美。
二、对称美数学的对称美表现在其图形和结构的对称性上。
在小学数学教学中,教师可以通过展示对称的图形和结构,让学生感受到数学的对称美。
例如,正方形、圆形等都是对称的图形,教师可以通过让学生观察和绘制这些图形,让他们感受到对称美的魅力。
三、和谐美数学的和谐美体现在其内部结构的协调性和统一性上。
在小学数学教学中,教师可以通过引导学生发现数学规律之间的内在联系和共性,让他们感受到数学的和谐美。
例如,加减法和乘除法之间的关系、分数的加减法和整数的加减法之间的关系等,都是数学内部结构的和谐美的体现。
四、奇异美数学的奇异美表现在其出乎意料的结论和反直觉的性质上。
在小学数学教学中,教师可以通过介绍一些有趣的数学问题和结论,让学生感受到数学的奇异美。
例如,斐波那契数列、黄金分割等,都是具有奇异美的数学概念和性质。
为了培养学生的数学美的欣赏能力,教师可以采取以下措施:引导学生发现数学美:教师可以通过展示数学美的例子,引导学生发现数学中的美的元素和特质,让他们感受到数学的魅力。
鼓励学生欣赏数学美:教师可以鼓励学生在学习中欣赏数学美,让他们从数学的角度去发现和欣赏生活中的美。
培养学生的审美能力:教师可以通过培养学生的审美能力,让他们更好地欣赏数学美。
例如,可以引导学生欣赏数学图形的对称性和美感,让他们感受到数学的美感和艺术性。
数学的美学欣赏数学之美
数学的美学欣赏数学之美数学的美学欣赏数学是一门充满美学魅力的学科,它以其深邃的逻辑、优雅的推理和无尽的可能性,吸引着人们的注意。
数学之美体现在它的形式、结构和应用上,让我们一起来欣赏数学的美学之旅。
1. 数学符号的美学数学是通过符号和符号间的关系来表达的,而这些符号本身有着自己独特的美学韵味。
比如,数学中的字母有着各种不同的形状和大小,它们用来表达不同的变量和对象。
有时候,在一串复杂的符号中,我们会发现一种美丽的对称或者和谐感。
数学符号的组合和排列,透露出一种简洁而优雅的美感,就像一副抽象的艺术作品。
2. 数学的结构之美数学不仅仅是一些杂乱的概念和公式的集合,它还有内在的结构之美。
数学中存在着一些基本的结构,比如序列、集合、函数等等。
这些结构具有一定的规则和性质,它们之间相互联系,形成一个统一而完整的数学世界。
在这个世界中,数学家们用各种方法和技巧去探索和创造新的数学结构,这些结构的美感在于它们的对称性、平衡性和内在的逻辑关系。
3. 数学的证明之美在数学中,证明是一种最为重要且独特的表达方式。
数学家们通过推理和论证,用严密的逻辑展示出一个个定理的真理和有效性。
证明过程的美感在于它的逻辑严密性和推理的连贯性。
当我们看到一个精妙的证明时,我们会为数学家们所展现出的聪明才智和创造力而赞叹不已。
4. 数学的应用之美数学的美学不仅体现在其抽象的概念和结构中,还体现在其丰富的应用中。
数学在自然科学、工程学、经济学等领域中有着广泛的应用。
通过数学模型和方程,我们能够揭示自然界和人类社会的规律和秩序。
比如,费马大定理的证明用到了高深的数学知识,而这个定理可以用来解释很多实际问题。
数学的应用之美在于它的实用性和对世界的深入理解。
总结起来,数学的美学欣赏需要我们从不同的角度来思考和感受。
它的美在于符号的优雅和深邃,结构的和谐和完整,证明的智慧和创造力,以及应用的实用性和深远影响。
无论是数学家还是非数学专业的人,都可以体验到数学的美学之旅,感受到其中的魅力和乐趣。
数学欣赏数学中的美
数学欣赏数学中的美当我们提到数学,很多人的第一反应可能是复杂的公式、枯燥的计算和让人头疼的难题。
然而,数学并非仅仅如此,它蕴含着一种独特而深邃的美。
这种美并非浮于表面,而是需要我们用心去欣赏、去发现。
数学之美,首先体现在它的简洁性。
一个简洁的数学公式或定理,往往能够概括出复杂的现象和规律。
比如,勾股定理“a² + b²=c²”,仅仅用几个符号和数字,就描述了直角三角形三边之间的关系。
这种简洁并非是简单的删减,而是经过无数次的思考、推导和提炼后的精华。
它如同一件精心雕琢的艺术品,去除了多余的部分,留下的是最核心、最本质的内容。
数学的美还在于它的对称性。
在几何图形中,我们常常能看到对称的美。
圆形、正方形、等边三角形等,它们的对称性质让人赏心悦目。
这种对称性不仅存在于图形中,在数学的运算和公式中也同样存在。
例如,乘法的交换律 a×b = b×a,加法的交换律 a + b = b + a,无论元素的顺序如何改变,结果始终保持不变。
这种对称性给人一种平衡、和谐的感觉,仿佛宇宙万物都遵循着某种既定的秩序。
数学中的逻辑美更是让人着迷。
从一个基本的定义和公理出发,通过严谨的推理和证明,逐步得出一系列的定理和结论。
这种逻辑的链条紧密相连,环环相扣,没有丝毫的漏洞和瑕疵。
就像建造一座大厦,每一块基石都稳固可靠,每一根梁柱都精准到位,最终构建出一个宏伟而坚固的知识体系。
这种逻辑的严密性让人感受到一种理性的力量,让人相信通过数学,我们可以揭示事物的本质和真相。
数学在自然界中的呈现也是美的。
比如,斐波那契数列在植物的生长中经常出现。
向日葵的花盘上,种子的排列遵循着斐波那契数列的规律;菠萝表面的鳞片也是按照斐波那契数列的方式分布。
这些自然现象中的数学规律,让我们感受到数学与生命、与大自然的紧密联系。
数学仿佛是大自然的语言,它用一种神秘而美妙的方式诠释着世界的运行。
数学的美还体现在它的无限性。
鉴赏数学中的美PPT
04
数学中的简洁美
简洁性的定义
简洁性是指数学表达式的简练、明了和精炼,避免冗余和 繁琐。
简洁的数学公式或定理能够用最少的语言和符号表达最深 刻和普遍的数学规律。
数学公式的简洁美
数学公式中的简洁美体现在将复杂问 题用简单的方式表达出来,如勾股定 理、欧拉公式等。
这些公式用简练的符号和表达式概括 了大量的数学信息和规律,展示了数 学的深刻内涵。
数学证明的简洁美
数学证明中的简洁美体现在逻辑推理的严密性和简洁性,通过简洁的证明过程展现数学的严谨和精确 。
优秀的数学证明往往能够用简洁明了的逻辑推理,将复杂的问题逐步简化并得出结论,体现了数学的 智慧和美感。
05
数学中的和谐美
和谐性的定义
和谐性是指数学中各部分之间的协调 与一致,使整体呈现出平衡、有序和 完美的状态。
数学学习应该注重与其他学科的交叉 融合,以拓展知识面和应用领域,更 好地发挥数学在各个领域中的作用。
数学学习应该注重培养抽象思维和逻辑 推理能力,以便更好地理解和应用数学 知识,发现新的数学规律和现象。
THANK YOU
感谢聆听
对称性的定义
对称性是指一个物体或图形在某种变换下保持不变的性质。在数学中,对称性通 常是指一个图形或对象相对于某一点、直线或平面具有的对称性质。
对称性可以分为不同的类型,如中心对称、轴对称、镜面对称等,这些类型都是 根据具体的变换条件来定义的。
对称在几何图形中的应用
中心对称
中心对称是指一个图形关于某一点旋转180度后与原 图形重合。例如,圆就是一个中心对称图形,其对 称中心是圆心。
轴对称
轴对称是指一个图形关于某一直线旋转180度后与原 图形重合。例如,矩形就是一个轴对称图形,直线作左右反射后 与原图形重合。例如,正方形就是一个镜面对称图 形,其对称轴是两条对边中点连线。
第1章走进数学 数学之美 3
第1章 走进数学世界
• • • • 宇宙之大 火箭之速 地球之变 日用之繁 粒子之微 化工之巧 生物之谜
大千世界,天上人间,无处不有数学的贡献。
让我们走进数学世界
数学伴我们成长 人类离不开数学 人人都,你能求出它的体
积吗? (2)把55张纸牌放到10个信封里,使每两 个信封装的不一样多,怎样装?如果是44 张能实现上面的要求吗?56张纸牌行吗?
数学语言最准确
例:我今年的收入是5万元,明年的收 入要增长1倍,就相当于收入是 万 元;若增长2倍,那就相当于收入是原 来的 倍。
数学有一种惊人之美
例:(1)两幅图《最后的晚餐》《清 明上河图》是利用数学 原理来画 的; (2)黄金分割; (3)把一张纸经过无数次对折后 的高度; (4)用数学知识来解决物理问题。
数学之美
“数学之美,美在它的对称和谐,美在 它的跌宕起伏,美在它的波澜壮阔,美在它 的茅塞顿开,美在它的一题多解,美在它的 多题一解,甚至美在它的小题大做。”
数学是一个换脑子的学科
例:甲乙两人爬楼梯,甲到了4层,乙 到了3层,那么问甲到了第16层,乙到 了哪一层?
数学是一个挑战智慧的学科
例:有81个球,其中1个球比较轻,其 余80个球的重量相同,所有的球的大 小都是一样的。现在我给你一个没有 刻度、没有砝码的天平,你最少用多 少次,能把这个比较轻的小球找出来?
(3)小丽拿着两个桶到河里取水,一只盛满 可装3千克,另一只盛满可装5千克,现在 要取4千克水,怎样取?
开动你的脑筋
(4)①计算并观察下列三组算式:
②已知25×25=625,则24×26= ③你能举出一个类似的例子吗?
(不要计算)
④更一般地,若a×a=m,则(a+1)(a-1)=
赏析数学美
赏析数学美众所周知,数学在我们的基础教育中占有很大的份量,是我们的文化中极为重要的组成部分。
她不但有智育的功能,也有其美育的功能。
数学美深深地感染着人们的心灵,激起人们对她的欣赏。
下面从几个方面来欣赏数学美。
一、简洁美爱因期坦说过:“美,本质上终究是简单性。
”他还认为,只有借助数学,才能达到简单性的美学准则。
物理学家爱因期坦的这种美学理论,在数学界,也被多数人所认同。
朴素,简单,是其外在形式。
只有既朴实清秀,又底蕴深厚,才称得上至美。
欧拉给出的公式:V-E+F=2,堪称“简单美”的典范。
世间的多面体有多少?没有人能说清楚。
但它们的顶点数V、棱数E、面数F,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已?由她还可派生出许多同样美妙的东西。
如:平面图的点数V、边数E、区域数F满足V-E+F=2,这个公式成了近代数学两个重要分支——拓扑学与图论的基本公式。
由这个公式可以得到许多深刻的结论,对拓扑学与图论的发展起了很大的作用。
在数学中,像欧拉公式这样形式简洁、内容深刻、作用很大的定理还有许多。
比如:圆的周长公式:C=2πR勾股定理:直角三角形两直角边的平方和等于斜边平方。
平均不等式:对任何正数正弦定理:ΔABC的外接圆半径R,则数学的这种简洁美,用几个定理是不足以说清的,数学历史中每一次进步都使已有的定理更简洁。
正如伟大的希而伯特曾说过:“数学中每一步真正的进展都与更有力的工具和更简单的方法的发现密切联系着”。
二、和谐美数论大师赛尔伯格曾经说,他喜欢数学的一个动机是以下的公式:,这个公式实在美极了,奇数1、3、5、…这样的组合可以给出,对于一个数学家来说,此公式正如一幅美丽图画或风景。
欧拉公式:,曾获得“最美的数学定理”称号。
欧拉建立了在他那个时代,数学中最重要的几个常数之间的绝妙的有趣的联系,包容得如此协调、有序。
与欧拉公式有关的棣美弗-欧拉公式是――(1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学美欣赏(内容选自《数学美拾趣》、《数学聊斋》和《直观几何》)课程简介了解数学的趣味性,初步懂得数学在理论和实际中的应用,欣赏数学的绚丽多彩的艺术世界.学习要求1. 用U盘复制电子讲稿,并打印.2. 课后认真阅读讲稿.3. 适当安排若干次课堂独立作业. 做课堂作业时, 允许参考本讲稿, 可以摘录讲稿内容.考核要求1. 进行期中考试和期末考试,均为开卷.2. 期末总评成绩=期中考试成绩×50%+期末考试成绩×50%.3. 期中考试、期末考试和课堂独立作业中没有任何计算题和证明题,也没有填空题和选择题, 题型均为问答题.第1讲第1章数学的简洁性序言著名科学家伽利略说过:“数学是上帝用来书写宇宙的文字”.简洁本身就是一种美,而数学的首要特点在于它的简洁.数学家莫德尔说:在数学美的各个属性中,首先要推崇的大概是简单性了.自然界原本就是简洁的:光是沿直线方向传播的——这是光传播的最捷路线.植物的叶序排布是植物叶子通风、采光最佳的布局.某些攀缘植物如藤类,它们绕着攀依物螺旋式的向上生长,它们所选的螺线形状对于植物上攀路径来讲是最节省的.大雁迁徙时排成的人字形,一边与其飞行方向夹角是 ,从空气动力学角度看,这个角度对于大雁队伍飞行是54448'''最佳的,即阻力最小(顺便一提:金刚石晶体中也蕴含这种角度).,这种比值的分支导流系统经流体动力学研究表明,它在输导液体时能量消耗最少.生物学家和数学家们(如著名科学家开普勒、数学家列厄木、柯尼希等)在研究蜂房构造时发现:在体积一定的条件下,蜂房的构造是最省材料的.这些最佳、最好、最省、……的事实,来自生物的进化与自然选择,然而它同时展现了自然界的简洁,而且也展现了自然界的和谐. 宇宙万物如此,数学,它作为用来描述宇宙的文字和工具也应当是简洁与和谐的.诗人但丁曾赞美道:“圆是最美的图形”.太阳是圆的、满月是圆的、水珠看上去(投影)是圆的、……,圆的线条明快、简练、对称.近代数学研究还发现圆的等周极值性质:在周长给定的封闭图形中,圆所围的面积最大.无论是古人,还是今人,人们对圆有着特殊亲切的情感,都因为圆的简洁美.数学中人们对于简洁的追求是永无止境的:建立公理体系时,人们试图找出最少的几条(抛弃任何多余的赘物);对命题的证明,人们力求严谨、简练(因而人们对某些命题的证明在不断地改进);对计算的方法,人们要求尽量便捷、明快(因而人们不断地在探索计算方法的创新),……,数学拒绝繁冗.正如牛顿所说:数学家不但更容易接受漂亮的结果,不喜欢丑陋的结论,而且他们也非常推崇优美与雅致的证明,而不喜欢笨拙与繁复的推理.数学大师欧拉曾研究过天平砝码最优(少)配置问题,并且证明了:若有1,2,22,32, (2)克的砝码,只允许其放在天平的一端,利用它们可称出1——()1122122221n nn +--=+++++ 之间的任何整数克重物体的重量.例如,当3n =时,我们有4个砝码:1克,2克,22克和32克,即1克,2克,4克和8克. 利用它们,我们可称出1克——3121+-克(即15克)之间的任何整数克重物体的重量, 即可称出1克,2克, 3克, …, 15克的重量. 这由下表可以明白.这个问题其实与数的二进制有关. 进而,欧拉还证明了(它与数的三进制有关):有1,3,23,33, (3)克重的砝码,允许其放在天平两端, 利用它们可以称出1----()11231333312n nn +--=+++++ 之间任何整数克重物体的重量.例如,当2n =时,我们有3个砝码:1克,3克和23克,即1克,3克和9克. 利用它们,我们可称出1克——21312+-克(即13克)之间的任何整数克重物体的重量, 即可称出1克, 2克, 3克, …,13克的重量. 这由下表可以明白.以上两个事实是“以少应付多”的典范,这也是数学简洁性使然. 下面的所谓“省刻度尺问题”, 尽管人们尚未对此得出一般结论,但目前仅有的结果也足以使人倍感兴趣:一根6cm 长的尺子,只须刻上两个刻度(在1cm 和4cm 处),就可量出1cm ——6cm 之间任何整数厘米长的物体长,即可量出1cm ,2cm ,3cm ,4cm ,5cm 和6cm 的长度(下简称“完全度量”).若用a b →表示从a 量到b 的话,那么具体度量如下:1(01→),2(46→),3(14→),4(04→),5(16→),6(06→).一根13cm 的尺子,只须在1cm ,4cm ,5cm 和11cm 四处刻上刻度,便可完成1——13cm 的完全度量. 具体度量如下:1(01→), 2(1113→), 3(14→), 4(04→), 5(05→), 6(511→), 7(411→), 8(513→), 9(413→), 10(111→), 11(011→), 12(113→), 13(013→).对于22cm的尺子,只须刻上六个刻度,即在:1cm,2cm,3cm,8cm,13cm和18cm;或者1cm,4cm,5cm,12cm,14cm 和20cm处刻上刻度,可完成1——22cm的完全度量.对于23cm的尺子来讲,也只须六个刻度:1cm,4cm,10cm,16cm,18cm和21cm,便可完成1——23cm的完全度量.一根36cm的尺子,只须在1cm,3cm,6cm,13cm,20cm,27cm,31cm和35cm处刻上八个刻度,便可完成1cm——36cm 的完全度量.对于40cm的尺子,刻上九个刻度:1cm,2cm,3cm,4cm,10cm,17cm,24cm,29cm和35cm,即可完成1——40cm 的完全度量.这类问题与应用数学中所谓最优化方法有关,这门学科的核心是最省、最好(对效益讲是最大).用“少”去表现“多”,或者求极大、极小等,均是数学简洁性的另类表现. 比如“植树问题”. 英国数学家、物理学家牛顿曾经很喜欢下面一类题目:9棵树栽9行,每行栽3棵,如何栽? 乍看此题似乎无解,其实不然,看了左下图(图中黑点表示树的位置,下同),你会恍然大悟!牛顿还发现:9棵树每行栽3棵,可栽行数的最大值不是9,而是10,见右上图. 左下图给出10棵树,栽10行,每行栽3棵的栽法.其实,10棵树,每行栽3棵,可栽的最多行数也不是10,而是12,见右上图.英国数学家、逻辑学家道奇生在其童话名著《艾丽丝漫游仙境》中也提出下面一道植树问题:10棵树,栽成5行,每行栽4棵,如何栽? 此题答案据说有300种之多,下面诸图给出了其中的几种.十九世纪末,英国的数学游戏大师杜登尼在其所著《520个趣味数学难题》中也提出了下面的问题:16棵树,栽成15行,每行栽4棵,如何栽? 杜登尼的答案见左下图.美国趣味数学大师山姆·洛伊德曾花费大量精力研究“20棵树,每行栽4棵,至多可栽多少行”,他给出了可栽18行的答案,见右下图.几年前人们借助于电子计算机给出了上述问题可栽20行的最佳方案,见左下图.稍后曾见报载,国内有人给出可栽21行的方案(右上图),然而严格的验证工作恐非易事——这些点是否真的共线?既便结论无误,但它是否是可栽的最多行数,人们尚不得而知.在英国数学家薛尔维斯特在临终前几年(1893年)提出了一个貌似简单的问题:对于在平面上不全共线的任意n个点,总可以找到一条直线,使其仅过其中的两个点.直到1933年,人们才找到一个繁琐的证明. 此后,1944年、1948年又先后有人给出了证明. 1980年前后,《美国科学新闻》杂志重提旧事时,又一次向人们介绍了薛尔维斯特问题和凯利于1948年给出的证明.我们很容易体会到:一个定理(或习题)证明(或解法)的简化,将认为是做了一件漂亮的工作,即它是美妙的. 由于简洁,数学语言(包括图形)不仅能描述世界上的万物,而且也能为世界上所有文明社会所接受和理解,甚至还将成为与其它星球上的居民(如果存在的话)交流思想的工具.在为美国发射的在茫茫太空中去寻觅地球外文明的“先驱者号飞船”(探测器)征集所携带的礼物时,我国已故著名数学家华罗庚曾建议带上数学中用以表示勾股定理(毕达哥拉斯定理)的简单、明快的数形图,它似乎应为宇宙所有文明生物所理解.225=217数学中的简洁性的例子是不胜枚举的:比如三角形,尽管它有千姿百态,但人们却可用12S ah=(a 为底边长,h 为该边上高)或海伦公式S =为三角形半周长)去表达所有三角形的面积.数学的简洁性系指其抽象性、概括性和统一性. 正是因为数学具有抽象性和统一性,因而其形式应当是简单的. 实现数学的简单性(抽象、统一)的重要手段是使用数学符号.附录 有趣的数制十进制数543210809306810000001000091000310001061810010910310010610.=⨯+⨯+⨯+⨯+⨯+⨯=⨯+⨯+⨯+⨯+⨯+⨯210123562.4083510610210410010810310.----=⨯+⨯+⨯+⨯+⨯+⨯+⨯特点: 十进制数由十个数字0 1 2 3 4 5 6 7 8 9,,,,,,,,,组成. 二进制数4321110111212021212=⨯+⨯+⨯+⨯+⨯.321012341110.11011212120212120212----=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯,特点: 二进制数由两个数字0和1组成. 三进制数432112312101.2211323130313232313---=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯.特点: 三进制数由两个数字0,1和2组成. 前面讲过, 利用四个砝码: 1g , 2g,4g, 8g , 可以称出1g ——15g 的整数克重量. 把重量用二进制表示, 可以得到相应的砝码组合方式.用四个砝码1g ,2g, 4g ,8g可以称出1g ——15g 的整数克重量前面还讲过, 利用三个砝码: 1g, 3g, 9g, 可以称出1g——13g的整数克重量(允许砝码放在天平的两个托盘中). 把重量用三进制表示, 可以得到相应的砝码组合方式. 下表中加下标3的数(如3101)表示三进制数, 不加下标3的数为十进制数.用三个砝码1g, 3g, 9g可以称出1g——13g的整数克重量1.1 数学符号人总想给客观事物赋予某种意义和价值,利用符号认识新事物,研究新问题,从而使客观世界秩序化,这便创造了科学、技术、文化、艺术、……. 符号就是某种事物的代号,人们总是探索用简单的记号去表现复杂的事物,符号也正是这样产生的. 文字是表达事物的符号,一个语种就是一个“符号系统”. 这些符号的组合便是语言. 人们试图用“精密”的方法研究艺术,这在很大程度上依靠符号.符号对于数学的发展来讲更是极为重要的,它可使人们摆脱数学自身的抽象与约束,集中精力于主要环节,这在事实上增加了人们的思维能力. 没有符号去表示数及其运算,数学的发展是不可想象的.数学语言是困难的,但又是永恒的(纽曼语). 数是数学乃至科学的语言,符号则是记录、表达这些语言的文字. 正如没有文字,语言也难以发展一样,几乎每一个数学分支都是靠一种符号语言而生存,数学符号是贯穿于数学全部的支柱.古代数学的漫长历程, 今日数学的飞速发展,十七世纪、十八世纪欧洲数学的兴起, 我国几千年数学发展进程的缓慢,这些在某种程度上都归咎于数学符号的运用得当与否. 简练、方便的数学符号对于书写、运算、推理来讲,是何等重要! 反之,没有符号或符号不恰当、不简练,势必影响到数学的推理和演算. 然而,数学符号的产生、使用和流传却经历了一个十分漫长的过程. 在这个过程中,始终贯穿着人们对于自然、和谐与美的追求.古埃及和我国一样,是世界上四大文明古国之一. 早在四千多年以前,埃及人已懂得了数学,在数的计算方面还会使用分数,不过, 他们用的是“单位分数”(分子是1的分数). 此外,他们还能计算直线形和圆的面积. 他们知道了圆周率约为3.16,同时也懂得了棱台和球的体积计算等. 可是,他们却是用下面的符号记数的:这样书写和运算起来都不方便,比如写数2314,就要用符号表示. 后来他们把符号作了简化而成为古代巴比伦人(巴比伦即当今希腊一带地方)计数使用的是六十进制,当然它也有其优点,因为60有约数2,3,4,5,6,10,12,15,30,60等,这样,在计算分数时会带来某种方便(现在时间上的小时、分、秒制及角度制,仍是六十进制). 巴比伦人已经研究了二次方程和某些三次方程的解法,他们在公元前2000年就开始将楔形线条组成符号(称为楔形文字),且将它们刻在泥板上,然后放到烈日下晒干以备保存. 同样,他们也是用楔形文字来表示数,无论是用来记录还是运算,都相对来说方便了许多.我国在纸张没有发明以前,已经开始用算筹进行记数和运算了. 算筹是指计算时使用的小竹棍(或木棍、骨棍),这也是世界上最早的计算工具. 用算筹表示数的方法是:记数时, 个位用纵式,其余位纵横相间,故有“一纵十横,百立千僵”之说. 数字中有0时,将其位置空出,比如86021可表示为:在甲骨文中,数字是用下面的符号表示的(形象、自如):码”的记数方法(方便、明快):在计数上欧洲人开始使用的是罗马数字:阿拉伯数字据说是印度人发明的,后传入阿拉伯国家,经阿拉伯人改进、使用,因其简便性而传遍整个世界,成为通用的记数符号.我们再来看看方程用符号表示的历史(代数学的产生与方程研究关系甚密) . 在埃及出土的3600年前的莱因特纸草上有下面一串符号:它既不是什么绘画艺术,也不是什么装饰图案,它表达的是一个代数方程式,用今天的符号表示,即211137327x ⎛⎫+++= ⎪⎝⎭. 宋、元时期我国也开始了相当于现代方程论的研究,当时记 数仍使用算筹. 在那时出现的数学著作中,就是用下图中的记号来表示二次三项式2412136x x -+的, 其中,x 的系数旁边注以“元”字,常数项注以“太”字,筹上画斜线表示“负数”.到了十六世纪,数学家卡尔达诺、韦达等人对方程符号有了改进. 直到笛卡儿才第一个提倡用x、y和z表示未知数,他曾用--+--∝xxx xx x926240表示32926240-+-=, 这与现在的方程写法几乎一致.x x x其实,数学表达式的演变正是人们追求数学的和谐、简洁、方便和明晰的审美过程. 笛卡儿的符号已接近现代通用的记号, 直到1693年, 沃利斯创造了现在人们仍在使用的记号:4320++++=.x bx cx dx e韦达是第一个引进字母系数的人,但他仍用希腊人的齐次原则、拉丁记号plano和solido分别表示平面数和立体数;用aequtur表示等于,in表示乘号,quad和cub分别表示平方和立方,这显然不简便. 笛卡儿的符号已有较大程度的简化.我们还想指出一点:数及其运算只有用符号去表示,才能更加确切和明了. 随着数学的发展,随着人们对于数的认识的深化,用原有符号去表示新的概念,有时竟会感到无能为力(没有根号如何表示某些无理数?),这需要创新.圆周率(圆的周长与直径的比)是一个常数,但它又是无限不循环小数. 1737年欧拉首先倡导用希腊字母π来表示它(早在1600年英国数学家奥特雷德曾用π作为圆周长的符号),且通用于全世界.用e 表示特殊的无理常数(也是超越数)——欧拉常数1lim 1 2.718281828459045nn n →∞⎛⎫+= ⎪⎝⎭的也是欧拉. 我们知道,要具体写出圆周率或欧拉常数,这是根本不可能的(它们无限且不循环),然而用数学符号却可精确地表示它们(正像不能写完1.41421356=表达一样).i 表示,还是数学家欧拉于1777年首创的(这也使我们想到:欧拉的成就与他对数学符号的创造不无关系). 在奇妙的等式10i eπ+=中,所出现的五个数中的三个符号都是出自数学大师欧拉之手!从上面的例子我们可以看到:数学符号的重要在于它有无限的力量和手段来协助直觉,把社会和自然乃至宇宙中的数学关系联系起来,去解答一些已知或未知的问题,去创造更深、更新的思维形式.说到数学符号, 我们当然还不应忘记图形. 点、线、面、体的产生正是人们对客观事物的抽象和概括,欧几里得几何、非欧几何、解析几何正是研究这些图形的分支. 除此之外,还有许多精彩的例子. 首先我们会想到“哥尼斯堡七桥问题”.布勒格尔河流经哥尼斯堡市区,河中有两个河心岛,它们之间以及它们与河岸之间共有七座桥连接. 当地居民曾被一个问题搞得百思不得其解,这个问题是:你能否无遗漏又不重复地走遍七座桥而回到出发地?人们在不停地走着、试着,却无一人成功.数学大师欧拉接触此问题后,他巧妙地用数学手段将问题转化、化简,并成功地解决了这个难题. 首先,他将问题抽象成图形:用点代表河岸和小岛,用线代表桥(注意上面两个图中的A,B,C,D的对应),于是得到右上图这个简单的图形,同时问题相应地改为:能否一笔画出这个图形?为了解决这个问题,我们首先明确:一笔画就是从图形上某点出发,笔不离开纸,并且每条线都只画一次不重复.其次,我们定义:若从图中某点出发的线的条数是偶数,则称该点为偶点; 若从图中某点出发的线的条数是奇数,则称该点为奇点.在左图中,从每一点出发都有两条线. 因此,这四个点都是偶点. 在右图中有4个点,从③、④两点出发的线有2条,故③、④是偶点;从①、②两点出发的线有3条,故这两个点是奇点.一个图形能否一笔画成,关键在于图中的奇点的个数. 欧拉发现了一个图形可以一笔画成的判定准则:奇点在一笔画中只能作为起点或终点. 在上述哥尼斯堡七桥问题中,所有的点都是奇点,因此,要想一笔画出下图是不可能的,也就是说,要想不重复地走过哥尼斯堡的七座桥,那是不可能的.欧拉的这项研究导致了拓扑学这门数学分支的诞生(在很大程度上讲,这也促进了图论这门学科的创立).例下面的图形能一笔画成吗?答第1图可以一笔画成.在第2图中,E点是偶点,其它点是奇点,所以第2图不能一笔画成. 第3图可以一笔画成.很难想象,如果欧拉不是运用了图形符号而是用河、桥去探讨这个问题,结果将会是怎样? 那样的话,解决问题的难度要变得很大,更谈不上新的数学分支的诞生.运用类似的方法,欧拉还证明了著名的关于多面体的顶点数V、棱数E和面数F之间的关系式——欧拉公式:由此人们发现了正多面体仅有五种:正四面体、正六面体(立方体)、正八面体、正十二面体和正二十面体.关于欧拉公式,我们可以用四面体和六面体来验证.六人相识问题:在任何6个人中, 必可从中找出3个人,使得他们要么彼此都相识,要么彼此都不相识.把这个抽象的问题转化成“点”与“染色直线”,从而巧妙地解答它,这不能不说是符号的一大功劳(要知道, 6人之间的C==种).相互关系的可能情况有26152232768把六个人用点A、B、C、D、E和F表示. 若两个人相识,则用红线连接相应的点,若两人不相识,则用黑线连接相应的点. 点A与B、C、D、E和F的连线(5条)中,必有三条线的颜色相同, 不妨设A B、A C和A D为红色.再考虑B、C、D三点间的连线. 若它们全为黑色,则B、C、D三点为所求(左上图,它们代表的三个人彼此都不相识);若三点间的连线至少有一条为红色,设它为B C,这时A、B、C三点为所求(右上图,它们代表的三个人彼此都相识).我们还可以有进一步的结论:上述(彼此都相识或都不相识的)“三人组”在六个人中至少存在两组(证明见本节末附录).顺便讲一句:若要求彼此相识或不相识的人数是4,则总人数要增至18;若要求彼此相识或不相识的人数是5(这时有20010种组合方式),则总人数要增至43人——49人之间(具体人数至今不详);若要求彼此相识或不相识的人数是6,则总人数要增至102——165之间,确定它们是人们目前尚不可及的事.上面的事实,再次证明了数学符号的威力. 没有它, 至少问题的叙述会变得复杂而困难,或者根本无法表达清楚.世界原本是简洁的, 数学也是.没有数学语言(符号)的帮助,许多科学、技术的发展会变得迟缓,甚至停滞,这决非耸人听闻.我们说过:数、字母、代数式是符号,图同样也是符号,它们(数与形)之间的彼此借鉴与相互的通融,使得数学符号被赋予新意且更具魅力和美感. 为了更好地研究数学,人们必须创造且使用数学符号.如今,我们简直难以想象:如果没有现今的数学符号,数学乃至整个科学的面貌将会是何种模样!附录证明: 上述(彼此都相识或都不相识的)“三人组”在六个人中至少存在两组.证明为证该结论, 我们注意到, 在本节的证明中, 我们实际上已证了下列命题若从某点向其余三点所引线段同色, 则在上述四点中, 必有某三点, 使得以其为顶点的三角形的三边同色(为方便, 以下称三边同色的三角形为同色三角形).只需考虑下列两图所对应的情形.在左图中...., 若B E、B F同为红色,则在A、B、E、F中,可产生同色三角形(上述命题), 且它异于B C D∆. 所以结论成立. 若B E、B F同为黑色,则在B、D、E、F中,也可产生同色三角形, 且它异于B C D∆. 所以结论仍真. 若B E、B F一红一黑, 不妨设B E为红, B F为黑.设C F 为红(否则, 有黑BC F BC D ∆≠∆, 得证), A E为黑(否则, 有红A B E B C D ∆≠∆, 得证),D F为红(否则, 有黑B D F B C D ∆≠∆, 得证),A F为黑(否则, 有红A C F B C D ∆≠∆, 得证),E F为红(否则, 有红A E FBC D∆≠∆, 得证),D E为黑(否则, 有红D E F B C D ∆≠∆, 得证), C E 为红(否则, 有黑C D E B C D ∆≠∆, 得证). 此时, C EF∆为红三角形. 故结论成立.在上面的....右图中..., 设C D 为黑(否则, A B C∆和A C D ∆均为红三角形, 结论成立).若C E 、C F 均为黑, 则在C 、D 、E 、F 中,可产生同色三角形,且该三角形异于A B C ∆. 所以结论成立. 若C E 、C F 均为红,则同理可证结论成立. 若C E 、C F 一红一黑,不妨设C E 红, C F 黑.设B E 黑(否则, 有红B C E A B C ∆≠∆, 得证),B D黑(否则, 有红∆≠∆, 得证), D F红(否∆≠∆, 得证), D E红(否则, 有黑B D E A B CA B D A B C则, 有黑C D F ABC∆≠∆, 得证). 此时, 在A、D、E、F中,可产生同色三角形,且它异于A B C∆. 所以结论成立.31。