《统计学》线性回归模型解析讲课讲稿

合集下载

线性回归分析教程ppt

线性回归分析教程ppt

04
线性回归分析的应用
预测与决策
销售预测
通过分析历史销售数据,建立线性回归模型,预测未来销售趋势,为企业的生产和库存管理提供决策 依据。
投资决策
利用线性回归分析评估投资项目的潜在收益和风险,帮助投资者做出明智的决策。
市场细分与定位
市场细分
通过线性回归分析,识别不同消费群体 的特征和需求,将市场细分为不同的子 市场,以便更有针对性地进行营销。
影响预测精度。
数据不平衡
03
在某些情况下,某些类别的样本数量过少,可能导致模型对少
数类别的预测能力不足。
样本选择偏差
过拟合
训练数据集过小或过于特定,导致模型对训练数据过度拟合,而 对新数据预测能力不足。
欠拟合
训练数据集过大或过于复杂,导致模型过于简单,无法捕捉到数 据中的复杂模式。
选择偏差
由于某些原因(如实验设计、数据收集过程等),训练数据可能 存在选择偏差,导致模型预测能力下降。
通过残差分析、决定系数、显著性检 验等统计方法对模型进行检验,评估 模型的拟合效果。
多重共线性问题
多重共线性定义
多重共线性是指线性回归模型中自变量 之间存在高度相关或完全相关的情况。
多重共线性的诊断
通过计算自变量之间的相关系数、条 件指数、方差膨胀因子等方法诊断多
重共线性。
多重共线性的影响
多重共线性会导致模型不稳定、参数 估计不准确、甚至出现完全的多重共 线性。
பைடு நூலகம்
VS
定位策略
基于线性回归分析的结果,确定目标市场 和产品定位,制定有效的市场推广策略。
成本预测与控制
成本预测
通过分析历史成本数据,建立线性回归模型,预测未来的生产成本,为企业制定合理的 价格策略提供依据。

线性回归精确分析讲课文档

线性回归精确分析讲课文档
– 利用满足一定条件的样本数据进行回归分析
(6)指定作图时各数据点的标志变量(case labels)
11
第十一页,共76页。
一元线性回归分析操作
(二) statistics选项 (1)基本统计量输出
– Estimates:默认.显示回归系数相关统计量.
– confidence intervals:每个非标准化的回归系数95%的置信
起的因变量y的平均变动
(二)多元线性回归分析的主要问题
– 回归方程的检验
– 自变量筛选 – 多重共线性问题
18
第Hale Waihona Puke 八页,共76页。多元线性回归方程的检验
(一)拟和优度检验:
(1)判定系数R2:
– R是y和xi的复相关系数(或观察值与预测值的相关系数),测定了因变量 y与所有自变量全体之间线性相关程度
第二十三页,共76页。
23
多元线性回归分析中的自变量筛选
(二)自变量向前筛选法(forward): • 即:自变量不断进入回归方程的过程. • 首先,选择与因变量具有最高相关系数的自变量进入方程,
并进行各种检验;
• 其次,在剩余的自变量中寻找偏相关系数最高的变量进入回归方 程,并进行检验;
– 默认:回归系数检验的概率值小于PIN(0.05)才可以进入方程.
6
第六页,共76页。
一元线性回归方程的检验
(一)拟和优度检验:
(3)统计量:判定系数
– R2=SSR/SST=1-SSE/SST. – R2体现了回归方程所能解释的因变量变差的比例;1-R2则体现
了因变量总变差中,回归方程所无法解释的比例。
– R2越接近于1,则说明回归平方和占了因变量总变差平方和的绝大

统计学10.线性回归分析PPT课件

统计学10.线性回归分析PPT课件

-973 1314090 1822500 947508
-929 975870 1102500 863784
-445 334050 562500 198381
-412 185580 202500 170074
-159 23910 22500 25408
28 4140 22500
762
402 180720 202500 161283
y ˆ 3.8 82 1 .5 3x 2 4 1 0 1 .02 x 228
2. 多重判定系数R2= 0.9373;调整后的R2= 0.9194 3. 回归方程的显著性检验
▪ F = 52.3498 F>F0.05(2,7)=4.74,回归方程显著
1520
9
35.1
28.2
1620
10
34.5
26.9
1570
一个二元线性回归的例子
(Excel 输出的结果)
SUMMARY OUTPUT
回归统计
Multiple R
0.968159025
R Square
0.937331897
Adjusted R Square 0.919426725
标准误差
2.010050279
且与 X 无关, 它反映了 Y 被 X 解释的不确定性。
如果随机干扰项 u 的均值为 0, 对上式求条件均值, 有
E(YX)12X
反映出从“平均”角度看,是确定性关系。
例:地区的多孩率与人均国民收入的散点图如下:
多 孩 率 Y
人均收入X
这两个变量之间的不确定关系,大致可以用下式表示:
Y12Ln X u
观测值
10
方差分析

《线性回归模型》ppt课件

《线性回归模型》ppt课件

判别相关关系是线性相关还是非线性相 关、正相关还是负相关;
计算变量之间的相关系数
度量变量之间的线性相关的程度、判别线 性相关关系是正相关还是负相关
相关系数
十九世纪末——英国著名统计学家卡尔·皮尔逊〔Karl Pearson〕 ——度量两个变量之间的线性相关程度的简单相关系数〔简称相关系数〕
两个变量X和Y的总体相关系数为
4〕利用回归模型处理实践经济问题。
例如:
居民消费C与可支配收入Y之间不仅存在相关关系而且存在因 果关系,不仅可以利用相关分析研讨两者之间的相关程度,还可 以利用回归分析研讨两者之间的详细依存关系。可以将C作为被 解释变量、Y作为解释变量,根据相关经济实际,设定含有待估 参数 、 的实际模型C = + Y,估计模型中的参数 、 ,得 到回归方程,进展相关统计检验和推断,利用回归模型进展构造 分析、经济预测、政策评价等。
函数关系与相关关系的区别
确定的函数关系可以直接用于经济活动,无需分析。 不确定的相关关系,隐含着某种经济规律,是有关研讨的重点
一、相关分析与回归分析
2. 相关分析
研讨变量之间的相关关系的方式和程度的一种统计分析方法,主要
经过绘制变量之间关系的散点图和计算变量之间的相关系数进展。
例如:
绘制变量之间关系的散点图
计量经济学模型用随机方程提示经济变量之间的因果关系,对于这 一经济活动,与上述数理经济模型相对应,描画为
QAetKLe
或描画为对数线性函数方式 l n Q l n A t l n K l n L
其中, 是随机误差项。
随机误差项——称为随机扰动项或随机干扰项〔stochastic distur
对于含有多个解释变量 X
1 、X

《统计学》线性回归模型解析

《统计学》线性回归模型解析

说明模型越有效,R2越接近与0,说明模型越无
效。应该注意的是,R2通常只用于模型有效性
的一个大致的判断。
37
R2称为“可决系数”,显然,0≤R2≤1。当R2接 近于1时,回归平方和SSR在总的平方和SST中 所占的比重大,说明自变量对因变量的影响较大; 反之,当R2接近与0时,回归平方和SSR在总的 平方和SST中所占的比重小,说明自变量对因变 量的影响较小。综上所述,R2越接近与1,说明 模型越有效,R2越接近与0,说明模型越无效。 应该注意的是,R2通常只用于模型有效性的一 个大致的判断。
38
可决系数R2只说明了回归方程对样本观察
值拟合程度的好坏,却不能表示回归直线
估计值与变量y的各实际观察值的绝对离差
的数额。估计标准误差则是反映回归估计
值与样本实际观察值的平均差异程度的指
标,用Syx表示估计标准误差,其计算公式
为:
n
Syx =
( yi yˆi )2
i 1
n2
39
若估计标准误差Syx小,表示各实际观察 值与回归估计值平均差异小,实际观察点 靠近回归直线,回归直线的拟合程度好, 代表性高;若样本观察点全部落在直线上, 则Syx=0,说明样本实际值与估计值没有 差别。若Syx大,则说明回归直线拟合不好, 代表性差。
8
例如:同样收入的家庭,用于食 品的消费支出往往并不相同。因 为对家庭食品费用的影响,不仅 有家庭收入的多少,还有家庭人 口,生活习惯等因素,所以,家 庭食品费用支出与家庭收入之间 不是函数关系,而是相关关系。
9
在含有变量的系统中,考察一些变 量对另一些变量的影响,它们之 间可能存在一种简单的函数关系, 也可能存在一种非常复杂的函数 关系。有些变量之间的关系是非 确定性的关系,这种关系无法用 一个精确的数学来表示。

《线性回归模型》课件

《线性回归模型》课件
和治疗效果。
THANKS FOR WATCHING
感谢您的观看
线性回归模型的假设条件
独立观测值
假设数据点之间相互独立,不 存在相互依赖关系。
无异常值或离群点
假设数据集中没有异常值或离 群点,因为它们可能会对回归 线的拟合产生不利影响。
线性关系
假设因变量与自变量之间存在 线性关系,即它们之间的关系 可以用一条直线来描述。
无多重共线性
假设自变量之间不存在多重共 线性,即它们之间不存在高度 的线性相关性。
详细描述
线性回归模型可以通过分析历史股票数据,找到影响股票价格的关键因素,如市场情绪 、公司业绩、宏观经济指标等。通过建立线性回归方程,可以预测未来股票价格的走势
,为投资者提供参考。
销售预测
总结词
线性回归模型可以用于预测公司未来销售额 ,帮助企业制定合理的销售计划和市场策略 。
详细描述
通过收集历史销售数据,线性回归模型可以 分析影响销售额的关键因素,如市场需求、 产品价格、竞争对手情况等。通过建立线性 回归方程,可以预测未来一段时间内的销售 额,帮助企业制定合理的销售计划和市场策 略。
疾病风险预测
总结词
线性回归模型可以用于预测个体患某种疾病 的风险,帮助医生制定个性化的预防和治疗 方案。
详细描述
线性回归模型可以通过分析个体的基因、生 活习惯、家族病史等数据,找到与疾病风险 相关的因素。通过建立线性回归方程,可以 预测个体患某种疾病的风险,帮助医生制定 个性化的预防和治疗方案,提高疾病的预防
它使用最小二乘法或其它优化方法来 找到最佳拟合直线,使得因变量的预 测值与实际值之间的平方误差最小化 。
线性回归模型的应用场景
预测连续值
解释变量关系

简单线性回归模型PPT课件

简单线性回归模型PPT课件

940 1030 1160 1300 1440 1520 1650
980 1080 1180 1350 1450 1570 1750
-
1130 1250 1400 -
1600 1890
-
1150 -
-
-
1620 -
2600 1500 1520 1750 1780 1800 1850 1910
y (消费)
出-
表2
1000 650 700 740 800 850 880 -
每月家庭收入支出表(元)
1200 1400 1600 1800 2000 2200 2400
790 800 1020 1100 1200 1350 1370
840 930 1070 1150 1360 1370 1450
900 950 1100 1200 1400 1400 1550
ui N (0, 2 ) (i 1,2,..., n)
或 Yi N (1 1X i , 2 ) (i 1,2,..., n)
以上假定也称高斯假定或古典假定。
二、普通最小二乘法
在不知道总体回归直线的情况下,利用样本信 息建立的样本回归函数应尽可能接近总体回归 函数,有多种方法。
普通最小二乘法(Ordinary Least Squares) 由德国数学家高斯(C.F.Gauss)提出。
Y
e1
Yˆi ˆ1 ˆ2 Xi e3
e4
e2
X1
X2
X
X3
X4
ei Yi Yˆi
Yi (ˆ1 ˆ2 Xi )
对于给定的 Y 和 X的观测值,我们希望这 样决定SRF,使得SRF上的值尽可能接近 实际的 Y。
就是使得残差平方和

第章线性回归分析详解演示文稿

第章线性回归分析详解演示文稿
数学模型为: y=β0+β1x+ε
上式表明:y的变化可由两部分解释:第一,由解释
变量x的变化引起的y的线性变化部分,即y=β0+β1x; 第二,由其他随机因素引起的y的变化部分,即ε。 β0 、β1 都是模型中的未知参数,β0为回归常数,β1为 y对x回归系数(即x每变动一个单位所引起的y的平
一元二乘估计:
多元二乘估计(略)
第十一页,共52页。
9.3回归方程的统计检验
拟合优度检验 回归方程的显著性检验
回归系数的显著性检验 残差分析
第十二页,共52页。
9.3.1回归方程的拟合优度检验
用于检验样本数据点聚集在回归线周围的密集程度, 从而评价回归线对样本数据的代表程度。 思想:因变量y(儿子身高)取值的变化受两个因素
第二十九页,共52页。
第二、计算残差的自相关系数 自相关系数用于测定序列自相关强弱,其取值范围 -1~+1,接近1表明序列存在正自相关
第三十页,共52页。
第三、DW(durbin-watson)检验
DW检验用于推断小样本序列是否存在自相关的方法。其原 假设为:总体自相关系数ρ与零无显著差异。采用统计量 为:
的影响:自变量x(父亲身高)不同取值的影响,其 他因素(环境、饮食等)的影响。
可表示如下:
因变量总变差 = 自变量引起的 + 其他因素引起的 即因变量总变差= 回归方程可解释的+不可解释的 即,因变量总离差平方和SST =回归平方和 SSA + 剩余平
方和SSE
第十三页,共52页。
图示:
y y i
素对 y 的影响造成的。
第十五页,共52页。
一、一元线性回归方程
拟合优度的检验采用R2统计量,称为判定系数

第八章8.2一元线性回归模型及其应用PPT课件(人教版)

第八章8.2一元线性回归模型及其应用PPT课件(人教版)

三、非线性回归
例3 下表为收集到的一组数据: x 21 23 25 27 29 32 35 y 7 11 21 24 66 115 325 (1)作出x与y的散点图,并猜测x与y之间的关系;
解 作出散点图如图,从散点图可以看出x 与y不具有线性相关关系,根据已有知识可 以发现样本点散布在某一条指数函数型曲线 y=c1ec2x的周围,其中c1,c2为待定的参数.
年份
2015 202X 202X 202X 202X
时间代号t
1
2
3
4
5
储蓄存款y(千亿元) 5
6
7
8
10
(1)求 y 关于 t 的经验回归方程y^=b^ t+a^ ;
n
tiyi-n t y
i=1
参考公式:b^ =
n
t2i -n
t2
,a^ =
y
-b^
t
i=1
解 由题意可知,n=5, t =1nn ti=155=3, i=1
来比较两个模型的拟合效果,R2 越 大 ,模型
n
yi- y 2
i=1
拟合效果越好,R2 越 小 ,模型拟合效果越差.
思考 利用经验回归方程求得的函数值一定是真实值吗? 答案 不一定,他只是真实值的一个预测估计值.
思考辨析 判断正误
SI KAO BIAN XI PAN DUAN ZHENG WU
知识点四 对模型刻画数据效果的分析
1.残差图法
在残差图中,如果残差比较均匀地集中在以 横轴为对称轴的水平带状
区域内 ,则说明经验回归方程较好地刻画了两个变量的关系.
2.残差平方和法
n
(yi-y^i)2
残差平方和 i=1

线性回归分析教程PPT课件

线性回归分析教程PPT课件

实例二:销售预测
总结词
线性回归分析在销售预测中,可以通过分析历史销售数据,建立销售量与影响因子之间的线性关系, 预测未来一段时间内的销售量。
详细描述
在销售预测中,线性回归分析可以用于分析历史销售数据,通过建立销售量与影响因子(如市场需求 、季节性、促销活动等)之间的线性关系,预测未来一段时间内的销售量。这种分析方法可以帮助企 业制定生产和销售计划。
自相关检验
自相关是指残差之间存在 相关性。应通过图形或统 计检验方法检验残差的自 相关性。
05
线性回归模型的预测与 优化
利用线性回归模型进行预测
确定自变量和因变量
01
在预测模型中,自变量是预测因变量的变量,因变量是需要预
测的目标变量。
建立模型
02
通过收集数据并选择合适的线性回归模型,利用数学公式表示
一元线性回归模型
一元线性回归模型是用来研究一个因变量和一个 自变量之间的线性关系的模型。
它通常用于预测一个因变量的值,基于一个自变 量的值。
一元线性回归模型的公式为:y = b0 + b1 * x
多元线性回归模型
01 多元线性回归模型是用来研究多个自变量和一个 因变量之间的线性关系的模型。
02 它通常用于预测一个因变量的值,基于多个自变 量的值。
线性回归模型与其他模型的比较
01
与逻辑回归的比较
逻辑回归主要用于分类问题,而 线性回归主要用于连续变量的预 测。
02
与决策树的比较
决策树易于理解和解释,但线性 回归在预测精度和稳定性方面可 能更优。
03
与支持向量机的比 较
支持向量机适用于小样本数据, 而线性 Nhomakorabea归在大样本数据上表现 更佳。

【统计学】一元线性回归模型课件

【统计学】一元线性回归模型课件
• 但由于调查的完备性,给定收入水平X的消费 支出Y的分布是确定的,即以X的给定值为条 件的Y的条件分布(Conditional distribution) 是已知的,例如:P(Y=561|X=800)=1/4。
• 因此,给定收入X的值Xi,可得消费支出Y的 条件均值(conditional mean)或条件期望 (conditional expectation):E(Y|X=Xi)。
• 注意:
–不存在线性相关并不意味着不相关。 –存在相关关系并不一定存在因果关系。 – 相关分析对称地对待任何(两个)变量,两个变量
都被看作是随机的。 – 回归分析对变量的处理方法存在不对称性,即区分
因变量(被解释变量)和自变量(解释变量),前 者是随机变量,后者不一定是。
Our greatest weakness lies in giving up. The most certain way to succeed is alway s to try just one more time
圆 面 f,半 积 径 半 2 径
• 统计依赖或相关关系:研究的是非确定性现象 随机变量间的关系。
农作 f气 ,物 降 温 ,阳 产 雨 ,施 光 量 量 肥
Our greatest weakness lies in giving up. The most certain way to succeed is alway s to try just one more time
1、条件均值(conditional mean)
• 例2.1.1:一个假想的社区有99户家庭组成,欲 研究该社区每月家庭消费支出Y与每月家庭可 支配收入X的关系。 即如果知道了家庭的月收 入,能否预测该社区家庭的平均月消费支出水 平。

线性回归模型PPT课件

线性回归模型PPT课件

(2)
Var(u
i
)

σ
2 u
i 1,2,,n
等方差性
(3)Cov(ui,u j ) 0 (4) Cov(ui,X i ) 0
i j,i,j 1,2,,n i 1,2,,n
无序列相关
进一步假定
u~N(
0,σ
2 u
)
6
1 回归模型的一般描述
五、回归分析预测的一般步骤
1. 以预测对象为因变量建立回归模型; 2. 利用样本数据对模型的参数进行估计; 3. 对参数的估计值及回归方程进行显著性检验; 4. 利用通过检验的方程进行预测。
σ 2(e0 )
σ u2 [1
1 n

(x0 (xi
x)2 -x)2
]
3. 给定置信水平1 ,置信区间为 ( yˆ tα σˆ(e ),yˆ tα σˆ(e, ))其中, 是自t由α 度为年n-2的t分布临界值,
ˆ (e0 ) ˆu
1 1 n
解:使用Excel实现回归

b
(yi
y)(xi (xi x)
x)

.
b y βˆx .
于是所求的方程为 yˆi 138.3480 6.9712 xi
这说明,该厂电的供应量每增加一 万度,年产值增加6.9712万元。
产值(万元)Y 213 242 286 305 306 342 351 373 379 377 384 395 387 402 418
1. 定义:假定Y与X的回归方程为 yˆi bo bxi ,对于给定的 自变量 X x,0 求得 yˆ0 bo bx0 ,称这种预测为点预测。

数理统计-线性回归 ppt课件

数理统计-线性回归  ppt课件

PPT课件
3
2.统计相关关系:变量之间存在某种关系, 但变量Y并不是由变量X唯一确定的,它们 之间没有严格的一一对应关系。两个变量 间的这种关系就是统计关系,亦称相关关 系。例如:小麦的产量Y与施肥量x1,品种x2 等存在关系,但给定x1,x2的数值后Y的值还 是无法确定的.
两个变量之间若存在线性关系称为线性 相关,存在非线性关系称为曲线相关,通常 通过适当的变量变换,曲线相关可转换为 线性相关。
PPT课件
9
x=100:10:190;y=[45,51,54,61,66,70,74,78,85,89]; plot(x,y,'.r')
观察散点图, ( x)具有线性函数a bx的形式.
PPT课件
10
2.建立回归模型
( x) a bx 一元线性回归问题 假设对于x的每一个值有Y~N (a bx, 2 ),a,
yˆ aˆ bˆx Y 关于 x 的经验回归方程
由于aˆ y bˆx,
回归方程 回归直线
yˆ y bˆ( x x),
回归直线通过散点图的几何中心( x, y).
PPT课件
15
n
n
记 lxx ( xi x)2 , l yy ( yi y)2 ,
i 1
C1
(x2 )
C2
考察Y的数学期望E(Y ).x1
x2
x
E(Y ) Y x ( x) Y关于x的回归函数
PPT课件
7
问题的一般提法
对 x 的一组不完全相同的值x1, x2 ,, xn , 设 Y1, Y2 ,,Yn 分别是在 x1, x2 ,, xn 处对 Y 的独立 观察结果.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
我们需要区分两种主要类型的变量。 一种变量相当于通常函数关系中的自 变量,它或者能控制或者虽不能控制 但可观测,这种变量称为自变量。自 变量的变化能波及另一些变量,这样 的变量称为因变量。人们通常感兴趣 的问题是自变量的变化对因变量的取 值有什么样的影响。
10
回归分析正是研究自变量的变动对 因变量的变动的影响程度,其目 的在于根据已知自变量的变化来 估计或预测因变量的变化情况。
3
函数关系:变量之间依一定的函数形 式形成的一一对应关系称为函数关系。 若两个变量分别记作y和x,则当y 与 x之间存在函数关系时,x值一旦被指 定,y值就是唯一确定的。函数关系 可以用公式确切的反映出来,一般记 为y=f(x)。
4
例如,某种商品的销售额(y) 与销售量(x)之间的关系,在销 售价格(p)一定的条件下,只要 给定一个商品销售量,就有一 个唯一确定的商品销售额与之 对应,用公式表示为y=p(x)。
26
以下列出的为计算表
27
28
10
10
10
10 xi yi ( xi)( yi)
ˆ1
i1 10
i1
i1
10
0.3978
10 xi2 ( xi)2
i1
i1
ˆ0 yˆ1x 165.70.397877.7134.7909

=
0
1x
=134.7909+0.3978x为所求的一
n
( yi yˆi )2
ˆ 2 i 1
n2
来估计 2 。
23
例题1、在某类企业中随机抽取10 个企业,搜集它们的产量和生产 费用情况,获得数据如表1所示:
24
表1
企业产量和生产费用
25
我们可作出散点图,易看出变量x 与y之间的关系近似可看作是线性 关系,根据表1的数据,利用最小 二乘法,求一元线性回归方程,
8.2.3利用最小二乘法所得到的估计量 有如下性质:
(1)0,1分别是 0, 1的无偏估计 。
(2) 0 和 1 的最小二乘估计 0 和 1 为“方差
最小”线性无偏估计
(3) 2 的无偏估计为 :
n
( yi yˆi )2
s2 i 1 n2
22
在实际中,方差 2 是未知的,因此,可用估
计量
《统计学》线性回归模型解析
在自然界和人类社会中,经常会遇到 一些变量共处于一个统一体中,他们 相互联系,相互制约,在一定条件下 相互转化。社会经济现象尤其如此。 例如某生产厂家的生产费用由所生产 的产品数量和各种生产投入要素的价 格等因素所决定。
2
在社会经济现象中,变量之间的关 系大致可以分为两种: 1).函数关系 2).统计关系。
yi 01xii, i=1,2,…,n …(8-2)
其中i ,i=1,2,…,n为随机误差项,对 i ,i=1,2,…,n的基本假定是i ,i=1,2,…,n
相互独立,服从N(0, 2)分布。
18
n
记 Q( 0,1 )= (yi 0 1xi)2 0, 1
Q( 0, 1)是直线yi=1 0 1x对于所有数据
5
统计关系:两个变量之间存在某种依存 关系,但变量Y并不是由变量X唯一确定 的,它们之间没有严格的一一对应关系。 两个变量之间的这种关系就是统计关系, 也称为相关关系。
6
相关关系与函数关系有十分密切的联 系。在实际中,由于观察和测量误差 等原因,函数关系往往是通过相关关 系表现的,而在研究相关关系时,又 常用函数关系作为工具,以相应的函 数关系数学表达式表现相关关系的一 般数量关系。
0 为回归截距, 1 为回归系数 , 为随机误差项,且~N(0, 2 ).
16
在实际问题中,(8-1)中的模型 0,参 1 数 是未知的,通常只能在自 变量的一些点上对因变量进行观 测,得到一定量的数据,由数据 出发对模型进行推断。
17
8.2.2 回归系数 0,1 的最小二乘估计。
假定(x1, y1), (x2 , y)2 , …,(xn , y)n 为n次 独立试验所得到的样本观测值,则有
组:
Q
0
n
2
i1
(yi
0
1xi )
0
Q
1
n
2 (yi
i1
0
1xi )xi
0
20
求解方程组得:nnn Nhomakorabean
xi yi (
xi )(
yi )
ˆ1
i 1 n
i 1 n
i 1
n
x
2 i
(
xi )2
i 1
i 1
ˆ
0
y
ˆ1 x
其中
y
1 n
n i1
yi
, x
1 n
n i 1
xi
21
点的偏差平方和。
取直线y=
0
1x
使得
Q( 0,1)达到最小
即 Q( 0, 1)=Q( 0, 1),z用y=来估计
回归直线,这种方法称为最小二乘法。
19
为求与 0, 1分别对应的最小二乘估计0, 1,
注意到Q( 0, 1)是 0, 1的非负二次函数,因
此最小值点存在且唯一,应满足以下方程
11
回归的内容包括如何确定因变量与自 变量之间的回归模型;如何根据样本 观测数据估计并检验回归模型及未知 参数;在众多的自变量中,判断哪些 变量对因变量的影响是显著的,哪些 变量的影响是不显著的;根据自变量 的已知值或给定值来估计和预测因变 量的平均值等等。
12
线性回归分析是研究变量与变量之间 的线性相关关系。从分析的内容上看, 线性回归是建立变量间的拟合线性相 关模型,主要用于估计和预测。线性 回归模型应用领域极为广泛,在许多 领域里都有应用非常成功的例子,它 是现代应用统计分析方法中的重要内 容之一。
13
§2 一元线性回归模型
14
8.2.1 一元线性回归模型的数学表示式
如果两个变量之间存在相关关系, 并且一个变量的变化会引起另一 个变量按某一线性关系变化,则 两个变量间的关系可以用一元线 性回归模型描述。
15
其数学模型为:
y= 0 1x …(8-1)
其中,y 为因变量, x为自变量, 0, 1 为模 型参数,
7
例如:同样收入的家庭,用于食 品的消费支出往往并不相同。因 为对家庭食品费用的影响,不仅 有家庭收入的多少,还有家庭人 口,生活习惯等因素,所以,家 庭食品费用支出与家庭收入之间 不是函数关系,而是相关关系。
8
在含有变量的系统中,考察一些变 量对另一些变量的影响,它们之 间可能存在一种简单的函数关系, 也可能存在一种非常复杂的函数 关系。有些变量之间的关系是非 确定性的关系,这种关系无法用 一个精确的数学来表示。
相关文档
最新文档