第三章-扫描电子显微镜课件
合集下载
扫描电子显微镜ppt课件
信号的收集效率和相应检测器的安放位置有很大关系,如果 安微镜的样品室内还配有多种附 件,可使样品在样品台上能进行加热、冷却、拉伸等试验, 以便研究材料的动态组织及性能。
二、信号的收集和图像显示系 统
信号收集和显示系统包括各种信号检测器,前置放大 器和显示装置,其作用是检测样品在入射电子作用下 产生的物理信号,然后经视频放大,作为显像系统的 调制信号,最后在荧光屏上得到反映样品表面特征的 扫描图像。
12-0引言
2、 图像景深大,富有立体感。可直接观察起 伏较大的粗糙表面(如金属和陶瓷的断口等)
3、试样制备简单。只要将块状或粉末的、导 电的或不导电的试样不加处理或稍加处理,就 可直接放到SEM中进行观察。一般来说,用 SEM观察断口时,样品不必复制,可直接进行 观察,这给分析带来极大的方便。比透射电子 显微镜(TEM)的制样简单,且可使图像更近 于试样的真实状态。
二次电子、背散射电子和透射电子的信号都可采用闪 烁计数器来进行检测。信号电子进入闪烁体后即引起 电离,当离子和自由电子复合后就产生可见光。可见 光信号通过光导管送入光电倍增器,光信号放大,即 又转化成电流信号输出,电流信号经视频放大器放大 后就成为调制信号。
二、信号的收集和图像显示系 统
如前所述,由于镜筒中的电子束和显像 管中电子束是同步扫描,而荧光屏上每 一点的亮度是根据样品上被激发出来的 信号强度来调制的,因此样品上各点的 状态各不相同,所以接收到的信号也不 相同,于是就可以在显像管上看到一幅 反映试样各点状态的扫描电子显微图像。
俄歇电子特点:
(1)俄歇电子的能量很低,能量有特征值, 一般在50eV-1500eV范围内。
(2)俄歇电子的平均自由程很小(1nm左 右).因此在较深区域中产生的俄歇电子 在向表层运动时必然会因碰撞而损失能 量,使之失去了具有持征能量的特点.
二、信号的收集和图像显示系 统
信号收集和显示系统包括各种信号检测器,前置放大 器和显示装置,其作用是检测样品在入射电子作用下 产生的物理信号,然后经视频放大,作为显像系统的 调制信号,最后在荧光屏上得到反映样品表面特征的 扫描图像。
12-0引言
2、 图像景深大,富有立体感。可直接观察起 伏较大的粗糙表面(如金属和陶瓷的断口等)
3、试样制备简单。只要将块状或粉末的、导 电的或不导电的试样不加处理或稍加处理,就 可直接放到SEM中进行观察。一般来说,用 SEM观察断口时,样品不必复制,可直接进行 观察,这给分析带来极大的方便。比透射电子 显微镜(TEM)的制样简单,且可使图像更近 于试样的真实状态。
二次电子、背散射电子和透射电子的信号都可采用闪 烁计数器来进行检测。信号电子进入闪烁体后即引起 电离,当离子和自由电子复合后就产生可见光。可见 光信号通过光导管送入光电倍增器,光信号放大,即 又转化成电流信号输出,电流信号经视频放大器放大 后就成为调制信号。
二、信号的收集和图像显示系 统
如前所述,由于镜筒中的电子束和显像 管中电子束是同步扫描,而荧光屏上每 一点的亮度是根据样品上被激发出来的 信号强度来调制的,因此样品上各点的 状态各不相同,所以接收到的信号也不 相同,于是就可以在显像管上看到一幅 反映试样各点状态的扫描电子显微图像。
俄歇电子特点:
(1)俄歇电子的能量很低,能量有特征值, 一般在50eV-1500eV范围内。
(2)俄歇电子的平均自由程很小(1nm左 右).因此在较深区域中产生的俄歇电子 在向表层运动时必然会因碰撞而损失能 量,使之失去了具有持征能量的特点.
扫描电子显微镜(SEM)-PPT课件
特征X射线发射
五、特征X射线 (characteristic X-ray)
• 若这一能量以X射线形式放出,这就是该元素的K辐射, hc 此时X射线的波长为: K EK EL2 式中,h为普朗克常数,c为光速。对于每一元素,EK、EL2 都有确定的特征值,所以发射的X射线波长也有特征值, 这种X射线称为特征X射线。 K • X射线的波长和原子序数之间服从莫塞莱定律: 2 Z
三、吸收电子 (absorption electron)
• 入射电子进入样品后,经多次非弹性散射,能量 损失殆尽(假定样品有足够厚度,没有透射电子 产生),最后被样品吸收。 • 若在样品和地之间接入一个高灵敏度的电流表, 就可以测得样品对地的信号,这个信号是由吸收 电子提供的。 • 入射电子束与样品发生作用,若逸出表面的背散 射电子或二次电子数量任一项增加,将会引起吸 收电子相应减少,若把吸收电子信号作为调制图 像的信号,则其衬度与二次电子像和背散射电子 像的反差是互补的。
• 背散射电子是指被固体样品中的原子反弹回来的一部分入 射电子。 • 其中包括弹性背散射电子和非弹性背散射电子。 • 弹性背散射电子是指被样品中原子核反弹回来的散射角大 于90的那些入射电子,其能量基本上没有变化。 • 弹性背散射电子的能量为数千到数万电子伏。 • 非弹性背散射电子是入射电子和核外电子撞击后产生非弹 性散射而造成的,不仅能量变化,方向也发生变化。 • 如果有些电子经多次散射后仍能反弹出样品表面,这就形 成非弹性背散发固体产生的 四种电子信号强度与入射电子强度之间必然满足以下 关系: i0=ib+is+ia+it 式中:ip ib is ia it 是透射电子强度。
将上式两边同除以i0 η+δ+a+τ =1 式中:η= ib/i0 δ= is/i0,为二次电子发射系数; a = ia/i0 τ = it/i0,为透射系数。
扫描电子显微镜ppt
校准标准
根据仪器使用手册,进行校准标准操作,确保仪 器达到最佳工作状态。
调整参数
根据样品的性质和观察目的,调整扫描电子显微 镜的参数,如加速电压、工作距离等。
图像获取
图像调整
根据观察效果,调整扫描电子 显微镜的焦距、亮度、对比度 等参数,获取清晰、高质量的
图像。
图像存储
将获取的图像存储在计算机或硬 盘中,以便后续分析。
03
扫描电子显微镜的操作流程
样品准备
1 2
样品选择
选择具有代表性的、适合观察的样品,确保样 品无污染、无损坏、无过热等。
样品处理
根据样品性质,进行干燥、打磨、染色等处理 ,以优化观察效果。
3
样品装载
将处理好的样品放置在扫描电子显微镜的样品 台上,确保位置准确、稳定。
仪器校准
仪器开机
打开扫描电子显微镜的电源,启动控制系统,预 热仪器。
高速扫描技术
采用更快速的扫描方式,提高成像速度,适用于动态过程或高速 运动的样品。
三维重构技术
利用计算机技术和算法,将多个层面的扫描结果进行整合,获得 样品的三维结构信息。
跨学科应用与合作
与其他技术的结合
将扫描电子显微镜与其他分析仪器(如光谱仪、能谱仪等)结合,实现多维 度的综合分析。
跨领域应用
拓展扫描电子显微镜在生物学、医学、材料科学、地质学等领域的应用,促 进跨学科的合作与交流。
电子与样品的相互作用
当高能电子束打到样品表面时,会与样品原子发生相互作用,产生各种散射 和发射的电子、次级电子、俄歇电子等。
信号收集与图像形成
信号收集
在扫描电子显微镜中,通过特殊的探测器来收集各种散射和发射的电子,如次级 电子、反射电子、透射电子等。
根据仪器使用手册,进行校准标准操作,确保仪 器达到最佳工作状态。
调整参数
根据样品的性质和观察目的,调整扫描电子显微 镜的参数,如加速电压、工作距离等。
图像获取
图像调整
根据观察效果,调整扫描电子 显微镜的焦距、亮度、对比度 等参数,获取清晰、高质量的
图像。
图像存储
将获取的图像存储在计算机或硬 盘中,以便后续分析。
03
扫描电子显微镜的操作流程
样品准备
1 2
样品选择
选择具有代表性的、适合观察的样品,确保样 品无污染、无损坏、无过热等。
样品处理
根据样品性质,进行干燥、打磨、染色等处理 ,以优化观察效果。
3
样品装载
将处理好的样品放置在扫描电子显微镜的样品 台上,确保位置准确、稳定。
仪器校准
仪器开机
打开扫描电子显微镜的电源,启动控制系统,预 热仪器。
高速扫描技术
采用更快速的扫描方式,提高成像速度,适用于动态过程或高速 运动的样品。
三维重构技术
利用计算机技术和算法,将多个层面的扫描结果进行整合,获得 样品的三维结构信息。
跨学科应用与合作
与其他技术的结合
将扫描电子显微镜与其他分析仪器(如光谱仪、能谱仪等)结合,实现多维 度的综合分析。
跨领域应用
拓展扫描电子显微镜在生物学、医学、材料科学、地质学等领域的应用,促 进跨学科的合作与交流。
电子与样品的相互作用
当高能电子束打到样品表面时,会与样品原子发生相互作用,产生各种散射 和发射的电子、次级电子、俄歇电子等。
信号收集与图像形成
信号收集
在扫描电子显微镜中,通过特殊的探测器来收集各种散射和发射的电子,如次级 电子、反射电子、透射电子等。
扫描电子显微的技术PPT课件
500~2000 1000~10000 3000~10000 3000~10000
第5页/共29页
三、结构原理
• 扫描电镜由电子光学系统、信号接收处理系统、供电 系统、真空系统组成。
• 电子光学系统只有起聚焦作用的会聚透镜,而没有透 射电镜里起放大作用的物镜、中间镜和投影镜。
第6页/共29页
三、结构原理
1、仪器分辨本领较高,分辨率可小于5Å。 2、仪器放大倍数变化范围大(一般为10~150000),且连续可
调。 3、观察式样景深大,富有立体感 4、样品制备简单 5、图象质量容易控制
第2页/共29页
二、扫描电镜的电子与物质的相互作用
当高能入射电子束轰击样品表面时,由于入射电子束与样品间的相互作用, 有99%以上的入射电子能量转变为电子热能,而余下的1%入射电子能量,将从 样品中激发出各种有用的信息,主要有: • 二次电子:从距样品表面100 Å左右深度范围内激发出来的低能电子
一般情况下,人眼的分辨率为0.1~0.2µm,透射电镜的分辨率为 5~7Å,而扫描电镜二次电子象的分辨率一般为60~100Å。
分辨率高和景深长是扫描电镜的最大特点,可广泛用于断口和侵 蚀样品的表面观察.扫描电镜的景深最大,光学显微镜的景深最小.扫描 电镜的实际分辨率,除与仪器本身有关外,同时还和操作条件、样品 性质、被观察细节的形状以及操作人员的熟练程度等有关。
第13页/共29页
五、分辨率和放大倍率
扫描电镜的分辨率有两重意义:对微区成分分析而言, 它是指能分析的最小区域;对成像而言,它是指能分辨两点 之间的最小距离.这两者主要决定于入射束的直径,单并不 直接等于其直径.因为入射束与试样相互作用会使电子束 在样品内的有效激发范围大大超过入射束的直径.
《扫描电子显微镜》课件
《扫描电子显微镜》PPT 课件
欢迎来到本节课,本课程将为您介绍扫描电子显微镜(SEM)的发展历史、 工作原理、应用和操作技巧。
什么是扫描电子显微镜?
SEM是一种高分辨率的显微镜,能够对样品表面进行高清的成像和分析,是 材料科学、生命科学、环境科学和地球物理学等众多领域的研究必备工具。
SEM的工作原理
and applications [J]. Physics Reports, 2020, 891: 1-49. • Zhong B., Liu Y., Xie H., et al. Scanning electron microscopy techniques and
application to biological research [J]. Journal of Nanoscience and Nanotechnology, 2021, 21(3): 1443-1454.
电子束的生成和加速
SEM通过电子枪产生的电子束对样品表面进行 扫描,其中电子束的加速和缩聚使得SEM成像 的分辨率得到极大的提高。
样品表面的扫描和信号的采集
SEM扫描样品表面时需要从表面采集电子和信 号,经过放大和处理后形成图像。
图像的重建和显示
SEM的图像处理软件能够对采集到的信号进行 处理和重建,生成高质量的图像供研究员们进
SEM在地球物理学领域中可以用来 研究矿物形态、结构和物理化学性质
等问题。
SEM的操作注意事项
1 样品制备和处理
SEM样品的制备和处理是研究工作中必不可少的步骤,要保证样品表面平整、干净和稳 定。
2 SEM的操作和调试
SEM的使用经常进行调 试和保养。
生物学和医学
2
属、陶瓷、塑料和高分子等材料的成 分分析、微观结构观察和物理化学性
欢迎来到本节课,本课程将为您介绍扫描电子显微镜(SEM)的发展历史、 工作原理、应用和操作技巧。
什么是扫描电子显微镜?
SEM是一种高分辨率的显微镜,能够对样品表面进行高清的成像和分析,是 材料科学、生命科学、环境科学和地球物理学等众多领域的研究必备工具。
SEM的工作原理
and applications [J]. Physics Reports, 2020, 891: 1-49. • Zhong B., Liu Y., Xie H., et al. Scanning electron microscopy techniques and
application to biological research [J]. Journal of Nanoscience and Nanotechnology, 2021, 21(3): 1443-1454.
电子束的生成和加速
SEM通过电子枪产生的电子束对样品表面进行 扫描,其中电子束的加速和缩聚使得SEM成像 的分辨率得到极大的提高。
样品表面的扫描和信号的采集
SEM扫描样品表面时需要从表面采集电子和信 号,经过放大和处理后形成图像。
图像的重建和显示
SEM的图像处理软件能够对采集到的信号进行 处理和重建,生成高质量的图像供研究员们进
SEM在地球物理学领域中可以用来 研究矿物形态、结构和物理化学性质
等问题。
SEM的操作注意事项
1 样品制备和处理
SEM样品的制备和处理是研究工作中必不可少的步骤,要保证样品表面平整、干净和稳 定。
2 SEM的操作和调试
SEM的使用经常进行调 试和保养。
生物学和医学
2
属、陶瓷、塑料和高分子等材料的成 分分析、微观结构观察和物理化学性
第三章-扫描电子显微镜课件
4
1. 扫描电镜的优点
• 分辨率高:入射电子束束斑直径是扫描电镜分辨率的 极限。场发射电子枪的应用可得到精确聚焦的电子束, 现代先进的扫描电镜的分辨率已经达到1 nm左右。
• 放大倍数高:20-20万倍之间连续可调。
• 景深大:视野大,成像富有立体感,可直接观察各种 试样凹凸不平表面的细微结构。比光学显微镜大几百 倍。
电子束与固体样品作用时电子束与固体样品作用时产生的信号产生的信号重点重点2121弹性散射和非弹性散射弹性散射和非弹性散射2121弹性散射和非弹性散射弹性散射和非弹性散射2222电子显微镜常用的信号电子显微镜常用的信号2222电子显微镜常用的信号电子显微镜常用的信号2323各种信号的深度和区域大小各种信号的深度和区域大小2323各种信号的深度和区域大小各种信号的深度和区域大小ppt学习交流2121弹性散射和非弹性散射弹性散射和非弹性散射一束聚焦电子束沿一定方向入射到试样内时由于晶格位场和原子库仑场的作用其入射方向会发生改变的现象称为散射
PPT学习交流
24
5.1 二次电子像
陶瓷烧结体的表面图像
多孔硅的剖面图
PPT学习交流
25
5.2 背散射电子像
背散射电子既可以用来显示形貌衬度,也可以用来显示成分衬度。 • 形貌衬度
样品表面形貌影响背散射电子的产率,但其分辨率远比二 次电子低。背反射电子时来自一个较大的作用体积。此外,背 反射电子能量较高,它们以直线轨迹逸出样品表面,对于背向 检测器的样品表面,因检测器无法收集到背散射电子,而掩盖 了许多有用的细节。
光栅扫描、逐点成像
• 光栅扫描:入射电子束在样品表面上 作光栅式逐行扫描,同时,控制电子 束的扫描线圈上的电流与荧光屏相应 偏转线圈上的电流同步。每一个物点 均对应一个像点。
扫描电子显微镜PPT课件
-
17
扫描电子显微镜
引言 扫描电镜结构原理 扫描电镜图象及衬度 扫描电镜结果分析示例 扫描电镜的主要特点
-
18
引言
扫描电子显微镜的简称为扫描电镜,英文缩写 为 SEM (Scanning Electron Microscope)。SEM 与 电子探针(EPMA)的功能和结构基本相同,但SEM 一般不带波谱仪(WDS)。它是用细聚焦的电子束 轰击样品表面,通过电子与样品相互作用产生的二 次电子、背散射电子等对样品表面或断口形貌进行 观察和分析。现在SEM都与能谱(EDS)组合,可以 进行成分分析。所以,SEM也是显微结构分析的主 要仪器,已广泛用于材料、冶金、矿物、生物学等 领域。
入射电子与试样相互作用后,能量耗尽的电子称吸收 电子。吸收电子的信号强度与背散射电子的信号强度相 反,即背散射电子的信号强度弱,则吸收电子的强度就 强,反之亦然,所以吸收电子像的衬度与背散射电子像 的衬度相反。通常吸收电子像分辨率不如背散射电子像, 一般很少用。
-
16
各种信息的作用深度
从图中可以看出, 俄歇电子的穿透 深度最小,一般 穿透深度小于 1nm,二次电子 小于10nm。
-
11
特征X射线能级图
-
12
俄歇过程和俄歇电子
当一束电子﹑离子﹑光子或者其它入射源照射在固体 表层时,表层原子某一芯层K 能级上的一个电子受入射粒子 撞击后飞离该能级,原子由基态进入受激状态。 原子的退 激过程包含着下述一种非辐射过程(见图7.1)。即:由不在同 一芯层L 能级上的一个电子跃迁,去填补受激后在K 层初次 产生的空穴;多余的能量诱发能级等同或低于填补电子原 来所在L能级上的另一个电子发射。原子处于退激后的状态。 这种非辐射过程被命名为俄歇过程。退激过程发射的电子 就是俄歇电子。
sem扫描电镜ppt课件
II. 背散射电子成像:入射电子与样品接触时,其中一部分几乎 不损失能量地在样品表面被弹性散射回来,这部分电子被称 为背散射电子。背散射电子的产额随样品的原子序数的增大 而增加,因此成像可以反映样品 的元素分布,及不同相成分 区域的轮廓。
ppt课件
18
二次电子像的信号是二次电子,用于表面形貌分析;背散射电子 像的信号是背散射电子,用于成分分析。因此二次电子像对形貌 敏感,背散射电子像对成分敏感。
ppt课件
5
图2 JSM-6301F场发射扫描电镜的结构
ppt课件
6
电子光学系统
组成:电子枪、电磁透镜、扫描线圈和样品室等部 件。
作用:获得扫描电子束、作为产生物理信号的激发 源。
为了获得较高的信号强度和图像分辨率,扫描电子 束应具有较高的亮度和尽可能小的束斑直径。
ppt课件
7
电子枪
✓ 利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大 多数扫描电镜采用热阴极电子枪。优点:灯丝价格便宜,真 空要求不高;缺点:发射效率低,发射源直径大,分辨率低。
ppt课件
1
主要内容
SEM的工作原理 SEM的主要结构 SEM的组成部分 SEM的主要性能参数 SEM的优点 应用举例
ppt课件
2
SEM的工作原理
电子枪发射电子束(直径50μm)。电压加速、磁透镜系统汇 聚,形成直径约5nm的电子束。
电子束在偏转线圈的作用下,在样品表面作光栅状扫描,激发 多种电子信号。
ppt课件
15
SEM的主要性能参数
分辨率 放大倍数 景深
ppt课件
16
分辨率
对微区成分分析而言,分辨率是指能分析的最小区域;对成像 而言,它是指能分辨两点间的最小距离。
ppt课件
18
二次电子像的信号是二次电子,用于表面形貌分析;背散射电子 像的信号是背散射电子,用于成分分析。因此二次电子像对形貌 敏感,背散射电子像对成分敏感。
ppt课件
5
图2 JSM-6301F场发射扫描电镜的结构
ppt课件
6
电子光学系统
组成:电子枪、电磁透镜、扫描线圈和样品室等部 件。
作用:获得扫描电子束、作为产生物理信号的激发 源。
为了获得较高的信号强度和图像分辨率,扫描电子 束应具有较高的亮度和尽可能小的束斑直径。
ppt课件
7
电子枪
✓ 利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大 多数扫描电镜采用热阴极电子枪。优点:灯丝价格便宜,真 空要求不高;缺点:发射效率低,发射源直径大,分辨率低。
ppt课件
1
主要内容
SEM的工作原理 SEM的主要结构 SEM的组成部分 SEM的主要性能参数 SEM的优点 应用举例
ppt课件
2
SEM的工作原理
电子枪发射电子束(直径50μm)。电压加速、磁透镜系统汇 聚,形成直径约5nm的电子束。
电子束在偏转线圈的作用下,在样品表面作光栅状扫描,激发 多种电子信号。
ppt课件
15
SEM的主要性能参数
分辨率 放大倍数 景深
ppt课件
16
分辨率
对微区成分分析而言,分辨率是指能分析的最小区域;对成像 而言,它是指能分辨两点间的最小距离。
SEM扫描电子显微镜课件
扫描电镜结构原理框图
扫描电镜结构 电子光学系统, 信号收集处理、图 像显示和记录系统, 真空系统, 三部分组成
扫描电镜结构原理
1、电子光学系统: 电子枪 电磁透镜(2个强磁1个弱磁)可使原来50μm电子束斑聚焦为6nm。 扫描线圈 样品室
电子束的滴状作用体积示意图
不同能量的电子束在样品中的作用模拟图
电子束在不同样品中的作用模拟图
但是,当电子束射入重元素样品中时,作用体积不呈滴状,而是半球状。电子束进入表面后立即向横向扩展,因此在分析重元素时,即使电子束的束斑很细小,也不能达到较高的分辨率。此时,二次电子的分辨率和背散射电子的分辨宰之间的差距明显变小。 由此可见,在其它条件相同的情况下(如信号噪音比、磁场条件及机械振动等),电子束的束斑大小、检测信号的类型以及检测部位的原子序数是影响扫描电子显微镜分辨率的三大因素。
五、特征X射线 当样品原子的内层电子被入射电子激发,原子就会处于能量较高的激发状态,此时外层电子将向内层跃迁以填补内层电子的空缺,从而使具有特征能量的X射线释放出来。 用X射线探测器测到样品微区中存在一种特征波长,就可以判定这个微区中存在着相应的元素。
六、俄歇电子 在特征x射线过程中,如果在原子内层电子能级跃迁过程中释放出来的能量并不以X射线的形式发射出去,而是用这部分能量把空位层内的另—个电子发射出去,这个被电离出来的电子称为~。 俄歇电子能量各有特征值,能量很低,一般为50-1500eV. 俄歇电子的平均白由程很小(1nm左右). 只有在距离表面层1nm左右范围内(即几个原子层厚度)逸出的俄歇电子才具备特征能量,因此俄歇电子特别适用于表面层的成分分析。
由于ZrO2相平均原子序数远高于Al2O3相和SiO2 相,所以图中白色相为斜锆石,小的白色粒状斜锆石与灰色莫来石混合区为莫来石-斜锆石共析体,基体灰色相为莫来石。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特征X射线
PPT学习交流
10
其他信号
• 俄歇电子:入射电子在样品原子激发内层电子后,外层电 子跃迁至内层时,多余能量转移给外层电子,使外层电子 挣脱原子核的束缚,成为俄歇电子。详细的介绍见本书第 三篇第十三章俄歇电子能谱部分。
• 透射电子 :电子穿透样品的部分。用于透射电镜的明场像和 透射扫描电镜的扫描图像, 以揭示样品内部微观结构的形貌 及物相特征。详细的介绍见本书第二篇第九章电子衍射和 显微技术部分。
非弹性散射:
散射过程中入射电子的方向和动能都发生改变。在非弹性
散射情况下,入射电子会损失一部分能量,并伴有各种信息
的产生。非弹性散射电子,损失了部分能量,方向也有微小
变化。用于电子能量损失谱,提供成分和化学信息。
PPT学习交流
8
2.2 SEM中的三种主要信号
• 二次电子:被入射电子轰击出来的样品中原子的 核外电子(内层电子或价电子)。反映样品表面 的形貌特征,分辨率高。
电子枪
第一、二聚光镜
扫描线圈 物镜
样品室
PPT学习交流
18
电子枪发展三个阶段
场发射电子枪
钨灯丝
热阴极电子枪
200 m
3~5kV
六硼化镧灯丝
几十~几百kV
电子束亮度较低; 束斑尺P寸PT学较习交大流 。
• 试样制备简单。
• 配有X射线能谱仪装置,这样可以同时进行显微组织
形貌的观察和微区成分P分PT学习析交流。
5
光学显微镜 VS 扫描电镜
多孔硅的光学显 微镜图像
多孔硅的扫描 电镜图像
多孔硅:可见光发光材料。 PPT学习交流
6
2. 电子束与固体样品作用时 产生的信号(重点)
2.1 弹性散射和非弹性散射 2.2 电子显微镜常用的信号 2.3 各种信号的深度和区域大小
• 背散射电子:被固体样品原子反射回来的一部分 入射电子,包括弹性背散射电子和非弹性背散射 电子。形貌特征及定性成分分析。
• 特征X射线:入射电子激发原子内层电子后,外层 电子跃迁至内层时发出的光子。定量成分分析。
PPT学习交流
9
三种主要信号的产生过程
弹性背散 射电子
入射电子
非弹性背 散射电子
二次电子
的可供采集的信号。 随着信号的有效作用深度增加,作用区范围增加,信号产生
的空间范围也增加,信号的空间分辨率降低。
入射电子束
俄歇电子(0.4~2 nm) 二次电子 (5~10 nm) 背散射电子(100 nm~1 m)
特征X射线
SEM的分辨率指的是二次
连续X射线
PPT学习交流电子的分辨率。
14
3.1 扫描电镜的工作原理(重 点)
3
第三章 扫描电子显微镜 (SEM)
1. 扫描电镜的优点
2. 电子束与固体样品作用时产生的信号(重点)
3. 扫描电镜的工作原理 (重点)
4. 扫描电镜的构造
5. 扫描电镜衬度像(重点) 8. 应用举例
6. 扫描电镜的主要性能
9. SEM重点内容回顾
7. 样品制备
10. SEM演示录像
PPT学习交流
PPT学习交流
16
4. 扫描电子显微镜的构造
• 电子光学系统 • 信号收集及显示系统 • 真空系统和电源系统
PPT学习交流
17
4.1 电子光学系统
• 由电子枪,电磁透镜,扫描线圈和样品室等部件组成。 • 用来获得扫描电子束,作为信号的激发源。扫描电子束应具有较高
的亮度和尽可能小的束斑直径 —— 主要由电子枪决定。
第 1 篇 组织形貌分析
第三章 扫描电子显微镜
PPT学习交流
1
第三章 扫描电子显微镜 (SEM)
➢ 简称扫描电镜。
➢ 它不用透镜放大成 像,而是以类似电 视的成像方式,用 聚焦电子束在样品 表面扫描时激发产 生的某些物理信号 来调制成像。
PPT学习交流
2
花蕊的柱头 茉莉花花粉PPT学习交流
花粉
菊花花粉
PPT学习交流
11
2.3 各种信号的深度和区域大 小
① 入射电子束受到样品原子的散 射作用,偏离原来方向,向外 发散。随着电子束进入样品深 度的不断增加,入射电子的分 布范围不断增大,动能不断降 低,直至动能降为零,最终形 成一个规则的作用区域。
② 对于轻元素样品,电子束散射 区域的外形 ——“梨形作用体 积”;重元素样品——“半球 形作用体积” 。
PPT学习交流
7
2.1 弹性散射和非弹性散射
一束聚焦电子束沿一定方向入射到试样内时,由于晶格 位场和原子库仑场的作用,其入射方向会发生改变的现象称 为散射。
弹性散射: 散射过程中入射电子只改变方向,其总动能基本上无变化。
弹性散射的电子符合布拉格定律,携带有晶体结构、对称性、 取向和样品厚度等信息,在电子显微镜中用于分析材料的结 构。
光栅扫描、逐点成像
• 光栅扫描:入射电子束在样品表面上 作光栅式逐行扫描,同时,控制电子 束的扫描线圈上的电流与荧光屏相应 偏转线圈上的电流同步。每一个物点 均对应一个像点。
• 逐点成像:电子束所到之处,每个物 点都会产生相应的信号(如二次电子 等),信号被接收放大后用来调制像 点的亮度,信号越强,像点越亮。这 样,就在荧光屏上得到与样品上扫描 区域相对应但经过高倍放大的图像, 客观地反映样品上的形貌(或成分) 信息。
电子枪 照明透 镜系统
扫描线圈 末级透镜
样品
荧光屏 探测器 至真空泵
PPT学习交流
15
3.2 扫描电镜图像的放大倍数
扫描电镜图像的放大倍数定义为显像管中电子束在 荧光屏上的扫描振幅和电子光学系统中电子束在样品上 扫描振幅的比值,即:
M=L/l
式中,M:放大倍数,L:显像管的荧光屏尺寸;l:电子
束在试样上扫描距离。
PPT学习交流
梨形作用体积
ቤተ መጻሕፍቲ ባይዱ12
2.3 各种信号的深度和区域大小
③ 改变电子能量只引起 作用体积大小的变化, 而不会显著的改变形 状。
电子束能量与作用体积的关系
PPT学习交流
13
2.3 各种信号的深度和区域大小
有效作用区:可以产生信号的区域。 电子有效作用深度:有效作用区的最深处。 有效作用区内的信号并不一定都能逸出材料表面、成为有效
4
1. 扫描电镜的优点
• 分辨率高:入射电子束束斑直径是扫描电镜分辨率的 极限。场发射电子枪的应用可得到精确聚焦的电子束, 现代先进的扫描电镜的分辨率已经达到1 nm左右。
• 放大倍数高:20-20万倍之间连续可调。
• 景深大:视野大,成像富有立体感,可直接观察各种 试样凹凸不平表面的细微结构。比光学显微镜大几百 倍。