恒定电流的电场与磁场
3.0第三章 恒定电流的电场和磁场
dq d S J dS dt dt V dV
定理 度 散
SJ dS V t dV
积 式 形 分
J dV 0 V t
对任 意的 体 积V 均成 立, 需
电流连续性方程
微 分 形 式
J 0 t
第三章 恒定电流的电场和磁场 在恒定电流场中,电荷分布与时间无关,即 则有恒定电流场方程:
当导体两端的电压为 U,流过的电流为 I 时,则在单位时间内电场力对 电荷所作的功(功率)是
P UI
在导体中,沿电流线方向取一长度为Δl、截面为ΔS 的体积元,该体 积元内消耗的功率为
P U I E l I EJ l S EJ V
焦耳定律的微分形式:导体内任一点的热功率密度(ΔV→0 ),
I J er 2rL
内、外导体间的电压为
E
1
J
b
I 2 rL
er
U
a
Edr
I 2 L
ln
b a
第三章 恒定电流的电场和磁场 例 3-1 设同轴线的内导体半径为 a, 外导体的内半径为 b,内、 外导 体间填充电导率为σ 的导电媒质,求同轴线单位长度的漏电电导。
r z
a
b
电流密度矢量是恒定磁场的源变量
电流密度 J: 单位时间内垂直穿过单位面积的 电荷量,反映电流分布的不均匀性,其方向 为正电荷的运动方向。则
J lim I dI n n S 0 S dS
dS
dS
dS
E dS E
电流密度的单位是安培/米2 (A/m2)。
J E E
v
I
第5章 恒定电流的电场和磁场
dl '×R ∫C ' R 3 ⋅ dl −R ∫C ' R 3 ⋅ (−dl × dl ' )
假设回路C′对P点的立体角为 ,同时P点位移dl引起的立体角增量 为d ,那么P点固定而回路C′位移dl所引起的立体角增量也为d ′。 -dl×dl′是dl′位移-dl所形成的有向面积。注意到R=r-r′,这个立体 角为
z ' = z − r tan α , dz ' = r sec 2 α dl ' = ez dz ' = −ez r sec 2 α R = r sec α
dl '×R = ez dz '×[rer + ( z − z ' )ez ]
所以
= −eφ rdz ' = −eφ r 2 sec 2 α
∆P = ∆U∆I = E∆l∆I = EJ∆l∆S = EJ∆V
当∆V→0,取∆P/∆V的极限,就得出导体内任一点的热功 热功 率密度,表示为 率密度
∆P p = lim = EJ = σE 2 ∆V →0 ∆V
或
p = J ⋅E
此式就是焦耳定律 焦耳定律的微分形式。 焦耳定律 应该指出,焦耳定律不适应于运流电流 不 运流电流。因为对于运流电 运流电流 流而言,电场力对电荷所作的功转变为电荷的动能,而不 是转变为电荷 晶格碰撞 电荷与晶格碰撞 电荷 晶格碰撞的热能。
对于无限长直导线(l→∞),α1=π/2, α2=-π/2,其产生的磁场为
µ0 I B = eφ 2πr
5.3 恒定磁场的基本方程
5.3.1 磁通连续性原理 磁感应强度在有向曲面上的通量简称为磁通量 磁通量(或磁通),单 磁感应强度 磁通量 位是Wb(韦伯),用Φ表示:
恒定电流的电场和磁场课件
目录
• 恒定电流的基本概念 • 电场与电场力 • 磁场与磁场力 • 恒定电流的磁场效应 • 恒定电流的应用 • 实验与实践
01
恒定电流的基本概念
电流的定义与性质
电流
电荷在导体中定向移动形成电流 ,单位时间内通过导体横截面的 电荷量称为电流强度,简称电流 。
电流的性质
电荷的定向移动形成电流,其方 向由正电荷定向移动的方向决定 ,而与导体内自由电荷的运动方 向无关。
电场力是电荷在电场中受到的力,其大小与电荷的电量成正比,与电场强度成正比 。
电场强度是描述电场强弱和方向的物理量,等于单位正电荷在电场中受到的力。
电场强度具有方向性,规定正电荷受力方向为电场强度的方向。
电势与电场能量
电势是描述电场能的物理量,等于单 位正电荷在电场中具有的电势能。
电场能量是电场中储存的能量,与电 势能密切相关。
电阻
导体对电流的阻碍作用,由导体的材 料、长度、横截面积和温度等因素决 定。
02
电场与电场力
电场的概念与性质
电场是由电荷产生的 ,对放入其中的电荷 有力的作用。
电场的性质包括对放 入其中的电荷有力的 作用、静电感应现象 等。
电场具有物质性,是 传递电荷间相互作用 的一种特殊物质形态 。
电场力与电场强度
详细描述
电磁感应现象是当导体在磁场中发生相对运动时,会在导体中产生电动势或电流的现象。这个现象由英国物理学 家迈克尔·法拉第于19世纪30年代发现,是电磁化的电场和磁场相互激发,形成电磁波并传播出去。
详细描述
电磁波是由变化的电场和磁场相互激发而形成的。当电场或磁场发生变化时,就会产生电磁波,并传 播出去。电磁波的传播速度等于光速,在真空中传播不受影响,但在介质中传播速度会减慢。
3.2磁感应强度
场点
z
0
r
R
a
r'
y
由于 B 只有 ez 分量,故 0
B ez
er d 0
x
0 Ia 2
2 R3
内容小结
安培定律
F12
C 4 C 2 1
0
I 2 d l2 I1dl1 eR R2
毕奥-萨伐尔定律
Idl eR 0 B 2 C 4π R 4π
2. 安培定律 安培实验定律:两个线电流回路C1和C2,其上的电流元分别 为I1dl1,I2dl2。线元I1dl1对线元I2dl2的安培作用力为
d f 12
0 I 2 dl2 ( I1dl1 eR )
4π R
2
I 2 dl2 (
0 I1dl1 eR
4π
I1
R
C1
I1dl1
【例1】求长度为 l 载有电流I的有限长直导线产生的磁场。
【解】:采用圆柱坐标系,令直流电流与Z轴重合,直线电流的中点位 于坐标原点。由于磁场的分布具有轴对称性,选取在 0 的 平面内计算磁场。 Z 源点 r ' z ' ez 场点 r rer zez
距离
'
R r r ' rer ( z z ' )ez , R
2
)
I 2dl2
整个载流回路C1对电流元 I 2dl2 的作用力
dF12 =I 2dl2 ( 4π
c1
0
I1dl1 eR ) 2 R
I1dl1 eR ) 2 R
I2
C2
dF12 1
R
静态电磁场I恒定电流的电场和磁场.pptx
5. 矢量磁位的泊松方程和拉普拉斯方程
1. 恒定磁场的矢量磁位 矢量磁位的定义
矢量磁位或称磁矢位
由 B 0
B A
即恒定磁场可以用一个矢量函数的旋度来表示。
3.利用矢量磁位A计算磁场
体电流分布:
A(r) 0 Jc (r' )dV '
4 V ' r r'
面电流分布:
A(r) 0 K (r' )dS '
4 S' r r'
线电流分布:
A(r) 0 I dl'
4 l' r r'
由于元电流矢量产生相同方向的元矢量磁位,故与基于B的分析计算相比,相 对较为简单,尤其在二维磁场(平行平面或轴对称磁场)。
dV
'
毕奥-萨伐尔定律(矢量积分关系式)
第21页/共59页
3.3.4 毕奥-萨法尔定律(矢量磁位)
根据导体中电流分布的不同形态:
体电流密度矢量 Jc v 面电流密度矢量 K v 线电流密度矢量 I v
元电流密度矢量 dqv
JcdV KdS Idl dq
因此,面、线电流分布情况下的磁感应强度为:
Jc dS 0
S
J1n J2n
E dl 0
l
E1t E2t
对线性各向同性媒质, J1 1E1 J2 2E2 (2) 良导体与不良导体分界面上的边界条件
tg1 1 tg2 2
1 2 1 90 o
2 0o
J2
n
例如,钢的电导率 1 = 5106 S/m,周围
2
土壤的电导率2 = 10-2 S/m,1 = 89, 可知,2 8。
sin2
e
第七章 恒定电流的磁场
Bb Ba a
Bc
b
c
B
B dS
d m B dS
磁通量,定义为: m S
等于通过该面积的磁感线的条数, SI单位:Wb(韦伯) 1Wb=1T〃m
大学物理 第三次修订本
第7章 恒定电流的磁场 直线电流 的磁力线
通电螺线管 的磁力线
I
圆电流的 磁力线
I
I
I
大学物理 第三次修订本
m B dS
磁场的高斯定律:
S
B
穿过任意闭合曲面的磁通量为零
BdS 0
磁场是无源场。
大学物理 第三次修订本
第7章 恒定电流的磁场
一、 安培环路定理 静电场 磁 场
7.4 安培环路定理
I
l
E dl 0 Bdl
r
永磁体为什么具有磁性?
安培指出:天然磁性(如永磁体)的产生也是由于 磁体内部有电流流动。 分子电流
I
n
N
大学物理 第三次修订本
S
第 7章 恒定电流的磁场 基本磁现象
电流电流 磁体电流
I1
I2
F
I
N I
F
F
S
磁体磁体
S N
磁 场
电流磁体 I
N
S
运动电荷
磁场
大学物理 第三次修订本
单位(SI):A/m2
例:金属中的电流密度(载流子为电子)为:
J env
载流子的平均速度
二、恒定电流:导体内各处电流密度不随时间 改变的电流称为---恒定电流。
大学物理 第三次修订本
第7 章 恒定电流的磁场 基本磁现象 磁性:具有能吸引铁磁物资(Fe、Co、Ni)的一种 特性。 磁体:具有磁性的物体。 磁极:磁性集中的区域。 1、永磁体及其特性 同极相斥 异极相吸
大学物理之恒定电流的磁场
磁场能量传
磁场能量传输原理
利用磁场可以实现能量的无线传输。
磁场能量传输方式
包括磁耦合、磁感应等。
磁场能量传输特点
具有高效、安全、环保等优点,是未来能源传输的重要方向之一。
THANKS FOR WATCHING
感谢您的观看
磁场与电流的关系
总结词
磁场与电流之间存在相互作用,变化的磁场可以产生 电场,而变化的电场也可以产生磁场。
详细描述
磁场与电流之间的相互作用是电磁场理论的核心内容之 一。根据法拉第电磁感应定律,变化的磁场可以产生电 场;而根据麦克斯韦方程组,变化的电场也可以产生磁 场。这种相互作用导致电磁波的传播,形成了我们现在 所知的电磁波谱。在恒定电流的磁场中,虽然磁场不随 时间变化,但电流在空间中的分布可以是不均匀的,因 此磁场与电流之间仍然存在相互作用。这种相互作用表 现为电流在磁场中受到洛伦兹力,使得电荷在空间中移 动形成电流。
洛伦兹力
洛伦兹力是磁场对运动电荷的作 用力,其大小与电荷的电量、速
度以及磁场强度有关。
洛伦兹力的方向与电荷运动方向 和磁场方向有关,遵循右手定则。
洛伦兹力在粒子加速器、回旋加 速器等领域有广泛应用,是研究
带电粒子运动规律的基础。
磁场中的运动电荷
1
在磁场中运动的电荷会受到洛伦兹力的作用,这 个力会使电荷发生偏转,改变其运动轨迹。
磁场的描述
磁感应线
用磁感应线描述磁场,磁感应线的疏密程度表示磁场强度的 大小。
磁感应强度
描述磁场强弱的物理量,其方向与磁场中某点的磁感应线垂 直。
磁场的应用
电磁感应
当导体在磁场中运动时,会产生电动 势,进而产生电流。这一现象在发电 机、变压器等设备中有广泛应用。
普通物理学第七版 第八章 恒定电流的磁场
三、磁感应线和磁通量 1. 磁场的定性描述——磁感应线(磁感线) • 磁感线上各点的切线方向表示 此处磁场的方向 • 磁感线的疏密反映磁场的强弱
返回 退出
• 磁感应线的性质 磁感应线与闭合电流套连成无头无尾的闭合曲线 磁感应线绕行方向与电流成右手螺旋关系
返回 退出
2. 磁通量
磁通量:穿过磁场中任一给定曲面的磁感应线总数。
例:简单闭合电路
IR
a。
电路中有如图所示电流I。
Ri
绕行一周,各部分的电势变化总和为0。
。b
ε
ε UR Ui 0
ε I
R Ri
推广至多个电源和电阻组成的回路,有
I Σε j
闭合电路的欧姆定律
ΣRj ΣRij
注意式中电动势正负取值的规定。
返回 退出
例如计算如图闭合回路的电流。 I R1
Idl r2
方向:
(
Idl
r
)
各电流元产生的 dB方向各不相同,
分 解dB
垂 平直 行于 于zz轴 轴的 的ddBBz
返回 退出
由对称性,dB分量相互抵消。
B dB//
dB
sinθ
μ0 4π
Idl sinθ r2
μ0I sinθ 4πr 2
2 πR
电源把其它形式的能量转化为电势能。如化学电池、
发电机、热电偶、硅(硒)太阳能电池、核反应堆
等。
返回 退出
电动势 : ε dA dq
电动势 等于将单位正电荷从
电源负极沿内电路移到正极过
程中非静电场力做的功。
第四章-恒定电流的电场和磁场
第四章 恒定电流的电场和磁场§4.1 恒定电流的电场§4.2 恒定电场与静电场的比拟§4.3 恒定磁场的基本方程§4.4 恒定磁场的矢量磁位§4.5 介质中的磁场§4.6 恒定磁场的边界条件§4.7 电感的计算§4.8 恒定磁场的能量和力§4.1 恒定电流的电场图 4-1 导体中的恒定电流4.1.1 微分形式的欧姆定律和焦耳定律它的定义是: 单位时间内通过导体任一横截面的电荷量, 数学表示式为所以恒定电流的电流强度定义为上式中Q 是在时间t 内流过导体任一横截面的电荷, I 是常量。
电流强度的单位为(A =C/s )。
图 4-2 电流密度矢量dtdQ t Q i t =∆∆=→∆0lim tQ I =式中J 是体传导电流密度, 单位为A/m2。
如果所取的面积元的法线方向 与电流方向不平行, 而成任意角θ, 如图4-2(b )所示, 则通过该面积的电流是所以通过导体中任意截面S 的电流强度与电流密度矢量的关系是1.欧姆定律的微分形式由实验已知, 当导体温度不变时, 通过一段导体的电流强度和导体两端的电压成正比, 这就是欧姆定律式中R 称为导体的电阻, 单位为Ω, 表示式为或上式中, l 为导体长度; S 为导体横截面; σ称为导体的电导率, 它由导体的材料决定, 单位为1/Ω·m=S/m 。
表 4-1 几种材料在常温下的电阻率和电导率 dS dIS I J S =∆∆=→∆0lim θcos Jds s d J dI =⋅= ⎰⎰⋅=⋅=S S ds n J s d J I 0 0n RI U =S l R σ=Sdl R lσ⎰=图 4-3 推导欧姆定律微分形式所以J =σE 。
在各向同性媒质中, 电流密度矢量J 和电场强度E 方向一致, 都是正电荷运动方向, 故有运流电流不服从欧姆定律, 所谓运流电流, 是指电荷在真空或气体中由于电场的作用而运动时形成的电流。
大学物理第八章恒定电流的磁场
Fe 2.磁性: 磁铁能吸引含有 Co 物质的性质。
Ni
3.磁极:磁铁上磁性最强的两端,分为
N S
北同 极,指向 方,
南异
斥 性相 。
吸
三.磁场
1.概念: 运动qυ电荷或电I流周围存在的物质,称为磁场。
2.对外表现
① qυ或 I 在磁场中受到力的作用。
②载流导线在磁场中移动,磁场力作功。
力的表现 功的表现
极。
然而,磁和电有很多相似之处。例如,同种电荷
互相推斥,异种电荷互相吸引;同名磁极也互相推
斥,异名磁极也互相吸引。用摩擦的方法能使物体带
上电;如果用磁铁的一极在一根钢棒上沿同一方向摩
擦几次,也能使钢棒磁化。但是,为什么正、负电荷 能够单独存在,而单个磁极却不能单独存在呢?多年 来,人们百思而不得其解。
dN B
dS
一些典型磁场的磁感线:
2.性质
①磁感线是无始无终的闭合曲线。
B
A
②任二条磁感线不相交。
B
③磁感线与电流是套合的,它们之间可用右手螺旋法 则来确定。
B
I
I
B
四.磁通量
1.定义:通过一给定曲面的磁感线的条数,称为通过该 曲面的磁通量。
电场强度通量:e S E dS
通过面元 dS的磁感线数: dN BdS BdS cos
3.电荷之间的磁相互作用与库仑相互作用的不同 ①电荷无论是静止还是运动的,它们之间都存在库仑 作用; ②只有运动的电荷之间才有磁相互作用。
四.磁感强度
电场 E 磁场 B
1.实验 在垂于电流的平面内放若干枚小磁针,发现:
①小磁针距电流远近不同,
N
受磁力大小不同。
②距电流等远处,小磁针受
恒定电流的电场与磁场
电源电路的分析需要掌握电 路的基本原理,如欧姆定律、 基尔霍夫定律等,以及各种
电子元件的特性。
电源电路的设计与分析对于保 证电力系统的稳定运行和节能
减排具有重要意义。
电磁感应在日常生活中的应用
例如,变压器利用电磁感应原理实现电压的变换,电 动机利用电磁感应将电能转换为机械能,发电机利用 电磁感应将机械能转换为电能。
电流的性质
电流具有连续性,电荷在 导体中不会积累或消失, 而是以一定的速度不断通 过导体。
电流的方向
规定正电荷定向移动的方 向为电流方向,与负电荷 定向移动的方向相反。
欧姆定律与基尔霍夫定律
欧姆定律
导体中的电流与导体两端的电压成正 比,与导体的电阻成反比。
基尔霍夫定律
电路中任一节点上流入的电流之和等 于流出的电流之和,即节点电流定律 ;任意回路上,电压降之和等于电压 升之和,即回路电压定律。
描述磁场中磁通量变化产生电动势的物理定律,指出当磁场中的磁通量发生变化 时,会在导体中产生电动势。
03
恒定电流产生的电场与 磁场
恒定电流的电场特性
恒定电流的电场是静电场的一种特殊形式,其电场线不随时间变化,只与导体的位 置和形状有关。
恒定电流的电场具有高斯定理和环路定理等基本性质,这些性质与静电场相同。
电源与电阻
电源
提供电能并维持电路中恒定电流 的装置,分为直流电源和交流电 源两类。
电阻
导体对电流的阻碍作用,由导体 的材料、长度、横截面积和温度 等因素决定。
02
电场与磁场的基本理论
电场强度与电位
电场强度
描述电场中电场力作用强弱的物理量,单位为伏特/米(V/m)或牛顿/库仑 (N/C)。
电位
恒定电流的电场
26
27
28
29
30
说明分界面上电场强度的切向分量是连 续的。
17
电场方向的关系
18
19
20
21
22
3—5 恒定电场与静电场的比较
通过前面几节的讨论,我们发现导电媒 质中的恒定电场(电源外)与电介质中的静 电场(体电荷密度为0的区域)在许多方面 有相似之处。为了清楚起见,列表比较 如下。
23
24
25
4
J表示传导电流密度,如果所取的面积元的法线方向n0与电流方 向不垂直而成任意角度θ,则通过该面积元的电流是
通过导体中任意截面s的电流强度I与电流密度矢量J的关系是
电流密度矢量J在导体中各点有不同的方向和数值,从而构成一个 矢量场,称为电流场。这种场的矢量线称为电流线。电流线上每 点的切线方向就是该点的电流密度矢量J的方向。
面电流密度的方向仍然是正电荷运动的方向。为区别 起见,J又称为体电流密度。
6
3—2欧姆定律
实验证明,导体的温度不变时,通过一段导体的电流强度和导体 两端的电压成正比,这就是欧姆定律
式中的比例系数R称为导体的电阻,R只与导体的材料及几何尺寸 有关。由一定材料制成的、横截面均匀的线状导体的电阻只与导 体长度l成正比ห้องสมุดไป่ตู้与横截面积s成反比,即
电荷在电场作用下的宏观定向运动就形成电流。不随时间变化的电流称为 恒定电流(直流)。随时间变化的电流称为时变电流(交流).如果在一个导 体回路中有恒定电流,回路中必然有一个推动电荷流动的恒定电场.这 是静电场以外的又一种不随时间变化的电场。这个恒定电场是由电源产 生的。我们知道,在静电场中,导体内部的电场强度等于零,但通有恒 定电流的导体内部的电场强度却不等于零。因此,有关导体在静电场中 的一些结论,例如电力线必须与导体表面垂直,导体表面是一个等位面 等概念,在恒定电流的电场中是否仍然成立,就需要重新研究。
大学物理恒定电流的磁场总结
B
0r
B
2
1、载流直导线的磁场
B
0I
4a
(cos
1
cos
2)
无限长
B 0I 2a
半无限长 B 0 I
4a
方向:右螺旋法则
I
Idl
l
a
r
1
P
2、载流圆线圈的磁场(在轴线上)B
0 IR 2
2(R 2 x2 )3/2
圆心处
B 0I
2R
方向:右螺旋法则
Idl
一段圆弧在圆心 处产生的磁场
B
qB
5、带电粒子 在电场、磁场中受力 F fe fm qE
qv
B
六、磁介质
1、磁介质分类:
抗磁质 r 1 顺磁质 r 1
铁磁质 r 1
B B0 r —— 相对磁导率
B B0 B
2、有磁介质的磁高斯定理
SB
dS
0
3、有磁介质时的安培环路定理
H L
dl
I0
定义磁场强度
H
B dl
L
μ0
I i (内)
i
电流与绕行方向成右手定则时,I > 0,否则 I < 0
五、磁场对载流导线和运动电荷的作用力
1、磁场对载流导线的作用力——安培力
微分形式:
dF
Idl
B
积分形式:
F dF Idl B
2、均匀磁场对平面载流线圈的力矩
M
pm
B
大小: 磁矩
M NSBI sin
运动电荷的磁场
B
0
4
q v r0 r2
4 107 N A2 0
三、磁通量和磁场的高斯定理
电场、磁场及恒定电流
引 。 们 知道 。 我 物体 是 由原 子 组成 的 ,
原 子 又 由 带 正 电 的 原 子 核 和核 外 绕 原 子 核 运 动 的带 负 电 的 电子 组成 , 原 子 所 带 的正 电荷 和 负 电 荷 数 量 是 相
同学们 忽视 而高考 只 要是 考 到这 些
内容 . 是 以简 单 题 ( 者 说 是 送 分 都 或
电场 、 磁场及恒定电流
。 四 川 省 宁 南 县 高 级 中 学 杨 光 喜
在 高考 考 点要 求 中 .一些 I 要 级
求 的 内容 或 阅读 材 料 中的 内容 易被
习过 程 中 . 师为 了赶 时 间 , 把 这 老 就
些 内容 直 接 布 置 给 同 学 们 自 己去 阅 读 、 忆。然 而 , 学们 在 行 动上 所 花 记 同
等 的 . 此 . 般 物 体 都 是 呈 电 中性 因 一
的 原 子 几 乎 是不 动 的( 只在 平 衡 位 置 附 近做 热 振 动 ) .而 核外 电子 可 能 由于物 体 间 相 互摩 擦 等 外界 原 因 . 脱 离 了原 子 核 的 束缚 . 整个 物 体 里 面 在
是多 少?
通 过 实 验表 明 . 自然 界 中 只存 在 两 种 电荷 —— 正 电荷 和 负 电荷 . 同 且 种 电荷 互 相 排 斥 .异 种 电荷 互 相 吸 块 以5m s / 的初 速 度 滑 上 一 块 原 来 静 止 在水 平 面 的木 板 , 板 质 量 为4k , 木 g
的时 间可 以说是 寥 寥 无 几。
题 )的 形 式排 在 第 12 、 个选 择题 的位
置 , 是 考 生反 而 丢 分严 重 。2 0 年 可 09 四川 的 考题 就 证 明 了这 一点 . 多考 好 生考 了下来 自我 感 觉 良好 . 一对 答 可
工程电磁场 倪光正第3章静态电磁场Ⅱ:恒定电流的电场和磁场
例 3.1 一接地系统
i
2
土壤 J线
1 a
接地体
等位面
[解] 15106 S/m钢
2102 S/m土 壤
1 895950
2 8 0
3.良导体与理想介质 ( 2 0 ) 分界面上的边界条件
1
+
+
+
+
J c1
+
+ E2t + 2 +
2 0 J1n J2n 0
U
E2n E2
E线
E2t
J c1n 0 J c2n 0
2I
R半球
接地器
I
1
a
屏蔽室接地电阻(深度 20 m) 返回 下页
高压大厅网状接地电阻(深度1米)
返回 上页
3.2.3 跨步电压
I
o
a 土壤
~r
E dl
AB
r
r
I
o
a 土壤
~r E dl
r
I dr
rb r 2
I
r
1 b
1 r
r b
bI r2
U 0 (安全电压)
AB r
r
bI
(3) 推广到其他学科,即可籍以用电测法求得非电 量的相似解答。
3.2.2 接地电阻
1.基本概念
接地——将电气设备的某一部分与大地在电气上相联结。 接地器——埋于地中的导体系统 ( 球、棒、网及其组合 ) 。 接地的工程意义:
• 保护性接地 • 工作接地
ⅰ 电子电路中 ⅱ 电力工程中
A
o
B
短路点
第3章 静态电磁场Ⅱ: 恒定电流的电场和磁场
第三章 恒定电流的电场和磁场
又⊿l很小,所以⊿l上电场强 度可看成常数
E dl E1 l0l E 2 l0l 0
l
1 2
或 E 2 t E 1t
20
l 0 ( E 2 E1 ) 0
或 n ( E2 E1 ) 0
• 跨步电压:人跨一步(约0.8m)的两脚间的电压。如 果短路,大的电流流入大地时,接地电极附近地面两 点间电压可能达到相当大的数值。
13
例:求半球形电极的接地电阻 设经引线由O点流入半球形电极的电流为I,则距球心为 r处的地中任一点的电流密度为:
I e 2 r 2r 则电场强度为: E J
欧姆定律微分形式: J E 其中σ 为电导率,单位:西门子/米(S/m)
恒定电场中,仅理想导体(σ →∞ )内才有: E 0 静电场中,导体内有: E 0
欧姆定律积分形式:U RI 注意:只适用于传导电流、电源外部,不适用于运流电流
8
如右图,考虑一横截面为S,长度为 ,电导率为 的均匀导电媒质。该导电媒质横界面S的总电流为:
I dI 》与I的关系 I J dl J S lim n n l l 0 l dl 》与ρS的关系 J S v
3、线电流密度 如果电流流过一根非常细的导线时,引入线电流密度 J l In l v 6 电流密度动态演示:
V 0
V
补充:接地电阻(无线电仪器或电气装置中常需接地) • 接地:将金属导体埋入地内,而将设备中需要接地的 部分与该导体连接。
• 接地体或接地电极:埋在地内的导体或导体系统。
• 接地电阻:电流由电极流向大地时所遇到的电阻。当 远离电极时,电流流过的面积很大,而在接地电极附 近,电流流过的面积很小,或者说电极附近的电流密 度最大,因此,接地电阻主要集中在电极附近。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设圆柱体两端的电位差为U,则
位体积中的功率损失可表示为
E
U,又知
dl
J , 那I 么单
dS
pl
UI dSdl
UI dV
可见,圆柱体中的总功率损失为
P pldV UI
这就是电路中的焦耳定律。
例1 已知一平板电容器由两层非理想介质串联构成,如
图示。其介电常数分别为 1 和 2 ,电导率分别为 1 和 2 ,厚度分别为 d1 和 d2 。当外加恒定电压为 V 时,
试求两层介质中的电场强度,单位体积中的电场储能及
功率损耗。
解: 由于电容器外不存在电流,
可以认为电容器中的电流线与边
界垂直,求得
U
1 1 d1 2 2 d2
J1n J 2n
J1 J2
E11 E2 2
E1
2 d1 2 d21
U
E1d1 E2d2 U
E2
1 d1 2 d21
U
we1
1 2
2 0
D1n D2n D1t D2t
1 2
C=q/U
对偶量
EE JD
I q
G C
§4.4 电阻的计算
一、电介质隔开的导体之间漏电阻的计算
1E12
we2
1 2
2
E22
pl1 E12 pl2 E22
§4.3. 恒定电流场与静电场的比拟
静电场和恒定电场性质比较:
相同点:场性质相同,均为无旋场; 场均不随时间改变; 均不能存在于理想导体内部;
不同点:源不同。静电场的源为静止电荷,恒定电场 的源为运动电荷。 存在区域不同。静电场只能存在于导体外, 恒定电场可以存在于非理想导体内。
总是垂直于理想导电体表面。
关于边界条件的说明: 1、由于导体内存在恒定电场,根据边界条件可知,在导体表 面上的电场既有法向分量又有切向分量。电场并不垂直于导 体表面,因而导体表面不是等位面。 2 、若媒质2是良导体,媒质1是极不良导电媒质,只要不接 近,就可以近似地把良导体表面看作等位面。
例题:
例:同轴线填充两种介质,结构如图所示。两
种介质介电常数分别为 1和 ,2导电率分别为 和 ,1 设同2 轴线内外导体电压为U。
求:(1)导体间的 E, J, ;
(2)分界面上自由电荷分布。
解:这是一个恒定电场边值问题。不能直接 应用高斯定理求解。
2c 2b
2a
1 1 2 2
EJ a
1 1 2 2
电流由内导体流向外导体,在分界面上只有法向分量,所以电
流密度成轴对称分布。
先假设电流为I
求出电流密度J的表达式
求出E1和E2
确定出电流
b
c
U a E1 dr b E2 dr
由边界条件,边界两边电流连续。
设单位长度内从内导体流向外导体电流为I。
J
I S
er
I
2
rHale Waihona Puke er(a r c)
由导电媒质内电场本构关系,可知媒质内电场为:
E1
J
1
I
21r
er
第四章 恒定电流场
Steady electric currents field
恒定电场:恒定电流(运动电荷)产生的电场。恒定电流周围
存在恒定电场和磁场
恒定磁场
恒定电场
恒定电流场的边界条件 恒定电流场的能量损耗 恒定电流场与静电场的比 拟
矢量磁位与标量磁位 媒质磁化 媒质中的恒定磁场方程式 电感与互感 磁场能量与磁场力
在 r a 面上: S1 D1 n
1 2U0
[ 2 ln(b / a) 1 ln(c / b)]a
在 r b 面上:S 2 (D2 D1) er
(21 1 2 )U0
[ 2 ln(b / a) 1 ln(c / b)]b
在 r c 面上:S3 D2 er
2 1U 0
[ 2 ln(b / a) 1 ln(c / b)]c
E1
J
1
[ 2
ln(b /
2U0 a) 1
ln(c / b)]r
er
(a r b)
E2
J
2
[ 2
1U0 ln(b / a) 1 ln(c / b)]r
er
(b r c)
c
2 r E2 dr
(b r c)
b
c
1 r E1 dr b E2 dr
(a r b)
2)由边界条件:
§4.1 恒定电流场的边界条件 Boundary condition
1、恒定电场在分界面上的折射关系为
J1t J1n
E1t E1n
tan1
J 2t J2n
E2t E2n
tan2
tan1 1 tan2 2
n J11 E1
1
2
2
E2 J2
若 2 ,则1 0 。
在流理由想理想导体导表电面体上 流,出进J和入一E般都导垂电直媒于质边时界,面电。流当线电
§4.2 恒定电场的能量损耗 在导电媒质中,自由电子移动时要与原子晶格发生碰
撞,结果产生热能,这是一种不可逆的能量转换。这种 能量损失将由外源不断补给,以维持恒定的电流。
dl J dS
U
圆柱体的端面分别为两个等位面。若在电场力作用下,d t 时间内有d q电荷自圆柱的左端面移至右端面,那么电场力 作的功为
dW dqE dl E dqdl
电场损失的功率 P 为
P dW E dq dl EIdl EJdSdl 单位体积中的功率损d失t 为 dt
pl
EJ
E2
J2
当J和E的方向不同时,上式可以表示为下面一般形式
pl E J
焦耳定律的微分形式
表示某点的功率损耗等于该点的电场强度与电流密度
的标积。
当恒定电流场与静电场的边界条件相同时,电 流密度的分布与电场强度的分布特性完全相同
可以利用已经获得的静电场 的结果直接求解恒定电流场
可用边界条件与静电场相同的 电流场来研究静电场的特性
静电比拟
例如,两电极间的电流场与静电场对应分布如下图示:
P
N
P
N
电流场
静电场
那么,利用已经获得的静电场结果可以求解恒定电流场。
静电场与恒定电场的对偶关系
导电媒质中的恒定电场 (电源外)
E 0 E •J 0 J E
2
1 E • dl 1 2
SJ • dS I
2 0
J1n J 2n J1t J 2t
1 2
G=I/U
介质中的静电场 (无源区域)
E 0 E •D 0 DE
2
1 E • dl 1 2
SD • dS q
(a r b)
E2
J
2
I
2 2r
er
(b r c)
b
c
U a E1 dr b E2 dr
I (ln b ln a) I (ln c ln b)
2 1
2 2
I
21 2U0
2 ln(b / a) 1 ln(c / b)
J
1 2U0
(a r c)
[ 2 ln(b / a) 1 ln(c / b)]r