煤气化技术中shell与GSP气化炉对比

合集下载

Shell、Texaco和U-gas气化技术方案比较

Shell、Texaco和U-gas气化技术方案比较

Shell、Texaco、U-gas气化技术方案比较一、原料的适应性Shell和U-gas煤种的选择不是技术问题,而是经济问题,它能适应褐煤、次烟煤、烟煤、无烟煤等煤种以及石油焦等原料,也可以二者惨混的混煤,并可以气化高灰分(5.7~24.5%,shell最高35%,U-gas最高55%)、高水分(4.5~37%)和高硫分的劣质煤,在原料的选择上有很大的灵活性。

GE(Texaco)煤气化工艺也能使用很多煤,如烟煤、次烟煤、石油焦和煤液化残渣。

但在煤种选择上有以下要求:1、应选用含水低,尤其是内水低的煤种,否则不利于制成高浓度的水煤浆,对内水含量高的褐煤成浆性差,一般要求小于15%;对褐煤应用有限制。

2、选用灰熔点低和灰粘度适宜的煤种,灰熔点FT(T3宜低于1300℃),否则会影响气化炉耐火砖的使用寿命。

对高灰熔点的煤应用有限制。

3、要求灰分小于20%。

二、备煤SHELL用煤需要将煤研磨到90%的粒度小于100um,然后用惰性气体的热风干燥,煤中含水量控制在2%以下,以利于气体输送干粉进料的要求。

GE通常采用湿磨工艺,小于10mm粉煤与水、添加剂同时加至磨煤机,过筛后制得高浓度水煤浆。

制浆要求煤粉的粗细颗粒要求有合理的比例:一般通过420um煤粉占90~95%,通过44um的占25~35%,研磨后加入稳定剂,可使水煤浆浓度提高1~2%,达到60~67%工业应用水平。

U-gas需要将煤粉碎到6mm以下,然后干燥外水在4%左右即可。

三、加煤方式和安全性SHELL和U-gas煤气化工艺均采用氮气或二氧化碳输送到缓冲仓,再又上述气体将煤输送到气化烧嘴或喷嘴,整个过程密封,运行稳定可靠,但锁斗系统操作相对复杂。

GE通过中间槽、低压泵、煤浆筛入煤浆槽,再由高压煤浆泵输送到气化炉,但高压煤浆泵的要求较高,需要定期更换内隔膜衬里。

四、气化系列配置SHELL不用备炉,并已经在2000t/d生产装置中得到验证,装置运转率达到95%以上。

“Shell”、“GSP”粉煤气化制甲醇变换反应

“Shell”、“GSP”粉煤气化制甲醇变换反应

“Shell”、“GSP”粉煤气化制甲醇变换反应深度的控制、催化剂选型及动力学模拟计算纵秋云孙永奎(青岛科技大学山东青岛 266042)(兖矿国泰煤化工有限公司山东滕州 277527)0 前言甲醇是重要的基本有机化工原料,在化工、医药、染料方面都有着广泛的用途,特别是近年来受世界性石油紧张和短缺的影响,煤气化制甲醇作为汽油的替代品,倍受人们的青睐和关注,其市场潜力巨大。

我国贫油少气,但煤碳资源相当丰富,是世界上唯一以煤为主要能源的大国。

因此,以煤为原料制甲醇在我国的煤化工工业中占有十分重要的地位。

进入21世纪后,随着我国煤气化制甲醇项目的全面启动,煤气化制甲醇也由早期的单一的“德士古”气化工艺发展带目前的“Shell”、“GSP”和“常压固定床”气化等工艺。

与“德士古”水煤浆加压气化技术相比,尽管Shell和GSP粉煤气化工艺具有对煤质要求低,合成气中有效组分含量高(CO+H2>89%),原煤和氧气消耗低,环境污染小和运行费用低等特点,但由于制得的原料气中CO高达60%以上,如何控制一段炉反应深度和抑制甲烷化副反应的影响等问题,就成为这两种新气化工艺能否成功的用于甲醇生产的关键。

前期,曾以合成氨厂的工艺条件为计算基准,对选用Shell粉煤气化制氨工艺流程中,耐硫变换工序中第一段反应器反应深度的控制和甲烷化副反应的影响等问题进行了研究,结果发现:当水/气低,床层热点温度又高时,则容易发生甲烷化副反应,提高当水/气高,虽然可以抑制甲烷化副的反应,但由于CO浓度高,反应的推动力大,因此一段催化剂的装量只要少量的变化,就会对出口CO含量和床层热点温度造成很大的影响,因此催化剂的用量必须计算准确,否则也会造成床层“飞温”的不良结果。

由于甲醇合成变换的工艺条件与合成氨一段反应条件相类似,因此在“Shell”和“GSP”煤气化制甲醇的生产中,变换工段反应深度的控制与合成氨生产中一段反应条件的控制一样同等重要。

煤气化技术中shell与GSP气化炉对比

煤气化技术中shell与GSP气化炉对比

煤气化技术中shell与GSP气化炉对比煤气化技术中shell与GSP气化炉对比壳牌(Shell)干煤粉加压气化技术,属于气流床加压气化技术。

可气化褐煤、烟煤、无烟煤、石油焦及高灰熔点的煤。

入炉原料煤为经过干燥、磨细后的干煤粉。

干煤粉由气化炉下部进入,属多烧嘴上行制气。

目前国外最大的气化炉日处理2000t煤,气化压力为3.0MPa,国外只有一套用于商业化联合循环发电的业绩,尚无更高气化压力的业绩。

这种气化炉是采用水冷壁,无耐火砖衬里。

采用废热锅炉冷却回收煤气的显热,副产蒸汽,气化温度可以达到1400-1600℃,气化压力可达3.0-4.0MPa,可以气化高灰熔点的煤,但仍需在原料煤中添加石灰石作助熔剂。

该种炉型原设计是用于联合循环发电的,国内在本世纪初至今已签订技术引进合同的有19台气化炉装置,其最终产品有合成氨、甲醇,气化压力3.0-4.0MPa。

其特点是干煤粉进料,用高压氮气气动输送入炉,对输煤粉系统的防爆要求严格;气化炉烧嘴为多喷嘴,有4个对称式布置,调节负荷比较灵活;为了防止高温气体排出时夹带的熔融态和粘结性飞灰在气化炉后的输气导管换热器、废热锅炉管壁粘结,采用将高温除灰后的部分300-350℃气体与部分水洗后的160-165℃气体混合,混合后的气体温度约200℃,用返回气循环压缩机加压送到气化炉顶部,将气化炉排出的合成气激冷至900℃后,再进入废热锅炉热量回收系统。

返回气量很大,相当于气化装置产气量的80-85%,对返回气循环压缩机的操作条件十分苛刻,不但投资高,多耗动力,而且出故障的环节也多;出废热锅炉后的合成气,采用高温中压陶瓷过滤器,在高温下除去夹带的飞灰,陶瓷过滤器不但投资高,而且维修工作量大,维修费用高。

废热锅炉维修工作量也大,故障也多,维修费用也高。

据介绍碳转化率可达98-99%;可气化褐煤、烟煤、无烟煤、石油焦;冷煤气效率高达80-83%;合成气有效气(CO+H2)成分高达90%左右,有效气(CO+H2)比煤耗550-600Kg/Km3,比氧耗330-360M3/Km3(用河南新密煤时,比煤耗为709Kg/Km3。

浅谈煤气化工艺的优缺点

浅谈煤气化工艺的优缺点

浅谈煤气化工艺的优缺点摘要:本文主要介绍了Texaco、Shell、GSP三个主要的煤气化工艺的原理及优缺点。

关键词:Texaco Shell GSP 原理优缺点一、引言我国煤炭资源相对丰富,而煤化工属“两高一资”产业,其发展必然受到资源、环境和产业政策等制约,因此煤化工发展必须采用新技术,开发新产品。

煤气化技术成熟,只需确定气化技术路线与气化炉配置。

本文主要介绍了Texaco、Shell、GSP三个主要的煤气化工艺。

二、反应原理Texaco气化工艺:采用两相并流型气化炉,氧气和煤浆通过特制的喷嘴混合喷入气化炉,在炉内水煤浆和氧气发生不完全反应产生水煤气,其反应释放的能量可维持气化炉在煤灰熔点温度以上,以满足液态排渣的需要。

Shell气化工艺:煤气化在高温加压条件下进行,煤粉、氧气及蒸汽并流进入气化炉,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理化学过程。

由于气化炉内温度很高,在有氧存在的条件下,以燃烧反应为主,在氧化反应完后进入到气化反应阶段,最终形成以CO和H2为主的煤气离开气化炉。

GSP气化工艺:GSP连续气化炉是在高温加压条件下进行,几根煤粉输送管均匀分布进入最外环隙,并在通道内盘旋,使粉煤旋转喷出。

给煤管末端与喷嘴顶端相切,在喷嘴外形成一个相当均匀的粉煤层,与气化介质混合后在气化室中进行气化,反应完后最终形成CO和H2为主的煤气进入激冷室。

三、主要工艺指标对比四、工艺技术优缺点4.1优点Texaco气化工艺:可用于气化的原料范围比较宽;工艺技术成熟,流程简单,过程控制安全可靠,运转效率高,操作性好,可靠程度高;碳转化率高,可达95%以上;合成气质量好,用途广;可供选择的气化压力范围宽(2.6-8.5Mpa),为满足多种下游工艺提供条件,即节省了中间压缩工序,也降低了能耗;单台炉投煤量选择范围大,根据气化压力等级及炉径的不同,单炉投煤量一般在400-2200t/d左右;气化过程污染少,环保性能好。

煤制合成气技术比较

煤制合成气技术比较

煤制合成气技术比较煤制合成气技术比较Texaco水煤浆气化、Shell粉煤加压气化和GSP气化技术都是典型的洁净煤气化技术,各有特点,各企业在改造或新建时应根据煤种、灰熔点、装置规模、产品链设定和投资情况进行合理选择。

下面就上述气化技术及其选择和使用情况进行分析和评价,供大家参考。

1、Shell气流床加压粉煤气化该工艺在国外还没有用于化肥生产的成功范例。

中石化巴陵分公司是第一家引进该技术用于化肥原料生产的厂家。

到目前为止,国内已先后有18家企业引进了此项技术(装置)。

但该工艺选择的是废锅流程,由于合成原料气含有的蒸汽较少,3.0MPa下仅为14%;因此用于生产合成氨后续变换工序要补充大量的水蒸气,用于甲醇生产也要补充一部分水蒸气于变换工序,工艺复杂,也使系统能量利用不合理。

湖北双环科技股份有限公司是第一家正式投运的厂家,于2006年5月开始试车。

据反映,试车期间曾发生烧嘴处水冷壁烧漏,输煤系统不畅引发氧煤比失调、炉温超温,渣口处水冷壁管严重腐蚀,水冷液管内异物堵塞和烧嘴保护罩烧坏等问题。

引进该技术的项目投资大。

2006年5月贵州天福与Shell签约,气化岛规模为每小时17.05万m3CO+H2,投资9.7亿元人民币,为同规模水煤浆气化岛投资的1.8倍。

气化装置设备结构复杂,制造周期长。

气化炉、导管、废锅内件定点西班牙、印度制造,加工周期14~18个月,海运3个月;压力壳可国内制造,但材料仍需进口,周期也较长;设备、仪表、材料的国产化率与水煤浆气化相比差距比较大。

建厂时间长(3~5a),将使企业还贷周期长,财务负担加重。

2001年与Shell签约的中石化巴陵分公司、湖北双环、柳州化工股份有限公司只有双环于2006年5月试车;2003年与Shell签约的中石化湖北化肥分公司、中石化安庆分公司、云天化集团公司、云维集团沾化分公司只有安庆于2006年10月开始煮炉。

Shell气化装置没有化工生产成熟应用为依托,消化掌握需要经历较长时间。

Texaco、Shell、GSP三种气化技术对比

Texaco、Shell、GSP三种气化技术对比

• 即选用GSP煤气化技术!
各性能对比见下表:
五、主要工艺指标对比
• 经过以上学习和对比,我组认为:
• 德士古技术是单喷嘴,进料流向不均匀, 煤炭浪费较多。 • shell必须用干粉煤,且煤气中焦油及酚含 量高,污水处理复杂,难以大规模推广. • GSP没有工业化经验,因而没有竞争力,而 相同煤化工规模投资额度比较:Shell>德士 古
3、GSP气化反应原理
GSP 连续气化炉是在高温加压条件下进行的,属 气流床反应器,几根煤粉输送管均布进入最外环隙, 并在通道内盘旋,使煤粉旋转喷出给煤管线末端与喷 嘴顶端相切,在喷嘴外形成一个相当均匀的煤粉层, 与气化介质混合后在气化室中进行气化,反应完后最 终形成以 CO、H2为主的煤气进入激冷室。 以上 3 种气化炉其反应原理基本相同,其反应均 为不完全氧化还原反应生成粗合成气;不同之处是 前者采用的是水煤浆气化,而后两者采用干煤粉气 化。
3、GSP气化炉工艺流程
将预处理好的原料煤在磨煤机内磨碎到适于气化的粒度(对不同煤种有不 同的要求)并进行干燥用输气(N2 或CO2)从加料斗中将干煤粉送到气化 炉的组合喷嘴中。 加压干煤粉,氧气及少量蒸汽通过组合喷嘴进入到气化炉中。气化炉的操 作压力为2.5~4.0MP,根据煤粉的灰熔特性,气化操作温度控制在 1350~1750 ℃。高温气体与液态渣一起离开气化室向下流动直接进入激冷 室,被喷射的高压激冷水冷却,液态渣在激冷室底部水浴中成为颗粒状,定 期的从排渣锁斗中排入渣池,并通过捞渣机装车运出。从激冷室出来的达到 饱和的粗合成气经两级文氏管洗涤后,使含尘量达到要求后送出界区。 激冷室和文氏管排出的黑水经减压后送入两级闪蒸罐去除黑பைடு நூலகம்中的气体成 分,闪蒸罐内的黑水则送入沉降槽,加入少量絮凝剂以加速灰水中细渣的絮 凝沉降。沉降槽下部沉降物经过滤机滤出并压制成渣饼装车外送。沉降槽上 部的灰水与滤液一起送回激冷室作激冷水使用,为控制回水中的总盐含量, 需将少量污水送界区外的全厂污水处理系统。

Texaco-Shell-GSP煤气化技术比较

Texaco-Shell-GSP煤气化技术比较

730 2200 小试厂
商业化装 压力 4.0MPa 1986 年 6
置,生产 温度 1500℃ 月建成,投
H2 和羰
资 2.2 亿马
基合成气

联合发电 压力 2.8-3.0 96 年 7 月 MPa,温度 投用,投资
1200-1500℃ 5.1 亿美元
小试装置 气化压力 1.4 小 试 厂 79
气化装 Φ2×10ft,二段反应
发电
年投运。 示 范 厂 83 年 7 月投运
1430 1832
商业化生 压力 2.1MPa 87 年 4 月 产装置, 一段温度 投运 联合循环 1316-1427 发电 ℃,二段
1038℃
中国水煤浆气化装置概况一览表
序 气化装 气化炉台数和形式
号置
煤浆制备
单炉干煤 用途
量(t/d)
主要工 艺条件
2、国内外水煤浆气化装置
到目前为止,国内外已建、在建和拟建德士古水煤浆加压气化装置,加上技 术上相似的道化学气化装置,已达 20 多座,如下表所示:
国外水煤浆气装置概况一览表
序 气化 气化炉台数和形式
号 装置
煤浆制备
单炉干煤 用途
量(t/d)
主要工 艺条件
备注
1 美国蒙 3 台,第 l 台为废锅 棒磨机,试烧评 15~20 中试装 第 1 台设计 3 台分别于
⑦、单台气化炉的投煤量选择范围大。根据气化压力等级及炉径的不同,单 炉投煤量一般在 400~1000t/d(干煤)左右,在美国 Tampa 气化装置最大气化能 力达到 2200t/d(干煤)。
一、Texaco 水煤浆纯氧加压气化技术
1、发展历史 鉴于在加压下连续输送粉煤的难度较大,1948 年美国德士古发展公司 (Texaco Development Corporation)受重油气化的启发,首先创建了水煤浆气化 工 艺 (Texaco coal gasification process) , 并 在 加 利 福 尼 亚 州 洛 杉 矶 近 郊 的 Montebello 建设第一套投煤量 15t/d 的中试装置。当时水煤浆制备采用干磨湿配 工艺,即先将原煤磨成定细度的粉状物,再与水等添加物混合一起制成水煤浆, 其水煤浆浓度只能达到 50%左右。为了避免过多不必要的水分进入气化炉,采取 了将人炉前的水煤浆进行预热、蒸发和分离的方法。由于水煤浆加热汽化分离的 技术路线在实际操作中遇到一些结垢堵塞和磨损的麻烦,1958 年中断了试验。 早期的德士古气化工艺存在以下明显的缺点。如①、配置煤浆不会应用水煤 浆添加剂和未掌握粒级配比技术,煤浆浓度较低;②、水煤浆制备采用干磨湿配, 操作复杂,环境较差;③、煤浆在蒸发过程中易结垢和磨损;④、分离出的部分 蒸汽(约 50%)夹带少量煤粉无法利用,且在放空时造成污染。 由于在 20 世纪 50~60 年代油价较低,水煤浆气化无法发挥资源优势,再加 上工程技术上的问题,水煤浆气化技术的发展停顿了 10 多年,直到 20 世纪 70 年代初期发生了第一次世界性石油危机才出现了新的转机。德士古发展公司重新 恢复了 Montebello 试验装置,于 1975 年建设一台压力为 2.5MPa 的低压气化炉, 采用激冷和废锅流程可互相切换的工艺,由于水煤浆制备技术得到长足的进步, 水煤浆不再经过其他环节而直接喷人炉内。1978 年和 1981 年再建两台压力为 8.5MPa 的高压气化炉,这两台气化炉均为激冷流程,用于煤种评价和其他研究。 1973 年德士古发展公司与联邦德国鲁尔公司开始合作,于 1978 年在联邦德 国建成了一套德士古水煤浆气化工业试验装置(RCH/RAG 装置),该装置是将德 士古发展公司中试成果推向工业化的关键性一步,通过实验获得了全套工程放大 技术,并为以后各套工业化装置的建设奠定了良好的基础。

各种气化炉工艺比较

各种气化炉工艺比较

煤制合成气技术比较作者/来源:陈英1,任照元2(1.兖矿鲁南化肥厂,山东滕州277527;2.水煤浆气化及煤化工国家工程研究中日期:2009-1-13Texaco水煤浆气化、Shell粉煤加压气化和GSP气化技术都是典型的洁净煤气化技术,各有特点,各企业在改造或新建时应根据煤种、灰熔点、装置规模、产品链设定和投资情况进行合理选择。

下面就上述气化技术及其选择和使用情况进行分析和评价,供大家参考。

1 Shell气流床加压粉煤气化该工艺在国外还没有用于化肥生产的成功范例。

中石化巴陵分公司是第一家引进该技术用于化肥原料生产的厂家。

到目前为止,国内已先后有18家企业引进了此项技术(装置)。

但该工艺选择的是废锅流程,由于合成原料气含有的蒸汽较少,3.0MPa下仅为14%;因此用于生产合成氨后续变换工序要补充大量的水蒸气,用于甲醇生产也要补充一部分水蒸气于变换工序,工艺复杂,也使系统能量利用不合理。

湖北双环科技股份有限公司是第一家正式投运的厂家,于2006年5月开始试车。

据反映,试车期间曾发生烧嘴处水冷壁烧漏,输煤系统不畅引发氧煤比失调、炉温超温,渣口处水冷壁管严重腐蚀,水冷液管内异物堵塞和烧嘴保护罩烧坏等问题。

引进该技术的项目投资大。

2006年5月贵州天福与Shell签约,气化岛规模为每小时17.05万m3CO+H2,投资9.7亿元人民币,为同规模水煤浆气化岛投资的1.8倍。

气化装置设备结构复杂,制造周期长。

气化炉、导管、废锅内件定点西班牙、印度制造,加工周期14~18个月,海运3个月;压力壳可国内制造,但材料仍需进口,周期也较长;设备、仪表、材料的国产化率与水煤浆气化相比差距比较大。

建厂时间长(3~5 a),将使企业还贷周期长,财务负担加重。

2001年与Shell签约的中石化巴陵分公司、湖北双环、柳州化工股份有限公司只有双环于2006年5月试车;2003年与Shell签约的中石化湖北化肥分公司、中石化安庆分公司、云天化集团公司、云维集团沾化分公司只有安庆于2006年10月开始煮炉。

GSP~HT-L工艺技术比较

GSP~HT-L工艺技术比较

2012年12月(中)工业技术科技创新与应用GSP~HT-L工艺技术比较马占胜(河南煤化集团,河南新乡453000)河南煤化中新化工有限公司采用北京航天万源煤化工工程技术有限公司的HT-L粉煤加压气化专利技术(专利号为200520005280.1),该技术在备煤、输煤、燃烧调节系统、气化炉辐射段均采用先进的粉煤气流床气化技术;灰渣水系统、洗涤、净化则采用气体急冷流程技术。

原料煤本地化、工艺路线的优化、减少投资、设备国产化,具有自主知识产权的高效洁净的煤气化技术。

河南濮阳龙宇,安徽临泉HT-L,新乡中新化工都已投料生产,连续运行稳定。

航天炉粉煤气化装置技术特点:(1)煤种适应性范围广煤的灰熔点可选范围宽(1250~1650℃),气化原料可选范围广;(2)碳转化率高、粗合成气品质好,CH4含量低碳转化率设计值≥99.5%,出口合成气有效气体(CO+H2)体积≥90%,CH4体积≤130PPm。

(3)提高反应速率,可缩短反应停留时间高温、高压提高反应速率,与水煤浆气化工艺比,更容易达到平衡状态,平均炉内停留时间10S。

(4)干煤粉纯氧燃烧,提高火焰中心温度,火焰短燃烧器火焰的中心温度:1800~2150℃。

(5)黑水循环利用,气化炉产生中压蒸汽,热效率高。

图1HT-L气化炉图2气化与激冷系统西门子(GSP)气化技术可以把价格低廉、直接燃烧污染较大的煤、石油焦、垃圾等原料转化为清洁的、高附加值的合成气。

GSP煤气化技术采用干粉进料、纯氧气流床气化,液态排渣,粗合成气激冷工艺流程,包括备煤、气化及气体除尘冷却、黑水处理等。

经压缩的干燥煤粉由载气(N2或CO2)送到气化炉。

加压干煤粉,氧气及少量蒸汽通过联合喷嘴进入到气化炉中。

气化炉包括一个带水冷壁的气化室和激冷室。

气化炉的操作压力为25-40bar。

根据进料的组份和炉渣的灰熔特性,气化温度操作在1350℃-1750℃之间。

高温气体与液态渣一起离开气化室向下流动直接进入激冷室,热的合成气被喷射的激冷水所冷却。

Texaco、Shell、GSP气化炉对比

Texaco、Shell、GSP气化炉对比
项目三
Texaco、Shell、GSP
1
项目三
中国的煤化工建设热,对煤气化技术呈现 出巨大的需求。近几年,国内外各种气化技术纷 纷登场,中国已经成为世界上煤气化技术应用种 类最多的国家。
项目三
序 号 1 2 3 4 5 气化技术 鲁奇碎煤气化
GE(德士古)水煤浆气化
国内主要煤气化技术一览表
类型 固定床 气流床 气流床 气流床 气流床 技术 拥有方 德国鲁奇公司 美国GE公司 西北化工研究院 华东理工大学 英荷壳牌 适应煤种 褐煤、不粘结性或弱粘 结性的煤 低灰熔点的煤 低灰熔点的煤 低灰熔点的煤 煤种基本无限制 代表企业 天脊煤化工 渭河化工 安徽淮化 江苏灵谷 安庆石化
项目三
2.GSP 气化技术
技术优点
(1)原料煤适应范围宽:GSP 气化对煤质要求不苛刻,产物完全无焦油。 (2)水冷壁结构可靠性高:即所谓的“以渣抗渣”的结构。避免了因高温、 溶渣腐蚀及开停车产生应力对耐火料的破坏而导致气化炉无法长周期运行。可 单炉运行,不需要备用炉,可靠性高。 (3)反应速率高,生产能力大:有效气体(CO+H2)含量高达 91%以上,碳转 化率高达 99%以上。 (4)工艺紧凑,流程简单:激冷流程,气化炉点火升温迅速,设备及运行费用 较低,使得项目一次投资较shell小。 1 台套2 000 t /d 投煤量的气化装置 不足 4 亿元人民币,采用该气化技术是一种比较经济、现实的考虑。 (5)气化炉寿命长:水冷壁系统寿命在十年以上,炉体寿命更长。
Shell
7000 25000 6000 89-93 >99
Texaco
6000 8500 6200 78-81 >98
GSP
7000 15000 6000 89-91 >99

GSP技术是煤制合成气或H2工艺的最佳选择

GSP技术是煤制合成气或H2工艺的最佳选择
当前大型工厂的煤制合成气(或H。)气化技术普 遍认同的是GSP、Shell、Texaco气流床气化工艺。为
2005年6月
李大尚:GSP技术是煤制合成气(或H:)工艺的最佳选择
一3一
此有必要对三种技术进行较详细的比较。 2.1 GSP制合成气(或制H2)与Shell、Texaco煤气
化技术比较 2.1.1 比较基准 2.1.1.1原料煤分析见表2~表4。
流化床气化工艺比较适合高挥发分、高活性年青 煤及高灰、高灰熔融性温度的煤。但气化压力较低。 3.0MPa下气化的流化床正在开发中,气化温度较低, l 009℃左右,气化强度低,煤制备、气化炉结构简单、 投资省。流化床制合成气(或H。)有以下问题:(1)压力 在2.0肝a以上,煤气中甲烷含量较高。(2)碳转化率、 气化效率相对较低。(3)飞灰较多,增加了后处理难度。
}Texaco和Shell的优点。2005年2月,宁夏煤业{
;集团有限责任公司与瑞士可持续技术控股公司:
就引进GSP煤气化技术,在银川举行了签字仪
式,该技术引起了业界人士的广泛关注。为此,
本刊编辑部特约请我国煤化工专家、中国工程
设计大师李大尚撰写此文。就大家所关心的GSP
工艺技术先进性,可靠性,煤种适应性,投资,煤
表2工业分析
l朋0朋r耐
A ad
yad


59.84
表3元素分析
Had 3.03
Sad 0.59
0ad 12.22
表4灰熔融性温度
Nad 0.54
% Clad 0.10 ℃
原料煤的可磨性系数HGI为73,其热值Q。。 为21 351 kJ/kg。 2.1.1.2 比较范围
(1)煤粉制备与输送系统; (2)煤气化装置与排渣系统; (3)煤气冷激洗涤、除尘系统; (4)黑水处理系统; (5)粗煤气变换装置。 2.1.1.3粗煤气出气化炉压力4.OMPa 2.1.1.4 比较装置生产能力200 000m3(CO+H2)/h,年 操作日300天 2.1.1.5原材料及动力价格 煤:150元/t; 氧(99.6%):0.2元/m3; 电:0.4元/kW·h; 4.5 MPa(g),350℃过热蒸汽:70元/t; 0.5 MPa(g),158℃饱和蒸汽:50元/t; 锅炉给水(脱氧):10元/t; 折旧、大、中、小修理费:每年按投资10%。 2.1.2 比较结果 煤气化工艺技术比较、投资比较结果、煤气化消耗 及技术指标比较、每m3(CO+H。)成本分别见表5~表8。

几种干煤粉加压气化炉结构特点

几种干煤粉加压气化炉结构特点

几种干煤粉加压气化炉结构特点摘要:干煤粉加压气化技术具有氧、煤消耗低、冷煤气效率高、碳转化率高、污水较容易处理、能气化高灰熔点煤、煤种适应行广、很短时间内即可转化为无副产品的气体等优点。

针对国外有代表性的三种干煤粉加压气化炉和德士古加压气化炉进行对分析,阐述了各炉型在结构的特点和差异,阐明了干煤粉加压气化技术炉型发展的趋势。

关键词:干煤粉加压气化谢尔气化炉普兰福气化炉德士古气化炉干煤粉加压气化技术是当今煤气化领域较先进的技术,其工艺特点是将干煤粉、氧和蒸汽一同送入气化炉,干煤粉在很短时间内即可转化为无副产品的气体。

具有单炉气化能力大,能耗低,碳转化能力高,污水较容易处理,三废排放少,煤种适应行广等优点。

目前国外在干煤粉加压气化领域已开发出多种炉型,各气化炉在结构上虽各有差异,但均采用水冷壁气化炉结构。

产品气成分基本相同。

本文介绍几种有代表性的气化炉结构特点。

1 干煤粉加压气化炉1.1 谢尔气化炉谢尔煤气化工艺是由荷兰谢尔国际石油公司在常压K-T炉基础上开发的一种加压气流床粉煤气化技术,采用单台气化炉和单台废热锅炉相连接的形式,气化规模为2000t/d煤,产品气用于联合循环发电。

谢尔气化炉在结构上采用下置多喷嘴立式冷壁气化炉结构方式。

模式水冷向火侧敷有一层比较薄的耐火材料,一方面为了减少热损失;另一方面主要是为了抗渣,充分利用渣层的隔热功能,以渣抗渣,以渣护炉壁,可以使气化炉热损失减少,同时保护激冷盘管,以提高气化炉的可操作性和气化效率。

环型空间位于压力容器外壳和膜式水冷壁之间,目的是为了容纳水∕蒸汽日输出∕输入管和集汽管,另外环型管还有利于检查和维修。

气化炉内筒上部为气化区,下部为熔渣激冷室。

粉煤及氧气,蒸汽在气化炉内燃烧和反应,温度最高约1700℃,气化炉操作压力2~4 MPa。

通过控制加料量,调节氧量和蒸汽量,使气化炉在1400~1700℃运行。

高温煤气经激冷煤气冷却至900℃,通过废热锅炉副产部分蒸汽,正常操作时壁内形成渣保护层,用以渣抗渣的方式保护气化炉衬里不受侵蚀,避免了因高温、熔渣腐蚀、开停车产生应力对耐火材料的破坏而导致气化炉无法长周期运行。

主要煤气化技术简介

主要煤气化技术简介

主要煤气化技术概述摘要介绍了包括Texaco水煤浆气化、Shell煤气化、GSP煤气化、Lurgi煤气化在内的四种主要煤气化技术,分别介绍其工艺流程,以及在应用后对其的评价。

关键词煤气化技术Texaco水煤浆气化Shell煤气化GSP煤气化Lurgi煤气化煤气化是煤转化技术中最主要的方面,它的历史非常悠久,甚至早于发电。

通常,煤的气化泛指各种煤(焦)与载氧的氧化剂(O2、H2O、CO2)之间的一种不完全反应,最终生成由CO、H2、CO2、CH4、N2、H2S、COS等组成的煤气。

煤的气化反应一般可人为简化成氧化(放热)反应(如C+O2),还原(吸热)反应(如C+H2O、C+CO2),甲烷生成(裂解)反应和水煤气平衡反应(CO+H2O)等。

国内外先后开发了100多种气化工艺(炉型),但是最有发展前途的也只有几种[1]。

在这里简要的介绍几种应用广泛的几中煤气化技术,主要包括:Texaco 水煤浆气化、Shell煤气化、GSP煤气化、Lurgi煤气化。

1.Texaco水煤浆气化Texaco(德士古)水煤浆加压气化工艺简称TCGP,是美国德士古石油公司在重油气化基础上发展起来的[2,3]。

TCGP技术包括煤浆制备、灰渣排除、水煤浆气化等技术,其核心和关键设备是气化炉。

它的主要优点是流程简单、压力较高、技术成熟、投资低。

1.1 气化炉内的反应水煤浆和99.6%的纯氧经TCGP烧嘴呈射流状态进入气化炉,在高温、高压下进行气化反应,生成以CO+H2为主要成分的粗合成气。

在气化炉内进行的反应相当复杂,一般认为气化分三步进行:(1)煤的裂解和挥发分的燃烧。

水煤浆和氧气进入高温气化炉后,水迅速蒸发为水蒸气。

煤粉发生热裂解并释放出挥发分。

裂解产物及挥发分在高温、高氧浓度下迅速完全燃烧,同时煤粉变成煤焦,放出大量的反应热。

因此,在合成气中不含有焦油、酚类和高分子烃类。

这个过程相当短促。

(2)燃烧及气化反应。

煤裂解后生成的煤焦一方面和剩作的氧化发生燃烧反应,生成CO、CO2等气体,放出反应热;另一方面,煤焦又和水蒸气、CO2等发生化学反应,生成CO、H2。

鲁奇炉、shell、德士古、恩德炉、灰熔炉等气化炉工艺性能比较

鲁奇炉、shell、德士古、恩德炉、灰熔炉等气化炉工艺性能比较

几种常见煤气化炉的工艺性能比较德士古、壳牌、GSP气化炉具体参数比较名称Texaco Shell GSP原料要求(1)烟煤、无烟煤、油渣;(2)粒经40%~45%<200目;(3)水煤浆质量分数>60%;(4)灰熔融性温度<1350℃;(5)灰份<15%(1)褐煤-无烟煤全部煤种;(2)粒经90%<100目含水2%干粉煤(褐煤8%);(3)灰熔融性温度<1500℃;(4)灰份8%~20%(1)褐煤-无烟煤全部煤种、石油焦、油渣、生物质;(2)粒经250μm~500μm含水2%干粉煤(褐煤8%);(3)灰熔融性温度<1500℃;(4)灰份1%~20%气化温度/℃1450~1600 1450~1600 1450~1600 气化压力/MPa 4.0~8.0 4.0 4.0气化炉特点水煤浆供料,顶部单喷嘴。

热壁Al2O3-Cr2O3-ZrO2耐火衬里,冷激流程(用于IGCC时有废锅流程),除喷嘴外全为碳钢干煤粉供料,下部多喷嘴对喷。

承压外壳内有水冷壁,废锅流程,充分回收废热产蒸汽。

材质碳钢、合金钢、不锈钢。

干粉煤供料,顶部单喷嘴。

承压外壳内有水冷壁,激冷流程。

由水冷壁回收少量蒸汽,除喷嘴外材质全为碳钢。

投煤2000t/d 单台气化炉尺寸/mmφ内=4500标准炉:φ外=2794和φ外=3175(投煤800t/d)H=11500φ内=4600(投煤2300t/d)H=31640φ内=3500H=17000耐火砖或水冷壁寿命/a1 20 20喷嘴寿命60d 1a~1.5a 10a前端部分1a 60万t/a甲醇气化炉台数4+1 1(φ内约为5000mm) 2冷激室或废锅尺寸/mm2794 2500 冷激室φ内=3500 除尘冷却方式洗涤干式过滤、洗涤分离+洗涤出变换温度/℃210 40 220建筑物(不包括变换)装置占地:9100m2高约55m(气化部分)装置占地:9000m2高约85m~90m(气化部分)装置占地:9000m2高约55m(气化部分)。

国内外气流床气化技术比较分析

国内外气流床气化技术比较分析

Shell炉工艺流程
Shell气化炉流程简图
Shell炉操作条件与气化指标
项目 原煤 气化温度 压力 比氧耗 比煤耗 碳转化率 有效气含量
指标 几乎所有煤种 1400~1700℃
3~4Mpa 353Nm3/kNm3(CO+H2) 630kg/kNm3(CO+H2)
>99% >90%
Shell炉业绩
干粉 NO. 07
五环炉
五环炉结构
五环炉工艺流程
五环炉操作条件与气化指标
项目 原煤 气化温度 压力 比氧耗 比煤耗 碳转化率 有效气含量
指标
几乎所有煤种 1400~1700℃
3~4Mpa 350Nm3/kNm3(CO+H2) 630kg/kNm3(CO+H2)
>99% >90%
五环炉业绩
干粉 NO. 08
国内外气流床气化技术比较分析
煤气化技术的分类

煤气
固定床
流化床
气流床
气流床气化炉气化效率 高、污染易处理、可控 制富氧度调节合成气品 质,适用于对合成气热 值有较高要求的燃气用 户,或大型煤化工用户, 适用性广。
气流床气化炉是煤气化 发展的方向!
气流床气化技术的分类方法
气化原料
气化炉结构
干粉气化 水煤浆气化
科林炉工艺流程
科林炉操作条件与气化指标
项目 原煤 气化温度 压力 比氧耗 比煤耗 碳转化率 有效气含量
指标
几乎所有煤种,尤其适用“三高”煤 1400~1700℃ 2.5~4Mpa
308Nm3/kNm3(CO+H2) 640kg/kNm3(CO+H2)
>99% 90%~93%
三菱重工两段炉(MHI)

GSP与两段炉煤气化技术比较

GSP与两段炉煤气化技术比较

GSP煤气化技术与两段式煤气化技术比较一 . 气化技术概况1. 技术研发★ GSP煤气化技术是由德国西门子集团拥有的,由前民主德国燃料研究所(DBI)于20世纪70年代末开发并投入商业化运行的大型粉煤气化技术,是世界先进的大型粉煤进料气流床加压技术之一。

★两段式干煤粉加压气化技术是西安热工研究院有限公司历经10余年的研究,并与2004年,建成了日处理煤量36~40t/d(10MWth)的干煤粉加压气化中试装置;2006年,开发成功1000~2000t/d级的干煤粉加压气化工业装置的大型粉煤气化技术。

2.技术应用〈中国〉★ 07年1月17日北京索斯泰克煤气化技术有限公司与中国神华宁夏煤业集团有限责任公司签订了83万吨/年二甲醚一期工程GSP气化技术专有设备采购合同以及52万吨煤基烯烃项目GSP技术合作谅解备忘录。

★具有自主知识产权的两段式干煤粉加压气化技术,其干煤粉加压气化的核心技术和整体工艺获得国家发明专利,所制造的水冷壁式干煤粉加压气化装置属于我国第一套,填补了国内空白。

07年1月13~14日,由中国华能集团公司西安热工院主持完成的国家“十五”863计划项目“两段式干煤粉加压气化技术中试研究”分别通过了由科技部委托中国电机工程学会组织进行的项目验收和成果鉴定,这标志着“两段式干煤粉加压气化技术”的发展全面进入工业化阶段。

2000吨/天级两段式干煤粉加压气化炉(废锅流程)将应用于华能集团“绿色煤电”项目;1000吨/天级两段式干煤粉加压气化炉(激冷流程)将应用于内蒙古世林化工有限公司年产30万吨甲醇项目。

二 . 煤气化工艺〈激冷流程〉1.相同1.1 两种煤气化技术均采用干粉进料、纯氧气流床气化、液态排渣。

1.2 煤种适应性强:两种煤气化技术均采用干煤粉作气化原料,不受成浆性的影响;由于气化温度高,可以气化高灰熔点的煤,故对煤种的适应性更为广泛,从较差的褐煤、次烟煤、烟煤、无烟煤均可使用。

1.3 工艺技术条件优越两种煤气化炉气化温度均可达到1400℃以上,气化反应压力可达到4.0 MPa,碳转化率达99%以上,有效气体成份(CO+H2)达90%以上。

煤气化工艺的选择和对航天炉的看法

煤气化工艺的选择和对航天炉的看法

煤气化工艺的选择和对航天炉的看法目前国际上先进的加压气流床煤气化工艺技术主要是Shell 公司的SCGP粉煤加压气化工艺、美国德士古公司的水煤浆加压气化工艺和德国未来能源公司的GSP粉煤加压气化工艺。

近十年来,在中国的化肥工业中,美国德士古公司的水煤浆加压气化工艺已有渭河、鲁南、XX焦化、XX、浩良河、金陵石化等12套成功应用的业绩,另外还有7套装置正在建设中。

Shell公司的SCGP工艺是粉煤加压气化工艺,是近年发展起来的先进煤气化工艺之一,已成功地用于联合循环发电工厂的商业运营。

目前国内已有XX双环、XX柳化、XX洞氮、XX枝江、XX石化、X X、XX沾益、云天化、XX大化、永煤集团、XX开祥、中原大化等19套装置,有5套投料试运行,其余在建或已签合同。

GSP工艺技术采用气化炉顶干粉加料与反应室周围水冷壁结构,是较为先进的气化技术。

目前国内多家企业计划引进该技术建设大型煤化工装置。

但XX宜兴和淮化在与德国未来能源公司签订引进协议并进行了用XX煤在德国的试烧后,因未来能源公司的工程能力等问题而终止了协议。

煤气化工艺实质上是在Texaco工艺、Shell工艺、GSP工艺和国内煤气化工艺中选择。

(1)Texaco水煤浆气化工艺Texaco工艺采用水煤浆进料、液态排渣、在气流床中加压气化,水煤浆与纯氧在高温高压下反应生成煤气。

Texaco水煤浆气化工艺具有如下特点:★对煤种有一定适应性。

国内企业运行证实水煤浆气化对使用煤质有一定的选择性:气化用煤的灰熔点温度t3值低于1350℃时有利于气化;煤中灰分含量不超过15%为宜,越低越好,煤的热值高于26000 kJ/kg,并有较好的成浆性能,使用能制成60~65%浓度的水煤浆之煤种,才能使运行稳定。

★气化压力高。

工业装置使用压力在2.8~6.5MPa之间[MS6],可根据使用煤气的需要来选择。

★气化技术成熟。

制备的水煤浆可用隔膜泵来输送,操作安全又便于计量控制。

Shell煤气化工艺的评述和改进意见

Shell煤气化工艺的评述和改进意见

Shell煤气化工艺的评述和改进意见作者:唐宏青Shell煤气化过程是目前世界上较为先进的第二代煤气化工艺之一。

按化学工程特征分类,Shell煤气化属气流床气化。

煤粉、氧气及少量水蒸气在加压条件下并流进入气化炉内,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理和化学过程,气化产物为以H2和CO 为主的合成气,CO2的含量很少。

1 Shell煤气化技术的发展自20世纪50年代起,壳牌公司就参与了气化技术的开发。

当时,该公司开发了以油为原料的壳牌气化技术(SGP),至今已有150多套装置采用该技术。

在积累了油气化经验后,壳牌公司1972年开始在该公司的阿姆斯特丹研究院(KSLA)进行煤气化技术研究。

1976年,煤气化工艺(SCGP)达到了一定的水平并建立了一座处理煤量为6t/d的试验厂,利用该装置一共试验了30多个不同的煤种。

1978年,在汉堡附近的哈尔堡炼油厂建设了一座处理煤量为150t/d的工厂,公司利用这座装置进行了一系列成功的试验,至1983年该装置停止运转为止,累计运行了6100h,其中包括超过1000h的连续运转,顺利完成了工艺开发和过程优化的任务。

在汉堡中试装置成功运行的基础上,1987年,壳牌公司在美国休斯顿附近的DeerPark石化中心建设了一座规模较大的工厂,这座命名为SCGP 1的示范厂进煤量为每天250t高硫煤或每天400t高湿度、高灰褐煤,共进行了15000h的操作试验。

SCGP 1试验了约18种原料,包括褐煤乃至石油焦。

这些试验结果充分证实壳牌煤气化技术在可靠性、原料灵活性、负荷可调性和环保方面都达到了极高水准,该示范装置的运行是成功的。

1988年,荷兰国家电力局决定由其下属的Demkolec公司在荷兰南部的BuGGenun兴建一座净输出为253MW的煤气化联合循环发电厂(IGCC)。

Shell公司为装置提供专利技术及基础工程设计,其煤气化装置设计能力为单炉日处理煤2000t、气化压力为2.8MPa。

煤气化技术比较

煤气化技术比较

煤气化技术比较(1)Shell干煤粉气化技术Shell干煤粉气化技术原料为干煤粉,采用气流床加压气化、液态排渣,利用废热锅炉产高压饱和或高压过热蒸汽;Shell干粉加压气化技术在我国已经有双环、洞氮、枝江、安庆、柳化等5个厂投产,还有10余个项目正在安装,将于今后几年陆续投产;其主要技术特点如下:(a) 采用加压氮气输送干煤粉,煤种适应性广,对煤的灰熔点适应范围比Texaco水煤浆气化技术更宽。

(b) 气化温度约1400~1600℃,碳转化率高达99%以上,产品气体洁净,不含重烃,甲烷含量极低,煤气中有效气体(CO+H2)达到90%左右。

(c) 氧耗低,与水煤浆气化相比,氧耗低15~25%,因而配套之空分装置投资可减少。

(d) 单炉生产能力大,日处理煤量可达2000吨以上。

(e) 冷煤气效率可达到78~83%。

(f) 气化炉采用水冷壁结构,无耐火砖衬里,维护量较少,气化炉内无传动部件,运转周期长,无需备用炉。

(g) 气化炉烧嘴及控制系统安全可靠。

Shell公司气化烧嘴设计寿命为8000小时,Demkolec 电厂使用烧嘴4年中未出现问题。

(h) 炉渣可用作水泥渗合剂或道路建造材料。

气化炉高温排出的熔渣经激冷后成玻璃状颗粒,性质稳定,对环境几乎没有影响。

气化污水中含氰化物少,容易处理。

(2)GSP干煤粉气化工艺GSP气化技术是单喷嘴下喷式干煤粉加压气流床气化技术,国外现在没有用户,根据煤气用途不同可用直接水激冷,也可用废锅回收热量。

该技术由我国神华宁煤集团与德国西门子合资组建的北京杰斯菲克公司负责在我国推广这项技术。

GSP干煤粉气化技术在神华宁夏煤业集团和山西兰花煤化工有限责任公司煤化工厂已经签定技术转让合同,即将投入建设。

GSP工艺具有以下特点:(a) 干煤粉进料,加压二氧化碳输送,连续性好,煤种适应性广,可以处理各种含灰燃料1~35%,短期45%也没影响。

(b) 气化温度约1400~1600℃,气化压力~3.0MPa,负荷调节范围为75~110%,碳转化率高达99%以上,产品气体洁净,不含重烃,甲烷含量极低,煤气中有效气体(CO+H2)~90%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤气化技术中shell与GSP气化炉对比
来源:编辑:阿勇发布时间:2013-04-03访问量:44次字体大小:大中小壳牌(Shell)干煤粉加压气化技术,属于气流床加压气化技术。

可气化褐煤、烟煤、无烟煤、石油焦及高灰熔点的煤。

入炉原料煤为经过干燥、磨细后的干煤粉。

干煤粉由气化炉下部进入,属多烧嘴上行制气。

目前国外最大的气化炉日处理2000t煤,气化压力为3.0MPa,国外只有一套用于商业化联合循环发电的业绩,尚无更高气化压力的业绩。

这种气化炉是采用水冷壁,无耐火砖衬里。

采用废热锅炉冷却回收煤气的显热,副产蒸汽,气化温度可以达到1400-1600℃,气化压力可达3.0-4.0MPa,可以气化高灰熔点的煤,但仍需在原料煤中添加石灰石作助熔剂。

该种炉型原设计是用于联合循环发电的,国内在本世纪初至今已签订技术引进合同的有19台气化炉装置,其最终产品有合成氨、甲醇,气化压力3.0-4.0MPa。

其特点是干煤粉进料,用高压氮气气动输送入炉,对输煤粉系统的防爆要求严格;气化炉烧嘴为多喷嘴,有4个对称式布置,调节负荷比较灵活;为了防止高温气体排出时夹带的熔融态和粘结性飞灰在气化炉后的输气导管换热器、废热锅炉管壁粘结,采用将高温除灰后的部分300-350℃气体与部分水洗后的160-165℃气体混合,混合后的气体温度约200℃,用返回气循环压缩机加压送到气化炉顶部,将气化炉排出的合成气激冷至900℃后,再进入废热锅炉热量回收系统。

返回气量很大,相当于气化装置产气量的80-85%,对返回气循环压缩机的操作条件十分苛刻,不但投资高,多耗动力,而且出故障的环节也多;出废热锅炉后的合成气,采用高温中压陶瓷过滤器,在高温下除去夹带的飞灰,陶瓷过滤器不但投资高,而且维修工作量大,维修费用高。

废热锅炉维修工作量也大,故障也多,维修费用也高。

据介绍碳转化率可达98-99%;可气化褐煤、烟煤、无烟煤、石油焦;冷煤气效率高达80-83%;合成气有效气(CO+H2)成分高达90%左右,有效气(CO+H2)比煤耗550-600Kg/Km3,比氧耗330-360M3/Km3(用河南新密煤时,比煤耗为709Kg/Km3。

比氧耗为367.2Nm3/ Km3。

所以在这里要说明一点,无论那一种煤气化技术,资料上介绍的比煤耗和比氧耗都是在特定条件下的数据,确切的数据,应该在煤试烧后方能获得,在做方案比较的时候可以用气化工艺计算的方法求得,要在同一个煤种的数据上作评价的依据。

);比蒸汽耗120-150Kg/Km3;可副产蒸汽880-900Kg/Km3。

我国采用Shell干煤粉加压气化工艺的装置自2006年开始,陆续投料试生产的,已有好几家,但是至今尚未达到长周期稳定正常生产。

主要的原因是系统流程长,设备结构复杂。

当采用高灰分、高灰熔点的煤进行气化时。

就会出现水冷壁能否均匀挂渣的问题、气化炉顶输气管和废热锅炉积灰问题、高温高压干法飞灰过滤器除尘效率和能力问题、每天产生的大量飞灰出路问题、激冷气压缩机故障多的问题、水洗冷却除尘的黑水系统故障问题。

该工艺第一次用于化工(尤其是制合成氨、制甲醇、制氢),其除尘净化、长周期稳定正常生产的要求程度,远高于发电,用于发电尚有燃油(或天然气)发电可作为备用发电,而现在用于化工生产,一个大型企业只设1套设备结构复杂、控制系统要求高的煤气化装置,不设备用炉,
生产上是没有保证的。

一套新装置投入生产到正常稳定生产,当然需要有一个磨合期,但是不能太长,否则企业很难承受。

本人认为可以首先在原料煤上做改进,改进多出故障的源头,采用低灰分、低灰熔点的煤为原料,摸索出长周期稳产高产的经验。

第二是增设采用激冷流程的备用气化炉,在现有Shell炉的基础上改激冷流程是很难的,应该采用多喷嘴下行制气的气化炉,比较容易实现。

GSP干煤粉加压气化技术,属于气流床加压气化技术,入炉原料煤为经过干燥、磨细后的干煤粉,干煤粉由气化炉顶部进入,属单烧嘴下行制气。

气化炉内有水冷壁内件,目前国外最大的GSP气化炉每天投煤量720t褐煤,操作压力2.8MPa,操作温度1400-1500℃,为调节炉温需向气化炉内输入过热蒸汽。

气化高灰熔点的煤时,可以在原料煤中添加石灰石作助熔剂。

因采用水激冷流程,所以投资比Shell炉要省得多,两者投资比是Shell炉比GSP炉=(1.43~1.56):1,适用于煤化工生产。

据介绍,碳转化率可达到98~99%,可气化褐煤、烟煤、次烟煤、无烟煤、石油焦及焦油,冷煤气效率高达80-83%,合成气有效气(CO+H2)成分高达90%左右,有效气(CO+H2)比煤耗550-600 Kg/Km3 ,比氧耗330-360M3/Km3,比蒸汽(过热蒸汽)耗120-150 Kg/Km3。

正常时要燃烧液化气或其他可燃气体,以便于点火,防止熄火和确保安全生产。

有文献记载,如烧液化气,以一套日处理720t褐煤的气化装置为例,每小时要消耗777.7Kg液化气,即每天消耗19t液化气,以每吨液化气按5000元计价,每天要烧掉9.5万元,一年2850万元。

如只在开工时用液化气,正常生产时烧自产煤气,按热值折算,每小时要消耗自产煤气约3500Nm3,以煤价450元/t计,自产煤气成本价约0.45-0.5元/Nm3,每天要耗掉3.8-4.2万元,一年就是1140-1260万元,这笔费用很可观。

该气化炉水冷壁的盘管内用压力为4.0MPa、温度达250℃的水冷却,在盘管内不产生蒸汽,只在器外冷却水循环系统中副产0.5MPa的低压蒸汽。

GSP煤气化的技术优点:1、煤种适应性强:可以气化高灰熔点的煤,对煤种的适应性更为广泛,从较差的褐煤、次烟煤、烟煤、无烟煤到石油焦均可气化,也可以用两种煤掺烧;
2、技术指标优越:温度1350℃—1750℃,碳转化率99%,CH4<0.1%(V),CO+H2>90%,不含重烃,冷煤气效率80%(依煤种有所不同);
3、氧耗低,煤耗低;
4、设备寿命长:水冷壁设计25年,烧嘴主体预计10年;
5、开、停车操作方便,且时间短:从冷态到满负荷约1小时;
6、操作弹性大;
7、自动化水平高:整个系统操作简单,安全可靠;
8、对环境影响小:无有害气体排放,污水排放量小,炉渣不含有害物质,可做建筑原料;
9、工艺流程短,设备尺寸小,投资少,建设周期短,运行成本低。

缺点:气化炉结构复杂,下部带辐射式废锅,投资高。

(来源:中国庆华集团王瑗整理)。

相关文档
最新文档