地表水水质监测方案样本
地表水监测方案
地表水监测方案地表水监测方案的目的是确保水体的质量和安全,并为保护和管理水资源提供基础数据。
本方案旨在建立一个系统化、科学化的地表水监测体系,以确保水资源的可持续利用和保护。
以下是本地表水监测方案的主要内容。
一、监测目标本监测方案的主要目标是对地表水的水质进行监测,包括水体的物理、化学和生物学指标。
监测的重点包括但不限于以下几个方面:1. 水体温度和pH值的监测,以了解水体的基本性质和稳定性;2. 溶解氧和化学需氧量(COD)的监测,以评估水体中的氧气供应和有机物污染;3. 悬浮物和浊度的监测,以了解水体中的颗粒物污染情况;4. 营养盐(如氨氮、硝酸盐和磷酸盐)的监测,以判断水体的富营养化程度;5. 重金属和有机污染物的监测,以评估水体的污染状况;6. 水生态指标的监测,包括浮游植物、浮游动物和底栖生物的种类和数量。
二、监测方案为了全面监测地表水的水质,本方案采用了多点监测和定期监测相结合的方式。
具体方案如下:1. 监测站点选择选择监测站点应该充分考虑水体的类型、活动水域的情况以及潜在的污染源。
监测站点应该分布在不同的水体类型上,包括河流、湖泊、水库和水渠等。
同时,应该选择一些可能受到人类活动干扰的区域,以评估人为因素对水质的影响。
2. 监测参数和频率根据监测目标,确定需要监测的参数和频率。
常规监测参数的监测频率可以在每月至每季度进行一次。
对于某些特定的参数,如水体温度和pH值,可以选择每日或每周进行监测。
监测的时间应该覆盖不同季节和不同水文条件,以获得全面的数据。
3. 监测方法和设备选择适当的监测方法和设备对于准确评估水质至关重要。
常用的监测方法包括野外实地测量和室内实验室分析。
例如,可以使用多参数水质监测仪器进行现场监测,同时将样品带回实验室使用光谱仪、气相色谱仪等设备进行进一步的分析。
4. 数据采集和分析监测数据应该按照一定的标准进行采集和记录,并建立相应的数据库进行管理。
监测数据可以通过在线数据传输系统进行实时监测,也可以通过定期收集数据并进行整理和分析。
地表水水质监测方案书
一. 监测目的及意义。
为了了解我校景观湖的水质现状,为景观湖的治理与保护,提供必要数据以及为了让我们熟悉水质监测方案的制定内容和评价内容,我组将进行校园景观湖(天承湖)的水质监测。
二. 天承湖环境信息1.天承湖位于承德石油高等专科学校的中间部分,2平均水深5米,最深处约7米,面积可以到800平方米,四周环树,大量乘凉椅,前接图书馆,后是“凤凰园”宿舍区,是承德石油高等专科学校区的标志景观之一,湖水清澈,灵气十足,湖内还养殖了大量的鲤鱼,风景宜人。
2.天承湖水源天承湖水源与承德市武烈河水是相通的,而且武烈河又称热河,既是承德避暑山庄,湖区的主要水源,又是承德人的主要引用水源,是承德人的母亲河3.主要污染源调查.天承湖湖水的污染来自于校园内的树叶,其他垃圾,再水,污水以及湖中鱼儿产生的污染物。
树叶和其他垃圾会通过风的作用被2刮入天承湖内,从而使得天承湖的上面会飘散着许多垃圾和树叶。
天承湖湖水中的鱼儿每天需要进行有氧呼吸,另外任辉会投大量的事物以供湖中鱼儿的需要,这样也会产生大量的垃圾,而对天承湖水造成一定的污染。
天承湖湖水来自于武烈河河水,在武烈河中下游的部,会有一些化工厂污水,制药厂污水,各个小区的生活污水等的排管道,导致湖水水质的污染更加严重三、水质监测方案制定1.监测项目:PH. 溶解氧.BOD.COD.总磷.色度.浊度. 高锰酸盐指数.氨氮2.布点方案。
断面位置区避开死水区,回水区,排污口处,尽量选择顺直河段,河床稳定,水比平稳,水面宽阔,死肌瘤,无浅难处。
天承湖湖区并没有明显功能区别,所我们布了5千米样点,分别是,岸边分为3个,有宿舍区,图书馆区,还有在去教学楼那边,另外两个,一个是湖心,另一个是天承湖入口。
3.采样方案天承湖湖水测定是利用质量表征方案,根据地表水采样中湖泊监测量,我的布设的规定,在一个监测断面上设采样容器为实验室的容量瓶。
采样时间为进行试验提作前进行取样,取样时把容量瓶洗净,采样时,用采样处的水润洗4.水样的保存和预处理。
地表水水质监测方案
地表水水质监测方案1.引言地表水是指地球表面上湖泊、河流和水库等水体的总称。
随着人口的增加和经济的快速发展,地表水的水质问题日益突出。
为了保护和管理地表水资源,制定一个科学合理的地表水水质监测方案至关重要。
2.目的地表水水质监测方案的目的是为了及时了解地表水的水质状况,准确评估水体的健康状况,并为保护和恢复水质提供科学依据。
具体目的包括但不限于:2.1 监测地表水中的主要污染物含量,如悬浮物、有机物、重金属等;2.2 评估地表水的生态系统健康状况;2.3 监测污染源的排放情况,制定相应的环境保护措施;2.4 提供水质数据支撑,为政府决策提供科学依据。
3.监测内容根据地表水的特点和国家相关标准,地表水水质的监测内容应包括以下方面:3.1 水样采集:按照规定的监测站点和频次采集地表水样品,并注意采样方法的标准化和一致性。
3.2 化学指标分析:对地表水样品进行化学指标分析,包括pH值、溶解氧、浊度、总固体、COD、BOD5、氨氮、硝态氮、磷酸盐等参数的测量。
3.3 生物学指标监测:通过对水样中的浮游生物、底栖生物和水生植物等进行采样和分析,评估水生态系统的健康状况。
3.4 污染物监测:对地表水中的主要污染物进行监测,包括悬浮物、有机物、重金属等。
可以采用分析仪器和实验室分析方法进行定量检测。
3.5 监测数据管理:建立水质监测数据管理系统,对收集到的监测数据进行归档、整理和分析,确保数据的准确性和可靠性。
4.监测方法与技术在地表水水质监测中,应采用科学合理的监测方法和先进的监测技术,以提高监测效率和数据质量。
常用的监测方法和技术包括:4.1 传统监测方法:包括实地采样、化学分析等,可以获得较准确的水质数据,适用于常规监测工作。
4.2 在线监测技术:利用现代传感器和仪器设备,对地表水中的水质参数进行实时或定时监测,可以实现自动化监测和远程数据传输。
4.3 遥感技术:利用遥感卫星或飞机对地表水进行遥感影像获取,通过图像处理和分析,可以获得水体的水质信息。
地表水监测方案
地表水监测方案一、监测目的地表水监测的主要目的是为了了解地表水的水质状况,掌握其污染程度和变化趋势,为水资源保护、水污染防治、水环境管理以及生态修复等提供科学依据和技术支持。
通过对地表水的监测,可以及时发现水质问题,采取有效的措施进行治理和保护,保障公众的用水安全和生态环境的健康。
二、监测范围监测范围应涵盖区域内的主要河流、湖泊、水库等地表水体。
具体包括流经城市和工业区的河流、饮用水源地、重要的渔业水域、景观水域等。
同时,应根据当地的水系分布和水功能区划,合理确定监测点位,以确保监测结果能够全面反映区域内地表水的水质状况。
三、监测项目(一)物理指标水温、色度、浊度、透明度、电导率等。
(二)化学指标1、常规指标:酸碱度(pH 值)、溶解氧(DO)、化学需氧量(COD)、生化需氧量(BOD)、总氮(TN)、总磷(TP)、氨氮(NH₃N)等。
2、重金属指标:汞(Hg)、镉(Cd)、铅(Pb)、铬(Cr)、砷(As)等。
3、有机物指标:挥发酚、石油类、阴离子表面活性剂等。
(三)生物指标藻类、浮游生物、底栖生物等。
(四)其他指标根据当地的污染源特征和环境管理需求,还可增加特定的监测项目,如氟化物、硫化物、氰化物等。
四、监测频次(一)河流对于主要河流,每月至少监测一次;对于污染较重或流经重要功能区的河流,应适当增加监测频次,如每半月或每周监测一次。
(二)湖泊、水库对于大中型湖泊、水库,每月监测一次;对于小型湖泊、水库,可每季度监测一次。
在湖泊、水库的丰水期、平水期和枯水期应分别进行监测。
(三)饮用水源地作为饮用水源地的地表水,应每日进行监测,确保水质符合饮用水标准。
五、监测方法(一)水样采集1、采样点的设置应符合相关技术规范,在河流的上、中、下游,湖泊、水库的不同区域等合理布设采样点。
2、采样时间应选择在水流平稳、水质均匀的时段进行。
3、采用专用的采样器具,如采样瓶、采样桶等,并按照规定的方法进行采样,确保样品的代表性和准确性。
地表水检测方案
地表水检测方案简介地表水检测是为了评估水资源的质量和确定其可用性而进行的一项重要工作。
地表水通常指的是河流、湖泊和水库等自然界的水体。
地表水质的好坏直接关系到人们的健康与生产活动的顺利进行。
本文将介绍一种基于现代化技术的地表水检测方案。
方案概述本方案主要采用现代化的水质检测仪器和设备,通过采样和分析地表水中的关键指标,来确定地表水的质量。
该方案包括以下步骤:1.采样:在不同地点和时间采集地表水样品。
2.水质指标测试:使用水质检测仪器测量样品中的关键指标。
3.数据分析:对测试结果进行数据分析和解读。
4.报告撰写:整理检测结果并撰写检测报告。
采样为了保证采样的准确性和可靠性,需要遵循以下原则:•选择代表性的采样点:根据地表水分布情况和可能的污染源,选择采样点以确保样品的代表性。
•采集足够的样品:根据测试的要求,采集足够数量的地表水样品。
•避免污染和交叉污染:在采集过程中,使用干净的采样容器,并避免接触非目标样品。
水质指标测试水质指标测试是地表水检测的核心环节,常用的关键指标包括pH、浊度、溶解氧(DO)、氨氮(NH3-N)和总磷(TP)等。
下面介绍几个常用的测试方法:pH测试pH测试用来衡量水体的酸碱性,一般范围为0-14,7为中性。
低于7的水为酸性,高于7的水为碱性。
pH测试可以使用便携式pH计或试纸进行。
浊度测试浊度测试用来评估水体中悬浮颗粒的数量,反映水体的清澈程度。
浊度测试可以使用浑浊度计或浊度分析仪进行。
溶解氧测试溶解氧测试是评估水体中溶解氧含量的重要指标,对生物生活和水质状况具有重要影响。
溶解氧测试可以使用溶解氧仪或溶解氧电极进行。
氨氮和总磷测试氨氮和总磷是地表水中常见的污染物之一,其含量的高低会直接影响水体的生态环境。
氨氮和总磷的测试可以使用颜色比色法、分光光度法等。
数据分析通过对地表水样品的测试结果进行数据分析,可以了解水体的污染程度和质量状况。
一般可以采用以下方法进行数据分析:•对比分析:将不同采样点或不同时间的数据进行对比分析,找出异常情况和变化趋势。
地表水监测的优秀方案推荐_地表水监测方案
地表水监测的优秀方案推荐_地表水监测方案地表水监测需要人们时时进行管理与检查,及时发现问题并且改正才能共同进步与发展,接下来让我们来看看地表水监测的优秀方案推荐吧。
地表水监测方案一概述地表水自动监测系统可实现自动采样及预处理、在线测量、报表分析、数据传输、远程监控等功能,及时掌握水质状况、预警预报水质污染事故、保障公众用水安全等。
截止2021年我国已建设了972个水质自动监测站。
监测因子:常规监测因子包括:水温、ph、溶解氧、电导率、浊度、高锰酸盐指数、总有机碳、氨氮,湖泊水质自动监测站的监测项目还包括总氮和总磷。
部分站点进行挥发性有机物、生物毒性及叶绿素a的监测。
监测频次一般监测频次设为每4h监测一次(即每天6个监测数据)。
当发现水质状况明显变化或发生污染事故时,监测频率可调整为连续监测。
数据通过外网vpn方式传送到各监测站、省级监测中心站及中国环境监测总站。
系统组成:地表水自动监测站主要由采水单元、配水单元、分析仪器、控制系统组成。
采水单元:包括水泵、管路、供电等,为系统提供可靠、有效的水样。
可采用栈桥、浮筒、固定桩等方式。
配水单元:包括水样预处理装置、自动清洗装置及辅助部分,为各分析仪器提供其所需要压力和流量的水样。
分析仪器:由一系列水质分析仪器、仪表组成,具有校准、测量、反控、自诊断等功能,并将测量结果发送到控制系统。
控制系统:用于控制整个系统自动完成采水、配水、分析测量、数据存储、数据传输、生成报表等功能,也可接受监控平台发送的指令,远程控制系统各部分。
站房及配套设施:包括站房主体、空调、供电、防雷、防火、给排水等。
对应仪器ph智能电极(amt-ph300)、溶解氧智能电极(amt-pr300)、电导率智能电极(amt-pd300)、浊度智能电极(amt-pz300)、多参数水质电极(amt-w400)、总有机碳水质分析仪(amt-zz300)、氨氮水质分析仪(amt-pa100)、总磷总氮水质分析仪(amt-1226)、生物毒性水质分析仪(amt-tox100)、紫外吸收水质分析仪(amt-0504)、全光谱水质电极(amt-0120)、叶绿素智能电极(amt-py300)、蓝绿藻智能电极(amt-pl300)。
地表水监测方案
地表水监测方案地表水是指地球表面上的河流、湖泊、水库等自然水域中的水,是人类生活和生产活动的重要水资源。
为了保护地表水的安全和可持续利用,制定一套科学有效的地表水监测方案至关重要。
本文将详细介绍一个地表水监测方案,包括监测目标、监测内容、监测方法以及监测频率,并提供一些建议以供参考。
1. 监测目标地表水监测的主要目标是确保地表水的质量达到国家环境保护标准,并能及时发现和预警地表水污染事件,保障人类健康和生态环境的安全。
2. 监测内容地表水监测需要对多个指标进行监测,包括但不限于以下方面:(1) 水质指标:监测水中的溶解氧、悬浮物、氨氮、总磷、总氮、铜、铅等指标,用于评估水体的污染程度和富营养化情况。
(2) 生物指标:监测水中的浮游植物、浮游动物、底栖动物等生物群落结构和数量,反映水体的生态状态。
(3) 水量指标:监测水体的流速、水位、流量等指标,用于评估水体的水量状况和流动性。
(4) 其他指标:根据实际需要,可增加对特定污染物质的监测,如重金属、有机物等。
3. 监测方法地表水监测可以使用多种方法进行,主要包括以下几种:(1) 野外监测:通过采集水样、底泥样、生物样本等,利用实验室分析仪器对样本进行分析,获取水质指标和污染物含量等信息。
(2) 在线监测:在监测点安装自动监测设备,实时监测水质指标、水量指标等数据,并通过网络传输到中心数据库,以便进行数据分析和处理。
(3) 遥感监测:利用遥感技术获取地表水的反射、散射、吸收等信息,结合地理信息系统(GIS)进行空间分析,评估水体的质量和变化情况。
4. 监测频率地表水监测的频率应该根据实际情况进行调整,建议采取以下两种监测频率:(1) 定期监测:每季度或每半年进行一次定期监测,包括对水质、生物和水量等指标的监测,用于长期趋势的分析和评估。
(2) 事件监测:当发生重大污染事件、水质异常波动等情况时,应立即进行事件监测,对受影响的水体进行紧急监测和应急处理。
地表水水质监测方案
地表水水质监测方案地表水是指地球表面上的湖泊、河流、水库等自然水体以及人工建设的水体。
地表水的水质一直是重要的关注点,因为它直接影响着人类的生活和健康。
为了保护和监测地表水的水质,各国纷纷制定了相应的监测方案。
一、监测目标和指标地表水水质监测方案首先需要确定监测的目标和指标。
监测目标可以是保护生态环境、保障饮用水安全等不同方面的要求。
监测指标包括了水质的化学指标、生物指标和物理指标等。
1. 化学指标:监测水体中的溶解氧、总磷、总氮、氨氮、铜、镉、汞等物质的浓度。
这些物质的浓度可以反映水体的富营养化程度、有机污染程度和重金属污染状况。
2. 生物指标:监测水体中的藻类、浮游动物和底栖动物的种类和数量。
这些生物的组成和数量反映了水体的营养状态和生态状况。
3. 物理指标:监测水体的色度、浊度、pH值、温度和电导率等。
这些指标可以反映水体的透明度、酸碱程度、温度变化和盐度等情况。
二、监测方法和频率地表水水质监测需要使用一定的方法和技术手段进行。
常见的监测方法包括现场监测和实验室分析。
1. 现场监测:使用便携式仪器进行监测,可以直接在采样点进行测量。
现场监测可以及时获取监测数据,并可针对特定情况做出调整。
现场监测常用于测量水体的温度、pH值、溶解氧等物理和化学指标。
2. 实验室分析:将采集到的水样送往实验室进行分析。
实验室可以通过精密的仪器和化学试剂来测量水体的各项指标。
实验室分析可以获得更准确的数据,并且可以扩展监测指标的范围。
监测频率是指监测的时间间隔和频繁程度。
监测频率的确定需要根据实际情况来决定,可以根据监测目标、水质状况和资源情况来进行选择。
通常,地表水水质监测需要定期进行,以便及时发现问题并采取相应的措施。
三、监测网络和站点选择为了全面监测地表水的水质状况,需要建立监测网络和选择监测站点。
监测网络的构建要考虑到地表水的流动特点和水体的分布情况。
通常,监测网络应覆盖不同地理区域、水体类型和环境状况。
地表水环境监测方案
地表水水质监测方案——广州大学内水质监测一、监测目的(1)对校园教学区,主要是实验楼区域的校园景观的用水及水样进行监测,了解学校实验楼区域的水质现状。
(2)学习水质监测的步骤,进一步将课堂所学知识运用到实践中,学会制定水质监测方案并按步实施。
(3)进一步熟练常用的水质监测中的实验操作技术,掌握地表各种指标与污染物的测定方法。
(4)熟悉环境质量标准评价的各项标准,并学会运用其来评价水质,提出改善校园水质的意见和建议。
二、基础资料的收集本次监测选取了校园网主场至生化实验楼区域水域进行监测。
根据相关的文档和网上搜寻的资料可知,该河段属于珠江水系广州段,水域的有关资料如下:1.地形地貌广州大学城位于中国东南沿海,紧靠珠江两岸地,地处珠江三角洲腹地,是三角洲平原与低山丘陵区的过渡地带。
小岛总体地形是东北高、西南低。
东北部是由花岗岩与变质岩组成的低山丘陵区,地形高差250m左右,坡度15°~35°。
广州大学位于岛的西部,坐落于河流堆积组成的冲积平原,地势平缓,其中分布零星的残丘和苔地,有着树枝状般的水系。
2.气象广州大学城地处南亚热带,属海洋性季风气候,有着温暖多雨、光热充足、雨量充沛的特点。
其年平均气温约为21.8℃,一年中7月、8月的温度最高,1月最低,绝对最高气温约38.7℃。
平均年降雨量为1699.8毫米,集中在梅雨季、台风季两个季节,占全年的82.1%,在七、八、九月份常遭受六级以上的大风袭击或影响,台风最大风力在9级以上,并带来暴雨,破坏力极大,年评卷蒸发量160315,mm。
3.水文广州大学城位于珠江、冻僵溪流的交汇区上,该区域河段属于不规则半日潮。
冲积平原和三角洲平原,地势低平,地表水体类别有:库唐、涌溪、干流河道,全区水域面积16011k㎡,占广州市区面积的10.8%。
据黄埔潮汐站资料,珠江平均高潮水位为0.72m,平均低潮水位为-0.88m,涨潮最大潮差2.56m,落潮最大潮差3.00m。
地表水监测方案
#地表水监测方案##1. 简介地表水是指自然界中存在于湖泊、河流、水库以及人工水体中的水资源。
地表水的质量对于人类的生活和生态环境具有重要影响。
为了保护和维护地表水资源的安全和可持续利用,地表水监测方案的制定和实施变得至关重要。
本文将介绍一个地表水监测方案,旨在帮助监测地表水的质量,并提供方便、高效的监测和分析手段。
##2. 目标地表水监测方案的目标是:•监测地表水中的污染物含量,包括但不限于重金属、有机物、细菌等;•及时发现地表水污染事件,进行及时的处理和处置;•提供准确的地表水质量评估数据,为决策者和研究人员提供重要参考。
##3. 方案地表水监测方案主要包括以下几个方面的内容:###3.1 网格布点地表水监测需要在不同的位置设置监测点,以覆盖研究区域内的各个地理位置。
监测点的设置应根据地理特征、水体类型和污染源位置等因素进行合理规划。
常用的布点方法包括网格布点、河网布点和水体类型布点等。
本方案采用网格布点方法,将研究区域划分为网格,并在每个网格内设置一个监测点。
###3.2 参数测定地表水监测需要测定多个参数,以评估水质和监测污染物。
常见的参数包括溶解氧、pH值、水温、浊度、化学需氧量(COD)、氨氮、总磷、总氮等。
根据实际监测需求和技术条件,选取合适的参数进行测定。
本方案建议采用自动化水质监测仪器,能够同时测定多个参数,并具备数据记录和传输功能。
###3.3 数据采集与处理地表水监测方案需要采集大量的监测数据,并进行及时和准确的处理。
数据采集可以通过自动化监测系统实现,监测仪器自动记录并传输数据到中央数据库。
数据处理包括数据质量控制、异常值处理和数据分析等。
数据质量控制主要包括数据准确性和可靠性的检查和评估。
异常值处理主要针对数据中的异常值进行筛选和修正。
数据分析主要通过统计学方法对监测数据进行分析和解释,以评估水质状况。
###3.4 报告编制与发布地表水监测方案需要定期编制监测报告,并及时发布给相关部门和公众。
地表水监测方案【模板范本】
长沙环境保护职业技术学院地表水水质监测方案监测1431班第五组王文敏王璐瑶田丹唐俊沈艳琼二0一六年五月十日一、本次方案监测目的1、对校园内教学区、综合楼、校园景观的用水及水质进行监测.2、进一步熟悉掌握水质监测中各项实验操作技术。
3、学会应用环境质量标准对实验的数据进行分析与评价。
二、基础资料的收集长沙环保学院综合楼至一教生态塘的地表水域进行监测,该水域的监测资料如下:1.监测河段概况经实地考察,此次监测的地表水属于环保学院综合楼至二教之间的两个河塘,全长15m,宽约3m,水深约2m.监测河塘在学校示意图如下:三、确定监测项目1. 《地表水环境质量标准》(GB3838—2002)及《地表水和污水监测技术规划》(HJ/T91-2002)中,为了满足地表水的使用功能和环境质量要求,将监测项目分为基本项目和选测项目.本方案主要测水温,PH,溶解氧,这几个基本项目。
2.监测介质:环保学院综合楼环艺楼中间河塘。
四、监测网点监测断面和采样点的设置及水样监测1。
监测断面综合实际情况,景观入水口从一教至综合楼为对照断面,另一头为控制断面,即综合楼河塘正中间部分。
2.采样点的确定根据实际情况综合楼河塘全长15m,宽约3m,水深约2m。
根据实情出发在水面上设一条中泓线,采样点如上监测河段概况A点0。
5m处的点。
3。
采样时间和采样频率拟定监测时间为1天,用混合法采样法,分为早中晚各一次,4。
水样的保存与采集采集的水样为表层水样采用适当的容器如塑料桶直接采集,对测定PH值,溶解氧等项目进行单独采样。
注意:采样结束后对于某些项目应及时测定如不能及时测定应采用冷藏法保存待测水样。
4.采样设备、交通工具及运行路线设备:温度计、透明度盘、PH计、电导仪、碘量瓶等地表水试验常用仪器。
交通工具及路线:步行、从实验楼准备仪器至综合楼测定.5.监测技术分析方法如下表:监测项目与分析方法(表1)五、监测报告要求、质量保证、实施计划1.监测报告要求:结果保留四位有效数字,如有需要要对可疑数据进行取舍或修约。
地表水监测方案
地表水监测方案一、监测目的地表水监测的主要目的是及时、准确地掌握地表水环境质量状况及其变化趋势,为环境保护决策、水资源管理、水污染防治等提供科学依据。
通过对地表水的监测,可以了解水体中污染物的种类、浓度和分布情况,评估水体的生态健康状况,发现潜在的环境问题,并采取相应的措施加以解决,以保护水资源、维护生态平衡和保障公众健康。
二、监测范围监测范围应包括本地区主要河流、湖泊、水库等地表水体。
具体的监测断面应根据水体的功能、水文特征、污染源分布等因素进行合理设置。
对于河流,应在干流和主要支流的上、中、下游分别设置监测断面;对于湖泊和水库,应在入湖(库)口、湖心、出湖(库)口等位置设置监测断面。
同时,还应在重要的饮用水水源地、水功能区等敏感区域增加监测点位,以确保水质安全。
三、监测项目(一)必测项目1、水温、pH 值、溶解氧、电导率、浊度等物理指标。
2、化学需氧量(COD)、高锰酸盐指数、五日生化需氧量(BOD5)、氨氮、总磷、总氮等常规污染物指标。
3、重金属指标,如汞、镉、铅、铬、砷等。
(二)选测项目1、挥发酚、氰化物、石油类、阴离子表面活性剂等。
2、特定有机物,如多环芳烃、农药残留等。
3、水生生物指标,如藻类、浮游动物等。
监测项目的选择应根据水体的污染特征、环境管理需求以及监测能力等因素综合确定。
四、监测频次(一)河流1、对于国控、省控断面,每月监测一次。
2、对于市控断面,每季度监测一次。
3、对于重点河流或污染较重的河流,可根据实际情况增加监测频次,如每月监测两次或每周监测一次。
(二)湖泊、水库1、大中型湖泊、水库,每月监测一次。
2、小型湖泊、水库,每季度监测一次。
(三)饮用水水源地1、地表水饮用水水源地,每月监测一次常规项目,每年进行一次全分析监测(包括所有必测和选测项目)。
2、应急监测:在发生突发水污染事件或水质异常时,应立即启动应急监测,根据事件的严重程度和发展态势,确定监测频次和项目。
五、监测方法监测方法应采用国家或行业标准规定的方法,确保监测数据的准确性和可比性。
地表水监测方案
地表水监测方案地表水是指地球表面的水体,包括河流、湖泊、湿地和地下水体,对地表水进行监测是非常重要的,可以了解水体的质量、水文情况和生态系统的健康状况,为环境保护和水资源管理提供科学依据。
以下是一个地表水监测方案的设计。
一、目的和背景地表水监测旨在收集有关水体的重要数据,评估水体的状态,检测水质污染及时采取措施,提供保护生态系统的参考依据。
本方案将定期监测地表水的水质和水量情况,分析水资源的可持续使用性,为环境管理与决策提供科学依据。
二、监测内容1.水质分析:监测水体中的溶解氧、氨氮、总磷、总氮、COD 和BOD等指标,了解水体的富营养化程度、有机物污染和其他污染物的程度。
2.水量监测:定期测量水体的流量,包括流速、流态、输沙量等,了解水资源的供应和运动情况。
3.生态监测:通过采集水体的生物样本,了解水体中的生态环境和生物多样性情况,评估水体的健康状况。
三、监测方式和频率1.定点监测:选择具有代表性的监测点,对水质、水量和生态进行定期监测,以确保监测结果的代表性。
2.活动监测:在特定的事件或情况发生时,如雨季、污染事件等,加大对地表水的监测和分析。
3.实时监测:利用现代化的监测设备和技术,对水质和水量进行实时、自动化监测,提高监测数据的及时性和准确性。
四、数据收集和分析1.数据收集:建立数据库,收集监测数据和样本,包括水质数据、水量数据和生态数据等,确保监测数据的准确性和可靠性。
2.数据分析:对收集到的数据进行整理和分析,利用统计方法和模型评估水质状况、水资源使用效益和生态系统健康状况,形成监测报告,为环境管理和决策提供科学依据。
五、结果应用和保护措施1.监测结果应用:将监测结果与相关环境标准进行比较和评估,及时发现和预警水质异常情况,根据监测结果调整环境保护措施和管理措施。
2.保护措施:根据监测结果制定相应的保护措施,如加强污染源的治理,提高水体的净化和保护能力,维护生态系统的完整性。
六、预算和人力资源1.预算:编制监测项目的预算,在设备购置、样本分析和数据处理等方面进行合理配置,确保监测工作的顺利进行。
地表水水质监测的方案
地表水水质监测的方案地表水水质监测方案一、明确监测目的本方案的监测目的包括以下三个方面:1.对校园内各区域用水及水质进行监测,掌握校园水质情况。
2.进一步熟练掌握水质监测中的各项实验操作技术,掌握地表水中各项指标与污染物的测定方法。
3.学会应用环境质量标准评价校园环境,并提出改善校园水质的意见和建议。
二、基础资料的收集在___至生化楼实验区域的水域进行监测。
该河段属于珠江水系广州段,根据《广州市水文地质分析》,该水域的有关资料如下:1.地形地貌:广州市地处珠江三角洲的北部边缘,是三角洲平原与低山丘陵区的过渡带。
东北部是由花岗岩与变质岩组成的低山丘陵区,海拔标高一般在300米以下,地形高差250米左右,坡度15°~35°,水系呈树枝状,切割强烈。
西部是由河流堆积组成的冲积平原,南部为微向南倾斜的珠江三角洲平原,标高5~7米,其中分布零星的残丘和苔地。
2.气象:广州市地处南亚热带,属海洋性季风气候,年平均气温为21.4℃~21.9℃,最热是7~8月,平均气温28.0℃~28.7℃,绝对最高气温为38.7℃。
年平均降雨量1725.17毫米,相对集中在4~9月的雨季,占全年的82.1%,兼受台风的袭扰,年平均蒸发量1603.15毫米。
3.水文:珠江、东江和溪流河在本区交汇,经狮子洋入海,是区域地下水的最低排泄基准面。
冲积平原和三角洲平原,地势低平,地表水系发达,水网密布,分布有大中小河流34条。
根据水资源航空遥感调查,地表水体类别有:库唐、涌溪、干流河道,全区水域面积平方千米,占广州市区面积的10.8%。
据黄埔潮汐站资料,珠江平均水位为0.72米,平均低潮水位为-0.88米,涨潮最大朝差2.56米,落潮最大潮差3.00米。
4.监测河段概况:经实地考察,此河段是珠江至校园图书馆中心湖之间的河段,全长约400米,宽约4.5米,水深约1.5米,流经生化实验楼和工程实验楼,水质受到这两处污染源的影响。
地表水监测方案
地表水监测方案一、监测目的地表水监测的主要目的是为了及时、准确地掌握地表水体的水质状况,为水资源保护、水污染防治、水环境管理以及生态环境保护等提供科学依据和技术支持。
通过对地表水的监测,可以了解水体中污染物的种类、浓度、时空分布特征,评估水体的污染程度和生态健康状况,为制定合理的环境保护政策和措施提供决策依据。
二、监测范围监测范围应涵盖区域内的主要河流、湖泊、水库等地表水体。
根据当地的水系分布、污染源分布以及环境保护的重点区域,确定具体的监测断面和监测点位。
对于河流,应在干流和主要支流的上、中、下游设置监测断面,包括出入境断面、城市河段断面、重要功能区断面等。
对于湖泊和水库,应在主要入湖(库)口、湖心、出湖(库)口等位置设置监测点位。
三、监测项目1、物理指标水温、色度、浊度、透明度、电导率等。
2、化学指标pH 值、溶解氧(DO)、化学需氧量(COD)、生化需氧量(BOD)、氨氮(NH₃N)、总磷(TP)、总氮(TN)、重金属(如汞、镉、铅、铬等)、石油类、挥发酚等。
3、生物指标叶绿素 a、浮游生物、底栖生物等。
4、其他指标流量、流速等水文参数。
四、监测频次1、河流对于重点河流的出入境断面、城市河段断面等,每月监测不少于 1 次;对于一般河流的监测断面,每季度监测不少于 1 次。
在丰水期、平水期和枯水期应适当增加监测频次。
2、湖泊、水库对于重要的湖泊和水库,每月监测不少于 1 次;对于一般的湖泊和水库,每季度监测不少于 1 次。
在水体水质变化较大或发生突发环境事件时,应及时进行加密监测。
五、监测方法1、水样采集按照相关标准和规范要求,选择合适的采样器具和采样方法。
采样时应注意避免搅动水底沉积物,保证水样的代表性。
对于不同的监测项目,可能需要采集不同类型的水样,如瞬时水样、混合水样、综合水样等。
2、现场测定对于一些能够在现场测定的物理指标和化学指标,如水温、pH 值、溶解氧等,应在采样现场进行测定,并记录测定结果。
地表水水质监测监测方案
地表水水质监测1.监测范围地表水监测断面以《“十三五”国家地表水环境质量监测网设置方案》(环监测〔2016〕30号)为准,监测范围为2050个国家考核断面,包括1940个地表水和195个入海控制断面,其中85个为地表水与入海河流双重考核断面。
新增国考地表水断面1646个。
2.监测项目(1)现场监测项目河流断面现场监测项目为水温、pH、溶解氧和电导率、浊度。
湖库点位现场监测项目为水温、pH、溶解氧、电导率、透明度和浊度。
入海河流控制断面现场监测项目为水温、pH、溶解氧、电导率、盐度和浊度。
(2)实验室分析项目河流断面实验室分析项目为高锰酸盐指数、化学需氧量、五日生化需氧量、氨氮、总磷、总氮、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂和硫化物。
湖库点位实验室分析项目为高锰酸盐指数、化学需氧量、五日生化需氧量、氨氮、总磷、总氮、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物和叶绿素a。
入海控制断面实验室分析项目为高锰酸盐指数、化学需氧量、五日生化需氧量、氨氮、总磷、总氮、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物、硝酸盐氮和亚硝酸盐氮。
可选测硫酸盐、氯化物、铁、锰、硅酸盐项目。
(3)新增1646个国控断面监测项目按照水体类型,开展相关监测项目的水质监测。
断面属性为入海口的断面按照入海控制断面要求开展监测。
(4)245个国控省界断面按照《关于开展国控地表水部分省界断面流量监测工作的通知》(总站水字[2018]451号)的要求开展流量监测。
3.监测频次“十三五”国家考核断面已建设水质自动站,且稳定运行的断面,按季监测,每季的2、5、8、11月开展监测。
对于水质不稳定的,动态开展加密监测。
西藏、青海、新疆、海南4省(区)水质稳定的和国界等偏远的196个“十三五”国家考核断面,按季监测,即2、5、8、11月开展监测。
地表水水质监测方案
地表水水质监测方案地表水是指地表自然水体中的水,包括江河湖泊、水库、运河等。
地表水水质监测是为了保护和管理地表水资源,保障人民群众的饮用水安全,维护生态环境的重要手段。
因此,建立科学合理的地表水水质监测方案至关重要。
一、监测目标。
地表水水质监测的首要目标是保障人民群众的饮用水安全。
其次,还包括保护水生态环境,维护水资源的可持续利用。
监测目标的明确性是制定监测方案的基础。
二、监测内容。
地表水水质监测内容主要包括水体的理化指标和生物学指标。
理化指标包括水质的透明度、浊度、PH值、溶解氧、化学需氧量等。
生物学指标包括水中微生物、浮游生物和底栖生物的种类和数量。
三、监测频次。
地表水水质监测的频次应根据监测目标和监测内容确定。
一般来说,对于重点保护水域,监测频次应该较高,而对于一般水域,监测频次可以适当降低。
监测频次的确定需要考虑到监测成本、监测数据的时效性等因素。
四、监测方法。
地表水水质监测方法包括野外采样和实验室分析两个环节。
野外采样要求采样点的选择具有代表性,采样方法应当规范,避免外界因素的干扰。
实验室分析要求分析方法准确可靠,分析设备和仪器的维护保养要到位。
五、监测数据处理与评价。
监测数据的处理应当科学规范,要进行数据质量控制和质量评价。
监测数据的评价应当结合当地的水质标准和相关法律法规,对水质状况进行科学客观的评价。
六、监测结果应用。
地表水水质监测结果应当及时向社会公开,为政府决策和公众参与提供科学依据。
同时,监测结果还应当用于水资源管理和环境保护工作中,为改善水质状况提供技术支撑。
七、监测方案的完善与改进。
地表水水质监测方案应当不断完善和改进,结合实际情况进行调整和优化。
同时,应当加强监测技术和方法的研究,提高监测数据的准确性和可靠性。
总结:地表水水质监测是保障人民群众饮用水安全和维护生态环境的重要手段,建立科学合理的监测方案对于实现这一目标至关重要。
监测方案的制定需要明确监测目标和内容,确定监测频次和方法,科学处理和评价监测数据,充分应用监测结果,并不断完善和改进监测方案。
地表水监测方案
地表水监测方案一、背景介绍地表水是指地球表面上的江河湖泊、水库、河口入海口以及地下水渗出而成的水体。
地表水的监测是为了保障水资源的可持续利用,维护环境生态平衡,防止水污染和水灾害的发生。
本文将提出一种地表水监测方案,旨在确保水质安全和水环境的持续改善。
二、监测目标地表水监测方案的目标是全面了解地表水的水质状况,及时监测和预警水环境的变化,为水资源管理和环境保护提供科学依据。
三、监测内容1.水质监测水质监测是地表水监测方案的核心内容之一。
应对水质进行定期监测,包括嗅觉、色度、浊度、PH值、溶解氧、五日生化需氧量(BOD5)等指标的监测。
同时还应检测水中常见的重金属、有机物、细菌和寄生虫等污染物,以确保水质符合相关标准。
2.流量监测流量监测是为了掌握地表水的变化情况,包括水体的水位、流速和流量。
通过水文测站、流速仪和涡轮流量计等设备进行实时监测,并记录相关数据,以便进行水资源的科学调度和管理。
3.水质源追踪水质源追踪是为了确定地表水污染的来源。
通过采集水样进行分析,并结合水文学和地理信息系统技术,追踪和评估水污染源的位置和可能影响范围,为水污染的治理提供科学依据。
4.水生态监测水生态监测是为了评估地表水生态系统的健康状况,包括水生物的物种组成和数量分布、水生态系统的生产力和稳定性等因素。
通过进行水生态调查和生物分析,评估地表水生态系统的健康状况,并提出相应的保护和修复措施。
四、监测方法1.定点采样根据监测需求,在不同的地点设置监测站点,并按照一定的频率定期采集水样。
采样点的选择应包括不同水域类型,如江河湖泊、水库和河口入海口等,以及受不同污染物影响的区域。
2.现场监测对于水质和流量等指标的监测,应配备相应的现场监测设备,如PH计、溶解氧仪、浊度计、涡轮流量计等。
通过现场监测,可以及时掌握水环境的变化情况,并根据需要进行调整和预警。
3.实验室分析对采集到的水样进行实验室分析,包括常规的水质指标测试、污染物浓度分析以及生物样本的物种鉴定等。
地表水监测方案
地表水监测方案一、监测目的地表水监测的主要目的是及时、准确地掌握地表水环境质量状况及其变化趋势,为水资源保护、水污染防治和水环境管理提供科学依据。
通过监测,可以了解地表水的物理、化学和生物特性,评估水体的污染程度,确定主要污染物及其来源,预测水体质量的发展趋势,为制定合理的环境保护政策和措施提供支持。
二、监测范围本次地表水监测范围包括_____地区内的主要河流、湖泊、水库等水体。
具体监测点位将根据水体的功能、规模、水流特征以及周边污染源分布等因素进行合理布设。
三、监测项目(一)物理指标1、水温:使用水温计或热敏电阻传感器进行测量,了解水体的热状况。
2、色度:通过目视比色法或分光光度法测定,反映水体的颜色程度。
3、浊度:采用浊度仪测量,表征水体中悬浮物质的含量。
(二)化学指标1、 pH 值:使用 pH 计直接测量,反映水体的酸碱性。
2、溶解氧(DO):采用碘量法或溶解氧测定仪测定,是评估水体自净能力和水生生物生存状况的重要指标。
3、化学需氧量(COD):常用重铬酸钾法或快速消解分光光度法测定,反映水体中有机物的污染程度。
4、生化需氧量(BOD):通过稀释与接种法测量,用于评估水体中可生物降解有机物的含量。
5、氨氮:采用纳氏试剂分光光度法或水杨酸次氯酸盐分光光度法测定,是反映水体受氮污染的重要指标。
6、总磷:使用钼酸铵分光光度法测量,表征水体中磷元素的含量。
7、总氮:通过碱性过硫酸钾消解紫外分光光度法测定,反映水体中氮元素的总量。
8、重金属:包括铜、锌、铅、镉、汞、铬等,采用原子吸收分光光度法、原子荧光光谱法或电感耦合等离子体质谱法进行检测。
(三)生物指标1、浮游植物:通过显微镜观察和计数,了解水体中藻类的种类和数量。
2、浮游动物:同样通过显微镜观察和分类计数,评估水生生态系统的结构和功能。
四、监测频率根据水体的类型和功能,以及污染状况的不同,确定相应的监测频率。
1、对于主要河流,每月监测一次。
2、重点湖泊和水库,每季度监测一次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地表水水质监测方案
一.明确监测目的
(1)对校园内教学区、生活区、实验区、食堂商业区、校园景观的用水及水质进行监测, 掌握校园水质情况。
(2)进一步熟练掌握水质监测中的各项实验操作技术, 掌握地表水中各中指标与污染物的测定方法。
(3)学会应用环境质量标准评价校园环境, 并提出改进校园水质的意见和建议。
二.基础资料的收集
广州大学图书馆至生化楼实验区域的水域进行监测, 该河段属于珠江水系广州段, 根据《广州市水文地质分析》, 该水域的有关资料如下:
1.地形地貌
广州市地处珠江三角洲的北部边缘, 是三角洲平原与低山丘陵区的过渡带, 地形总的特征是东北高, 西南低。
东北部是由花岗岩与变质岩组成的低山丘陵区, 海拔标高一般在300m一下, 地形高差250m左右, 坡度15°~35°, 水系呈树枝状, 切割强烈。
西部是由河流堆积组成的冲积平原, 南部为微向南倾斜的珠江三角洲平原, 标高5~7m, 其中分布零星的残丘和苔地。
2.气象
广州市地处南亚热带, 属海洋性季风气候, 年平均气温为21.4℃~21.9℃, 北部21.4℃, 中部21.7℃, 南部21.9℃。
最热是7~8月, 平均气温28.0℃~ 28.7℃, 绝对最高气温是38.7℃。
年平均降雨量172517mm, 相对集中在4 ~9月的雨季, 占全年的82.1%, 兼受台风的袭扰, 年平均蒸发量160315mm。
3.水文
珠江、东江和溪流河在本区交汇, 经狮子洋入海, 是区域地下水的最低排泄基准面。
冲积平原和三角洲平原, 地势低平, 地表水系发达, 水网密布, 分布有大中小河流34条。
根据水资源航空遥感调查, 地表水体类别有: 库唐、涌溪、
干流河道, 全区水域面积16011Km 2
, 占广州市区面积的10.8%。
据黄埔潮汐站资料, 珠江平均高潮水位位0.72m, 平均低潮水位为-0.88m, 涨潮最大朝差2.56m, 落潮最大潮差3.00m 。
4.监测河段概况
经实地考察, 此河段是珠江至校园图书馆中心湖之间的河段, 全长约400m, 宽约4.5m, 水深约1.5m, 流经生化实验楼和工程实验楼, 水质受到这两次污染源的影响。
监测河段在学校的位置示意图如下:
三. 确定监测项目
《地表水环境质量标准》( GB3838- ) 及《地表水和污水监测技术规范》( HJ/T91— ) 中, 为了满足地表水各类使用功能和生态环境质量要求, 将监测项目分为基本项目和选测项目。
本方案主要测定了水温、 PH 、 溶解氧、 高锰酸盐指数这几个基本项目。
四. 设计监测网点监测断面和采样点的设置及水样采集监测
1. 监测断面
结合实际情况, 景观入水口( 即珠江入水口) 为对照面, 另设置一个控
生化
工程南工程北楼
制断面:
(1)控制断面: 生化楼
2.采样点位的确定
由于研究的河流区域没有形成完整的江河水系, 所监测的水面宽约为5m, 水深约为2m, 据此, 在水面上设一条中弘线, 在该垂线上距水面0.5m
处设为采样点。
用A代表采样点。
如图2所示:
3.采样时间和采样频率的确定
拟定监测时间为1天, 用混合采样法, 每天分别于早上9.00, 中午
12.00, 晚上18.00采样三次。
4.水样的采集与保存
采集的水样为表层水水样, 采用适当的容器( 如塑料桶) 直接采集。
对测定pH值、
溶解氧、高猛酸盐指数等项目进行单独采样。
采样结束后, 从采集到分析测定这段时间内, 采用冷藏法保存待测水样( 见表1)
表1 水样保存方法
测定项目容器材质保存方法保存期备注
浊度P或G 4℃, 暗处24h 现场测定
色度P或G 4℃24h 现场测定
pH值P或G 4℃12h 现场测定
电导率P或G 4℃24h 现场测定
溶解氧溶解氧瓶加MnSO4碱性24h
KI-NaNO3溶液
固定, 4℃, 暗处
高锰酸钾指数G 加H2SO4使pH48h
五.水质监测分析方法
根据中国《环境检测技术规范》规定的检测项目, 结合实验室条件, 检测项目及分析方
如下表:
表2 监测项目与分析方法
序号监测项目分析方法来源
1 水温温度计法GB 13195-91
2 pH值玻璃电极法GB 6920-86
3 浊度浊度仪法
4 色度稀释倍数法CJ/T 51- ( 29)
5 电导率电导仪法GB/T 6908-
6 溶解氧碘量法GB 7489-87
7 高锰酸钾指数酸性法GB 11892-89
8 总硬度EDTA滴定法GB 6909.2-86
本次实验主要是水质的测定, 包括水中溶解氧的测定和水中高锰酸盐指数的测定。
A.水中溶解氧的测定
A1、仪器与试剂
1、仪器
( 1) 250~500mL溶解氧瓶或250mL具塞碘量瓶。
( 2) 250mL三角瓶。
2、试剂
( 1) 硫酸锰溶液: 称取4.8g硫酸锰(MnSO4.4H2O)或3.64gMnSO4.H2O置于烧杯中, 使之溶于水, 用水稀释至10mL。
将此溶液加至酸化过的碘化钾溶液中, 遇淀粉不得产生蓝色( 溶液中不含高价锰) 。
( 2) 碱性碘化钾溶液: 称取500g氢氧化钠溶解于300~400mL水中, 另称取150g 碘化钾( 或135gNaI) 溶于200mL水中, 待氢氧化钠溶液冷却后, 将两溶液合并,。