有理数单元检测题10
【精选】人教版七年级数学上第一章有理数单元练习试题(含答案)
人教版初中数学七年级上册第1章《有理数》单元测试题一、选择题(本大题共10小题,每小题3分,共30分)1.若汽车向南行驶30米记作+30米,则-50米表示()A.向东行驶50米B.向西行驶50米C.向南行驶50米D.向北行驶50米2.-|-2|的值是()A.-2 B.2 C.±2 D.43.大于-1且小于3的整数共有()A.2个B.3个C.4个D.5个4.下列四个数中,与-2018的和为0的数是()1 A.-2018 B.2018 C.0 D.-20185. “中国天眼”即500米口径球面射电望远镜(FAST),是世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面.将数据4600表示成a×10n(其中1≤a<10,n为整数)的形式,则n的值为()A.-1 B.2 C.3 D.46.检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,下列最接近标准质量的是()A B C D7.图1所示的数轴单位长度为1,如果点A,B表示的数的绝对值相等,那么点B表示的数是()A.-4 B.-2 C.0 D.4图18.下列说法中不正确的是()A.在数轴上能找到表示任何有理数的点B.若a ,b 互为相反数,则ba =-1 C.若一个数的绝对值是它本身,则这个数是非负数D.近似数7.30所表示的准确数的范围是大于或等于7.295,小于7.3059. 如图2,数轴上点A 表示的有理数为a ,点B 表示的有理数为b ,则下列式子中成立的是( )A .a+b >0B .a+b <0C .a-b >0D .|a|=|b|图210.用十进制计数法表示正整数,如365=300+60+5=3×102+6×101+5,用二进制计数法来表示正整数,如:5=4+1=1×22+0×21+1×1,记作5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作14=(1110)2,则(10101)2表示数( )A. 41B. 21C. 20D. 24 二、填空题(本大题共6小题,每小题4分,共24分)11.在有理数-0.2,0,321,-5中,整数有____________. 12. 计算:(-1)6+(-1)7=____________.13. 两会期间,百度APP 以图文、图案、短视频、直播等多种形式展现两会内容.据统计,直播内容237场,峰值观看人数一度高达3 800 000人,将数据3 800 000用科学记数法表示为 .14.已知线段AB 在数轴上,且它的长度为4,若点A 在数轴上对应的数为-1,则点B 在数轴上对应的数为 .15.已知一张纸的厚度是0.1 mm ,若将它连续对折10次后,则它折后的厚度为 mm .16.观察下列数据,找出规律并在横线上填上适当的数:1,-43,95,-167, , , ,… 三、解答题(本大题共6小题,共52分)17.(每小题3分,共6分)比较下列各组数的大小:(1)|-4+5|与|-4|+|5|; (2)2×32与(2×3)2.18.(每小题4分,共8分)计算:(1)|-2|-(-3)×(-15)÷(-9);(2)-12018+(-21+32-41)×24.19.(7分)当温度每上升1℃时,某种金属丝伸长0.002 mm ;反之,当温度每下降1℃时,金属丝缩短0.00 2mm.把15℃的这种金属丝加热到60 ℃,再使它冷却降温到5 ℃,求最后的长度比原来伸长了多少.20.(9分)计算6÷(-21+31)时,李明同学的计算过程如下,原式=6÷(-21)+6÷31=-12+18=6.请你判断李明的 计算过程是否正确,若不正确,请你写出正确的计算过程,并正确计算出(21-61+91)÷(-361).21.(10分)如图3,已知点A 在数轴上表示的数为-1,从点A 出发,沿数轴向右移动3个单位长度到达点C ,点B 所表示的有理数是5的相反数,按要求完成下列各题.(1)请在数轴上标出点B 和点C ;(2)求点B 所表示的数与点C 所表示的数的乘积;(3)若将该数轴进行折叠,使得点A 和点B 重合,则点C 和哪个数所对应的点重合?图322.(12分)一辆货车从仓库装满货物后在东西街道上运送水果,规定向东为正方向,某次到达的五个地点分别为A,B,C,D,E,最后回到仓库,货车行驶的记录(单位:千米)如下:+1,+3,-6,-l,-2,+5.(1)请以仓库为原点,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)求出该货车共行驶了多少千米;(3)如果货车运送的水果以l00千克为标准质量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果质量可记为:+50,-l5,+25,-l0,-15,则该货车运送的水果总质量是多少千克?附加题(共20分,不计入总分)1.(8分)如图,点P,Q在数轴上表示的数分别是-8,4,点P以每秒2个单位长度的速度向右运动,点Q以每秒1个单位长度的速度向左运动,当运动秒时,P,Q 两点相距3个单位长度.2.(12分)对于有理数a,b,定义运算“⊕”:a⊕b=ab-2a-2b+1.(1)计算5⊕4的结果;(2)计算[(-2)⊕6]⊕3的结果;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程.(第一章 有理数测试题参考答案一、1.D 2.A 3.B 4. B 5.C 6.C 7.B 8.B 9. A 10.B二、11. 0,-5 12.0 13. 3.8×106 14.3或-5 15. 102.4 16. 259,-3611,4913 提示:第n 个数,分母是n 2,分子是2n-1,第奇数个数是正数,第偶数个数是负数.三、17.(1)|-4+5|=|1|=1,|-4|+|5|=4+5=9,所以|-4+5|<|-4|+|5|.(2)2×32=2×9=18,(2×3)2=62=36,所以2×32<(2×3)2.18. 解:(1) 原式=2+3×15×91=2+5=7. (2)原式=−1−21×24+32×24−41×24=−1−12+16−6=−3. 19. 解:(60-15)×0.002-(60-5)×0.002=45×0.002-55×0.002=(45-55)×0.002=(-10)×0.002=-0.02(mm ).答:最后的长度比原来伸长了-0.02 mm.20.解:李明的计算过程不正确,正确计算过程为:6÷(-21+31)=6÷(-61)=-36.原式=(21-61+人教版初中数学七年级上册第1章 《有理数》单元测试题(一、单选题1.移动互联网已经全面进入人们的日常生活,全国用户总数量超过3.87亿人,将3.87亿用科学记数法表示应为( )A. 0.387×109B. 3.87×108C. 38.7×107D. 387×1062.某市地铁一号与地铁二号线接通后,该市交通通行和转换能力成倍增长,该工程投资预算约为930000万元,这一数据用科学记数法表示为()A. 9.3×105万元B. 9.3×106万元C. 0.93×106万元D. 9.3×104万元3.一种面粉的质量标识为“25±0.20千克”,下列面粉中合格的是( )A. 25.30千克B. 24.70千克C. 25.51千克D. 24.82千克4.下列结论错误的是( )A. 若a,b 异号,则a b <0,<0B. 若a,b 同号,则a b >0,>0C. D.5.如果x <0,y >0,x +y <0,那么下列关系式中,正确的是( )A. x >y >-y >-xB. -x >y >-y >xC. y >-x >-y >xD. -x >y >x >-y6.28 cm 接近于 ( )A. 珠穆朗玛峰的高度B. 三层楼的高度C. 姚明的身高D. 一张纸的厚度7.我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为( )A. 3.5×106B. 3.5×107C. 35×105D. 0.35×1088.下列各式:-(-5)、-|-5|、-52、(-5)2、 ,计算结果为负数的有( )A. 4个B. 3个C. 2个D. 1个9.把(﹣5)﹣(+7)+(﹣3)+(﹣11)写成省略加号的代数和的形式,正确的是( )A. ﹣5+7﹣3﹣11B. (﹣5)(+7)(﹣3)(﹣11)C. ﹣5﹣7﹣3﹣11D. ﹣5﹣7+﹣3+11二、填空题10.一个数的平方与这个数的立方相等,那么这个数是________.11.按要求取近似数:0.02049≈________(精确到0.01).12.绝对值小于的整数有________.13.填空:(1)-40÷(-5)=__________;【答案】8(1)(-36)÷6=________;(2)8÷(-0.125)=________;(3)________÷32=0.14.①若,则a与0的大小关系是a ________0.②若,则a与0的大小关系是a ________0.15.比较大小:- ________- .三、计算题16.计算:.17.18.(1)-17+3;(2)-32+ ÷(-3).四、解答题19.已知有理数a在数轴上的位置如图所示:试比较a,-a,|a|,a2和的大小,并将它们按从小到大的顺序,用“<”或“=”连接起来.20.卫星绕地球表面做圆周运动的速度约为7.9×103米/秒,则卫星运行8×103秒所走的路程约是多少?21.某地一天中午12时的气温是6°C,傍晚5时的气温比中午12时下降了4°C,凌晨4时的温度比傍晚5时还低4°C,问傍晚5时的气温是多少?凌晨4时的气温是多少?答案一、单选题1.【答案】B【解析】【解答】解:将3.87亿用科学记数法表示为:3.87×108故选:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.2.【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】将930000用科学记数法表示为9.3×105.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】【解答】25+0.20=25.2;25−0.20=24.8∵25.2<25.3,∴A不符合题意;,24.7<24.8,∴B不符合题意;∵25.2<25.51,∴C不符合题意;∵25.2>24.82>24.8,∴D符合题意。
苏科版七年级上册《第2章-有理数》单元检测训练卷
苏科版七年级上册《第2章有理数》单元检测训练卷一、选择题(共10小题)1.在﹣,﹣|﹣6|,﹣(﹣5),﹣33,(﹣11)2,﹣20%,0,﹣22中正数的个数是()A.2个B.3个C.4个D.5个2.下列说法中不正确的是()A.﹣3表示的点到原点的距离是|﹣3|B.一个有理数的绝对值一定是正数C.一个有理数的绝对值一定不是负数D.互为相反数的两个数绝对值一定相等3.下列各对数中,互为相反数的是()A.﹣|﹣7|和+(﹣7)B.+(﹣10)和﹣(+10)C.(﹣4)3和﹣43D.(﹣5)4和﹣544.下列说法:①几个有理数的积是0,其中至少有一个有理数为0;②一个有理数的倒数等于它本身,则这个有理数是±1;③任何有理数的平方都是正数;④﹣1的奇数次幂等于﹣1.其中正确的个数是()A.1B.2C.3D.45.下列计算正确的是()A.﹣32=9 B.C.(﹣8)2=﹣16 D.﹣5﹣(﹣2)=﹣36.已知m是有理数,下列四个式子中一定是正数的是()A.|m|+2 B.|m| C.m﹣3 D.﹣|m|7.如果有理数a,b满足a+b>0,ab<0,则下列式子正确的是()A.当a>0,b<0时,|a|>|b| B.当a<0,b>0时,|a|>|b|C.a>0,b>0 D.a<0,b<08.5﹣3+7﹣9+12=(5+7+12)+(﹣3﹣9)是应用了()A.加法交换律B.加法结合律C.分配律D.加法的交换律与结合律9.若x为有理数,则丨x丨﹣x表示的数是()A.正数B.非正数C.负数D.非负数10.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80立方米,那么这个月甲用户应交煤气费()A.64元B.66元C.72元D.96元二、填空题(共8小题)11.把下列各数填在相应的大括号中.8,,0.275,0,,﹣6,﹣0.25,|﹣2|.正整数集合:{_________,…};整数集合:{_________,…};负整数集合:{_________,…};正分数集合:{_________,…}.12.把﹣22,(﹣2)2,﹣|﹣2|,按从小到大的顺序排列是_________.13.既不是正数也不是负数的数是_________;最大的负整数是_________,最小的正整数是_________;平方等于它本身的数是_________.14.如果x<0,y>0且x2=4,y2=9,则x+y=_________.15.大于﹣4而小于+3的整数是__________________.16.﹣43中幂的指数是_________,底数是_________,结果是_________.17.若﹣1<n<0,则n、n2、的大小关系是_________.18.观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,请你在观察规律之后并用你得到的规律填空:_________×_________+_________=502.三、解答题(共9小题,满分48分)19.(5分)(﹣125)÷17+(+315)÷17﹣(﹣166)÷17﹣()20.(5分)[﹣32×()2]÷().21.(5分)数轴上A点表示+7,B、C两点所表示的数是相反数,且C点与A点的距离为2,求B点和C点各对应什么数?22.(5分)小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东的方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?23.(5分)阅读下列材料:计算:50÷(﹣+).解法一:原式=50÷﹣50÷+50÷=50×3﹣50×4+50×12=550.解法二:原式=50÷(﹣+)=50÷=50×6=300.解法三:原式的倒数为(﹣+)÷50=(﹣+)×=×﹣×+×=故原式=300.上述得出的结果不同,肯定有错误的解法,你认为解法_________是错误的.在正确的解法中,你认为解法_________最简捷.然后,请你解答下列问题:计算:()÷().24.(5分)观察下列各式:①9×0+1=1;②9×1+2=11;③9×2+3=21;④_________;⑤9×4+5=41;….(1)请你在横线上填上适当的算式;(2)按此规律,第6个式子是什么?第100个式子呢?第2 011个式子呢?25.(6分)小红爸爸上星期买进某公司股票1 000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一二三四五每股涨跌+4 ﹣1 ﹣6(1)通过上表你认为星期三收盘时,每股是多少元?(2)本周内每股最高是多少元?26.(6分)请先观察下面的等式:①32﹣12=8=8×1;②52﹣32=16=8×2:③72﹣52=24=8×3;④92﹣72=32=8×4…(1)请写出第⑦、⑩个等式;(2)通过观察,你能发现什么规律?猜想并写出第n个等式;(3)请你用上述规律计算2 0132﹣2 0112的值.27.(6分)相传宋朝文学家苏东坡有一次画了一幅《百鸟归巢》,并且给这幅画题了一首诗:天生一只又一只,三四五六七八只,凤凰何少鸟何多,啄尽人间千石谷.这首诗既然是题“百鸟图”,全诗却不见“百”字的踪影,你也许会问,画中到底是100只鸟还是8只鸟呢?不要急,请把诗中出现的数字写成一行:1 1 3 4 5 6 7 8然后,你动动脑筋,在这些数字之间加上适当的运算符号就会有100出现了,应该加上哪些运算符号呢?苏科版七年级上册《第2章有理数》2013年单元检测训练卷(一)参考答案与试题解析一、选择题(共10小题)1.在﹣,﹣|﹣6|,﹣(﹣5),﹣33,(﹣11)2,﹣20%,0,﹣22中正数的个数是()A.2个B.3个C.4个D.5个考点:正数和负数;相反数;绝对值.专题:应用题.分析:先把每个数进行化简,再进行判断即可得出答案.解答:解:﹣=﹣,﹣|﹣6|=﹣6,﹣(﹣5)=5,﹣33=﹣27,(﹣11)2=121,﹣20%=﹣0.2,0既不是正数也不是负数,﹣22=﹣4,故正数有2个.故选A.点评:本题主要考查了正负数的判断,注意要先进行化简,难度适中.2.下列说法中不正确的是()A.﹣3表示的点到原点的距离是|﹣3|B.一个有理数的绝对值一定是正数C.一个有理数的绝对值一定不是负数D.互为相反数的两个数绝对值一定相等考点:绝对值.专题:计算题.分析:A、根据绝对值的意义可知:|a|在数轴上表示a的点到原点的距离,即可判断本选项不符合题意;B、可举一个反例,若这个有理数为0,由0的绝对值还是0,而0不为正数,本选项符合题意;C、根据绝对值的意义可知:在数轴上表示的这个点到原点的距离,由距离恒大于等于0得到不符合题意;D、根据相反数的定义可知只有符合不同的两个数互为相反数,可知互为相反数的两数到原点的距离相等,即两数的绝对值相等,不符合题意.解答:解:A、根据绝对值的意义|﹣3|表示在数轴上表示﹣3的点到原点的距离,故本选项正确,不符合题意;B、若这个有理数为0,则0的绝对值还是0,本选项错误,符合题意;C、根据绝对值的意义,|a|的绝对值表示在数轴上表示a的点到原点的距离,故任意有理数的绝对值为非分数,故不可能为负数,本选项正确,不符合题意;D、根据相反数的定义可知:只有符合不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,本选项正确,不符合题意.故选B.点评:此题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a的这个点到原点的距离,掌握绝对值的意义是解本题的关键.3.下列各对数中,互为相反数的是()A.﹣|﹣7|和+(﹣7)B.+(﹣10)和﹣(+10)C.(﹣4)3和﹣43D.(﹣5)4和﹣54考点:有理数的乘方;相反数.分析:先根据绝对值的性质,化简符号的方法,乘方的意义化简各数,再根据相反数的定义判断.解答:解:∵(﹣5)4+(﹣54)=0,∴(﹣5)4和﹣54互为相反数.故选D.点评:主要考查了相反数的概念、绝对值的化简以及乘方的意义.4.下列说法:①几个有理数的积是0,其中至少有一个有理数为0;②一个有理数的倒数等于它本身,则这个有理数是±1;③任何有理数的平方都是正数;④﹣1的奇数次幂等于﹣1.其中正确的个数是()A.1B.2C.3D.4考点:有理数的乘方;倒数;有理数的乘法.专题:计算题.分析:①几个有理数的积是0,其中至少有一个有理数为0,本选项正确;②一个有理数的倒数等于它本身,则这个有理数是±1,本选项正确;③任何有理数的平方都是非负数,不光是正数,本选项错误;④﹣1的奇数次幂等于﹣1,本选项正确.解答:解:①几个有理数的积是0,其中至少有一个有理数为0,本选项正确;②一个有理数的倒数等于它本身,则这个有理数是±1,本选项正确;③任何有理数的平方都是非负数,包括正数和0,本选项错误;④﹣1的奇数次幂等于﹣1,本选项正确.故选C.点评:此题考查了有理数的乘方,倒数,以及有理数的乘法,熟练掌握运算法则是解本题的关键.5.下列计算正确的是()A.﹣32=9 B.C.(﹣8)2=﹣16 D.﹣5﹣(﹣2)=﹣3考点:有理数的混合运算.专题:计算题.分析:本题可按照有理数的混合运算法则进行运算,从而选出正确的答案.解答:解:A、﹣32=﹣9,故本选项错误;B、(﹣)÷(﹣4)=,故本选项错误;C、(﹣8)2=64,故本选项错误;D、正确.故选D.点评:本题主要考查了有理数的混合运算,应多加练习.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.6.已知m是有理数,下列四个式子中一定是正数的是()A.|m|+2 B.|m| C.m﹣3 D.﹣|m|考点:非负数的性质:绝对值.分析:根据非负数的性质对各选项分析判断后利用排除法求解.解答:解:A、∵|m|≥0,∴|m|+2≥2,是正数,故本选项正确;B、m=0时,|m|=0,既不是正数也不是负数,故本选项错误;C、m≤3时,m﹣3≤0,不是正数,故本选项错误;D、﹣|m|≤0,不是正数,故本选项错误.故选A.点评:本题主要考查了绝对值非负数的性质,举反例排除是本题的最大特点.7.如果有理数a,b满足a+b>0,ab<0,则下列式子正确的是()A.当a>0,b<0时,|a|>|b| B.当a<0,b>0时,|a|>|b|C.a>0,b>0 D.a<0,b<0考点:有理数大小比较;有理数的加法;有理数的乘法.分析:根据有理数的加法法则(同号两数相加,取原来的复合式,并把绝对值相加,异号两数相加,取绝对值较大的加数的符号,并用较大绝对值减去较小的绝对值小)和有理数的乘法法则进行判断即可.解答:A、∵a+b>0,∴当a>0,b<0时,|a|>|b|,故本选项正确;B、∵a+b>0,∴当a<0,b>0时,|a|<|b|,故本选项错误;C、∵ab<0,∴a b一正一负,故本选项错误;D、∵a+b>0,∴不能a b都是负数,当a b都是负数时a|b<0,故本选项错误.故选A.点评:本题考查了有理数的加法和乘法的应用,主要考查学生的理解能力和辨析能力.8.5﹣3+7﹣9+12=(5+7+12)+(﹣3﹣9)是应用了()A.加法交换律B.加法结合律C.分配律D.加法的交换律与结合律考点:有理数的加法.分析:本题需先根据加法的交换律、加法的结合律等知识点进行判断,即可求出答案.解答:解:根据意义得:5﹣3+7﹣9+12=(5+7+12)+(﹣3﹣9),故用了加法的交换律与结合律.故选D.点评:本题主要考查了有理数的加法,在解题时要根据加法的交换律、加法的结合律等知识点进行判断是本题的关键.9.若x为有理数,则丨x丨﹣x表示的数是()A.正数B.非正数C.负数D.非负数考点:合并同类项;绝对值.分析:先根据绝对值的定义化简丨x丨,再合并同类项.解答:解:(1)若x≥0时,丨x丨﹣x=x﹣x=0;(2)若x<0时,丨x丨﹣x=﹣x﹣x=﹣2x>0;由(1)(2)可得丨x丨﹣x表示的数是非负数.故选D.点评:解答此题要熟知绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80立方米,那么这个月甲用户应交煤气费()A.64元B.66元C.72元D.96元考点:有理数的混合运算.专题:应用题.分析:本题中的应交煤气费=不超过60立方米的费用+超过60立方米的费用.解答:解:这个月甲用户应交煤气费=60×0.8+(80﹣60)×1.2=48+24=72(元).故选C.点评:本题考查了有理数的混合运算在实际生活中的应用.二、填空题(共8小题)11.把下列各数填在相应的大括号中.8,,0.275,0,,﹣6,﹣0.25,|﹣2|.正整数集合:{8,|﹣2|,…};整数集合:{8,0,﹣6,|﹣2|,…};负整数集合:{﹣6,…};正分数集合:{,0.275,…}.考点:有理数.分析:根据正整数、整数、负整数、正分数的定义分别找出相应的数即可.解答:解:正整数集合:8,|﹣2|;整数集合:8,0,﹣6,|﹣2|;负整数集合:﹣6;正分数集合:,0.275.故答案为:8,|﹣2|;8,0,﹣6,|﹣2|;﹣6;,0.275.点评:此题考查了有理数,用到的知识点是有理数的分类:有理数,注意不要漏数.12.把﹣22,(﹣2)2,﹣|﹣2|,按从小到大的顺序排列是﹣22<﹣|﹣2|<﹣<(﹣2)2.考点:有理数的乘方;有理数大小比较.分析:先根据平方法则及绝对值的性质计算出﹣22,(﹣2)2,﹣|﹣2|的值,再比较各数的大小即可.解答:解:∵﹣22=﹣4,(﹣2)2=4,﹣|﹣2|=﹣2,﹣4<﹣2<﹣<4,∴﹣22<﹣|﹣2|<﹣<(﹣2)2.点评:此题比较简单,考查的是有理数比较大小的方法,解答此题的关键是熟知以下知识:(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数相比较,绝对值大的反而小.13.既不是正数也不是负数的数是0;最大的负整数是﹣1,最小的正整数是1;平方等于它本身的数是1、0.考点:有理数;有理数的乘方.分析:根据0的特点、正整数和负整数的性质,平方的性质填空即可.解答:解:既不是正数也不是负数的数是0;最大的负整数是﹣1;最小的正整数是1;平方等于它本身的数是1和0;故答案为:0,﹣1,1,1、0.点评:此题考查了有理数,用到的知识点是有理数的基础知识和0的特点、正整数和负整数的性质,平方的性质,需要熟练记准记熟.14.如果x<0,y>0且x2=4,y2=9,则x+y=1.考点:平方根;有理数的加法;有理数的乘方.专题:计算题.分析:x2=4即x是4的平方根,因而根据x<0,y>0且x2=4,y2=9,就可确定x,y的值,进而求解.解答:解:∵x2=4,y2=9,∴x=±2,y=±3,又∵x<0,y>0,∴x=﹣2,y=3,∴x+y=﹣2+3=1.故答案为:1.点评:本题主要考查了平方根的意义,根据条件正确确定x,y的值是解题关键.15.大于﹣4而小于+3的整数是﹣3,﹣2,﹣1,0,1,2±3,±4,±5.考点:有理数大小比较;绝对值.分析:根据有理数的大小比较法则得出即可;求出绝对值不小于2.1且不大于5.3的整数有±3,±4,±5,填上即可.解答:解:大于﹣4而小于+3的整数是﹣3,﹣2,﹣1,0,1,2,绝对值不小于2.1且不大于5.3的整数是±3,±4,±5,故答案为:﹣3,﹣2,﹣1,0,1,2,±3,±4,±5.点评:本题考查了绝对值和有理数的大小比较的应用,主要考查学生运用法则进行比较的能力,注意:绝对值是3的数有3和﹣3两个.16.﹣43中幂的指数是3,底数是4,结果是﹣64.考点:有理数的乘方.专题:计算题.分析:根据幂的定义找出指数,底数,计算得到结果即可.解答:解:﹣43中幂的指数是3,底数是4,结果是﹣64.故答案为:3;4;﹣64.点评:此题考查了有理数的乘方,熟练掌握运算法则是解本题的关键.17.若﹣1<n<0,则n、n2、的大小关系是<n<n2.考点:有理数大小比较.分析:在n的范围内取n=﹣,求出每个式子的值,再比较即可.解答:解:∵﹣1<n<0,∴取n=﹣,即n=﹣,n2=,=﹣2,∴<n<n2.故答案为:<n<n2.点评:本题考查了有理数的大小比较的应用,主要考查学生的计算能力和辨析能力.18.观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,请你在观察规律之后并用你得到的规律填空:48×52+4=502.考点:规律型:数字的变化类.专题:规律型.分析:观察上面等式的规律,若第1个数为n,则第二个数为n+4,第三个数为4,第四个数为(n+2)2,由此规律代入即可.解答:解:第n个式子为n(n+4)+4=(n+2)2,由题意得n+2=50,则n=48,代入得,48×+4=502,故答案为48,52,4.点评:本题考查了数字的变化规律,得出第n个式子的表达式是解决此题的关键.三、解答题(共9小题,满分48分)19.(5分)(﹣125)÷17+(+315)÷17﹣(﹣166)÷17﹣()考点:有理数的混合运算.专题:计算题.分析:先算除法,再算加减即可.解答:解:原式=﹣+++==21.点评:本题考查的是有理数的混合运算,熟知有理数混合运算的顺序是解答此题的关键.20.(5分)[﹣32×()2]÷().考点:有理数的混合运算.专题:计算题.分析:根据有理数混合运算的顺序依次进行计算即可.解答:解:原式=[﹣9×]×(﹣)=(﹣)×(﹣)=.点评:本题考查的是有理数的混合运算,即有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.21.(5分)数轴上A点表示+7,B、C两点所表示的数是相反数,且C点与A点的距离为2,求B点和C点各对应什么数?考点:数轴;相反数.专题:计算题.分析:根据A点表示+7,C点与A点的距离为2,可求得C点对应数为+5或+9,又B、C两点所表示的数是相反数,从而可求得答案.解答:解:∵A点表示+7,C点与A点的距离为2,∴C点对应数为+5或+9,又B、C两点所表示的数是相反数,∴当C点对应数+5时,B点对应数﹣5;当C点对应数+9时,B点对应数﹣9.点评:本题考查了数轴及相反数的知识,属于基础题,比较简单,注意对基础概念的掌握.22.(5分)小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东的方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?考点:有理数的加减混合运算;正数和负数.专题:计算题.分析:(1)根据题意画出即可;(2)计算2+1即可求出答案;(3)求出每个数的绝对值,相加即可求出答案.解答:(1)解:能,如图:(2)解:2+|﹣1|=3,答:小彬家距中心广场3千米.(3)解:|2|+|1.5|+|4.5|+|1|=9,答:小明一共跑了9千米.点评:本题考查了有理数的加减运算,正数和负数,绝对值等知识点的应用,进而此题的关键是能根据题意列出算式,题目比较典型,难度适中,用的数学思想是转化思想,即把实际问题转化成数学问题,用数学知识来解决.23.(5分)阅读下列材料:计算:50÷(﹣+).解法一:原式=50÷﹣50÷+50÷=50×3﹣50×4+50×12=550.解法二:原式=50÷(﹣+)=50÷=50×6=300.解法三:原式的倒数为(﹣+)÷50=(﹣+)×=×﹣×+×=故原式=300.上述得出的结果不同,肯定有错误的解法,你认为解法一是错误的.在正确的解法中,你认为解法三最简捷.然后,请你解答下列问题:计算:()÷().考点:有理数的除法.专题:阅读型.分析:上述得出的结果不同,肯定有错误的解法,我认为解法一是错误的.在正确的解法中,你认为解法三最简捷;利用乘法分配律求出原式倒数的值,即可求出原式的值.解答:解:上述得出的结果不同,肯定有错误的解法,我认为解法一是错误的.在正确的解法中,你认为解法三最简捷;原式的倒数为(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣14,则原式=﹣.故答案为:一;三.点评:此题考查了有理数的除法,弄清题意是解本题的关键.24.(5分)观察下列各式:①9×0+1=1;②9×1+2=11;③9×2+3=21;④9×3=4=31;⑤9×4+5=41;….(1)请你在横线上填上适当的算式;(2)按此规律,第6个式子是什么?第100个式子呢?第2 011个式子呢?考点:规律型:数字的变化类.分析:(1)根据第一个数是9×(1﹣0)再加1,第二个数是9×(2﹣1)再加2,得出第四个数是9×(4﹣1)再加4即可;(2)根据(1)得出的规律第n个式子是9×(n﹣1)+n,代入计算即可.解答:解:(1)∵:①9×0+1=1;②9×1+2=11;③9×2+3=21;∴④9×3=4=31;(2)根据(1)可得:第n个式子是9×(n﹣1)+n,则第6个式子是9×5+6=51;第100个式子是9×99+100=991;第2011个式子是9×2010+2011=20101.故答案为:9×3=4=31.点评:此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力,本题的规律是第n个式子是9×(n﹣1)+n.25.(6分)小红爸爸上星期买进某公司股票1 000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一二三四五每股涨跌+4 ﹣1 ﹣6(1)通过上表你认为星期三收盘时,每股是多少元?(2)本周内每股最高是多少元?考点:有理数的加减混合运算;正数和负数;有理数大小比较.专题:计算题.分析:(1)根据题意列出相应的算式,计算即可得到结果;(2)根据表格得出本周二每股价格最高,求出最高价格即可.解答:解:(1)根据题意得:27+4+4.5﹣1=34.5(元),则星期三收盘时,每股是34.5元;(2)由本周内每日该股票的涨跌情况可看出,本周内周二每股价格最高,为35.5元.点评:此题考查了有理数的加减混合运算的应用,正数与负数,以及有理数的大小比较,弄清题意是解本题的关键.26.(6分)请先观察下面的等式:①32﹣12=8=8×1;②52﹣32=16=8×2:③72﹣52=24=8×3;④92﹣72=32=8×4…(1)请写出第⑦、⑩个等式;(2)通过观察,你能发现什么规律?猜想并写出第n个等式;(3)请你用上述规律计算2 0132﹣2 0112的值.考点:规律型:数字的变化类.分析:(1)通过观察可得第⑦个等式为:152﹣132=56=8×7;第⑩个等式:212﹣192=80=8×10;(2)通过观察可发现两个连续奇数的平方差是8的倍数,第n个等式为:(2n+1)2﹣(2n﹣1)2=8n;(3)根据发现的规律计算即可.解答:解:(1)第⑦个等式为:152﹣132=56=8×7;第⑩个等式:212﹣192=80=8×10;(2)通过观察可发现两个连续奇数的平方差是8的倍数,第n个等式为:(2n+1)2﹣(2n﹣1)2=8n;(3)2 0132﹣2 0112=8×1006=8048.点评:此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力,本题的关键规律是:(2n+1)2﹣(2n﹣1)2=8n.27.(6分)相传宋朝文学家苏东坡有一次画了一幅《百鸟归巢》,并且给这幅画题了一首诗:天生一只又一只,三四五六七八只,凤凰何少鸟何多,啄尽人间千石谷.这首诗既然是题“百鸟图”,全诗却不见“百”字的踪影,你也许会问,画中到底是100只鸟还是8只鸟呢?不要急,请把诗中出现的数字写成一行:1 1 3 4 5 6 7 8然后,你动动脑筋,在这些数字之间加上适当的运算符号就会有100出现了,应该加上哪些运算符号呢?考点:有理数的混合运算.专题:应用题.分析:根据有理数混合运算的法则进行计算即可.解答:解:由有理数混合运算的法则可知:1+1+3×4+5×6+7×8=100.点评:本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.参与本试卷答题和审题的老师有:sks;HJJ;zhjh;lantin;ZJX;CJX;HLing;wdxwwzy;zhqd;jpz;zjx111;wzl1014;冯延鹏;星期八(排名不分先后)菁优网2014年7月23日。
有理数单元检测(学生版)
有理数单元检测一.选择题(共12小题)1.绝对值大于1而小于3的整数是()A.±1B.±2C.±3D.±42.若130x y +++=,那么x y -等于()A.4B.0C.4- D.23.12015-的相反数是()A.2015 B.2015- C.12015D.12015-4.已知a ,b ,c 三个数的位置如图所示.则下列结论不正确的是()A.a+b <0B.b ﹣a >0C.a+b >0D.a+c <05.下列说法中不正确的是()A.﹣3.14既是负数,分数,也是有理数B.0既不是正数,也不是负数,但是整数C.﹣2000D.0是非正数6.为计算简便,把(-2.4)-(-4.7)-(+0.5)+(+3.4)+(-3.5)写成省略加号的和的形式,并按要求交换加数的位置,正确的是()A.-2.4+3.4-4.7-0.5-3.5B.-2.4+3.4+4.7+0.5-3.5C.-2.4+3.4+4.7-0.5-3.5D.-2.4+3.4+4.7-0.5+3.57.23-的倒数是()A.23B.32C.32-D.23-8.12和20的公因数有()A.2个B.3个C.4个D.5个9.在数轴上与表示数4的点距离5个单位长度的点表示的数是()A.5B.﹣1C.9D.﹣1或910.在﹣1,1.2,﹣2,0,﹣(﹣2)中,负数的个数为()A.1个B.2个C.3个D.4个11.计算()31-+-的正确结果是()A.2B.2- C.4D.4-12.若a <0,b >0,且|a|>|b|,则a 与b 的和用|a|、|b|表示为()A.|a|﹣|b|B.﹣(|a|﹣|b|)C.|a|+|b|D.﹣(|a|+|b|)二.填空题(共5小题)13.在数轴上,﹣4与之﹣6间的距离是_____.14.在-42,+0.01,π,0,120这5个数中,正有理数是___________.15.如果水位升高3m 时,水位变化可以记作+3m ;则水位下降5米,此时水位变化可以记作___.16.若4a -=-,则a 的值为__.17.如果a ,b 两数互为相反数,则a ﹣3+b=_____.三.解答题(共7小题)18.把下列各数填在相应的大括号内:127, 3.1416-,0,2017,85-,0.23456-,10%,10.1,0.67,89-正数集合:{…}整数集合:{…}分数集合:{…}.19.有理数a 、b 、c 的位置如图所示,化简式子:|b |+|a ﹣c |+|b ﹣c |﹣|a ﹣b |.20.若a 是不为1的有理数,我们把11a -称为a 的差倒数.如:2的差倒数是112-=﹣1,﹣1的差倒数是111(1)2=--.已知a 1=﹣13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推.(1)分别求出a 2,a 3,a 4的值;(2)求a 1+a 2+a 3+…+a 3600的值.21.已知m 是8的相反数,n 比m 的相反数小2,求n 比m 大多少?22.已知数轴上,点O 为原点,点A 对应的数为11,点B 对应的数为b ,点C 在点B 右侧,长度为3个单位的线段BC 在数轴上移动,(1)如图1,当线段BC 在O ,A 两点之间移动到某一位置时,恰好满足线段AC=OB ,求此时b 的值;(2)线段BC 在数轴上沿射线AO 方向移动的过程中,是否存在AC ﹣OB=12AB ?若存在,求此时满足条件的b 的值;若不存在,说明理由.23.已知350a b ++-=,求:(1)a b +的值;(2)a b +的值.24.某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)半年内总生产量是多少?比计划多了还是少了,增加或减少多少?。
人教版七年级数学上册第一章《有理数》单元同步检测试题(含答案)
第一章《有理数》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题(每小题3分,共30分)1.2018的相反数是()A.﹣2018 B.2018 C.﹣ D.2.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.D.3.如图,a、b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0 B.ab<0 C.b﹣a<0 D.4.大于﹣2.2的最小整数是( )A.﹣2 B.﹣3 C.﹣1 D.05.(2020·湖北宜昌中考)陆地上最高处是珠穆朗玛峰的峰顶,高出海平面约8 844 m,记为+8 844 m;陆地上最低处是地处亚洲西部的死海,低于海平面约415 m,记为()A.415 mB.-415 mC.±415 mD.-8 844 m6.(2020·北京中考)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A.a>-2B.a<-3 第6题图C.a>-bD.a<-b7.下列说法正确的个数是( )①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1B.2C.3D.48.下列结论成立的是()A.若|a|=a,则a>0 B.若|a|=|b|,则a=±bC .若|a |>a ,则a ≤0D .若|a |>|b |,则a >b .9.如图,点A 表示的有理数是a ,则a ,﹣a ,1的大小顺序为( )A .a <﹣a <1B .﹣a <a <1C .a <1<﹣aD .1<﹣a <a10.设[a ]是有理数,用[a ]表示不超过a 的最大整数,如[1.7]=1,[﹣1]=﹣1,[0]=0,[﹣1.2]=﹣2,则在以下四个结论中,正确的是( ) A .[a ]+[﹣a ]=0 B .[a ]+[﹣a ]等于0或﹣1C .[a ]+[﹣a ]≠0D .[a ]+[﹣a ]等于0或1二、填空题(每小题3分,共24分)11.31的倒数是____;321的相反数是____. 12.在数轴上,点所表示的数为2,那么到点的距离等于3个单位长度的点所表示的数是 .13.若0<<1,则a ,2a ,1a的大小关系是 .14.+5.7的相反数与-7.1的绝对值的和是 .15.已知每辆汽车要装4个轮胎,则51只轮胎至多能装配 辆汽车. 16.-9、6、-3这三个数的和比它们绝对值的和小 .17. 一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑 台. 18. 规定﹡,则(-4)﹡6的值为 . 三、解答题(共66分)19.计算﹣+×(23﹣1)×(﹣5)×(﹣)20.已知3m+7与﹣10互为相反数,求m 的值. 21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4) (3)(+﹣)×(﹣36) (4)2×(﹣)﹣12÷ (5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元): 星期 一 二 三 四 五 每股涨+0.3 +0.1 ﹣﹣+0.2跌0.2 0.5(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(__________)2=__________.根据以上规律填空:(1)13+23+33+…+n3=(__________)2=[__________]2.(2)猜想:113+123+133+143+153=__________.参考答案与解析一、选择题1.A 2.A 3.B 4.A 5.B 6.D 7.B8.B 9.A 10.B二、填空题11.解析:根据倒数和相反数的定义可知的倒数为的相反数是.12.解析:点所表示的数为2,到点的距离等于3个单位长度的点所表示的数有两个,分别位于点的两侧,分别是13解析:当0<<1时,14.1.4 解析:的相反数为,的绝对值为7.1,所以+5.7的相反数与-7.1的绝对值的和是15.12 解析:51÷4=12 3.所以51只轮胎至多能装配12辆汽车.16.24 解析:,,所以.17.50 解析:将调入记为“+”,调出记为“-”,则根据题意有所以这个仓库现有电脑50台.18.-9 解析:根据﹡,得(-4)﹡6.三、解答题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)【考点】有理数的混合运算.【专题】计算题.【分析】根据运算顺序先算括号中的乘方运算,23表示三个2的乘积,计算后再根据负因式的个数为2个,得到积为正数,约分后,最后利用异号两数相加的法则即可得到最后结果.【解答】解:原式=﹣+×(8﹣1)×(﹣5)×(﹣)=﹣+×7×(﹣5)×(﹣)=﹣+4=.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序:先乘方,再乘除,最后算加减,有括号先算括号中的,同级运算从左到右依次进行,然后按照运算法则运算,有时可以利用运算律来简化运算.20.已知3m+7与﹣10互为相反数,求m的值.【考点】相反数.【分析】根据互为相反数的和为零,可得关于m的方程,根据解方程,可得答案.【解答】解:由3m+7与﹣10互为相反数,得3m+7+(﹣10)=0.解得m=1,m的值为1.【点评】本题考查了相反数,利用互为相反数的和为零得出关于m的方程是解题关键.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=11+19﹣18﹣12=30﹣30=0;(2)原式=35﹣80=﹣45;(3)原式=﹣4﹣6+9=﹣1;(4)原式=﹣×﹣12×=﹣﹣18=﹣19;(5)原式=3+12××(﹣3)﹣5=3﹣9﹣5=﹣11;(6)原式=﹣1+0+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3 +0.1 ﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据卖出股票金额减去买入股票金额,减去成交额费用,减去手续费,可得收益情况.【解答】解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5‰﹣1000×9.9×1.5‰﹣1000×9.9×1‰=9900﹣15﹣14.85﹣9.9﹣10000=﹣139.75(元).答:该股民的收益情况是亏了139.75元.【点评】本题考查了正数和负数,利用了炒股知识:卖出股票金额减去买入股票金额,减去成交额费用,减去手续费.23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】新定义.【分析】首先根据运算的定义,根据3⊕x的值小于13,即可列出关于x的不等式,解方程即可求解.【解答】解:∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,解得:x>﹣1..【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【考点】整式的混合运算.【专题】换元法.【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=.【点评】本题考查了整式的混合运算,有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(1+2+3+4+5)2=225.根据以上规律填空:(1)13+23+33+…+n3=(1+2+…+n)2=[]2.(2)猜想:113+123+133+143+153=11375.【考点】整式的混合运算.【专题】规律型.【分析】观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空,(1)根据上述规律填空,然后把1+2+…+n变为个(n+1)相乘,即可化简;(2)对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.【解答】解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+...+153﹣(13+23+33+ (103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.故答案为:1+2+3+4+5;225;1+2+…+n;;11375.【点评】此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.。
有理数单元测试及答案
有理数单元测试及答案有理数单元检测试题一、填空题(本题共有9个小题,每小题2分,共18分)1、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么惯上将2楼记为1;地下第一层记作-1;数-2的实际意义为地下第三层,数+9的实际意义为地面上的第十层。
2、如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为-5.3、某数的绝对值是5,那么这个数是-5或5.(保留四个有效数字)4、(4/3)²=16/9,(-4/3)²=16/9.5、数轴上和原点的距离等于3的点表示的有理数是-3或3.6、计算:(-1)+(-1)=-2.7、如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m=-1.8、(+5.7)的相反数与(-7.1)的绝对值的和是12.8.9、已知每辆汽车要装4个轮胎,则51只轮胎至多能装配12辆汽车。
二、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)10、下列说法正确的是(C)。
A。
整数就是正整数和负整数B。
负整数的相反数就是非负整数C。
有理数中不是负数就是正数D。
零是自然数,但不是正整数11、下列各对数中,数值相等的是(A)。
A。
-2与(-2)B。
-3与(-3)C。
-3×2与-3×2D。
-( -3)与-( -2)12、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是(D)。
A。
-12B。
-9C。
-0.01D。
-213、如果一个数的平方与这个数的差等于1,那么这个数只能是(B)。
A。
-1B。
1C。
0D。
或114、绝对值大于或等于1,而小于4的所有的正整数的和是(C)。
A。
8B。
7C。
6D。
515、计算:(-2)+(-2)的是(D)。
A。
2B。
-1C。
-2D。
人教版七年级数学上册单元测试题:第1章_有理数
数学七年级上第一章有理数单元检测参考完成时间:60分钟实际完成时间:______分钟总分:100分得分:______一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.下列说法中不正确的是().A.-3.14既是负数,分数,也是有理数B.0既不是正数,也不是负数,但是整数C.-2 000既是负数,也是整数,但不是有理数D.0是正数和负数的分界2.-2的相反数的倒数是().A.2 B.12C.12−D.-23.比-7.1大,而比1小的整数的个数是().A.6 B.7 C.8 D.94.如果一个数的平方与这个数的差等于0,那么这个数只能是().A.0 B.-1 C.1 D.0或15.我国最长的河流长江全长约为6 300千米,用科学记数法表示为().A.63×102千米B.6.3×102千米C.6.3×104千米D.6.3×103千米6.有理数a,b在数轴上的位置如图所示,下列各式正确的是().A.a>0 B.b<0C.a>b D.a<b7.下列各组数中,相等的是().A.32与23B.-22与(-2)2C.-|-3|与|-3| D.-23与(-2)38.在-5,110−,-3.5,-0.01,-2,-212各数中,最大的数是().A.-12 B.1 10−C.-0.01 D.-59.如果a+b<0,并且ab>0,那么().A.a<0,b<0 B.a>0,b>0C.a<0,b>0 D.a>0,b<010.若a表示有理数,则|a|-a的值是().A.0 B.非负数C.非正数D.正数二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.123−的倒数是________,123−的相反数是______,123−的绝对值是________.12.在数轴上,与表示-5的点距离为4的点所表示的数是____________.13.计算:-|-5|+3=__________.所以-5+3=-2.14.观察下面一列数,根据规律写出横线上的数1,12−,13,14−…,第2 013个数是________.15.比132−大而比123小的所有整数的和为________.16.若|x-2|与(y+3)2互为相反数,则x+y=__________.17.近似数2.35万精确到__________位.18.对于任意非零有理数a,b,定义运算如下:a b=(a-b)÷(a+b),那么(-3)5的值是__________.三、解答题(本大题共4小题,共46分)19.计算:(每小题4分,共20分)(1)-20+(-14)-(-18)-13;(2)172×314÷(-9+19);(3)-24×131243⎛⎫−+−⎪⎝⎭;(4)(-81)÷12 4+49÷(-16);(5)(-1)3-112⎛⎫−⎪⎝⎭÷3×[3-(-3)2].20.(8分)把下列各数分别填入相应的集合里.-4,43−−,0,227,-3.14,2 006,-(+5),+1.88(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合{…}.21.(8分)“十一”黄金周期间,南京市中山陵风景区在7天假期中每天旅游的人数变化日期1日2日3日4日5日6日7日人数变化 1.60.80.4-0.4-0.80.2-1.2(2)若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人?22.(10分)出租司机沿东西向公路送旅客,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16.(1)出租司机最后到达的地方在出发点的哪个方向?距出发点多远?(2)出租司机最远处离出发点有多远?(3)若汽车耗油量为0.08升/千米,则这天共耗油多少升?参考答案1答案:C点拨:A中-3.14不是-π,是负分数,C选项中-2 000是负整数,更是有理数,所以说法错误.故选C.2答案:B3答案:C点拨:比-7.1大,而比1小的整数有―7,―6,―5,―4,―3,―2,―1,0共8个,故选C.4答案:D点拨:一个数的平方与这个数的差等于0,说明这个数的平方是它本身,所以只有0和1,故选D.5答案:D点拨:A中科学记数法表示为2位数错,B、C中10的指数错,只有D正确,故选D.6答案:D点拨:a在原点左侧为负数,b在原点右侧为正数,所以A、B、C均错,只有D正确.7答案:D点拨:32=9,23=8,故A错;-22=-4,(-2)2=4,所以B错,-|-3|=-3,|-3|=3,所以C错;-23=-8,(-2)3=-8,相等,故选D.8答案:C点拨:都是负数,-0.01的绝对值最小,所以-0.01最大.故选C.9答案:A点拨:a+b<0,所以a,b中一定至少有一个负数,且负数的绝对值较大.又因为ab>0,所以a,b同号,且同为负号.10答案:B点拨:可以用特殊值法求解,当a=2时,|a|-a=|2|-2=0;当a=0时,|a|-a=|0|-0=0;当a=-2时,|a|-a=|2|-(-2)=4,故选B.11答案:37−123123点拨:根据概念分别写出.12答案:-9或-1点拨:在表示-5的点的左右各有一个点到它的距离是4.从数值上看就是-5-4和-5+4,所以是-9和-1.13答案:-2点拨:-|-5|=-5,14答案:12013点拨:这列数的排列规律是分母数与顺序数相同,偶数顺序号上的数是负数,奇数顺序号上的数为正数,所以第2 013个数是1 2013.15答案:-3点拨:比132−大而比123小的整数是―3,―2,―1,0,1,2,它们的和是-3.16答案:-1点拨:|x-2|与(y+3)2互为相反数,所以|x-2|+(y+3)2=0,所以x-2=0,y+3=0,所以x=2,y=-3,所以x+y=-1.17答案:百18答案:-4点拨:根据定义中规定的计算式子可知:(-3)5=(-3-5)÷(-3+5)=-8÷2=-4.19解:(1)―20+(―14)―(―18)―13=-20-14+18-13=-20-14-13+18=-47+18=-29;(2)172×314÷(-9+19)=1571571211024241016⨯÷=⨯⨯=;(3)-24×131243⎛⎫−+−⎪⎝⎭=12-18+8=2;(4)(-81)÷12 4+49÷(-16)=(-81)×49+49×116⎛⎫− ⎪⎝⎭=-36-136=13636−;(5)(-1)3-112⎛⎫−⎪⎝⎭÷3×[3―(―3)2]=-1-12÷3×(3―9)=-1-12×13×(-6)=-1+1=0.点拨:有理数混合运算法则是先算乘方,再算乘除,最后算加减,有括号的先算括号里的,所以要注意运算顺序.20解:(1)正数集合:22,2006, 1.88,7⎧⎫+⋅⋅⋅⎨⎬⎩⎭;(2)负数集合:44,, 3.14,(5),3⎧⎫−−−−−+⋅⋅⋅⎨⎬⎩⎭;(3)整数集合:{-4,-(+5),2006,0,…};(4)分数集合:422, 3.14,, 1.88,37⎧⎫−−−+⋅⋅⋅⎨⎬⎩⎭.点拨:注意小数是分数;因分类不同,各数处于不同集合中,但不能漏.21解:(1)人数最多的是3日,最少的是7日.解法一:设原来有a人,它们相差:(a+1.6+0.8+0.4)-(a+1.6+0.8+0.4-0.4-0.8+0.2-1.2)=a+1.6+0.8+0.4-a-1.6-0.8-0.4+0.4+0.8-0.2+1.2=2.2(万人);解法二:3日时人数比原来增加1.6+0.8+0.4=2.8(万人),7日时比原来增加:1.6+0.8+0.4-0.4-0.8+0.2-1.2=0.6(万人),所以3日比7日多2.8-0.6=2.2(万人).(2)这7天游客的总人数为:2×7+(1.6+0.8+0.4-0.4-0.8+0.2-1.2)=14+0.6=14.6(万人).答:这7天的游客总人数是14.6万人.点拨:(1)理解时要注意,表中人数是比前一日增加或减少的人数,可设原来有a人,所以到3日时的人数是(a+1.6+0.8+0.4)万人,到7日时降到最少,这天的人数是(a+1.6+0.8+0.4-0.4-0.8+0.2-1.2)万人.人数相差就是求3日人数减去7日人数.(2)变化量是在9月30日,两万人的基础上变化的,所以每天的人数在前一日变化基础上还要加上2万人.22解:(1)+17-9+7-15-3+11-6-8+5+16=+17+7+5+16+11-15-3-6-8-9=56-41=+15(千米).答:出租司机最后到达的地方在出发点的正东方向,距出发点15千米.(2)出租司机最远处离出发点有17千米.(3)56+|-41|=97(千米),0.08×97=7.76(升).答:这天共耗油7.76升.。
最新人教版七年级数学上册测试题及答案全套
最新人教版七年级数学上册测试题及答案全套《有理数》单元检测考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题)1.用四舍五入法按要求对3.1415926分别取近似值,其中错误的是()A.3.1(精确到0.1)B.3.141(精确到千分位)C.3.14(精确到百分位)D.3.1416(精确到0.0001)2.下列说法正确的是()A.0.750精确到百分位B.3.079×104精确到千分位C.38万精确到个位D.2.80×105精确到千位3.3的相反数是()A.﹣3B.﹣C.D.34.﹣的绝对值是()A.﹣3B.3C.D.﹣5.下列各数与﹣6相等的()A.|﹣6|B.﹣|﹣6|C.﹣32D.﹣(﹣6)6.定义运算a⊕b=a(1﹣b),下面给出了关于这种运算的四个结论:①2⊕(﹣2)=6;②a⊕b=b⊕a;③若a+b=0,则(a⊕a)+(b⊕b)=2ab;④若a⊕b=0,则a=0其中正确结论的序号是()A.①②B.②③C.③④D.①③7.对于任何有理数a,下列各式中一定为负数的是()A.﹣(﹣3+a)B.﹣a C.﹣|a+1|D.﹣|a|﹣18.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)9.记S1=1×1=1×1!,S2=2×2×1=2×2!;S3=3×3×2×1=3×3!…S n=n•n•(n﹣1)…3×2×1=n•n!;则S=S1+S2+S3+…+S8=()A.9!﹣1B.9!+1C.9!+8!D.9!10.已知有10包相同数量的饼干,如果将其中1包饼干平分给23名学生,最少剩3片.如果将此10包饼干平分给23名学生,那么最少剩下的饼干的片数是()A.0B.3C.7D.10二.填空题(共4小题)11.如果向东走10米记作+10米,那么向西走15米可记作米.12.已知|x|=2,|y|=5,且x>y,则x+y=.13.2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为.14.若•|m|=,则m=.三.解答题(共5小题)15.同学们都知道:|3﹣(﹣2)|表示3与﹣2之差的绝对值,实际上也可理解为3与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示x与3的两点之间的距离可以表示为.(2)如果|x﹣3|=5,则x=.(3)同理|x+2|+|x﹣1|表示数轴上有理数x所对应的点到﹣2和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+2|+|x﹣1|=3,这样的整数是.(4)由以上探索猜想对于任何有理数x,|x+3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.16.计算:(1)2+(﹣6)﹣(﹣3)(2)(﹣2.5)÷(﹣1)×(﹣11).17.股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)(1)星期四收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?18.请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).19.黑板上有三个正整数a、b、c(不计顺序).允许进行如下的操作:擦去其中的任意一个数,写上剩下的两个数的平方和.如:擦去a,写上b2+c2,这次操作完成后,黑板上的三个数为b、c、b2+c2.问:(1)当黑板上的三个数分别为1,2,3时,能否经过有限次操作使得这三个数变为56,57,58(不计顺序).若能,请给出操作方法;若不能,请说明理由;(2)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2007.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由;(3)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2008.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由.参考答案与试题解析一.选择题(共10小题)1.用四舍五入法按要求对3.1415926分别取近似值,其中错误的是()A.3.1(精确到0.1)B.3.141(精确到千分位)C.3.14(精确到百分位)D.3.1416(精确到0.0001)【分析】利用四舍五入的方法,根据精确的数位确定出近似值,即可做出判断.【解答】解:A、3.1(精确到0.1),正确;B、3.142(精确到千分位),故本选项错误;C、3.14(精确到百分位),正确;D、3.1416(精确到0.0001),正确,故选B.2.下列说法正确的是()A.0.750精确到百分位B.3.079×104精确到千分位C.38万精确到个位D.2.80×105精确到千位【分析】根据近似数的精确度分别进行判断,即可得出答案.【解答】解:A、0.750精确到千分位,故本选项错误;B、3.079×104精确到十位,故本选项错误;C、38万精确到万位,故本选项错误;D、2.80×105精确到千位,故本选项正确;故选D.3.3的相反数是()A.﹣3B.﹣C.D.3【分析】根据相反数的定义即可求出3的相反数.【解答】解:3的相反数是﹣3故选A.4.﹣的绝对值是()A.﹣3B.3C.D.﹣【分析】根据绝对值的意义即可求出答案.【解答】解:|﹣|=,故选C5.下列各数与﹣6相等的()A.|﹣6|B.﹣|﹣6|C.﹣32D.﹣(﹣6)【分析】利用绝对值以及乘方的性质即可求解.【解答】解:A、|﹣6|=6,故选项错误;B、﹣|﹣6|、﹣6,故选项正确;C、﹣32=﹣9,故选项错误;D、﹣(﹣6)=6,故选项错误.故选B.6.定义运算a⊕b=a(1﹣b),下面给出了关于这种运算的四个结论:①2⊕(﹣2)=6;②a⊕b=b⊕a;③若a+b=0,则(a⊕a)+(b⊕b)=2ab;④若a⊕b=0,则a=0其中正确结论的序号是()A.①②B.②③C.③④D.①③【分析】本题需先根据a⊕b=a(1﹣b)的运算法则,分别对每一项进行计算得出正确结果,最后判断出所选的结论.【解答】解:∵a⊕b=a(1﹣b),①2⊕(﹣2)=2×[1﹣(﹣2)]=2×3=6,故①正确;②a⊕b=a×(1﹣b)=a﹣abb⊕a=b(1﹣a)=b﹣ab,故②错误;③∵(a⊕a)+(b⊕b)=[a(1﹣a)]+[b(1﹣b}]=a﹣a2+b﹣b2,∵a+b=0,∴原式=(a+b)﹣(a2+b2)=0﹣[(a+b)2﹣2ab]=2ab,故③正确;④∵a⊕b=a(1﹣b)=0,∴a=0或1﹣b=0,故④错误.故选D.7.对于任何有理数a,下列各式中一定为负数的是()A.﹣(﹣3+a)B.﹣a C.﹣|a+1|D.﹣|a|﹣1【分析】负数一定小于0,可将各项化简,然后再进行判断.【解答】解:A、﹣(﹣3+a)=3﹣a,a≤3时,原式不是负数,故A错误;B、﹣a,当a≤0时,原式不是负数,故B错误;C、∵﹣|a+1|≤0,∴当a≠﹣1时,原式才符合负数的要求,故C错误;D、∵﹣|a|≤0,∴﹣|a|﹣1≤﹣1<0,所以原式一定是负数,故D正确.故选D.8.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)【分析】从表格中可看出a5在中间,上下相邻的数为依次大7,左右相邻的数为依次大1,所以可得到代数式.【解答】解:A、a1+a2+a3+a7+a8+a9=(a4+a5+a6)﹣21+(a4+a5+a6)+21=2(a4+a5+a6),正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2(a2+a5+a8),正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、(a3+a6+a9)﹣(a1+a4+a7)=6,错误,符合题意.故选D.9.记S1=1×1=1×1!,S2=2×2×1=2×2!;S3=3×3×2×1=3×3!…S n=n•n•(n﹣1)…3×2×1=n•n!;则S=S1+S2+S3+…+S8=()A.9!﹣1B.9!+1C.9!+8!D.9!【分析】根据新定义得到S=1×1!+2×2!+3×3!+…+8•8!=1+2×2!+3×3!+…+8•8!═3!+3×3!+…+8•8!﹣1,然后根据新定义依次从左向右加即可.【解答】解:S=S1+S2+S3+…+S8=1×1!+2×2!+3×3!+…+8•8!=1+2×2!+3×3!+…+8•8!=2+2×2!+3×3!+…+8•8!﹣1=3!+3×3!+…+8•8!﹣1=4×3!+…+8•8!﹣1=4!+…+8•8!﹣1=8!×9﹣1=9!﹣1.故选A.10.已知有10包相同数量的饼干,如果将其中1包饼干平分给23名学生,最少剩3片.如果将此10包饼干平分给23名学生,那么最少剩下的饼干的片数是()A.0B.3C.7D.10【分析】若将其中1包饼干平分给23名学生,最少剩3片,则这包饼干有y=23x+3(x是大于0的整数).将此10包饼干平分给23名学生,若每一包饼干还分相同的片数,则可知10包饼干最少剩30片,再平分给23名学生,可求得最少剩的片数.【解答】解:设这包饼干有y片,则y=23x+3(x是大于0的整数),而10y=230x+30,考虑余数,故最少剩7片.最少剩7片.答:最少剩下的饼干的片数是7片;故选:C.二.填空题(共4小题)11.如果向东走10米记作+10米,那么向西走15米可记作﹣15米.【分析】明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:∵向东走10米记作+10米,∴向西走15米记作﹣215米.故答案为:﹣15.12.已知|x|=2,|y|=5,且x>y,则x+y=﹣3或﹣7.【分析】先求得x、y的值,然后根据x>y分类计算即可.【解答】解:∵|x|=2,|y|=5,∴x=±2,y=±5.∵x>y,∴x=2,y=﹣5或x=﹣2,y=﹣5.∴x+y=2+(﹣5)=﹣3或x+y=﹣2+(﹣5)=﹣7.故答案为:﹣3或﹣7.13.2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 5.7×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将57000用科学记数法表示为:5.7×104.故答案为:5.7×104.14.若•|m|=,则m=3或﹣1.【分析】利用绝对值和分式的性质可得m﹣1≠0,m﹣3=0或|m|=1,可得m.【解答】解:由题意得,m﹣1≠0,则m≠1,(m﹣3)•|m|=m﹣3,∴(m﹣3)•(|m|﹣1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=﹣1,故答案为:3或﹣1.三.解答题(共5小题)15.同学们都知道:|3﹣(﹣2)|表示3与﹣2之差的绝对值,实际上也可理解为3与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示x与3的两点之间的距离可以表示为|x﹣3| .(2)如果|x﹣3|=5,则x=8或﹣2.(3)同理|x+2|+|x﹣1|表示数轴上有理数x所对应的点到﹣2和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+2|+|x﹣1|=3,这样的整数是﹣2、﹣1、0、1.(4)由以上探索猜想对于任何有理数x,|x+3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【分析】(1)根据距离公式即可解答;(2)利用绝对值求解即可;(3)利用绝对值及数轴求解即可;(4)根据数轴及绝对值,即可解答.【解答】解:(1)数轴上表示x与3的两点之间的距离可以表示为|x﹣3|,故答案为:|x﹣3|;(2)∵|x﹣3|=5,∴x﹣3=5或x﹣3=﹣5,解得:x=8或x=﹣2,故答案为:8或﹣2;(3)∵|x+2|+|x﹣1|表示数轴上有理数x所对应的点到﹣2和1所对应的点的距离之和,|x+2|+|x﹣1|=3,∴这样的整数有﹣2、﹣1、0、1,故答案为:﹣2、﹣1、0、1;(4)有最小值,理由是:∵丨x+3丨+丨x﹣6丨理解为:在数轴上表示x到﹣3和6的距离之和,∴当x在﹣3与6之间的线段上(即﹣3≤x≤6)时:即丨x+3丨+丨x﹣6丨的值有最小值,最小值为6+3=9.16.计算:(1)2+(﹣6)﹣(﹣3)(2)(﹣2.5)÷(﹣1)×(﹣11).【分析】(1)将减法转化为加法,根据加法法则计算可得;(2)将除法转化为乘法,再计算乘法计算即可得.【解答】解:(1)原式=2﹣6+3=﹣1;(2)原式==﹣15.17.股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)(1)星期四收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?【分析】(1)本题先根据题意列出式子解出结果即可.(2)根据要求列出式子解出结果即可.(3)先算出刚买股票所花的钱,然后再算出周六卖出股票后所剩的钱,最后再减去当时购买时所花的钱,则剩下的钱就是所收益的.【解答】解:(1)星期四收盘时,每股是34.2元;(2)本周内最高价是每股37.4元,最低价每股33.7元;(3)买入总金额=1000×35=35000元;买入手续费=35000×0.15%=52.5元;卖出总金额=1000×36.3=36300元;卖出手续费=36300×0.15%=54.45元;卖出交易税=36300×0.1%=36.3元;收益=36300﹣(35000+52.5+54.45+36.3)=1156.75元.18.请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).【分析】观察解法1,用常规方法计算即可求解;观察解法2,可让除数和被除数交换位置进行计算,最后的结果取计算结果的倒数即可.【解答】解:解法1,(﹣)÷(﹣+﹣)=﹣÷[+﹣(+)]=﹣÷[﹣]=﹣÷=﹣;解法2,原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣56)=﹣×56+×56﹣×56+×56=﹣21+12﹣28+16=﹣21,故(﹣)÷(﹣+﹣)=﹣.19.黑板上有三个正整数a、b、c(不计顺序).允许进行如下的操作:擦去其中的任意一个数,写上剩下的两个数的平方和.如:擦去a,写上b2+c2,这次操作完成后,黑板上的三个数为b、c、b2+c2.问:(1)当黑板上的三个数分别为1,2,3时,能否经过有限次操作使得这三个数变为56,57,58(不计顺序).若能,请给出操作方法;若不能,请说明理由;(2)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2007.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由;(3)是否存在三个小于2000的正整数a、b、c,使得它们经过有限次操作后,其中的一个数为2008.若能,写出正整数a、b、c,并给出操作方法;若不能,请说明理由.【分析】(1)首先要知道平方不能改变一个数的奇偶性,而且题目的操作都不能改变3个数的奇偶性,由这可以判断不能变为56、57、58;(2)不能;若能,则2007一定可以表示为两个正整数的平方和,即2007=m2+n2(m,n为正整数),然后利用余数定理得到2007与3被4除余数相同,而m2+n2不可能被4除余数是3,所以假设是错误的;(3)不能;若能,由(2)知,因为2008≡0(mod4),同样根据(2)可以推出m2+n2不可能被4除余数是0,所以假设是错误的.【解答】解:(1)不能;当黑板上的三个数为1、2、3时,不论进行哪种操作都不能改变3个数的奇偶性,即三个数必为2个奇数1个偶数,因此不能变为56、57、58.(2)不能;若能,则2007一定可以表示为两个正整数的平方和,即2007=m2+n2(m,n为正整数).又任意一个自然数m,必有m2≡0(mod4)或m2≡1(mod4),所以m2+n2≡0(mod4)或m2+n2≡1(mod4)或m2+n2≡2(mod4),而2007≡3(mod4),因此不可能.(3)不能;若能,由(2)知,因为2008≡0(mod4),不妨设2008=(2m)2+(2n)2(其中m、n为正整数),因此m2+n2=502.又任意一个自然数m,必有m2≡0(mod8)或m2≡1(mod8),所以m2+n2≡0(mod8)或m2+n2≡1(mod8)或m2+n2≡2(mod8),而502≡6(mod8),因此不可能.《整式的加减》单元测试考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题)1.下列去括号正确的是()A.﹣(5x+1)=﹣5x+1B.﹣(4x+2)=﹣2x﹣1C.(2m﹣3n)=m+n D.﹣(m﹣2x)=﹣m﹣2x2.单项式﹣x2y的系数和次数分别是()A.,3B.﹣,3C.﹣,2D.,23.下列式子﹣2x,,0,,中单项式的个数为()A.2B.3C.4D.54.下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是3B.系数是﹣,次数是4C.系数是﹣5,次数是4D.系数是﹣5,次数是35.下列各式①m;②x+5=7;③2x+3y;④;⑤中,整式的个数有()A.1个B.2个C.3个D.4个6.下列说法正确的是()A.ab+c是二次三项式B.多项式2x2+3y2的次数是4C.0和π都是单项式D.是整式7.将代数式4a2b+3ab2﹣2b2+a3按a的升幂排列的是()A.﹣2b3+3ab2+4a2b+a3B.a3+4a2b+3ab2﹣2b3C.4a2b+3ab2﹣2b3+a3D.4a2b+3ab2+a3﹣2b38.下列各式计算中,正确的是()A.2a+2=4a B.﹣2x2+4x2=2x2C.x+x=x2D.2a+3b=5ab9.多项式x3﹣2x2+5x+3与多项式2x2﹣x3+4+9x的和一定是()A.奇数B.偶数C.2与7的倍数D.以上都不对10.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.7B.6C.5D.4二.填空题(共4小题)11.化简:4a﹣(a﹣3b)=.12.若﹣x m+3y与2x4y n+3是同类项,则(m+n)2017=.13.若单项式﹣8x3m+n y的次数为5,若m,n均为正整数,则m﹣n的值为.14.已知多项式3x2﹣y3﹣5xy2﹣x3﹣1,按x的降幂排列:.三.解答题(共5小题)15.已知A=2x2﹣9x﹣11,B=﹣6x+3x2+4,且B+C=A(1)求多项式C;(2)求A+2B的值.16.先化简,再求值:4x2y﹣[6xy﹣2(4xy﹣2)+2x2y]+1,其中x=﹣,y=1.17.化简:(1)6x﹣(2x﹣3)(2)﹣5(3a2b﹣ab2)+(ab2+3a2b)18.某校初二年级有A、B、C三个课外活动小组,各组人数相等,但A中的女生比B中的女生多4名,B 中的女生比C中的女生多1名.如果从A调10人去B中,再从B调10人去C中,最后从C调10人回A 中,结果各组的女生人数都相等.已知从C调入A的学生中只有2名女生.问分别从A,B调出的人数中各有几名女生?19.如果A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1,且3A+6B的值与x的取值无关,求+++++++﹣的值.参考答案与试题解析一.选择题(共10小题)1.下列去括号正确的是()A.﹣(5x+1)=﹣5x+1B.﹣(4x+2)=﹣2x﹣1C.(2m﹣3n)=m+n D.﹣(m﹣2x)=﹣m﹣2x【分析】直接利用去括号法则分别分析得出答案.【解答】解:A、﹣(5x+1)=﹣5x﹣1,故此选项错误;B、﹣(4x+2)=﹣2x﹣1,正确;C、(2m﹣3n)=m﹣n,故此选项错误;D、﹣(m﹣2x)=﹣m+2x,故此选项错误;故选:B.2.单项式﹣x2y的系数和次数分别是()A.,3B.﹣,3C.﹣,2D.,2【分析】直接利用单项式的次数与系数确定方法分析得出答案.【解答】解:单项式﹣x2y的系数和次数分别是:﹣,3.故选:B.3.下列式子﹣2x,,0,,中单项式的个数为()A.2B.3C.4D.5【分析】利用单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,进而得出答案.【解答】解:代数式﹣2x,,0,,中,﹣2x,,0是单项式,故单项式的个数有3个.故选:B.4.下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是3B.系数是﹣,次数是4C.系数是﹣5,次数是4D.系数是﹣5,次数是3【分析】依据单项式的系数和次数的定义进行解答即可.【解答】解:单项式﹣的系数为﹣,次数为4.故选:B.5.下列各式①m;②x+5=7;③2x+3y;④;⑤中,整式的个数有()A.1个B.2个C.3个D.4个【分析】直接利用单项式和多项式统称为整式,进而分析得出答案.【解答】解:①m;②x+5=7;③2x+3y;④;⑤中,整式有①m;③2x+3y;④,共3个.故选:C.6.下列说法正确的是()A.ab+c是二次三项式B.多项式2x2+3y2的次数是4C.0和π都是单项式D.是整式【分析】根据单项式:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;多项式中次数最高的项的次数叫做多项式的次数.多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式进行分析即可.【解答】解:A、ab+c是二次二项式,故原题说法错误;B、多项式2x2+3y2的次数是2,故原题说法错误;C、0和π都是单项式,说法正确;D、是分式,故原题说法错误;故选:C.7.将代数式4a2b+3ab2﹣2b2+a3按a的升幂排列的是()A.﹣2b3+3ab2+4a2b+a3B.a3+4a2b+3ab2﹣2b3C.4a2b+3ab2﹣2b3+a3D.4a2b+3ab2+a3﹣2b3【分析】根据多项式的项的定义,可知本多项式的项为4a2b,3ab2,﹣2b2,a3,再由加法的交换律及多项式的升幂排列得出结果.【解答】解:多项式4a2b+3ab2﹣2b2+a3的各项为4a2b,3ab2,﹣2b2,a3.按字母a升幂排列为:﹣2b3+3ab2+4a2b+a3.故选A.8.下列各式计算中,正确的是()A.2a+2=4a B.﹣2x2+4x2=2x2C.x+x=x2D.2a+3b=5ab【分析】根据同类项的定义,及合并同类项的法则.【解答】解:A、2a+2=2(a+1);B、正确;C、x+x=2x;D、不能再计算.故选B.9.多项式x3﹣2x2+5x+3与多项式2x2﹣x3+4+9x的和一定是()A.奇数B.偶数C.2与7的倍数D.以上都不对【分析】此题首先利用整式加减的法则得到两个多项式的和,然后根据结果即可作出判断.【解答】解:(x3﹣2x2+5x+3)+(2x2﹣x3+4+9x)=14x+7结果是个多项式;又14x+7=7(2x+1),此处x为任意有理数,而并非只取正整数,∴结果不确定.故选D.10.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.7B.6C.5D.4【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个正方形面积的差.【解答】解:设重叠部分面积为c,a﹣b=(a+c)﹣(b+c)=16﹣9=7,故选A.二.填空题(共4小题)11.化简:4a﹣(a﹣3b)=3a+3b.【分析】先去括号,然后合并同类项,依此即可求解.【解答】解:4a﹣(a﹣3b)=4a﹣a+3b=3a+3b.故答案为:3a+3b.12.若﹣x m+3y与2x4y n+3是同类项,则(m+n)2017=﹣1.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:∵与2x4y n+3是同类项,∴m+3=4,n+3=1,∴m=1,n=﹣2,∴(m+n)2017=(1﹣2)2017=﹣1,故答案为:﹣1.13.若单项式﹣8x3m+n y的次数为5,若m,n均为正整数,则m﹣n的值为0.【分析】直接利用单项式的次数定义结合正整数的定义分析得出答案.【解答】解:∵单项式﹣8x3m+n y的次数为5,∴3m+n+1=5,故3m+n=4,∵m,n均为正整数,∴m=1,n=1,则m﹣n的值为:1﹣1=0.故答案为:0.14.已知多项式3x2﹣y3﹣5xy2﹣x3﹣1,按x的降幂排列:﹣x3+3x2﹣5xy2﹣y3﹣1.【分析】按x的降幂排列就是把多项式按x的指数从大到小进行排列.【解答】解:多项式3x2﹣y3﹣5xy2﹣x3﹣1,按x的降幂排列为:﹣x3+3x2﹣5xy2﹣y3﹣1故答案为:﹣x3+3x2﹣5xy2﹣y3﹣1.三.解答题(共5小题)15.已知A=2x2﹣9x﹣11,B=﹣6x+3x2+4,且B+C=A(1)求多项式C;(2)求A+2B的值.【分析】(1)、(2)根据题意列出算式,根据整式的加减混合运算法则计算.【解答】解:(1)∵B+C=A,∴C=A﹣B=(2x2﹣9x﹣11)﹣(﹣6x+3x2+4)=2x2﹣9x﹣11+6x﹣3x2﹣4=﹣x2﹣3x﹣15;(2)A+2B=(2x2﹣9x﹣11)+2(﹣6x+3x2+4)=x2﹣x﹣﹣12x+6x2+8=7x2﹣x+.16.先化简,再求值:4x2y﹣[6xy﹣2(4xy﹣2)+2x2y]+1,其中x=﹣,y=1.【分析】先去括号,然后合并同类项,最后代入计算即可.【解答】解:原式=4x2y﹣[6xy﹣8xy+4+2x2y]+1=4x2y+2xy﹣4﹣2x2y+1=2x2y+2xy﹣3当x=﹣,y=1时,原式=2×(﹣)2×1+2×(﹣)×1﹣3=﹣.17.化简:(1)6x﹣(2x﹣3)(2)﹣5(3a2b﹣ab2)+(ab2+3a2b)【分析】先去括号,再合并同类项即可.【解答】解:(1)6x﹣(2x﹣3)=6x﹣2x+3=4x+3;(2)﹣5(3a2b﹣ab2)+(ab2+3a2b)=﹣15a2b+5ab2+ab2+3a2b=﹣12a2b+6ab2.18.某校初二年级有A、B、C三个课外活动小组,各组人数相等,但A中的女生比B中的女生多4名,B 中的女生比C中的女生多1名.如果从A调10人去B中,再从B调10人去C中,最后从C调10人回A 中,结果各组的女生人数都相等.已知从C调入A的学生中只有2名女生.问分别从A,B调出的人数中各有几名女生?【分析】我们先把B组女生人数设为x,则A组女生人数为x+4,C组女生人数为x﹣1,然后根据题意可得x+x+4+x﹣1=3x+3,=x+1,继而可确定出每组女生人数.【解答】解:我们先把B组女生人数设为x,则A组女生人数为x+4,C组女生人数为x﹣1,∵女生最后人数相等,∴经过调度之后,每个组的女生人数应为:x+x+4+x﹣1=3x+3,=x+1,∴每组女生人数应为(x+1)人,又∵C组调出2个女生,∴B组应该调出x+1﹣(x﹣1﹣2)=4个女生(其实就是C组缺多少个女生),而A组应该调出x+1﹣(x﹣4)=5个女生(同上,其实就是B组缺了多少女生).检验一下,A组原有x+4个女生,调出5个,调入2个,还有x+1个女生B组原有x个女生,调出4个,调入5个,还有x+1个女生C组原有x﹣1个女生,调出2个,调入4个,还有x+1个女生.答:A、B各调出5名和4名女生.19.如果A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1,且3A+6B的值与x的取值无关,求+++++++﹣的值.【分析】把A、B代入3A+6B,由3A+6B的值与x的取值无关可求出y的值;把y代入代数式进行计算即可.注意利用=﹣将式子化简.【解答】解:3A+6B=3(2x2+3xy﹣2x﹣1)+6(﹣x2+xy﹣1)=6x2+9xy﹣6x﹣3﹣6x2+6xy﹣6=15xy﹣6x﹣9=(15y﹣6)x﹣9∵3A+6B的值与x的取值无关,∴15y=6,即y=.∴原式=1﹣+﹣+…+﹣﹣=1﹣﹣==.《一元一次方程》单元检测考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题)1.方程3x+6=2x﹣8移项后,正确的是()A.3x+2x=6﹣8B.3x﹣2x=﹣8+6C.3x﹣2x=﹣6﹣8D.3x﹣2x=8﹣62.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为()A.54+x=80%×108B.54+x=80%(108﹣x)C.54﹣x=80%(108+x)D.108﹣x=80%(54+x)3.设某数是x,若比它的2倍大3的数是8,可列方程为()A.2x﹣3=8B.2x+3=8C.x﹣3=8D.x+3=84.学生问老师多少岁了,老师说:我和你这么大时,你才4岁,你到我这么大时,我就37岁了,则老师比学生大()A.8岁B.9岁C.10岁D.11岁5.下列四个式子中,是方程的是()A.3+2=5B.3x﹣2=1C.2x﹣3<0D.a2+2ab+b26.用一根长12cm的铁丝围成一个长方形,使得长方形的宽是长的,则这个长方形的面积是()A.4cm2B.6cm2C.8cm2D.12cm27.某厂投入200 000元购置生产某新型工艺品的专用设备和模具,共生产这种工艺品x件,又知生产每件工艺品还需投入350元,每件工艺品以销售价550元全部售出,生产这x件工艺品的销售利润=销售总收入﹣总投入,则下列说法错误的是()A.若产量x<1000,则销售利润为负值B.若产量x=1000,则销售利润为零C.若产量x=1000,则销售利润为200 000元D.若产量x>1000,则销售利润随着产量x的增大而增加8.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.2x+4×20=4×340B.2x﹣4×72=4×340C.2x+4×72=4×340D.2x﹣4×20=4×3409.某轮船在两个码头之间航行,顺水航行需4小时,逆水航行需6小时,水流速度是2千米/小时,求两个码头之间距离x的方程是()A.B.C.D.10.若x +=3,求的值是( )A .B .C .D .二.填空题(共4小题)11.已知5x ﹣5与﹣3x ﹣9互为相反数,则x= .12.关于x 的方程2x +m=1﹣x 的解是x=﹣2,则m 的值为 .13.已知x 2﹣3y=5﹣y ,则3+2x 2﹣4y= .14.若方程6x +3=0与关于y 的方程3y +m=15的解互为相反数,则m= .三.解答题(共5小题)15.已知:如图,这是一种数值转换机的运算程序.(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为 ;若第1次输入的数为12,则第5次输出的数为 .(2)若输入的数为5,求第2016次输出的数是多少、(3)是否存在输入的数x ,使第3次输出的数是x ?若存在,求出所有x 的值;若不存在,请说明理由.16.列方程解应用题今年某网上购物商城在“双11岁物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款 元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?17.某农户2017年承包荒山若干亩,投资7800元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b元(b<a).若该农户将水果拉到市场出售平均毎天出售1000千克,需8人帮忙,毎人每天付工资100元,农用车运费及其他各项税费平均每人300元.(1)当a=3,b=2时,农户在水果市场或在果园中出售完全部水果的总收入分别是多少元?(2)用a,b分别表示农户在水果市场或在果园中这两种方式出售完全部水果的纯收入?(纯收入=总收入﹣总支出)(3)若a=b+k(k>0),|k﹣2|=2﹣k且k是整数,若两种出售水果方式都在相同的时间内售完全部水果,试讨论当k为何值时,选择哪种出售方式较好.18.求关于x的方程2x﹣5+a=bx+1,(1)有唯一解的条件;(2)有无数解的条件;(3)无解的条件.19.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张采用A方法,其余采用B方法.(1)则裁剪出的侧面的个数是个,底面的个数是个(用x的代数式表示);(2)若x=5,则最多能做三棱柱盒子多少个?参考答案与试题解析一.选择题(共10小题)1.方程3x+6=2x﹣8移项后,正确的是()A.3x+2x=6﹣8B.3x﹣2x=﹣8+6C.3x﹣2x=﹣6﹣8D.3x﹣2x=8﹣6【分析】本题只要求移项,移项注意变号就可以了.【解答】解:原方程移项得:3x﹣2x=﹣6﹣8.故选C.2.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为()A.54+x=80%×108B.54+x=80%(108﹣x)C.54﹣x=80%(108+x)D.108﹣x=80%(54+x)【分析】直接利用已知表示出绿洲面积和沙漠面积,进而绿洲面积占沙漠面积的80%得出等式求出答案.【解答】解:把x公顷沙漠改造为绿洲后,绿洲面积变为(54+x)公顷,沙漠面积变为(108﹣x)公顷,根据“绿洲面积占沙漠面积的80%”,可得方程:54+x=80%(108﹣x),故选:B.3.设某数是x,若比它的2倍大3的数是8,可列方程为()A.2x﹣3=8B.2x+3=8C.x﹣3=8D.x+3=8【分析】根据文字表述可得到其等量关系为:x的2倍+3=8,根据此列方程即可.【解答】解:根据题意得:2x+3=8.故选B.4.学生问老师多少岁了,老师说:我和你这么大时,你才4岁,你到我这么大时,我就37岁了,则老师比学生大()A.8岁B.9岁C.10岁D.11岁【分析】设老师比学生大x岁,则学生的年龄为(x+4)岁,老师的年龄为(2x+4)岁,根据老师的年龄比学生大x岁,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设老师比学生大x岁,则学生的年龄为(x+4)岁,老师的年龄为(2x+4)岁,根据题意得:37﹣(2x+4)=x,解得:x=11.故选D.5.下列四个式子中,是方程的是()A.3+2=5B.3x﹣2=1C.2x﹣3<0D.a2+2ab+b2【分析】根据方程的定义即可求出答案.【解答】解:方程是指含有未知数的等式.故选(B)6.用一根长12cm的铁丝围成一个长方形,使得长方形的宽是长的,则这个长方形的面积是()A.4cm2B.6cm2C.8cm2D.12cm2【分析】设围成的长方形的宽为x,则长为2x,根据周长=(长+宽)×2,即可得出关于x的一元一次方程,解之即可得出长方形的长和宽,再根据长方形的面积公式,即可求出结论.【解答】解:设围成的长方形的宽为x,则长为2x,根据题意得:2(x+2x)=12,解得:x=2,∴2x=4,∴围成长方形的面积为2×4=8(cm2).故选C.7.某厂投入200 000元购置生产某新型工艺品的专用设备和模具,共生产这种工艺品x件,又知生产每件工艺品还需投入350元,每件工艺品以销售价550元全部售出,生产这x件工艺品的销售利润=销售总收入﹣总投入,则下列说法错误的是()A.若产量x<1000,则销售利润为负值B.若产量x=1000,则销售利润为零C.若产量x=1000,则销售利润为200 000元D.若产量x>1000,则销售利润随着产量x的增大而增加【分析】用含x的代数式表示出销售利润后,化简,求得销售利润为零时的x的值,对各个选项分析判断.【解答】解:根据题意,生产这x件工艺品的销售利润=(550﹣350)x﹣200000=200x﹣200000,。
人教版2024-2025学年七年级上册数学单元检测1(有理数的运算)含答案
人教版2024-2025学年七年级上册数学单元检测(有理数的运算)一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.若一个数的倒数是,则这个数是( )134-A. B. C. D.413413-134134-2.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000美元税收,其中1100000000用科学记数法表示应为( )A. B. C. D.80.1110⨯101.110⨯91.110⨯81110⨯3.计算结果是( )(32)4(8)-÷⨯-A.1 B. C.64 D.1-64-4.下列各式中结果是负数的为( )A. B. C. D.()5--()25-25-5-5.下列各式运算错误的是( )A. B.()()236-⨯-=()11262⎛⎫-⨯-=- ⎪⎝⎭C. D.()()()52880-⨯-⨯-=-()()()32530-⨯-⨯-=-6.下列说法正确的是( )A.近似数3.6万精确到十分位B.近似数0.720精确到百分位C.近似数5.78精确到百分位D.近似数3000精确到千位7.甲、乙两人用简便方法进行计算的过程如下,下列判断正确的是( )甲.11(14)19(6)1119[(14)(6)]10+-+--=++-+-=乙.71171168588855⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++-=-+-+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦A.甲、乙都正确B.甲、乙都不正确A. B. C.4 D.2-4-289.若,,则a 与b 的乘积不可能是( )||a a =||b b -=14.计算的结果是_____________.()22022515292⎛⎫-÷-⨯--- ⎪⎝⎭15.求值:_____.1(2)3(4)5(6)7(8)2021(2022)2023+-++-++-++-+⋯++-+=三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)用四舍五入法,对下列各数按括号中的要求取近似数.(1)0.6328(精确到0.01);(2)7.9122(精确到个位);(3)130.96(精确到十分位);(4)46021(精确到百位).17.(8分)计算:(1);()()()()81021++-----(2).()()221310.5233⎡⎤---÷⨯--⎣⎦18.(10分)计算.32118(3)2⎛⎫-÷-⨯- ⎪⎝⎭莉莉的计算过程如下:解:原式.1111(18)9(18)8984=-÷⨯=-⨯⨯=-佳佳的计算过程如下:解:原式.198(18)9(18)(18)16889⎛⎫⎛⎫⎛⎫=-÷⨯-=-÷-=-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭请问莉莉和佳佳的计算过程正确吗?如果不正确,请写出正确的计算过程.19.(10分)某食品厂从生产的袋装食品中随机抽样检测每袋的质量是否符合标准质量,超过或不足的质量分别用正、负数表示,例如+2表示该袋食品超过标准质量2克.现记录如下:与标准质量的误差(单位:克)-5-60+1+3+6袋数533423(1)在抽取的样品中,最重的那袋食品的质量比最轻的那袋多多少克;(2)若标准质量为500克/袋,则这次抽样检测的总质量是多少克.20.(12分)某中学开展一分钟跳绳比赛,成绩以200次为标准数量,超过的次数记为正数,不足的次数记为负数,七年级某班8名同学组成代表队参赛,成绩(单位:次)记录如下:+8,0,-5.+12,-9,+1,+8,+15.(1)求该班参赛代表中最好成绩与最差成绩相差多少次?(2)求该班参赛代表队一共跳了多少次?(3)规定:每分钟跳绳次数为标准数量,不得分;超过标准数量,每多跳1次得2分;未达到标准数量,每少跳1次扣1分,若代表队跳绳总积分超过70分,便可得到学校的奖励,请通过计算说明该代表队能否得到学校奖励.21.(12分)观察下列等式:第1个等式:;11111323⎛⎫=⨯- ⎪⨯⎝⎭第2个等式:;111135235⎛⎫=⨯- ⎪⨯⎝⎭第3个等式:;111157257⎛⎫=⨯- ⎪⨯⎝⎭第4个等式.111179279⎛⎫=⨯- ⎪⨯⎝⎭(1)探寻上述等式规律,写出第5个等式:_________;(2)求的值.1111155991320172021++++⨯⨯⨯⨯答案以及解析1.答案:B解析:因为,,所以的倒数是.113344-=-1341413⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭134-413-2.答案:C解析:1100000000用科学记数法表示应为.91.110⨯故选:C.3.答案:C解析.()(32)4(8)=88=64-÷⨯--⨯-故选C.4.答案:C解析:A 、是正数,此项不符题意;(5)5--=B 、是正数,此项不符题意;2(5)25-=C 、是负数,此项符合题意;2525-=-D 、55-=是正数,此项不符题意;故选:C.5.答案:B解析:A 、,则此项正确,不符合题意;()()23236-⨯-=⨯=B 、,则此项错误,符合题意;()111212622⎛⎫-⨯-=⨯= ⎪⎝⎭C 、,则此项正确,不符合题意;()()()()52852880-⨯-⨯-=-⨯⨯=-D 、,则此项正确,不符合题意;()()()()32532530-⨯-⨯-=-⨯⨯=-故选:B.6.答案:C解析:A.近似数3.6万精确到千位,原说法错误;B.近似数0.720精确到千分位,原说法错误;C.近似数5.78精确到百分位,说法正确;D.近似数3000精确到个位,原说法错误;故选:C.7.答案:D解析:,甲不正确.11(14)19(6)1119[(14)6]30822+-+--=++-+=-=711711711858858885⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++-=-+-+-=-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,乙正确.16(1)55⎛⎫=-+-=- ⎪⎝⎭8.答案:C解析:输入,则1x =21242420⨯-=-=-<输入,则,2-()22244-⨯-=所以输出y 的值为:4故选:C.9.答案:A解析:因为,,所以,,所以a 与b 的乘积不可能是负数,故a ||a a =||b b -=0a ≥0b ≥与b 的乘积不可能是.5-10.答案:A解析:由题知,,,,,,,,,,122=224=328=4216=8232=6264=72128=82256=⋯所以的末位数字按2,4,6,8循环出现,2n 又余2,20224505÷=所以的末位数字是4.20222,,,,,,,, 133=239=3327=4381=53243=63729=732187=836561=…,所以的末位数字按3,9,7,1循环出现,3n 又余3,20234505÷=所以的末位数字是7.20233的末位数字是3()20232202320202222(3)32=--+-故选:A.11.答案:千解析:,41.51015000⨯= 近似数精确到千位,∴41.510⨯故千.12.答案:8112019-+-解析:写成省略加号的和的形式是.8(11)(20)(19)-+--+-8112019-+-故答案为.8112019-+-13.答案:5解析:由题意可得:已知有理数中的负整数为,1-则,2(1)(4)1432-+-=-=-<-则有2(3)(4)9452-+-=-=>-,则输出的结果为5,故5.14.答案:3解析:()22022515292⎛⎫-÷-⨯--- ⎪⎝⎭212575⎛⎫=-⨯-⨯- ⎪⎝⎭107=-.3=15.答案:1012解析:1(2)3(4)5(6)7(8)2021(2022)2023+-++-++-++-+⋯++-+(12)(34)(56)(78)(20212022)2023=-+-+-+-+⋯+-+2022(1)20232=-⨯+.1012=故1012.16.答案:(1)0.63(2)8(3)131.0(4)44.6010⨯解析:(1)0.6328(精确到0.01).0.63≈(2)7.9122(精确到个位).8≈(3)130.96(精确到十分位).131.0≈(4)46021(精确到百位).44.6010≈⨯17.答案:(1)1(2)1.5解析:(1)()()()()81021++-----81021=-++;1=(2)2213(10.5)2(3)3⎡⎤---÷⨯--⎣⎦()19372=--⨯⨯-910.5=-+18.答案:见解析解析:莉莉和佳佳的计算过程都不正确.正确的计算过程:原式.111118918928884⎛⎫=-÷⨯-=÷⨯=⨯= ⎪⎝⎭19.答案:(1)12(2)9985解析:试题(1)根据题意及表格得:(克),()666612+--=+=最重的食品比最轻的重12克;(2)由表格得:()()()()()556303143263-⨯+-⨯+⨯++⨯++⨯++⨯()251804618=-+-++++2510=-+,15=-则(克).50020159985⨯-=这次抽样检测的总质量是9985克.20.答案:(1)24次(2)1630次(3)该班能得到学校奖励解析:(1)(次),15(9)15924+--=+=故该班参赛代表中最好成绩与最差成绩相差24次;(2)(次),2008(8)0(5)(12)(9)(1)(8)(15)1630⨯++++-+++-++++++=故该班参赛代表队一共跳了1630次;(3)(分),(8121815)2(59)174++++⨯-+⨯=,7470> 该班能得到学校奖励.∴21.答案:(1)11119112911⎛⎫=⨯- ⎪⨯⎝⎭(2)5052021解析:(1)观察所给的等式,可得第5个等式为.故答案为11119112911⎛⎫=⨯- ⎪⨯⎝⎭.11119112911⎛⎫=⨯- ⎪⨯⎝⎭(2)原式.111111120205051455920172021420212021⎛⎫=-+-++-=⨯= ⎪⎝⎭。
华师大版七年级上册 第一章《有理数》 单元检测卷
华东师大版数学七年级上册第一章《有理数》单元检测卷一、选择题:1.下列各数中,绝对值最小的是()A.12B.−7.5C.−713D. 0.52.小明为了了解本地气温变化情况,记录了某日12时的气温是-4℃,14时的气温升高了2℃,到晚上20时气温又降低了6℃,则20时的气温为()A.6℃B.-8℃C.-1℃D.13℃3.当|x|=−x时,则x一定是()A.负数B.正数C.负数或0D.04.用四舍五入法对3.14159分别取近似值,其中错误..的是()A.3.14(精确到0.01)B.3.141(精确到千分位)C.3.1(精确到十分位)D.3.1416(精确到0.0001)5.如图,这是一个简单的数值运算程序,当输入的x的值为−1时,则输出的值为()A.1B.−5C.−1D.56.北京时间2024年4月25日20点59分在酒泉卫星发射中心发射神州十八号载人飞船,船舰组合体重达400多吨,总高度60多米.将400吨用科学记数法可表示为()A.40×104千克B.4×105千克C.0.4×107千克D.4×107千克7.若x,y同号,则|x|x +|y|y+|xy|xy值为()A.3或1B.−1或0C.3或−1D.−3或18.如图,将刻度尺放在数轴上(数轴的单位长度是l cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.4cm”对应数轴上的数为()A.−1.4 B .−2.6 C.−2.4 D .−1.6()319.,0.2561143....A B C D --- 下列各数中:+2,-3.5,- , 2, , ,负数有( ) 2个 3个 4个 5个10. 如果收入800元记作+800元,那么−500元表示( )A .收入500元B .支出500元C .收入300元D .支出300元11.如图,数轴上的六个点满足AB =BC =CD =DE =EF ,则在点B 、C 、D 、E 对应的数中,最接近−8的点是( )A .点B B .点C C .点D D .点E12.下列各式,错误的是( )①(−2)2=4;②−5÷15×5=−5;③223=49;④(−3)2×(−13)=3; ⑤−33=−9.A. ①②③④⑤B. ②③④⑤C. ②③④D. ③④⑤二、填空题:13.若a 和b 互为相反数,c 和d 互为倒数,则(a +b)2024+(cd)2022= ______.14.我市某天的最高气温是8℃,最低气温是−1℃,则这天的日温差是______℃.15.规定一种计算℃,a ℃b =ab a+2b ,则(-2)℃2= .16.没洗过的一双手约带有各种细菌7360000个,请将这个数保留两位有效数字用科学记数法表示为 .17.在计算()1113612366⎛⎫--+⨯- ⎪⎝⎭ 时,利用乘法的 可以简单运算;其计算结果是 .18.如图,在数轴上点A 表示的数是绝对值是2的负整数,点B 表示的数是最大的负整数,点C 表示的数是(−2)3的相反数,若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.三、解答题:19.计算:(1)12+(−23)+45+(−12)+(−13). (2) (−3)÷(−134)×0.75÷(−37)×(−6)(3) (−15)×(−0.1)÷125×(−10);20. 河南7.20发生洪涝灾害牵动着各方爱心人士的心,某中学作为群众集中安置点接受社会捐赠8筐白菜,以每筐为25kg 准,超过的千克数记作正数,不足的千克数记作负数,称重后的记录如下:1.5,−3,2,−0.5,1,−2,−2,−2.5.(1)这8筐白菜总计超过或不足标准多少千克⋅(2)这8筐白菜一共多少千克⋅(3)如果这8筐白菜按每千克3元折价,求这8筐白菜价值是多少元⋅21.已知有五个有理数,分别是:2.5,﹣2,|﹣4|,﹣(﹣1),0.(1)请把这五个有理数在数轴上表示出来;(2)按照从小到大的顺序用“<”把它们连接起来.22.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):(1)根据记录的数据可知该厂星期五生产自行车______辆;(2)根据记录的数据可知该厂本周实际生产自行车______辆;(3)该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?23.观察下列等式:1 2 3 41111 1323 1111 35235 1111 57257 1111 79279a a a a⎛⎫==⨯-⎪⨯⎝⎭⎛⎫==⨯-⎪⨯⎝⎭⎛⎫==⨯-⎪⨯⎝⎭⎛⎫==⨯-⎪⨯⎝⎭第1个等式:第2个等式:第3个等式:第4个等式:请解答下列问题:(1)按以上规律列出第5个等式:a5=_______________________.(2)用含有n的代数式表示第n个等式:a n=_______________________.(n为正整数);(3)求a11+a12+a13+⋯+a99+a100.。
人教版七年级上册数学 第一章 有理数 单元检测试卷(含答案解析)
人教版七年级上册数学 第一章 有理数 单元检测试卷一、单选题(共10小题,每题3分,共30分)1.−15的相反数是( ) A .−15B .15C .−5D .52. 2021年5月国家统计局公布了第七次人口普查结果,我国人口数约为14.12亿,其中14.12亿用科学记数法表示为( )A .14.12×108B .0.1412×1010C .1.412×109D .1.412×1083.在 −(−5) , −|−3| ,4, −4 这4个数中,最小的有理数是( ) A .−(−5)B .−|−3|C .4D .−44.如果给出两个说法:①用四舍五入法对3.355取近似值,精确到百分位得3.35;②近似数5.2万精确到千位;那么( )A .①②都正确B .①正确,②不正确C .①不正确,②正确D .①②都不正确5.已知|x |=3,|y |=2,且xy >0,则x ﹣y 的值等于( ) A .5或﹣5B .1或﹣1C .5或1D .﹣5或﹣16.数轴上点A 表示的数是-2,那么与点A 相距5个单位长度的点表示的数是 ( )A .-7B .3C .-7或3D .以上都不对7.下列说法中正确的个数是( )①|a| 一定是正数;②−a 一定是负数;③−(−a) 一定是正数;④a 3 一定是分数.A .0个B .1个C .2个D .3个8.已知 a,b 表示两个非零的实数,则 |a|a +|b|b的值不可能是( )A.2B.–2C.1D.09.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.小明买了一件商品,比标价少付了40元,那么他购买这件商品花了()A.80元B.120元C.160元D.200元10.若a=-2020,则式子|a2+2019a+1|+|a2+2021a−1|的值是()A.4036B.4038C.4040D.4042二、填空题(共5小题,每题3分,共15分)11.如图,数轴上点A,B所表示的两个数的和的绝对值是.12.观察图形,并用你发现的规律直接写出图4中的y的值是.13.用计算器计算并填空:112=,1112=,11112,你发现计算结果有什么规律?根据你发现的规律,不用计算器计算:1111112=14.若a,b都是不为零的有理数,那么|a|a+ |b|b的值是.15.若整数a、b、c、d满足abcd=21,且a>b>c>d,则|c﹣a|+|b﹣d|=.三、计算题(24分)16(8分).计算。
有理数及其运算单元测试题
有理数及其运算单元测试题一、选择题(每小题 3 分,共 30 分)1、下列各数中,是正有理数的是()A -2B 0C 03D π2、下列说法正确的是()A 整数就是正整数和负整数B 分数包括正分数、负分数C 正有理数和负有理数组成全体有理数D 一个数不是正数就是负数3、下列各数中,互为相反数的是()A -(-2)和 2B +(-5)和-(+5)C -(-3)和-3D -|-4|和|4|4、在数轴上,与表示-3 的点的距离为 5 个单位长度的点表示的数是()A 2B -8C 2 或-8D -2 或 85、下列计算正确的是()A -2-2 = 0B (-2)÷(-)= 1C 3×(-3)=-9D (-1)×(-2)×(-3)= 66、计算(-2)×3×(-4)的结果是()A 24B -24C 12D -127、若|a| = 3,|b| = 4,且 a>b,则 a + b 的值为()A +1 或-7B -1 或-7C +1 或+7D -1 或 78、有理数 a,b 在数轴上的位置如图所示,则下列式子中成立的是()A a + b>0B a-b>0C ab>0D >09、计算 1-2 + 3-4 + 5-6 +… + 2017-2018 + 2019 的结果是()A 1010B 1009C 1005D 101110、观察下列算式: 21 = 2,22 = 4,23 = 8,24 = 16,25 =32,26 = 64,27 = 128,28 = 256,…通过观察,用你所发现的规律确定 22019 的个位数字是()A 2B 4C 6D 8二、填空题(每小题 3 分,共 24 分)11、-的相反数是______,绝对值是______,倒数是______。
12、比较大小:-______ -。
13、计算:(-3)2 =______,-32 =______。
华东师大新版 七年级上册数学 第2章 有理数 单元测试卷
华东师大新版七年级上册数学第2章有理数单元测试卷一.选择题(共10小题).1.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()A.+2.5B.﹣0.6C.+0.7D.﹣3.52.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.25.30 千克B.25.51 千克C.24.80 千克D.24.70 千克3.用﹣a表示的数一定是()A.负数B.正数或负数C.负整数D.以上全不对4.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的﹣3.6和x,则x的值为()A.4.2B.4.3C.4.4D.4.55.如图,数轴的单位长度为1,如果点A表示的数为﹣2,那么点B表示的数是()A.﹣1B.0C.3D.46.下列各数中,既不是正数也不是负数的是()A.0B.﹣(﹣1)C.﹣D.27.下列说法中正确的个数有()①﹣4.2是负分数;②3.7不是整数;③非负有理数不包括零;④正有理数、负有理数统称为有理数;⑤0是最小的有理数A.1个B.2个C.3个D.4个8.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB,则线段AB盖住的整点个数是()A.2018或2019B.2019或2020C.2020或2021D.2021或2022 9.有理数a、b、c在数轴上所对应的点如图所示,则下列结论正确的是()A.a+b<0B.a+b>0C.a+c<0D.b+c>010.如图,检测4个足球的质量,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从质量角度看,最接近标准的是()A.B.C.D.二.填空题11.如果节约20元钱,记作“+20”元,那么浪费15元钱,记作元.12.某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作.13.如果﹣20%表示减少20%,那么+6%表示.14.在﹣5,0,﹣(﹣1.5),﹣|﹣5|,2,中,整数是.15.在数轴上表示﹣10的点与表示﹣4的点的距离是.16.数轴上表示1的点和表示﹣2的点的距离是.17.如果向东运动8m记作+8m,那么向西运动5m应记作m.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:.负数集:.有理数集:.19.数轴上,如果点A所表示的数是﹣3,已知到点A的距离等于4个单位长度的点所表示的数为负数,则这个数是.20.如图,在数轴上点A、B表示的数分别为﹣2、4,若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过秒后,M、N两点间的距离为12个单位长度.三.解答题21.把下列各数分类,并填在表示相应集合的大括号内:﹣11,,﹣9,0,+12,﹣6.4,﹣π,﹣4%.(1)整数集合:{…};(2)分数集合:{…};(3)非负整数集合:{…};(4)负有理数集合:{…}.22.为了有效控制酒后驾车,某天无为县交警大队的一辆警车在东西方向的通江大道上巡视,警车从某地A处出发,规定向东方向为正,当天行驶纪录如下(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)此时,这辆巡逻的汽车司机如何向队长描述他的位置?(2)如果警车行驶1千米耗油0.2升,油箱有油10升,现在警车要回到出发点A处,那么油箱的油够不够?若不够,途中至少需补充多少升油?23.一家水果店从果园购进10筐苹果,每筐以50kg为标准,超过标准记作正,不足标准记作负,现经过磅秤称量记录如下(单位:kg):+1,+1.5,﹣0.8,﹣2,0,+1.2,﹣0.5,﹣1,0,+2.(1)问该水果店一共购进苹果多少千克?(2)水果店招牌上写着:苹果单价4元/kg,优惠价3.5元/kg.若该水果店的苹果收购价为2元/kg,则该水果店所购苹果全部售完时共盈利多少元?24.某检修小组乘汽车检修公路道路.向东记为正,向西记为负.某天自A地出发.所走路程(单位:千米)为:+22,﹣3,+4,﹣2,﹣8,﹣17,﹣2,+12,+7,﹣5;问:①最后他们是否回到出发点?若没有,则在A地的什么地方?距离A地多远?②若每千米耗油0.05升,则今天共耗油多少升?25.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5﹣2﹣5+15﹣10+16﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.26.把下列各数填在相应的括号内:﹣19,2.3,﹣12,﹣0.92,,0,﹣,0.563,π正数集合{…};负数集合{…};负分数集合{…};非正整数集合{…}.27.(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离=;B,C两点间距离=;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离=;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问:①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?参考答案与试题解析一.选择题1.解:|+2.5+=2.5,|﹣0.6|=0.6,|+0.7|=0.7,|﹣3.5|=3.5,3.5>2.5>0.7>0.6,故选:B.2.解:∵一种面粉的质量标识为“25±0.25千克”,∴合格面粉的质量的取值范围是:(25﹣0.25)千克~(25+0.25)千克,即合格面粉的质量的取值范围是:24.75千克~25.25千克,故选项A不合格,选项B不合格,选项C合格,选项D不合格.故选:C.3.解:a>0时,﹣a<0,是负数,a=0时,﹣a=0,0既不是正数也不是负数,a<0时,﹣a>0,是正数,综上所述,﹣a表示的数可以是负数,正数或0.故选:D.4.解:根据数轴可知:x﹣(﹣3.6)=8﹣0,解得x=4.4.故选:C.5.解:点B在点A的右侧距离点A有5个单位长度,∴点B表示的数为:﹣2+5=3,故选:C.6.解:0既不是正数也不是负数,故选:A.7.解:①﹣4.2是负分数是正确的;②3.7不是整数是正确的;③非负有理数包括零,原来的说法错误;④正有理数、0、负有理数统称为有理数,原来的说法错误;⑤没有最小的有理数,原来的说法错误.故说法中正确的个数有2个.故选:B.8.解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2020+1=2021,∴2020厘米的线段AB盖住2020或2021个整点.故选:C.9.解:由数轴知,﹣4<b<﹣3<﹣1<a<0<1<c<2,∴a+b<0,a+c>0,b+c<0,故选:A.10.解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C.二.填空题11.解:∵节约20元钱,记作“+20”元,∴浪费15元钱,记作﹣15元.故答案为:﹣15.12.解:根据题意:收入记作“+”,则支出记作“﹣”,∴同一天支出水、电、维修等各种费用600元,应记作﹣600元.故答案为:﹣600元.13.解:“正”和“负”相对,如果﹣20%表示减少20%,那么+6%表示增加6%.14.解:0,﹣,2是整数,故答案为:0,﹣,2.15.解:在数轴上,表示﹣10的点与表示﹣4的点的距离是|﹣4﹣(﹣10)|=6.故答案为:616.解:∵|1﹣(﹣2)|=3,∴数轴上表示﹣2的点与表示1的点的距离是3.故答案为:3.17.解:正”和“负”相对,所以向东是正,则向西就是负,因而向西运动5m应记作﹣5m.故答案为:﹣5.18.解:分数集:5%、﹣2.3、、3.1415926、﹣;负数集:﹣11、﹣2.3、﹣、﹣9;有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9;故答案为:5%、﹣2.3、、3.1415926、﹣;﹣11、﹣2.3、﹣、﹣9;﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.19.解:∵点A所表示的数是﹣3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是﹣3﹣4=﹣7.故答案为:﹣7.20.解:分两种情况,①当点N沿着数轴向右移动,则点M表示的数为(﹣2+5t),点N表示的数为(4+4t),由MN=12得,|(﹣2+5t)﹣(4+4t)|=12,解得,t=﹣6(舍去),或t=18;②当点N沿着数轴向左移动,则点M表示的数为(﹣2+5t),点N表示的数为(4﹣4t),由MN=12得,|(﹣2+5t)﹣(4﹣4t)|=12,解得,t=﹣(舍去),或t=2;故答案为:2或18.三.解答题21.解:(1)整数集合:{﹣11,﹣9,0,+12…};(2)分数集合:{,﹣6.4,﹣4%…};(3)非负整数集合:{0,+12…};(4)负有理数集合:{﹣11,,﹣9,﹣6.4,﹣4%…}.故答案为:(1)﹣11,﹣9,0,+12;(2),﹣6.4,﹣4%;(3)0,+12;(4)﹣11,,﹣9,﹣6.4,﹣4%.22.解:(1)10+(﹣9)+7+(﹣15)+6+(﹣5)+4+(﹣2)=﹣4(千米).答:他在出发点的西方,距出发点4千米;(2)总耗油量(10+|﹣9|+7+|﹣15|+6+|﹣5|+4+|﹣2|+4)×0.2=62×0.2=12.4(升),12.4﹣10=2.4(升).答:不够,途中至少需补充2.4升油.23.解:(1)50×10+(1+1.5﹣0.8﹣2+0+1.2﹣0.5﹣1+0+2)=501.4(kg);答:该水果店一共购进苹果501.4千克;(2)501.4×(3.5﹣2)=752.1(元),答:该水果店所购苹果全部售完时共盈利752.1元.24.解:①(+22)+(﹣3)+(+4)+(﹣2)+(﹣8)+(﹣17)+(﹣2)+(+12)+(+7)+(﹣5)=45+(﹣37)=8千米,所以,不能回到出发点,在A地东边8千米处;②|+22|+|﹣3|+|+4|+|﹣2|+|﹣8|+|﹣17|+|﹣2|+|+12|+|+7|+|﹣5|=22+3+4+2+8+17+2+12+7+5=82千米,82×0.05=4.1升.25.解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.26.解:正数集合{2.3,,0.563,π…};负数集合{﹣19,﹣12,﹣0.92,﹣…};负分数集合{﹣0.92,﹣…};非正整数集合{﹣19,﹣12,0 …}.故答案为:{ 2.3,,0.563,π…};{﹣19,﹣12,﹣0.92,﹣…};{﹣0.92,﹣…};{﹣19,﹣12,0 …}.27.解:(1)如图所示:(2)CD=3.5﹣1=2.5,BC=1﹣(﹣2)=3;(3)MN=|a﹣b|;(4)①依题意有2t﹣t=3,解得t=3.故t为3秒时P,Q两点重合;②依题意有2t﹣t=3﹣1,解得t=2;或2t﹣t=3+1,解得t=4.故t为2秒或4秒时P,Q两点之间的距离为1.故答案为:2.5,3;|a﹣b|.。
人教版2024七年级数学上册第一章《有理数》单元测试卷
1第一章有理数单元练习时间:60分钟 满分:100分 姓名:_______一、选择题(本大题共10小题,每小题3分,满分30分)1.中国古代著作《九章算术》在世界数学史上首次正式引入负数,用正、负数来表示具有相反意义的量.若收入300元记作+300元,则支出180元应记作( ) A. +180元 B.+300元 C.-180元 D.-480元2.有理数2024的相反数是( )A.2024B.-2024元C.20241-元 D.20241元 3.下列选项记录了我国四个城市某年一月份的平均气温,其中平均气温最低的是( ) A. 北京-4.6℃ B.上海5.6℃ C.天津-3.2℃ D.重庆8.1℃ 4. 在数轴上,表示-2的点与表示7的点之间的距离是( ) A.2 B.5 C.7 D.95. 飞机上有一种零件的尺寸标准是±2005(单位:mm ),则下列零件尺寸不合格的是( ) A.196mm B.198mm C.204mm D.210mm6. 下列说法正确的是( )A. 所有的整数都是正数B.整数和分数统称有理数C.0是最小的有理数 D 零既可以是正整数,也可以是负整数.7. 为了检测篮球是否合格,将其质量超过标准的克数记为正数,不足的克数记为负数,在下面得到的四个检测结果中,质量最接近标准的一个是( )A.-0.6B.0.7C.-2.5D.-3.5 8. 如果a a -=,则( )A.a 是正数B.a 是负数C.a 是零D.a 是负数或零 9.如图,将一刻度尺放在数轴上(数轴的单位长度是1),刻度尺上“0”和“3”分别对应数轴上的3和0,那么刻度尺上“5.6”对应数轴上的数为( )A.-1.4B.-1.6C.-2.6D.1.610.如图,数轴上点A ,B 表示的数分别为a ,b ,且b a <,则b b a a --,,,的大小关系为( ) A.b a a b <<-<- B.b a b a <<-<- C.b a a b <-<<- D.a a b b <-<<- 二、填空题(本大题共6小题,每小题3分,满分18分) 11.比较大小5-____3-.12.化简:7--=____,)(7--=____. 13.在数轴上,点A 所表示的数为-1,那么在数轴上与点A 相距2个单位长度的点表示的数是________. 14.23-与它的相反数之间有____个整数. 15.绝对值大于1.5且小于3的整数是_______.16.如图,圆的周长为4个单位长度.在该圆周上4等分点处分别标上数字0、1、2、3,让圆周上表示数字0的点与数轴上表示的点重合,将该圆沿着数轴的负方向滚动,则数轴上表示数的点对应圆周上的数字是______.三、解答题(共6大题,共54分)17.(6分)把下列各有理数填在相应的大括号内:313.0221,4130741.0,35,,,,,,----- 整数集合{ }; 负分数集合{ }; 正有理数集合{ }; 18. (6分)比较下列各组数的大小。
第二章《有理数》单元检测试题(含答案)
2018-2019学年度第一学期苏科版七年级数学上册第二章有理数单元检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.下列四个式子中,计算结果最小的是()A. B.C. D.2.下列结论中正确的是()A.既是正数,又是负数B.是最小的正数C.是最大的负数D.既不是正数,也不是负数3.中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们为中国节水,为世界节水.若每人每天浪费水,那么万人每天浪费的水,用科学记数法表示为()A. B.C. D.4.下列关于零的说法中,正确的个数是()①零是正数;②零是负数;③零既不是正数,也不是负数;④零仅表示没有.A.个B.个C.个D.个5数轴上的点到原点的距离是,则点表示的数为()A. B.C.或D.或6.一个数是,另一个数比的相反数小,则这两个数的和为()A. B. C. D.7.现有四种说法:① 表示负数;②若,则;③绝对值最小的有理数是;④若,则;⑤若,则,其中正确的是()A.个B.个C.个D.个8.若新运算“”定义为:,则A. B. C. D.9.下列说法中正确的是()A.是最小的整数B.最大的负有理数是C.两个负数绝对值大的负数小D.有理数的倒数是10.下列说法中,正确的是()A.正有理数和负有理数统称有理数B.一个有理数不是整数就是分数C.零不是自然数,但它是有理数D.正分数、零、负分数统称分数二、填空题(共 10 小题,每小题 3 分,共 30 分)11.已知:,则________.12.在,,,,,中,整数有________个.13.写出一个关于有理数加法的算式,使得和比每一个加数都小,这个算式可以为________.14.若的相反数是,,则的值为________.15.的相反数是________,的相反数是________.16.有理数、在数轴上的位置如图所示,则下列各式成立的是________(只填序号)① ;② ;③ ;④ .17.若,则________.18.有一颗高出地面米的树,一只蜗牛想从树底下爬上去晒晒太阳,他爬行的路径是每向上爬行米又向下滑行米,它想爬到树顶至少爬行________米.19.绝对值不大于的整数有________,它们的和是________.20.若是最小的正整数,是绝对值最小的整数,的绝对值是,则的值是________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.计算:;;.22.,互为相反数,,互为倒数,且的绝对值是,求的值.23.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):,,,,,,,.最后一名老师送到目的地时,小王距出车地点的距离是多少?若汽车耗油量为升/千米,这天下午汽车共耗油多少升?24.如图:在数轴上点表示数,点表示数,点表示数,是最大的负整数,且、满足.________,________,________.若将数轴折叠,使得点与点重合,则点与数________表示的点重合;点、、开始在数轴上运动,若点以每秒个单位长度的速度向左运动,同时,点和点分别以每秒个单位长度和个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为,则________,________.(用含的代数式表示)请问:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.25.某检修小组乘汽车检修公路道路.向东记为正.某天自地出发.所走路程(单位:千米)为:,,,,,,;问:①最后他们是否回到出发点?若没有,则在地的什么地方?距离地多远?②若每千米耗油升,则今天共耗油多少升?26.如图是一个“有理数转换器”(箭头是指有理数进入转换器后的路径,方框是对进入的数进行转换的转换器)当小明输入;;这三个数时,这三次输入的结果分别是多少?你认为当输入什么数时,其输出的结果是?你认为这的“有理数转换器”不可能输出什么数?参考答案1.B2.D3.C4.A5.A6.B7.A8.C9.C10.B11.12.13..14.或15.①②④17.18.19.,,,,20.21.解:原式,,;原式;原式.22.解:∵ ,互为相反数,,互为倒数,且的绝对值是,∴ ,,,当时,原式;当时,原式;所以的值为或.23.解:根据题意:规定向东为正,向西为负:则千米,故小王在出车地点的西方,距离是千米;这天下午汽车走的路程为,若汽车耗油量为升/千米,则升,故这天下午汽车共耗油升.24. ∵ ,,∴ .∴ 的值为定值.25.他们不能回到出发点,在地东边,距离地千米远;②(千米),(升).答:今天共耗油升26.解: ∵ ,∴输入时的程序为:,∴ 的相反数是,的倒数是,∴当输入时,输出;∵.∴输入时的程序为:,∴的相反数是,,∴当输入时,输出;∵ ,∴输入时的程序为:,的相反数为,的绝对值是∴当输入时,输出. ∵输出数为,的相反数及绝对值均为,当输入的倍数时也输出.∴应输入或(为自然数);由图表知,不管输入正数、或者负数,输出的结果都是非负数.所以输出的数应为非负数.。
人教版七年级数学上册第一章有理数单元检测试卷附答案
人教版七年级数学上册第一章有理数单元检测试卷附答案一、单选题(共10题;共30分)1.计算-1+2×(-3)的结果是( )A. 7B. -7C. 5D. -5 2.在数0.25 ,-12,7,0,-3,100中,正数的个数是( )A. 1个B. 2个C. 3个D. 4个 3.−2 的倒数是( )A. −12 B. 12 C. −2 D. 2 4.-2,0,2,-3这四个数中最大的是( )A. 2B. 0C. -2D. -3 5.下列运算结果为负数的是( ).A. |−2|B. (−2)2C. −(−2)D. −22 6.下列各组数中,最后运算结果相等的是( ).A. 102和54B. -42和(-4)2C. -55和(-5)5D. 233和 (23)37.有理数a 、b 在数轴上的位置如图所示,则下列结论正确的是( )A. a+b >0B. a ﹣b <0C. |b|>|a|D. ab <08.一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动3个单位长度,经过两次移动后到达的终点表示的是什么数?( )A. +5B. +1C. -1D. -5 9.-5的相反数是( )A. -5B. 5C. ±5D. −1510.衢州市“十二五”规划纲要指出,力争到2015年,全市农民人均年纯收入超13000元,数13000用科学记数法可以表示为( )A. 13×103B. 1.3×104C. 0.13×104D. 130×102二、填空题(共10题;共30分)11.-2的绝对值与-2的相反数的差是________.12.2017年盐城市经济总量首次突破5000亿元,预计地区生产总值达5050亿元,比上年增长6.8%,数据5050亿用科学记数法可表示为________.13.若有理数a 、b 满足|a+2|+(b ﹣3)2=0,则a b 的值为________. 14.绝对值小于2004的所有整数的和为________,积为________.15.已知 21=2,22=4,23=8,24=16 ……,那么 1+2+22+23+ …+ 232 的个位数字是________.16.(-1 23)2=________,(-2×3)3=________.17.﹣3的倒数是________,﹣2 15的相反数为________.18.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越________。
人教版七年级数学上册《第二章有理数的运算》单元检测卷(带答案)
人教版七年级数学上册《第二章有理数的运算》单元检测卷(带答案)一、单选题(本大题共10小题)1.第五届世界智能大会采取“云上”办会的全新模式呈现,48家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为67400000,将67400000科学记数法表示应为( )A .0.674×105B .6.74×106C .6.74×107D .67.4×1062.26.4亿用科学记数法表示为( )A .826.410⨯B .82.6410⨯C .926.410⨯D .92.6410⨯3.2的倒数是( )A .2B .12 C .12- D .-24.期中考试小明用计算器计算六科平均成绩为93.25614分,用四舍五入法按要求取近似值,其中错误的是( )A .93.3(精确到0.1)B .93.256(精确到千分位)C .93.25(小数点后两位)D .93.26(小数点后两位)5.月球离地球的距离约为38万千米,数38万用科学记数法可表示为( ) A .53.810⨯ B .43.810⨯ C .53810⨯ D .43810⨯6.将算式5(3)(4)---+-写成省略加号的和的形式,正确的是( )A .-53-4+B .-5-3-4C .534+-D .-5-34+7.北京冬奥会的预算规模为15.6亿美元,政府补贴6%(9400万美元).其中1 560 000 000用科学记数法表示为( )A .1.56×109B .1.56×108C .15.6×108D .0.156×10108.如图是一个运算程序,若x 的值为1-,则运算结果为( )A .4-B .2-C .2D .49.某景区同步设置的“我为祖国点赞”装置共收集约6390000个“赞”,这个数字用科学记数法可表示为( )A .6.39×106B .0.639×106C .0.639×105D .6.39×10510.已知||2,||5x y ==,且3x y +=-,则x y -等于( )A .7B .3-C .3D .7-二、填空题(本大题共6小题)11.大山包位于昭通市西部,距昭通城区65公里,平均海拔3100米,是国家一级保护动物黑颈鹤的越冬栖息地.请将数字3100用科学记数法表示为 .12.伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000人,将数据450000000科学记数法表示为 .13.已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,那么甲地比乙地高 m . 14.用四舍五入法将数3.14159精确到千分位的结果是 .15.根据第七次全国人口普查结果公布,全国人口已达14.11亿人.其中14.11亿用科学记数法表示为: .16.若▲表示最小的正整数,■表示最大的负整数,•表示绝对值最小的有理数,则=+•⨯(▲)■ .三、解答题(本大题共8小题)17.某钢材仓库9天内进出钢材的吨数如下:(“+”表示进库,“﹣”表示出库)+20,﹣25,﹣13,+18,﹣16,+16,﹣15,+22,﹣21(1)经过这9天,仓库里的钢材吨数是增加了还是减少了?增加或减少了多少吨? (2)如果进出仓库的钢材装卸费都是每顿15元,那么这9天要付多少元装卸费?18.计算:(1)()()()()23711---++-+;(2)137246812⎛⎫-⨯+- ⎪⎝⎭; (3)()32024116231-+÷-⨯--.19.先化简,再求值:(2xy 2﹣3x 3﹣1)﹣2(x 3﹣3xy 2+1),其中x =﹣2,y =﹣1.20.已知1cm 3的氢气质量约为0.00009g ,请用科学记数法表示下列计算结果. (1)求一个容积为8000000cm 3的氢气球所充氢气的质量;(2)一块橡皮重45g ,这块橡皮的质量是1cm 3的氢气质量的多少倍.21.计算:()()22021432412⎡⎤⎛⎫-+-⨯-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦22.计算:(1)()()2324+-⨯--;(2)()()432121130.5233⎡⎤⎛⎫---÷--- ⎪⎢⎥⎝⎭⎣⎦.23.已知a b 、互为相反数,、c d 互为倒数,x 的绝对值是3,y 是最大的负整数,求()26x cd a b y -++-的值.24.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A 地出发到收工时,行走记录如下(单位:km ):15,2,5,1,10,3,2,12,4,5,6+-+-+--++-+(1)收工时,检修小组在A 地的哪一边,距A 地多远?(2)若汽车每千米耗油2升,每升汽油6元,不计汽车的损耗,检修小组这天下午耗了多少钱的汽油?参考答案1.【答案】C2.【答案】D3.【答案】B4.【答案】C5.【答案】A6.【答案】A7.【答案】A8.【答案】A9.【答案】A10.【答案】A11.【答案】33.110⨯12.【答案】84.510⨯13.【答案】350;14.【答案】3.14215.【答案】91.41110⨯16.【答案】-117.【答案】(1)仓库里钢材减少了14吨;(2)2490元18.【答案】(1)3-(2)1(3)9-19.【答案】32583x xy -+-,2120.【答案】(1)7.2×102g ;(2)5×105倍.21.【答案】21-22.(1)解:原式264=-+0=;(2) 解:原式111127643⎡⎤⎛⎫=+÷--- ⎪⎢⎥⎝⎭⎣⎦ 11127612⎡⎤⎛⎫=+÷-- ⎪⎢⎥⎝⎭⎣⎦ 11274⎛⎫=+÷- ⎪⎝⎭1108=-107=-.23.【答案】4或8-24.【答案】(1)收工时,检修小组在A 地东边,距A 地39千米;(2)一共耗油780元。
第一章 有理数单元综合检测(解析版)
第一章有理数单元综合检测满分:100分时间:60分钟一、选择题(共10小题,满分30分)1.2023的相反数是( )A.2023B.2023-C.12023D.2023±【分析】根据互为相反数的两数之和为0和只有符号不同的两个数是相反数进行判断即可.【解析】2023的相反数是2023-;故选:B.2.下列说法正确的是( )A.有理数分为正数、负数和零B.分数包括正分数、负分数和零C.一个有理数不是整数就是分数D.整数包括正整数和负整数【分析】直接利用有理数的有关定义分析判断即可.【解析】A、有理数包括正有理数、负有理数和零,故此选项错误;B、分数包括正分数、负分数,故此选项错误;C、一个有理数不是整数就是分数,故此选项正确;D、整数包括正整数、负整数0和零,故此选项错误.故选:C.3.下列各组数中互为相反数的是( )A.12-与2-B.1-与(1)-+C.(3)--与3-D.2与|2|-【分析】符号不同,绝对值相等的两个数互为相反数,据此即可得出答案.【解析】12-与2-不是相反数,则A不符合题意;(1)1-+=-,则B不符合题意;(3)3--=,它与3-互为相反数,则C符合题意;|2|2-=,则D不符合题意;故选:C.4.北京与巴黎的时差为7小时,例如:北京时间13:00,同一时刻的巴黎时间是早上6:00.笑笑和霏霏分别在北京和巴黎,她们相约在各自当地时间13:00~22:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A.14:00B.16:00C.21:00D.23:00【分析】根据巴黎时间比北京时间早7小时解答即可.【解析】由题意得,巴黎时间比北京时间早7小时,当巴黎时间为13:00,则北京时间为20:00;当北京时间为22:00,则巴黎时间为15:00;所以这个时间可以是北京时间的20:00到22:00之间,故选:C.5.下列各组数中,互为倒数的有( )①12和(2)-;②115-和56-;③|4|--和14-;④0和0;⑤1和1-;⑥3.2和516.A.1组B.2组C.3组D.4组【分析】对于①,11(2)(2)1122´-=-´=-¹,据此即可作出判断;接下来利用同样的方法,判断其它几个.注意:0没有倒数.【解析】对于①,11(2)(2)1122´-=-´=-¹,故①不互为倒数,对于②,1565(1)(15656-´-=´=,故②互为倒数,对于③,111(|4|)()(4)()41444--´-=-´-=´=,故③互为倒数,对于④,0没有倒数,故④不互为倒数,对于⑤1,1(1)11´-=-¹,故⑤不互为倒数,对于⑥,51653.2116516´=´=,故⑥互为倒数,故互为倒数的两个数有3组.故选:C.6.下列等式成立的是( )A .235222´=B .236222´=C .238222´=D .239222´=【分析】将2322´进行运算后判断即可.【解析】232352222+´==,故选:A .6. 计算20212022(2)(2)-+-的结果是( )A .2-B .2C .20212D .20212-【分析】根据乘法分配律计算即可求解.【解析】20212022(2)(2)-+-20212021(2)(2)(2)=-+-´-2021(12)(2)=-´-20211(2)=-´-20212=.故选:C .7. 下列说法不正确的是( )A .0.5-不是分数B .0是整数C .12不是整数D .2-是既是负数又是整数【分析】利用有理数的分类对各选项进行分析,即可得出结果.【解析】A 、0.5-是负分数,也是分数,故A 说法错误,符合题意;B 、0是整数,正确,故B 说法正确,不符合题意;C 、12是分数,不是整数,故C 说法正确,不符合题意;D 、2-是负数,也是负整数,故D 说法正确,不符合题意.故选:A .8. 袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年艰苦努力,目前我国杂交水稻种植面积达2.4亿亩,每年增产的粮食可以养活8000万人,将数据8000万用科学记数法表示为810n ´,则n 的值为( )A .7B .8C .9D .10【分析】科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10…时,n 是正数;当原数的绝对值1<时,n 是负数.【解析】8000Q 万780000000810==´,7n \=,故选:A .9. 定义一种正整数n 的“T ”运算:①当n 为奇数时,结果为31n +;②当n 为偶数时,用n 连续除以2,直到结果为奇数停止,并且运算重复进行.例如,当18n =时,运算过程如下:若21n =,则第2021次“T ”运算的结果是( )A .1B .2C .3D .4【分析】根据题意,可以写出前几次输出的结果,然后即可发现数字的变化规律,从而可以得到2021次“T ”运算的结果.【解析】由题意可得,当21n =时,第1次输出的结果为64,第2次输出的结果为1,第3次输出的结果为4,第4次输出的结果为1,第5次输出的结果为4,¼,\从第2次开始,这列数以1,4不断循环出现,(20211)2202021010-¸=¸=Q ,2021\次“T ”运算的结果4,故选:D .二.填空题(共6小题,满分16分)11.(3分) 一次数学测试,如果96分为优秀,以96分为基准简记,例如106分记为10+分,那么85分应记为 11- 分.【分析】高于96分记作正数,那么低于96分记作负数,85比96低11分,故记作11-.【解析】859611-=-,故答案为:11-.10. (3分)写出所有比 3.5-大的负整数: 3-,2-,1- .【分析】根据负整数的意义写出即可.【解析】比 3.5-大的负整数有3-,2-,1-.故答案为:3-,2-,1-.13.(3分)计算:21(0.4)3-¸-= 256 .【分析】直接利用有理数的除法运算法则计算得出答案.【解析】原式5235=¸5532=´256=.故答案为:256.14.(3分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,则235a b m cd ++-= 26. .【分析】直接利用互为相反数以及倒数、绝对值的性质分别化简得出答案.【解析】a Q 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,0a b \+=,1cd =,3m =±,29m =,则235a b m cd ++-0391=+´-271=-26=.故答案为:26.15. (3分)近似数1.25万是精确到 百 位.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解析】1.25万中,5在百位上,则精确到了百位.故答案为:百.16. (3分)如图,数轴上A ,B 两点所表示的数分别为a ,b ,有下列各式:①(1)(1)0a b -->;②(1)(1)0a b -+>;③(1)(1)0a b ++>.其中,正确式子的序号是 ①②? .【分析】因为数轴上右边的数总比左边的大,大数减小数差为正,小数减大数差为负.再根据乘法运算同号得正,异号得负.【解析】1a <Q ,10a \-<.1b <Q ,10b \-<.(1)(1)0a b \-->.\①正确,故①符合题意.1b <-Q ,(1)0b \--<.即10b +<,(1)(1)0a b \-+>.\②正确,故②符合题意.0a >Q ,10a \+>,又1b <-Q ,10b \+<,(1)(1)0a b \++<.\③错误.故③不合题意.故答案为:①②?.三.解答题(共8小题,满分42分)17.(4分) 计算:221(3)[2(6)(4)]4-+´´---.【分析】先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算.【解析】221(3)[2(6)(4)]4-+´´---19(1216)4=+´--19(28)4=+´-97=-2=.18.(8分)计算:(1)626172((()5353-+-´-+-´;(2)20232241(1)(3)||4(2)9-+-´--¸-.【分析】(1)先算乘法,再算加减即可;(2)先算乘方,再算乘除,最后算加减即可.【解析】(1)原式434255=-+-10434555=-+-63455=--405=-8=-;(2)原式11916169=-+´-¸111=-+-1=-.19.(8分)计算:(1)7531()(96436+-¸-;(2)22222(3)()4|4|3-+-´--¸-.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可;(2)先算乘方和去绝对值,然后算乘除法、最后算加减法.【解析】(1)7531()()96436+-¸-753()(36)964=+-´-753(36)(36)(36)964=´-+´--´-28(30)27=-+-+31=-;(2)22222(3)()4|4|3-+-´--¸-249(1643=-+´--¸4(6)4=-+--14=-.20. (6分)兴趣小组遇到这样一个问题:任意选取一个数,用这个数乘以2后加8,然后除以4,再减去一开始选取的数的12,则结果为多少?小组内4位成员分别令这个数为5-、3、4-、2发现结果一样.(1)请从上述4个数中任取一个数计算结果.(2)有一个成员猜想:无论这个数是几,其计算结果都一样,这个猜想对吗?请说明理由.如果你觉得这个猜想不对,请你提出一个新的猜想.【分析】(1)令这个数为3,根据已知条件列式计算即可;(2)设取的有理数为a ,根据已知条件列式计算,发现结果是定值,所以猜想正确.【解析】(1)令这个数为3,则1(328)43144 1.522´+¸-´=¸-=;(2)猜想正确,理由是:设取的有理数为a ,则:1111(28)224222a a a a +-=+-=,所以猜想是正确的.21. (8分)3-,2.5,0,4+,32-.(1)画数轴并在数轴上标出上面各数;(2)把上面各数用“>”连接起来.【分析】(1)在数轴上表示各数即可;(2)根据在数轴上右边的点表示的数大于左边的点表示的数从大到小的顺序用“>”连接起来即可.【解析】(1)如图所示:(2)根据在数轴上右边的点表示的数大于左边的点表示的数,可得34 2.5032+>>>->-.22. (6分)已知有理数a 、b 、c 在数轴上的位置.(1)a b + < 0;a c + 0;b c - 0;(用“>,<,=”填空)(2)试化简||2||||a b a c b c +-+--.【分析】(1)根据数轴确定a ,b ,c 的范围,即可解答;(2)根据绝对值的性质,即可解答.【解析】(1)由数轴可得:0c a b <<<,且||||a b >,0a b \+<,0a c +<,0b c ->,故答案为:<;<;>;(2)0a b +<Q ,0a c +<,0b c ->,||2||||a b a c b c \+-+--2()()a b a c b c =--++--22a b a c b c=--++-+23a b c =-+.23.(6分)有10袋小麦,每袋以90kg 为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如表:袋号12345678910重量()kg 1+1+ 1.5+1- 1.2+ 1.3+ 1.3- 1.2- 1.8+ 1.1+(1)请通过计算说明这10袋小麦总计超过多少kg 或不足多少kg ?(2)若每千克小麦2.5元,求10袋小麦一共可以卖多少元?【分析】(1)“正”和“负”相对,超过的千克数记为正数,不足的千克数记为负数,把称重记录的数据相加,和为正说明超过了,和为负说明不足;(2)先求10袋小麦的总重量,即乘单价即可求解.【解析】(1)11 1.51 1.2 1.3 1.3 1.2 1.8 1.1 5.4()kg +++-++--++=.故这10袋小麦总计超过5.4kg ;(2)(9010 5.4) 2.52263.5´+´=(元).故10袋小麦一共可以卖2263.5元.24.(6分)阅读理解:观察等式1122133-=´+,2255133-=´+¼发现,一对有理数a ,b 满足1a b ab -=+,那么我们把这对有理数a ,b 叫做“共生有理数对”,记为[a ,]b .如:有理数对[1,1]3和[5,2]3都是“共生有理数对”.(1)下列四对有理数中,不是“共生有理数对”的是 D .A .[3,12B .[3-,2]C .1[5,2]3-D .[2-,13-(2)若[4,1]m -是“共生有理数对”,请你求出该“共生有理数对”.(3)若[x ,1]x -是“共生有理数对”,请你判断[1x -,]x -是不是“共生有理数对”,并说明理由.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可解决问题.【解析】(1)A .113222-=Q ,11131112222´+=+=,[3\,12是“共生有理数对”;B .325--=-Q ,321615-´+=-+=,[3\-,2]是“共生有理数对”,C .Q 1213()5315--=,12213()11531515´-+=-+=,1[5\,2]3-是“共生有理数对”;D.212(133 ---=-Q,1222()111333-´-+=+=,[2 \-,1]3-不是“共生有理数对”.故答案为:D;(2)[4Q,1]m-是“共生有理数对”,4(1)4(1)1m m\--=-+,解得85m=,则831155m-=-=.\该“共生有理数对”是[4,35;(3)[1x-,]x-是“共生有理数对”,理由:[xQ,1]x-是“共生有理数对”,(1)(1)1x x x x\--=-+,(1)0x x\-=,1()1x x---=Q,(1)1(1)1011x x x x--+=-+=+=,1()(1)1x x x x\---=--+,[1x\-,]x-是“共生有理数对”.。
有理数单元检验题10套附答案
有理数单元检验题10套附答案的相反数是____.2、比–3小9的数是____;最小的正整数是____.3、计算:4、在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为,最高气温为8℃,那么该景点这天的温差是____.C7、计算:8、平方得的数是____;立方得–64的数是____.9、用计算器计算:10、观察下面一列数的规律并填空:0,3,8,15,24,_______.二、选择题<每小题3分,共24分)11、–5的绝对值是………………………………………………………<)A、5B、–5C、D、12、在–2,+3.5,0,,–0.7,11中.负分数有……………………<)A、l个B、2个C、3个D、4个13、下列算式中,积为负数的是………………………………………………<)A、B、C、D、14、下列各组数中,相等的是…………………………………………………<)A、–1与<–4)+<–3)B、与–<–3)C、与D、与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………<)A、90分B、75分C、91分D、81分16、lM长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………<)oTIgKpQyjvA、B、C、D、17、不超过的最大整数是………………………………………<)A、–4B–3C、3D、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折<80%)大拍卖,那么该商品三月份的价格比进货价………………………………………<)oTIgKpQyjvA、高12.8%B、低12.8%C、高40%D、高28%三、解答题<共48分)19、<4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数:–3,+l,,-l.5,6.20、<4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?oTIgKpQyjv21、<8分)比较下列各对数的大小.<1)与<2)与<3)与<4)与22、<8分)计算.<1)<2)<3)<4)23、<12分)计算.<l)<2)<3)<4)24、<4分)已知水结成冰的温度是C,酒精冻结的温度是–117℃。
苏科新版 七年级上册数学 第2章有理数 单元测试卷
苏科新版七年级上册数学第2章有理数单元测试卷一.选择题(共10小题).1.检测4个排球,其中超过标准的克数记为正数,低于标准的克数记为负数,从轻重的角度来看,最接近标准的球是()A.B.C.D.2.在下列实数:、、、、﹣1.010010001…中,无理数有()A.2个B.3个C.4个D.5个3.﹣的相反数是()A.B.﹣C.D.﹣4.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数5.a为有理数,下列说法正确的是()A.﹣a为负数B.a一定有倒数C.|a+2|为正数D.|﹣a|+2为正数6.下列数:﹣0.5,,0.1,﹣3,0,﹣(﹣0.7),其中负分数有()A.2个B.3个C.4个D.5个7.两个有理数a,b在数轴上的位置如图,下列四个式子中运算结果为正数的式子是()A.a+b B.a﹣b C.ab D.﹣b﹣a8.一种零件的直径尺寸在图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过()A.0.03B.0.02C.30.03D.29.979.下面的说法错误的是()A.0是最小的整数B.1是最小的正整数C.0是最小的自然数D.自然数就是非负整数10.在数轴上,点A对应的数是﹣6,点B对应的数是﹣2,点O对应的数是0.动点P、Q 分别从A、B同时出发,以每秒3个单位,每秒1个单位的速度向右运动.在运动过程中,线段PQ的长度始终是另一线段长的整数倍,这条线段是()A.PB B.OP C.OQ D.QB二.填空题11.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差千克.12.对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么﹣3克表示.13.有理数中,是整数而不是正数的数是,是负数而不是分数的是.14.在数轴上点P到原点的距离为5,点P表示的数是.15.数轴上距离原点2.4个单位长度的点有个,它们分别是.16.a﹣b的相反数是;|3.14﹣π|=.17.化简:=,﹣{﹣[+(﹣2.6)]}=.18.一次数学测试,如果96分为优秀,以96分为基准简记,例如106分记为+10分,那么85分应记为分.19.在有理数3.14,3,﹣,0,+0.003,﹣3,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于.20.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.三.解答题21.2018年国庆节放假八天,高速公路免费通行,各地风景区游人如织其中,其中闻名于世的“三孔”,在10月1日的游客人数就已经达到了10万人,接下来的七天中,每天的游客人数变化(单位:万人)如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期10月2日10月3日10月4日10月5日10月6日10月7日10月8日人数变化+0.6+0.2+0.1﹣0.2﹣0.8﹣1.6﹣0.1(1)10月3日的人数为万人;(2)这八天,游客人数最多的是多少万人?最少呢?(3)这8天参观的总人数约为多少万人?22.把下列各数填入相应的大括号里.﹣0.78,3,+,﹣8.47,10,﹣,0,﹣4.正数:{…};分数:{…};非负整数:{…};负有理数:{…}.23.把下列各数分别填在相应的集合中:﹣,,﹣,0,﹣,、,0.,3.1424.请把下列各数填在相应的集合内:,﹣5,0.34,,20,﹣3.14,﹣1,正数集合{ }负整数集合{ }整数集合{ }分数集合{ }非正数集合{ }非负整数集合{ }.25.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值﹣3﹣2﹣1.501 2.5(单位:千克)筐数142328(1)20筐白菜中,最重的一筐比最轻的一筐重千克.(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2元,则出售这20筐白菜可卖多少元?26.出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,以他接到的第一位乘客开始计算,他这天上午连续所接六位乘客的行车里程(单位:km)如下:﹣2,+5,﹣1,+1,﹣6,﹣2,问:(1)将最后一位乘客送到目的地时,小李在第一位乘客上车点哪个方位?多远?(2)若汽车耗油量为0.15L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米2元,问小李这天上午共得车费多少元?27.云云的爸爸驾驶一辆汽车从A地出发,且以A为原点,向东为正方向.他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?参考答案与试题解析一.选择题1.解:通过求四个排球的绝对值得,D球的绝对值最小.所以D球是接近标准的球.故选:D.2.解:无理数有:,,﹣1.020010001…,共有3个.故选:B.3.解:根据相反数的含义,可得﹣的相反数等于:﹣(﹣)=.故选:A.4.解:A、0的相反数为0,所以A选项错误;B、数轴上原点两旁且到原点的距离的点所表示的数是互为相反数,所以B选项错误;C、符号不同且绝对值相等的两个数是互为相反数,所以C选项错误;D、正数的相反数是负数,负数的相反数是正数,所以D选项正确.故选:D.5.解:当a=0时,﹣a也等于0,不是负数,因此选项A不正确;当a=0时,0没有倒数,因此选项B不正确;当a=﹣2时,|a+2|=0,因此选项C不正确;|a|≥0,|a|+2≥2,因此选项D正确;故选:D.6.解:﹣0.5,﹣是负分数,故选:A.7.解:由有理数a,b在数轴上的位置可得,a<﹣1,0<b<1,∴a+b<0;a﹣b<0;ab<0;﹣a﹣b>0;故选:D.8.解:根据正数和负数的意义可知,图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,误差不超过0.03mm;加工要求尺寸最大不超过30.03mm.故选:C.9.解:A、没有最小的整数,故错误;B、1是最小的正整数,正确;C、0是最小的自然数,正确;D、自然数是0和正整数的统称,即自然数就是非负整数,正确.故选:A.10.解:设运动的时间为t秒,则运动后点P所表示的数为﹣6+3t,点Q表示的数为﹣2+t,PQ=|﹣6+3t﹣(﹣2+t)|=2|t﹣2|;OQ=|﹣2+t﹣0|=|t﹣2|,故选:C.二.填空题11.解:根据题意得:标有质量为(50±0.2)的字样,∴最大为50+0.2=50.2,最小为50﹣0.2=49.8,故他们的质量最多相差0.4千克.故答案为:0.4.12.解:“正”和“负”相对,若一盒装牛奶超出标准质量2克,记作+2克,那么﹣3克表示低于标准质量3克.13.解:零既不是正数也不是负数.故在理数中,是整数而不是正数的数是0和负整数;是负数而不是分数的是负整数.故答案为:0和负整数;负整数.14.解:∵在数轴上点P到原点的距离为5,即|x|=5,∴x=±5.故答案为:±5.15.解:设数轴上距离原点2.4个单位长度的点为a,则|a|=2.4,解得a=±2.4.故答案为:2;+2.4,﹣2.4.16.解:a﹣b的相反数是b﹣a;|3.14﹣π|=π﹣3.14.故答案为:b﹣a;π﹣3.14.17.解:﹣|﹣(﹣)|=﹣;﹣{﹣[+(﹣2.6)]}=﹣2.6.故答案为:﹣;﹣2.6.18.解:85﹣96=﹣11,故答案为:﹣11.19.解:负分数为:,,共2个;正整数为:3,6005,共2个,则x+y=2+2=4.故答案为:4.20.解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.三.解答题21.解:(1)2日的人数为:10+0.6=10.6万人,3日的人数为:10.6+0.2=10.8万人.故答案为10.8;(2)4日的人数为:10.8+0.1=10.9万人,5日的人数为:10.9﹣0.2=10.7万人,6日的人数为:10.7﹣0.8=9.9万人,7日的人数为:9.9﹣1.6=8.3万人,8日的人数为:8.3﹣0.1=8.2万人,所以这八天,游客人数最多的是10月4日,达到10.9万人.游客人数最少的是10月8日,达到8.2万人.(3)10+10.6+10.8+10.9+10.7+9.9+8.3+8.2=79.422.解:在﹣0.78,3,+,﹣8.47,10,﹣,0,﹣4中,分类如下:正数:{3,+,10,…};分数:{﹣0.78,+,﹣8.47,﹣,…};非负整数:{3,10,0,…};负有理数:{﹣0.78,﹣8.47,﹣,﹣4,…}.故答案为:3,+,10;﹣0.78,+,﹣8.47,﹣;3,10,0;0.78,﹣8.47,﹣,﹣4.23.解:有理数集合:(﹣,﹣,0,,0.,3.14,…),无理数集合:(,﹣,,…).24.解:正数集合{,0.34,20…};负整数集合{﹣5,﹣1…};整数集合{﹣5,0,20,﹣1…};分数集合{,0.34,﹣2,﹣3.14…};非正数集合{﹣5,﹣2,0,﹣3.14,﹣1…};非负整数集合{0,20…}.25.解:(1)最重的一筐超过2.5千克,最轻的差3千克,求差即可2.5﹣(﹣3)=5.5(千克),故最重的一筐比最轻的一筐重5.5千克.故答案为:5.5;(2)1×(﹣3)+4×(﹣2)+2×(﹣1.5)+3×0+1×2+8×2.5=﹣3﹣8﹣3+2+20=8(千克).故20筐白菜总计超过8千克;(3)2×(25×20+8)=2×508=1016(元).故出售这20筐白菜可卖1016元.26.解:(1)﹣2+5﹣1+1﹣6﹣2=﹣5.故此时小李在第一位乘客上车点的西边5km的位置;(2)|﹣2|+|+5|+|﹣1|+|+1|+|﹣6|+|﹣2|=2+5+1+1+6+2=17(千米),0.15×17=2.55(L).答:出租车共耗油2.55L;(3)根据题意可得:6×8+(2+3)×2=48+10=58(元).答:小李这天上午共得车费58元.27.解:根据题意得:15﹣25+20﹣40=35﹣65=﹣30,即汽车最后同在A西边30米处;根据题意得:(15+25+20+40)÷100×8.9=8.9(升),即这辆汽车这次消耗了8.9升汽油.。
人教版数学七年级上《有理数》单元检测卷 含答案
人教版七年级第1章《有理数》单元检测卷一.填空题(共8小题,满分24分,每小题3分)1.﹣的相反数是,倒数是,绝对值是.2.如果上升10米记作+10米,那么下降5米记作米.3.比较大小:﹣0.4 ﹣.4.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为千米.5.1.95≈(精确到十分位);576000≈(精确到万位).6.在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为.7.当|a|+a=0时,则a是.8.现规定一种新的运算“*”:a*b=ab,如3*2=32=9,则()*3=.二.选择题(共10小题,满分30分,每小题3分)9.一个数的相反数仍是它本身,这个数是()A.1 B.﹣1 C.0 D.正数10.下列说法正确的是()A.整数就是正整数和负整数B.负整数的相反数就是非负整数C.有理数中不是负数就是正数D.零是自然数,但不是正整数11.四个有理数﹣1,2,0,﹣3,其中最小的是()A.﹣1 B.2 C.0 D.﹣312.下列各式中一定为负数的是()A.﹣(﹣1)B.﹣|﹣1| C.﹣(﹣1)3 D.(﹣1)2 13.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克14.近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位15.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c16.若|a|=5,|b|=6,且a>b,则a+b的值为()A.﹣1或11 B.1或﹣11 C.﹣1或﹣11 D.11 17.两个数的差是负数,则这两个数一定是()A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小18.已知a,b为有理数,则下列说法正确的个数为()①若a+b>0,>0,则a>0,b>0;②若a+b>0,<0,则a>0,b<0且|a|>|b|或a<0,b>O 且|b|>|a|;③若a+b<0,>0,则a<0,b<0;④若a+b<0,<0,则a>0,b<0且|b|>|a|或a<0,b>0且|a|>|b|.A.1 B.2 C.3 D.4三.解答题(共7小题,满分46分)19.(6分)计算:(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9);(2)﹣17+17÷(﹣1)11﹣52×(﹣0.2)3;(3)﹣5﹣[﹣﹣(1﹣0.2×)÷(﹣2)2].20.(5分)在数轴上表示数:﹣2,|﹣2|,﹣3,3,+3.5,并从小到大的顺序用“<“连接起来.21.(5分)已知a是最大的负整数,b是﹣2的相反数,c与d互为倒数,计算:a+b﹣cd的值.22.(6分)10盒火柴如果以每盒100根为准,超过的根数记作正数,不足的根数记作负数,每盒数据记录如下:+3,+2,0,﹣1,﹣2,﹣3,﹣2,+3,﹣2,﹣2.求:这10盒火柴共有多少根.23.(8分)把下列各数填在相应的集合内.﹣3,2,﹣1,﹣,﹣0.58,0,﹣3.1415926,0.618,整数集合:{ }负数集合:{ }分数集合:{ }非负数集合:{ }正有理数集合:{ }.24.(8分)如图,将一串有理数按下列规律排列,回答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A、B、C、D中的什么位置?(3)第2013个数是正数还是负数?排在对应于A、B、C、D中的什么位置?25.(8分)已知x,y为有理数,现规定一种新运算*,其意义是x ⊗y=xy+1.(1)求(﹣2)⊗4的值;(2)求(﹣1⊗3)⊗(﹣2)的值;(3)任意选择两个有理数,分别填入下列□和○内,并比较两个运算结果,你有什么发现?把你的发现用等式表示出来.□⊗○和○⊗□参考答案一.填空题(共8小题,满分24分,每小题3分)1.解:﹣的相反数是,倒数是﹣3,绝对值是.故答案为:;﹣3;.2.解:“正”和“负”相对,所以,如果上升10米记作+10米,那么下降5米记作﹣5米.故答案为:﹣5.3.解:根据有理数比较大小的方法,可得﹣0.4>﹣.故答案为:>.4.解:将118000用科学记数法表示为:1.18×105.故答案为:1.18×105.5.解:1.95≈2.0(精确到十分位);576000≈58万(精确到万位),故答案为:2.0;58万.6.解:2﹣(﹣1)=3.故答案为:37.解:∵|a|+a=0,∴|a|=﹣a,∴a≤0,即a为非正数,故答案为:非正数.8.解:∵a*b=ab,3*2=32=9,∴()*3=(﹣)3=﹣.故答案为:﹣.二.选择题(共10小题,满分30分,每小题3分)9.解:0的相反数是其本身.故选:C.10.解:A、整数就是正整数和负整数,还有0,故本选项错误;B、负整数的相反数就是正整数,故本选项错误;C、有理数中不是负数就是正数,还有0,故本选项错误;D、零是自然数,但不是正整数,本选项正确;故选:D.11.解:根据有理数比较大小的方法,可得﹣3<﹣1<0<2,∴四个有理数﹣1,2,0,﹣3,其中最小的是﹣3.故选:D.12.解:A、﹣(﹣1)=1,为正数,故本选项错误;B、﹣|﹣1|=﹣1,为负数,故本选项正确;C、﹣(﹣1)3=1,为正数,故本选项错误;D、(﹣1)2=1,为正数,故本选项错误.故选:B.13.解:(﹣0.1﹣0.3+0.2+0.3)+5×4=20.1(千克),故选:C.14.解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选:C.15.解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.16.解:已知|a|=5,|b|=6,则a=±5,b=±6∵a>b,∴当a=5,b=﹣6时,a+b=5﹣6=﹣1;当a=﹣5,b=﹣6时,a+b=﹣5﹣6=﹣11.故选:C.17.解:如果两个数的差是负数,则这两个数一定是被减数比减数小.故选:D.18.解:①若a+b>0,>0,则a>0,b>0,此选项正确;②若a+b>0,<0,则a>0,b<0且|a|>|b|或a<0,b>O 且|b|>|a|,此选项正确;③若a+b<0,>0,则a<0,b<0,此选项正确;④若a+b<0,<0,则a>0,b<0且|b|>|a|或a<0,b>0且|a|>|b,此选项正确|.故正确的有4个.故选:D.三.解答题(共7小题,满分46分)19.解:(1)原式=﹣49﹣91+5﹣9=﹣49﹣91﹣9+5=﹣149+5=﹣144;(2)原式=﹣17+17÷(﹣1)﹣25×(﹣)=﹣17+(﹣17)﹣(﹣)=﹣34+=﹣33;(3)原式=﹣5﹣(﹣﹣×)=﹣5﹣(﹣)=﹣5+=﹣4.20.解:在数轴上表示各数得:从小到大的顺序用“<”连接为:﹣3<﹣2<|﹣2|<3<+3.5.21.解:根据题意得:a=﹣1,b=2,cd=1,则原式=﹣1+2﹣1=0.22.解:先求超过的根数:(+3)+(+2)+0+(﹣1)+(﹣2)+(﹣3)+(﹣2)+(+3)+(﹣2)+(﹣2)=﹣4;则10盒火柴的总数量为:100×10﹣4=996(根).答:10盒火柴共有996根.23.解:整数集合:{﹣3,2,﹣1,0 }负数集合:{﹣3,﹣1,﹣,﹣0.58,﹣3.1415926 }分数集合:{﹣,﹣0.58,﹣3.1415926,0.618,}非负数集合:{ 2,0,0.618,}正有理数集合:{2,0.618,},故答案为:﹣3,2,﹣1,0;﹣3,﹣1,﹣,﹣0.58,﹣3.1415926;﹣,﹣0.58,﹣3.1415926,0.618,;2,0,0.618;2,0.618,.24.解:(1)A是向上箭头的上方对应的数,与4的符号相同,在A 处的数是正数;(2)观察不难发现,向下箭头的上边的数是负数,下方是正数,向上箭头的下方是负数,上方是正数,所以,B和D的位置是负数;(3)∵2013÷4=503…1,∴第2013个数排在B的位置,是负数.25.解:(1)(﹣2)⊗4=﹣2×4+1=﹣7;(2)(﹣1⊗3)⊗(﹣2)=(﹣1×3+1)⊗(﹣2)=(﹣2)⊗(﹣2)=﹣2×(﹣2)+1=5;(3)(﹣1)⊗5=﹣1×5+1=﹣4,5⊗(﹣1)=5×(﹣1)+1=﹣4;所以□⊗○=○⊗□.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数单元检测10
一、仔细填一填(每小题3分,共30分)
1、把)11()9()10()8(--+--+-写成省略加号的和式是______.
2、计算=+-3121______, =--53_______, 3)21
(-=________.
3、将0 , -1 , 0.2 , 2
1- , 3各数平方,则平方后最小的数是____.
4、2003个―3与2004个―5相乘的结果的符号是________号.
5、现今世界上较先进的计算机显卡每秒可绘制出27000000个三角形,且显示逼真,用科学记数法表示这种显卡每秒绘制出三角形_____ __个.
6、近似数1.23×105精确到________位,有_______个有效数字.
7、计算:=-⨯÷)4
1
(436 .
8、小明学了计算机运算法则后,编制了一个程序,当他任意输入一个有理数以后,计算机会计算出这个有理数的平方减去2的差.若他第一次输入,2
1-然后将所得结果再次输入,那么最后得到的结
果是________.
9、数轴上点A 所表示数的数是-18 , 点B 到点A 的距离是17, 则点B 所表示的数是________.
10.已知xy x ,16y ,32==<0, 则x -y=________.
二、精心选一选(每题2分,共20分)
11.冬季的一天,室内温度是8℃,室外温度是-2℃,则室内外温度相差( ) A .4℃ B .6℃ C .10℃ D .16℃ 12.下列计算结果是负数的是( )
(A) (―1)×(―2)×(-3)×0 (B) 5×(-0.5)÷(-1.84)2 (C) 222)7()6()5(-+-+- (D) )125.0(75.3)2.1(-⨯-⨯- 13.下列各式中,正确的是( )
(A) ―5―5=0 (B) 0)4
11()25.1(=+--
(C) 222)13()12()5(-=-+- (D) )5
72
3(1)7
53
2(1+⨯=+÷
14.如果两个数的积为负数,和也为负数,那么这两个数( ) (A) 都是负数 (B) 都是正数 (C) 一正一负,且负数的绝对值大 (D) 一正一负,且正数的绝对值大
15.数a 四舍五入后的近似值为3.1, 则a 的取值范围是( ) (A) 3.05≤a <3.15 (B) 3.14≤a <3.15 (C) 3.144≤a ≤3.149 (D) 3.0≤a ≤3.2 16.一个数的立方就是它本身,则这个数是( )
(A) 1 (B) 0 (C) -1 (D) 1或0或-1
17.以-273 0C 为基准,并记作0°K,则有-272 0C 记作1°K,那么100 0C 应记作( )
(A )-173°K (B )173°K (C )-373°K (D )373°K
18.用科学记数法表示的数1.001×1025的整数位数有 ( ) (A) 23位 (B) 24位 (C) 25位 (D) 26位
19.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是 ( )
(A) 相等 (B) 互为相反数 (C) 互为倒数 (D) 相等或互为相反数 20.在1,2,3,……,99,100这100个数中,任意加上“+”或“-”,相加后的结果一定是 ( ) (A) 奇数 (B) 偶数 (C) 0 (D)不确定 三、认真解一解(共50分) 21.(6分)举例说明:
(1)两数相加,和小于其中一个加数而大于另一个加数;
(2)两数相减,差为6,且差大于被减数。
22.(6分)现规定一种运算“*”,对于a 、b 两数有:ab a b a b 2*-=, 试计算2*)3(-的值。
23、计算(每小题4分,共24分)
(1) -5+6-7+8 (2) )3
12
1(4
1---
(3) 10-1÷(3
1
61-)÷121
(4))3()5()3
1(6122
-⨯-+-⨯--
(5)4
3)55.0()75.0(55.1⨯-+-⨯- (6) 362)25
1()5()4
11()2(32-⨯-+-⨯-÷
23.(8分)数轴上A, B, C, D 四点表示的有理数分别为1, 3, -5, -8
(1). 计算以下各点之间的距离:
① A 、B 两点, ②B 、C 两点, ③C 、D 两点,
(2). 若点M 、N 两点所表示的有理数分别为m 、n ,求M 、N 两点之间的距离.
24.(6分) 按图所示程序进行计算,并把各次结果填入表内:
计算次数 计算结果 1
2
3
答案
一.1.-8-10-9+11 2. 6
1-
,-2,81- 3. 0
4. 负
5. 2.7×107
6. 千,3
7.49-
8. 16
17
9.-35或-1 10. 7或-7
二.11.C 12.B 13.C 14.C 15.A 16.D 17.D 18.D 19.D 20.B 三.21. 略 22. 21 23.(1)2(2)12
1
1(3)82 (4)3116(5)4
3
(6)32 24. (1)2,8,3 (2)n m - 25.-23,-49,-101。