高数下册多元函数极值及其求法

合集下载

多元函数的极值及其求法

多元函数的极值及其求法
多元函数的极值及其求法
课堂思路
一 多元函数的极值
(1)定义 (2)多元函数极值的必要条件 (3)多元函数极值的充分条件
二 条件极值和无条件极值 三 拉格朗日乘数法
回顾
One. 一元函数的极值定义 Two. 一个必要条件、两个充分条件 Three. 一元函数最值问题
一、 多元函数的极值
(1)多元函数极值定义
z=2x2+3y2
z=2x2+3y2
z=y2-x2
(2)多元函数极值的必要条件
驻点 驻点与极值的关系
(3)多元函数极值的充分条件
步骤 注意点

的极值
讨论函数

是否取得ቤተ መጻሕፍቲ ባይዱ值
在点(0,0)
(5)多元函数最值问题
方法 例题
某厂要用铁板做一个体积为2m3的有盖长方体水 箱,问当长、宽、高各取怎样的尺寸时, 才能使 用料最省?
二、条件极值和无条件极值
代入法 引出拉格朗日数乘法
三、拉格朗日乘数法
某厂要用铁板做一个体积为2m3的有盖长方体水 箱,问当长、宽、高各取怎样的尺寸时, 才能使 用料最省?
小结
求表面积为a2而体积为最大的长方体的体积。
谢谢观看

12多元函数的极值与最值

12多元函数的极值与最值
例3 函数 z xy 在 (0,0) 处无极值.
21 January 2020
(1) (2) (3)
2
高等数学(下)主讲杨益民
2.多元函数取得极值的条件
定理 1(必要条件)设函数 z=f(x0, y0) 在点(x0, y0)具有偏 导数,且在点(x0, y0)处取得极值,则
fx (x0, y0) = 0, fy (x0, y0) = 0 证明:( 略 )
( x , y )D
s.t. ( x, y, z) 0

(x, y, z) 0

(1)构造拉格朗日函数:
F( x, y, z, 1, 2 ) f ( x, y, z) 1( x, y, z) 2 ( x, y, z)
(2)求拉格朗日函数F(x, y, z, 1, 2)的无条件极值,得到 条件极值的可疑点。

s.t .
x02 a2

y02 b2

z02 c2
1
令: u ln x0 ln y0 ln z0
G( x0 ,
y0 ,
z0 )

ln
x0

ln
y0

ln
z0


(
x02 a2

y02 b2

z02 c2
1)

G

x0

0,
G

y0

0,
Gz0 0

解: 1. 利用隐方程组求偏导及必要条件zx=zy=0得驻点(1,-1); 2. 带入原方程求得相应的z=-2, z=6;
3. 隐方程组再求偏导得A,B,C; 4. 判断并求出极值。

多元函数的极值及其求法

多元函数的极值及其求法

令 F ( x, y, z) xyz (2xy 2 yz 2xz a2 ),
Fx yz (2 y 2z) 0,

FFzy

xz (2x 2z) xy (2 y 2x)

0, 0,
2xy 2 yz 2xz a2 0.
f
y
(
x,
y)


y
(
x,
y)

0,

( x, y) 0.
解出 x, y, ,其中 x, y就是可能的极值点的坐标.
拉格朗日乘数法可推广到自变量多于两个的情况:
要找函数 u f ( x, y, z, t ) 在条件 ( x, y, z, t ) 0, ( x, y, z, t ) 0 下的极值。
先构造函数(其中1, 2 均为常数) F ( x, y, z, t) f ( x, y, z, t ) 1 ( x, y, z, t ) 2 ( x, y, z, t )
求解方程组
Fx ( x, y, z, t) 0,

F
y
(
x,
y,
z
,
t
)

0,
Fz ( x, y, z, t ) 0, Ft ( x, y, z, t ) 0,

Fx Fy Fz

3x 2x x3
2y2z 0 3 yz 0 y2 0
3x2 y2z ,


2x3 yz x3 y2 ,
,
(1) ( 2) ( 3)

x

y
z

大学课程《高等数学》PPT课件:6-6 多元函数的极值及其求法

大学课程《高等数学》PPT课件:6-6 多元函数的极值及其求法
第六章
多元函数的极值及其求法
一、多元函数的极值 二、多元函数的最大值与最小值 三、条件极值与拉格朗日乘数法
一、多元函数的极值
定义1 设函数 z f x, y 在点 x0, y0 的某个邻
域内有定义,
对于该邻域内的任何点 x, y x0, y0 ,若总有
f x, y f x0, y0
若有,加以判别是否为极值点.
例3 考察 z x2 y2 是否有极值. 解 因为 z x , z y 在 x 0, y 0
x x2 y2 y x2 y2
处偏导数不存在,但是对任意点 x, y 0,0, 均有 f x, y f 0,0 0,所以函数在 0,0 点取得极大值.
从上例可知,在考虑函数的极值问题时,除了考 虑函数的驻点外,如果有偏导数不存在的点,那 么对这些点也应当考虑.
构造拉格朗日函数
31
F x, y, 100x4 y4 50000 150x 250y
由方程组
1 1
Fx 75x 4 y 4 150 0
Fy
3
25x 4
3
y4
250
0
F 50 000 150x 250 y 0
中的第一个方程解得
1
1
x4
1
y4
2
,将其代入第二
个方程中,得
3 3
1 1
其中 x ,y 就是函数在条件 x, y=0 下的可能
极值点的坐标.
(3)如何确定所求点是否为极值点,在实际问题中往 往可根据问题本身的性质来判定. 拉格朗日乘数法也可能推广到自变量多于两个而条件 多于一个的情形.
例如,求函数 u f x, y, z,t 在条件 x, y, z,t 0 ,

关于多元函数的极值和最值计算

关于多元函数的极值和最值计算

关于多元函数的极值和最值计算多元函数的极值和最值计算是高等数学中的重要部分,它涉及到多元函数的极大值和极小值的求解以及在给定区域内的最大值和最小值的确定。

在这篇文章中,我们将详细介绍多元函数的极值和最值计算的方法和步骤。

首先,让我们来了解一下多元函数的概念。

在高等数学中,一个多元函数是指具有多个变量的函数,它通常被表示为f(x1,x2,...,xn),其中x1,x2,...,xn是变量,f是一个函数。

多元函数与一元函数不同,它的输入变量不再是一个实数,而是多个实数。

因此,多元函数的求解方法也与一元函数有所不同。

下面我们将分别介绍多元函数的极大值和极小值的求解方法。

首先是多元函数的极大值和极小值的求解。

要求解多元函数的极大值和极小值,我们需要找到函数的驻点(即导数等于零的点)以及临界点(即定义域的边界点)。

第一步是计算多元函数的偏导数。

在多元函数中,我们根据变量的个数来计算偏导数。

例如,对于一个两个变量的函数f(x1,x2),我们需要计算f对x1的偏导数∂f/∂x1和f对x2的偏导数∂f/∂x2第二步是找到偏导数为零的点。

我们将得到一个方程组,其中每个方程都是一个偏导数等于零的方程。

通过求解这个方程组,我们可以找到多元函数的驻点。

第三步是找到临界点。

临界点是指函数定义域的边界点。

我们需要判断多元函数在这些边界点是否存在极值。

为此,我们可以计算函数在边界点处的取值,并与其他驻点的函数值进行比较。

通过这些步骤,我们可以确定多元函数的极大值和极小值。

接下来,让我们介绍多元函数在给定区域内的最大值和最小值的确定方法。

要确定多元函数在给定区域内的最大值和最小值,我们需要利用拉格朗日乘数法。

首先,确定给定区域的边界条件。

给定区域可以是一个封闭区域,也可以是一个开放区域。

第一步是通过拉格朗日乘数法构建一个方程。

这个方程的形式是多元函数加上一个或多个约束条件的等式。

拉格朗日乘子是用来考虑约束条件对函数极值的影响的。

大学课程《高等数学》PPT课件:6-6 多元函数的极值及其求法

大学课程《高等数学》PPT课件:6-6 多元函数的极值及其求法
则称函数 z f x, y 在点 x0, y0 处有极大值;
若总有 f x, y f x0, y0 ,则称函数 z f x, y
在点 x0, y0 处有最小值
函数的极大值、极小值统称为极值,使函数取得 极值的点称为极值点.
例1 函数 z xy 在点 0,0处不取得极值, 因为在点 0, 0 处的函数值为零,而在点 0, 0
定理1可描述为有偏导的极值点必为驻点,类似 于一元函数的情形.
由定理1可知,虽然没有完全解决求极值的问题,
但它给出一条找极值点的途径,
即在偏导数存在的前提下只要解方程组
f f
x y
x, x,
y y
0 0
求得解 x1, y1 , x2, y2 , , xn, yn ,
那么极值点必包含在其中.
例4 求函数 f x, y x3 y3 3xy 的极值.
解 为求驻点,解联立方程组
f f
x y
x, x,
y y
3x2 3y2
3y 3x
0 0
得到两个驻点为 0,0,1,1
再求出二阶偏导函数 fxx 6x,fxy 3,f yy 6 y
在 0, 0 点处有:A 0,B 3,C 0
若有,加以判别是否为极值点.
例3 考察 z x2 y2 是否有极值. 解 因为 z x , z y 在 x 0, y 0
x x2 y2 y x2 y2
处偏导数不存在,但是对任意点 x, y 0,0, 均有 f x, y f 0,0 0,所以函数在 0,0 点取得极大值.
从上例可知,在考虑函数的极值问题时,除了考 虑函数的驻点外,如果有偏导数不存在的点,那 么对这些点也应当考虑.
因为 AC B2 9 0,

第7节 多元函数的极值及其求法

第7节   多元函数的极值及其求法

z(1,0) 1为函数在 D上的最大值.
例 6 用铁板做一个体积为 2m3的有盖长方体水箱.
问当长

`
高怎样选取
`
,
才能使用料最省
.
解 设水箱的长为 x, 宽为 y , 则高为 2 . xy
水箱表面积
A

2
xy

y
2 xy

x
2 xy


2
xy

2 x

2 y

AC B2 12 6 0 , 又 A 0 , f (1, 0) 5为极小值 .
二阶偏导数 f xx (x, y) 6x 6 , f xy (x, y) 0 , f yy (x, y) 6 y 6 . (2) 对点 (1, 2), A f xx (1, 2) 12 , B f xy (1, 2) 0 , C f yy (1, 2) 6 .
(2) AC B2 0时, f (x0 , y0 )不为极值 . (3) AC B2 0时, 不能判别 .
根据极值存在的充分条件 . 求二元函数 z f (x, y)的步骤如下 :
(1)
解方程组


fx (x, y) 0 f y (x, y) 0
, 求得一切驻点 .

0 0
第二步 利用充分条件 判别驻点是否为极值点 .
2. 函数的条件极值问题
(1) 简单问题用代入法
(2) 一般问题用拉格朗日乘数法
如求二元函数 z f (x, y)在条件(x, y) 0下的极值, 设拉格朗日函数 F f (x, y) (x, y)
解方程组
求驻点 .

(完整word版)多元函数的极值及其求法

(完整word版)多元函数的极值及其求法

第十一讲二元函数的极值要求:理解多元函数极值的观点,会用充足条件判断二元函数的极值,会用拉格朗日乘数法求条件极值。

问题提出:在实质问题中,常常会碰到多元函数的最大值,最小值问题,与一元函数相近似,多元函数的最大值,最小值与极大值,极小值有亲密的关系,所以以二元函数为例,来议论多元函数的极值问题.一.二元函数的极值定义设函数z f ( x, y) 在点( x0 , y0 ) 的某个邻域内有定义,关于该邻域内的所有( x, y) (x 0 , y0 ) ,假如总有 f (x, y) f ( x0 , y0 ) ,则称函数z f (x, y) 在点( x0 , y0 ) 处有极大值;假如总有 f ( x, y) f ( x0 , y0 ) ,则称函数z f ( x, y) 在点( x0 , y0 ) 有极小值.函数的极大值,极小值统称为极值,使函数获得极值的点称为极值点.例 1.函数z xy 在点(0,0) 处不获得极值,由于在点(0,0) 处的函数值为零,而在点(0,0) 的任一邻域内总有使函数值为正的点,也有使函数值为负的点.例 2.函数z 3x2 4 y 2在点 (0,0) 处有极小值.由于对任何 ( x, y) 有 f (x, y) f (0,0) 0 .从几何上看,点( 0,0,0) 是张口向上的椭圆抛物面z 3x 2 4 y2的极点,曲面在点(0,0,0) 处有切平面z0 ,进而获得函数获得极值的必需条件.定理1(必需条件)设函数z f ( x, y) 在点(x0 , y0 ) 拥有偏导数,且在点( x0 , y0 ) 处有极值,则它在该点的偏导数必定为零,即 f x ( x0 , y0 ) 0 , f y ( x0 , y0 ) 0 .几何解说若函数z f ( x, y) 在点(x0 , y0 ) 获得极值z0,那么函数所表示的曲面在点(x0 , y0 , z0 ) 处的切平面方程为z z0 f x ( x0 , y0 )( x x0 ) f y ( x0 , y0 )( y y0 )是平行于 xoy 坐标面的平面z z0.近似地有三元及三元以上函数的极值观点,对三元函数也有获得极值的必需条件为f x ( x0 , y0 , z0 ) 0 , f y ( x0 , y0 , z0 ) 0 , f z ( x0 , y0 , z0 ) 0说明上边的定理固然没有完整解决求极值的问题,但它明确指出找极值点的门路,即f x ( x0 , y0 ) 0( x n , y n ) ,那么极值点必包只需解方程组,求得解 ( x1 , y1 ), ( x2 , y2 )f y (x0 , y0 ) 0含在此中,这些点称为函数z f ( x, y) 的驻点.注意 1.驻点不必定是极值点,如z xy 在(0,0)点.如何鉴别驻点是不是极值点呢?下边定理回答了这个问题.定理 2(充足条件)设函数 z f ( x, y) 在点 (x0 , y0 ) 的某邻域内连续,且有一阶及二阶连续偏导数,又f x ( x0 , y0 ) 0 , f y ( x0 , y0 ) 0 ,令 f xx (x0 , y0 ) A , f xy ( x0 , y0 ) B , f yy (x0 , y0 ) C ,则( 1)当AC B 2 0 时,函数 z f ( x, y) 在点 (x0 , y0 ) 获得极值,且当 A 0 时,有极大值 f ( x0 , y0 ) ,当 A 0 时,有极小值 f ( x0 , y0 ) ;( 2)当AC B 2 0 时,函数 z f ( x, y) 在点 ( x0 , y0 ) 没有极值;( 3)当AC B 2 0 时,函数 z f ( x, y) 在点 ( x0 , y0 ) 可能有极值,也可能没有极值,还要另作议论.求函数 z f ( x, y) 极值的步骤:(1)解方程组 f x ( x0 , y0 ) 0 , f y ( x0 , y0 ) 0 ,求得一确实数解,即可求得全部驻点( x1 , y1 ), ( x2 , y2 )( x n , y n ) ;(2)关于每一个驻点( x , y )(i 1,2,L n) ,求出二阶偏导数的值A,B, C;i i(3)确立AC B2 的符号,按定理 2 的结论判断 f ( x i , y i ) 是不是极值,是极大值仍是极小值;(4)观察函数 f ( x, y) 能否有导数不存在的点,如有加以鉴别能否为极值点.例 3.观察解由于z x 2 y2能否有极值.z x,z y在x0, y0 处导数不存在,可是对所x x2y 2y x 2y2有的 (x, y) (0,0) ,均有 f ( x, y) f (0,0) 0 ,所以函数在( 0,0) 点获得极大值.注意 2.极值点也不必定是驻点,若对可导函数而言,如何?例 4.求函数f ( x, y) x3 y3 3x 2 3y2 9x 的极值.解先解方程组f x 3x 2 6x 9 03,0), ( 3,2) ,f y 3y2 6 y 0,求得驻点为 (1,0), (1,2), (再求出二阶偏导函数fxx 6x 6 , f xy, f yy 6 y 6 .在点 (1,0) 处, AC B 2 12 6 72 0 ,又 A 0 ,所以函数在点(1,0) 处有极小值为f (1,0) 5 ;在点 (1,2) 处, AC B2 72 0 ,所以 f (1,2) 不是极值;在点 ( 3,0) 处, AC B2 72 0 ,所以 f ( 3,0) 不是极值;在点 ( 3,2) 处, AC B2 72 0,又A 0,所以函数在点( 3,2) 处有极大值为f ( 3,2) 31.二.函数的最大值与最小值求最值方法:⑴将函数 f ( x, y) 在地区D内的所有极值点求出;⑵求出 f ( x, y) 在D界限上的最值;即分别求一元函数 f ( x, 1 (x)) , f ( x, 2 ( x))的最值;⑶ 将这些点的函数值求出,而且相互比较,定出函数的最值.实质问题求最值依据问题的性质,知道函数 f ( x, y) 的最值必定在地区 D 的内部获得,而函数在 D 内只有一个驻点,那么能够必定该驻点处的函数值就是函数 f ( x, y) 在D上的最值.例 4.求把一个正数 a 分红三个正数之和,并使它们的乘积为最大.解设 x, y 分别为前两个正数,第三个正数为 a x y ,问题为求函数u xy(a x y) 在地区D :x, y 0 ,x y a内的最大值.0由于u y(a x y) xy y(a 2x y) ,ux(a 2 y x) ,x y解方程组a 2x y 0 a, ya.a 2y x,得 x30 3由实质问题可知,函数必在 D 内获得最大值,而在地区 D 内部只有独一的驻点,则函数必在该点处获得最大值,即把a 分红三等份,乘积 ( a) 3 最大.z a x y ,则 3 此外还可得出,若令u xyz( a)3 ( x y z ) 33 3 即3xyz x y z.3三个数的几何均匀值不大于算术均匀值.三.条件极值,拉格朗日乘数法引例求函数 zx 2y 2 的极值.该问题就是求函数在它定义域内的极值,前方求过在(0,0) 获得极小值;若求函数 zx 2 y 2 在条件 xy 1下极值,这时自变量遇到拘束,不可以在整个函数定义域上求极值,而只好在定义域的一部分x y1 的直线上求极值,前者只需求变量在定义域内变化, 而没有其余附带条件称为 无条件极值 ,后者自变量遇到条件的拘束, 称为 条件极值 .如何求条件极值?有时可把条件极值化为无条件极值, 如上例从条件中解出 y 1 x ,代 入 z x 2 y 2 中 , 得 zx 2 (1 x)2 2x 2 2x 1 成 为 一 元 函 数 极 值 问 题 , 令z x 4 x 21 1 1 10 ,得 x,求出极值为 z(, )2 .22 2可是在好多情况下, 将条件极值化为无条件极值其实不这样简单, 我们还有一种直接追求条件极值的方法, 可不用先把问题化为无条件极值的问题, 这就是下边介绍的拉格朗日乘数法.利用一元函数获得极值的必需条件.求函数 zf ( x, y) 在条件( x, y) 0下获得极值的必需条件.若函数 zf ( x, y) 在 (x 0 , y 0 ) 获得所求的极值,那么第一有(x 0, y 0 )0 .假设在 ( x 0 , y 0 ) 的某一邻域内函数 z f ( x, y) 与均有连续的一阶偏导数, 且 y ( x 0 , y 0 )0 .有隐函数存在定理可知,方程(x, y) 0 确立一个单值可导且拥有连续导数的函数y (x) ,将其代入函数 zf ( x, y) 中,获得一个变量的函数z f (x,( x))于是函数 zf ( x, y) 在 ( x 0 , y 0 ) 获得所求的极值, 也就是相当于一元函数 z f (x, ( x)) 在x x 0 获得极值.由一元函数获得极值的必需条件知道dz f x (x 0 , y 0 ) f y (x 0 , y 0 ) dy0 ,dx x x 0dx x x 0而方程(x, y) 0 所确立的隐函数的导数为dyx( x 0, y 0 ).dx x x 0y ( x 0 , y 0 )将上式代入 f( x , y ) f (x , y )dy0 中,得x 0 0 y0 0dx x xf x ( x 0 , y 0 )f y ( x 0 , y 0 ) x(x 0, y 0)0 ,y (x 0 , y 0 )所以函数 z f ( x, y) 在条件 ( x, y) 0 下获得极值的必需条件为 f x ( x 0 , y 0 )f y ( x 0 , y 0 ) x(x 0, y 0)y (x 0 , y 0 ).(x 0 , y 0 ) 0为了计算方便起见,我们令f y ( x 0 , y 0 ),y (x 0 , y 0 )则上述必需条件变成f x ( x 0 , y 0 )x ( x 0 , y 0 ) 0 f y ( x 0 , y 0 )y ( x 0 , y 0 )0 ,( x 0 , y 0 ) 0简单看出,上式中的前两式的左正直是函数F ( x, y) f ( x, y)(x, y)的两个一阶偏导数在(x 0 , y 0 ) 的值,此中是一个待定常数.拉格朗日乘数法求函数 zf ( x, y) 在条件 (x, y) 0 下的可能的极值点.⑴ 组成协助函数F (x, y) f (x, y)(x, y) ,(为常数)⑵求函数 F 对x,对 y 的偏导数,并使之为零,解方程组f x ( x, y)x ( x, y)0f y ( x, y)y ( x, y)0(x, y)0得 x, y,,此中x, y就是函数在条件(x, y)0 下的可能极值点的坐标;⑶ 如何确立所求点能否为极值点?在实质问题中常常可依据实质问题自己的性质来判断.拉格朗日乘数法推行求函数 u f ( x, y, z,t ) 在条件(x, y, z, t) 0 ,(x, y, z, t) 0 下的可能的极值点.组成协助函数F (x, y, z, t ) f ( x, y, z, t) 1 ( x, y, z,t ) 2 ( x, y, z,t )此中1 , 2为常数,求函数 F 对 x, y, z 的偏导数,并使之为零,解方程组f x 1 x 2 x f y 1 y 2 y f z 1 z 2 z f t 1 t 2 t0 0 0 0(x, y, z,t )0( x, y, z, t)0得 x, y, z 就是函数u f (x, y, z, t) 在条件( x, y, z,t) 0 ,( x, y, z,t )0 下的极值点.注意:一般解方程组是经过前几个偏导数的方程找出x, y, z 之间的关系,而后再将其代入到条件中,即能够求出可能的极值点.例 6. 求表面积为 a 2而体积为最大的长方体的体积.解设长方体的三棱长分别为x, y, z ,则问题是在条件(x, y, z) 2xy 2yz 2xz a 20下,求函数 v xyz (x0, y 0, z0) 的最大值.组成协助函数 F (x, y, z) xyz(2xy 2 yz 2xz a 2 ) ,求函数 F 对 x, y, z 偏导数,使其为0 ,获得方程组yz 2 ( y z) 0 (1)xz 2 (x z) 0 (2)xy 2 ( x y) 0 (3)2xy 2yz 2xz a2 0 (4)由 (2) ,得x x z ,由(3) ,得y x y ,(1) y y z ( 2) z x z即有,x( y z) y( x z), x y , y(x z) z( x y), y z ,可得 x y z ,将其代入方程2xy 2 yz 2xz a2 0 中,得x y z6a .6这是独一可能的极值点,由于由问题自己可知最大值必定存在,所以最大值就是在这可能的极值点处获得,即在表面积为a2的长方体中,以棱长为6a 的正方体的体积为最大,6最大概积为 v 6 a3.36例 7.试在球面x2 y2 z2 4 上求出与点 (3,1, 1) 距离近来和最远的点.解设 M (x, y, z) 为球面上随意一点,则到点(3,1, 1) 距离为d (x 3)2 ( y 1)2 (z 1)2可是,假如考虑d2,则应与d有同样的最大值点和最小值点,为了简化运算,故取f (x, y, z) d 2 ( x 3)2 ( y 1)2 ( z 1)2,又由于点 M ( x, y, z) 在球面上,附带条件为( x, y, z) x2 y2 z2 4 0 .组成协助函数 F (x, y, z) ( x 3)2 ( y 1)2 ( z 1)2 (x2 y2 z2 4) .求函数 F 对 x, y, z 偏导数,使其为0 ,获得方程组2(x 3) 2 x 0 (1)2( y 1) 2 y 0 (2)2(z 1) 2 z 0 (3)x2 y2 z2 4 (4)以前三个方程中能够看出x, y, z 均不等于零(不然方程两头不等),以作为过渡,把这三个方程联系起来,有x 3y 1 z 1 3 1 1xyz 或xy,z故 x 3z, yz ,将其代入 x 2 y 2 z 24 中,得( 3z)2( z)2 z 2 4 ,2,再代入到 x 3z, yz 中,即可得求出 z11x m6, y m2,1111进而得两点 (62 26 22,,) , (,,) ,11 1111 1111 11比较表达式看出第一个点对应的值较大,第二个点对应的值较小,所以近来点为( 6 , 2 ,2) ,最远点为 (6 , 2,2).11 11 11111111。

高等数学(下) 第3版课件-多元函数的极值

高等数学(下) 第3版课件-多元函数的极值
x2 2a3
y2
0, 0,
因为 x 0, y 0,解方程组,得 x y 3 2a ,代
入 z a3 中,得 z 3 2 a ,于是驻点惟一,所以当长方
xy
2
体容器的长与宽取 3
3
2am ,高取
2 am时,所需的材料
2
最省.
例 7 某工厂生产两种产品甲与乙,出售单价分别为 10 元与 9 元,生产 x单位的产品甲与 y 单位的产品乙总费用 是400 2x 3y 0.01(3x2 xy 3y2 )元,求取得最大利润时,
大值与极小值统称为极值,使函数获得极值的点 P0(x0, y0) 称 为极值点.
例 1 函数 f (x, y) x2 y2 在点(0,0) 取得极小值 0 ,因
为当 x 0, y 0时: f (x, y) x2 y2 0 f (0, 0) , 这一函数的图形就是下页左图中的曲面,在此曲面上 (0, 0, 0)
是极值点,需另行判断.
例 4 求函数 z x3 y3 3xy的极值.
解 设 f (x, y) x3 y3 3xy.
则 fx (x, y) 3x2 3y ,
f y (x, y) 3y2 3x,
解方程组
3x2 3y 0,
3 y
2
3x
0,
得函数的驻点为(0,0) ,(1,1) .
两种产品的产量各多少?
解 设 L(x, y)表示产品甲与乙分别生产 x与 y 单位
时所得的总利润.因为总利润等于总收入减去总费用,所以
L(x, y) (10x 9 y) [400 2x 3y 0.01(3x2 xy 3y2 )]
8x 6 y 0.01(3x2 xy 3y2 ) 400,
Fx Fy

8-9多元函数的极值及其求法

8-9多元函数的极值及其求法
f x ( x 0 , y0 , z 0 ) 0 , f y ( x 0 , y 0 , z 0 ) 0 , f z( x 0 , y0 , z 0 ) 0 。
仿照一元函数,凡能使一阶偏导数 同时为零
的点,均称为函数的 驻点 或 稳定点。
注意: 极值点 驻点
例如:点( 0,0 ) 是函数 z xy 的驻点,但不是极值点。
z A
B D C
z = f (x,y)
0
.
y
x
机动
目录
上页
下页
返回
结束
一、多元函数的极值
定义: 若函数 的某邻域内有
则称函数在该点取得极大值(极小值). 极大值和极小值 统称为极值, 使函数取得极值的点称为极值点. 例如 : 在点 (0,0) 有极小值; 在点 (0,0) 有极大值;
z z z
x x
AC B 2 12 ( 6 ) 0 ,
不是极值; 不是极值;
在点(3,0) 处
AC B 2 12 6 0 ,
在点 (3,2) 处
AC B 2 12 ( 6 ) 0 , A 0 ,
为极大值.
f xx ( x , y ) 6 x 6 , f xy ( x , y ) 0 , f yy ( x , y ) 6 y 6
此结论可以推广到 n 元函数。
机动 目录 上页 下页 返回 结束
求函数 z f ( x , y ) 极值的一般步骤:
第一步:解方程组 f x ( x , y ) 0,
求出实数解,得驻点;
f y ( x , y ) 0
第二步:对于每一个驻点( x 0 , y 0 ) ,

高等数学 8-8.多元函数的极值及求法

高等数学    8-8.多元函数的极值及求法
六个偏导数为零解出 即得可能 可能的 可由 六个偏导数为零解出 x, y, z , t ,即得可能的极 值点的坐标. 值点的坐标
条件最值的求法:找出Langrange函数的所有驻点 与不可导点,及边界上的驻点与不可导点.
例7
将正数 12 分成三个正数x, y, z 之和 使得 3 2 u = x y z 为最大.
2
′ 由 f x = 4 x ( x − 6) + 2 x = 0 ,
2
得 x1 = 0, x2 = 4
f (4,2) = −64,
为最大值, 比较后可知 f (2,1) = 4为最大值
y
x+ y=6
D
为最小值. f (4,2) = −64为最小值
o
x
x+ y 的最大值和最小值. 例 6 求z = 2 的最大值和最小值 2 x + y +1
仿照一元函数, 仿照一元函数,凡能使一阶偏导数同时 为零的点,均称为函数的驻点 驻点. 为零的点,均称为函数的驻点 注 意: 驻点 (可导的 极值点 可导的)极值点 可导的
例如, 点( 0,0) 是函数 z = xy 的驻点, 例如 的驻点 但不是极值点. 问题:如何判定一个驻点是否为极值点? 问题:如何判定一个驻点是否为极值点?
由此构造三元函数
F ( x , y , λ ) = f ( x , y ) + λϕ ( x , y ) )为 易知点(x0 ,y0 ,λ0 )为F ( x, y, λ )的驻点.
称F ( x, y, λ )为条件极值的Langrange函数.
拉格朗日乘数法 要找函数 z = f ( x , y ) 在条件ϕ ( x , y ) = 0 下的 可能极值点, 可能极值点,先构造函数

9-8多元函数的极值及其求法 共39页

9-8多元函数的极值及其求法 共39页
F z 2 (x y )x y 0
F xyzV00
2 y 1 z 0

2
x
1
z

0
2 x 2 y 0
x y y 2z
xyzV00
xy2z32V0,
22
四川大学数学学院 邓瑾
得唯一驻点
xy2z32V0,
A 在点(1,0) 处 A 12, B 0 , C 6 ,
A C B 21260, A 0,
f(1,0)5为极小值;
5
四川大学数学学院 邓瑾
在点(1,2) 处 A 1 2 ,B 0 ,C 6 A C B 2 1 2 ( 6 ) 0 ,f(1,2)不是极值;
1 1

z z

zxx z yy

zx2
z
2 y

2zxx 2z yy

0 0
zxx
zyy
1 2z
z zxy zy zx 2zxy 0 zxy 0
8
四川大学数学学院 邓瑾
1
1
A z x x |P 2 z , B z x y |P 0 ,C z y y |P 2 z ,
值与最小值. 解 如图,先求函数在D内的驻点.
解方程组
D
xy6
y
ffx y ((x x ,,yy)) 2 x x 2((4 4 y x x yy)) x x 22 yy 0 0 得 区 域 D 内 唯 一 驻 点 ( 2 , 1 ) ,
且 f (2,1) 4,
A<0 时取极大值; 则: 1) 当ACB20时, 具有极值 A>0 时取极小值.

多元函数的极值及求法课件

多元函数的极值及求法课件

详细描述
在交通网络、通信网络或其他类型的网络中,最短路 径问题是一个重要的优化问题。通过使用多元函数的 极值理论,可以找到网络中两点之间的最短路径,或 者从一个点出发到另一个点的最短路径。这有助于节 省时间和资源,提高效率。
生产成本最小化问题
要点一
总结词
生产成本最小化问题是企业经常面临的问题,通过最小化 生产成本来提高利润。
在工程领域的应用
结构优化设计
在工程设计中,如何优化设计方案以使 得结构性能最优是一个重要问题。多元 函数的极值理论可以用来解决这类问题, 通过找到使得结构性能函数最大的最优 解,得到最优的结构设计方案。
VS
控制工程问题
在控制工程中,如何确定控制系统的参数 以使得系统性能最优是一个重要问题。多 元函数的极值理论可以用来解决这类问题, 通过找到使得性能函数最大的最优解,得 到最优的控制系统参数。
04
多元函数极的展
偏导数与极值的关系
偏导数
在一元函数中,导数描述了函数值随自变量变化的速率。在多元函数中,偏导数描述了 函数值随某个自变量变化,而其他自变量保持不变的速率。
极值必要条件
如果一个多元函数在某点的偏导数都为0,那么这个点可能是函数的极值点。然而,这 个条件只是必要条件,不是充分条件,也就是说,偏导数都为0的点不一定是极值点。
生产成本最小化
在生产过程中,企业希望通过优化生产要素的投入比例,使 得生产成本最小化。多元函数的极值理论可以用来解决这类 问题,通过找到使得成本函数最小的最优解,实现生产成本 的最小化。
资源分配问题
在资源有限的情况下,如何合理分配资源以最大化经济效益 是经济领域中常见的问题。多元函数的极值理论可以用来解 决这类问题,通过找到使得收益函数最大的最优解,实现资 源的最优配置。

大学经典课件之高等数学——8-9多元函数的极值及其求法

大学经典课件之高等数学——8-9多元函数的极值及其求法
第三步:定出 AC − B 2 的符号,再判定是否是 极值。
注意:偏导数不存在的点也是可疑的极值点, 是否是极值要用定义去判断。
机动 目录 上页 下页 返回 结束
求函数 f ( x , y ) = x 3 − y 3 + 3 x 2 + 3 y 2 − 9 x 的极值. 例1.
解: 第一步 求驻点. f x′ ( x , y ) = 3 x 2 + 6 x − 9 = 0 解方程组 2 f y′ ( x , y ) = − 3 y + 6 y = 0
( 3) 考察函数
f ( x, y) = x + y
2
4
及 g( x , y ) = x 2 + y 3 .
容易验证,这两个函数都以(0,0)为驻点,且在点
(0,0)处都满足 AC − B 2 = 0 。但 f ( x , y ) 在点(0,0)
处有极小值,而 g ( x , y ) 在点(0,0)处却没有极值。
z = − x + y 在点 (0,0) 有极大值;
2 2
z z z
x x
z = x y 在点 (0,0) 无极值.
x
上页 下页 返回
y y y
结束
机动
目录
多元函数取得极值的条件
定理 1(必要条件) :设函数 z = f ( x , y ) 在点
( x0 , y0 ) 具有偏导数,且在点( x0 , y0 ) 处有极值,则
其他类似. ′′ 由(8) 式可知,当( x 0 + h, y0 + k ) ∈ U 2 ( P0 ) 时, f xx
′′ 及 f yy 都不等于零且两者同号,于是 (6) 式可写成 1 ′′ ′′ ′′ ′′ ′′ (hf xx + kf xy )2 + k 2 f xx f yy − f xy 2 . Δf = ′′ 2 f xx 当 h、k 不同时为零且 ( x 0 + h, y0 + k ) ∈ U 2 ( P0 )

08-多元函数的极值及其求法课件

08-多元函数的极值及其求法课件

多元函数的极值及其求法多元函数的极值多元函数的最大值、最小值条件极值拉格朗日乘数法多元函数的极值定义 设函数()z f x y =,的定义域为D ,()000,P x y 则称函数在点()00,x y 有极大值(或极小值) ()00,f x y为D 的内点,若存在0P 的某个邻域()0U P D ⊂,如果对于该邻域内任何异于0P 的点(),x y , 都有()()00,,f x y f x y < (或()()00,,f x y f x y >),极大值、极小值统称为极值. 使函数取得极值的点称为极值点.例 函数2234z x y =+在点(0,0)处有极小值.()0,00z =, 例 函数22y x z +-=在点(0, 0)处有极大值.当()(),0,0x y ≠时, 0z >.=在点(0,0)处既不取得极大值也不取得极小例函数z xy值.()0,00z=,而在点(0, 0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点.设n 元函数()u f P =在点0P 的某一邻域内有定义,如果对于该邻域内任何异于0P 的点P , 都有则称函数()fP 在点0P 有极大值(或极小值)()0f P .()()0f P f P < (或()()0f P f P >),定理1(必要条件) 设函数()z f x y =,在点()00,x y 具 有偏导数, 且在点()00,x y 处有极值, 则有()00,0x f x y =, ()00,0y f x y =.不妨设()z f x y =,在点()00,x y 处有极大值. 证 依极大值的定义, 对于点()00,x y 的某邻域内异于()00,x y 的点(),x y , 都有不等式特殊地, 在该邻域内取0y y =而0x x ≠的点,也应有()()00,,f x y f x y <()()000,,f x y f x y <这表明一元函数()0,f x y 在0x x =处取得极大值,因而有()00,0x f x y =.类似地可证()00,0y f x y =.从几何上看, 这时如果曲面()z f x y =,在点()000,,x y z 处有切平面, 则切平面()()()()0000000,,x y z z f x y x x f x y y y -=-+-成为平行于xoy 坐标面的平面0z z =.凡是能使()00,0xf x y =, ()00,0y f x y =同时成立的点()00,x y 称为函数()z f x y =,的驻点.具有偏导数的函数的极值点必定是驻点.但函数的驻点不一定是极值点.例如, 函数z xy =在点 (0,0)处的两个偏导数都是零, 但(0,0)不是极值点.定理2(充分条件) 设函数()z f x y =,在点()00,x y 的某邻域内连续且有一阶及二阶连续偏导数,又()00,0x f x y =, ()00,0y f x y =,令()00,xx f x y A =, ()00,xy f x y B =, ()00,yy f x y C =则()f x y ,在()00,x y 处是否取得极值的条件如下:(2)20AC B -<时没有极值;(1) 20AC B ->时具有极值, 且当0A <时有极大值,当0A >时有极小值;(3) 20AC B -=时可能有极值, 也可能没有极值.极值的求法: 第一步 解方程组求得一切实数解, 即可得一切驻点.第二步 对于每一个驻点()00,x y , 求出二阶偏导数的 ()00,0x f x y =, ()00,0y f x y =,值A 、B 和C .第三步 定出2AC B -的符号, 按定理2的结论判定()00,f x y 是否是极值、是极大值 还是极小值.例 求函数()3322,339f x y x y x y x =-++-的极值.解 解方程组⎩⎨⎧=+-==-+=063),(0963),(22y y y x f x x y x f yx 得驻点为()1,0、()1,2、()3,0-、()3,2-.求得1,3x =- ; 0,2y =再求出二阶偏导数(),66xx f x y x =+,(),0xy f x y = ,(),66yy f x y y =-+.在点()1,0处,21260AC B -=⋅>, 又0A >,所以函数在()1,0处有极小值()1,05f =-;在点()1,2处, ()21260AC B -=⋅-<,所以()1,2f 不是极值;所以()3,0f -不是极值;所以函数在()3,2-处有极大值()3,231f -=.在点()3,0-处, 21260AC B -=-⋅<,在点()3,2-处,()21260AC B -=-⋅->, 又0A <,不是驻点也可能是极值点.例如,函数220,0处有极大值,=-+在点()z x y0,0不是函数的驻点.但()多元函数的最大值、最小值如果()f x y ,在有界闭区域D 上连续, 则()f x y ,在 D 上必定能取得最大值和最小值.假定函数在D 上连续、在D 内可微分且只有有限个驻 点, 如果函数在D 的内部取得最大值(最小值), 那么这个 最大值(最小值)也是函数的极大值(极小值).求最大值和最小值的一般方法将函数()f x y ,在D 内的所有驻点处的函数值及在D 的边界上的最大值和最小值相互比较, 其中最大的就是最大 值, 最小的就是最小值.实际问题中如果根据问题的性质, 知道函数()f x y , 的最大值(最小值)一定在D 的内部取得, 而函数在D 内 只有一个驻点, 那么可以肯定该驻点处的函数值就是函数 ()f x y ,在D 上的最大值(最小值).例 某厂要用铁板做成一个体积为38m 的有盖长方体水箱.问当长、宽、高各取多少时, 才能使用料最省.解 设水箱的长为x , 宽为y , 则其高应为xy8. 此水箱所用材料的面积为)0 ,0( )88(2)88(2>>++=⋅+⋅+=y x yx xy xy x xy y xy A令0)8(22=-=x y A x , 0)8(22=-=yx A y , 得2x =, 2y =.当水箱的长为2m 、宽为2m 、高为82m 22=⋅时, 水箱所用的材料最省.条件极值拉格朗日乘数法例如, 对自变量有附加条件的极值称为条件极值.求表面积为2a 的长方体的最大体积.设长方体的三棱的长为x y z 、、, 则体积V xyz =.x y z 、、还必须满足附加条件22()xy yz xz a ++=.由条件2)(2a xz yz xy =++, 解得)(222y x xy a z +-=, 于是得 V ))(2(22y x xy a xy +-=. 有些条件极值问题可以化为无条件极值问题.例如, 求表面积为2a 的长方体的最大体积.函数()z f x y =,在条件()0x y ϕ=,下取得极值的必要 条件.如果函数()z f x y =,在()00,x y 取得所求的极值, 则()00,0x y ϕ=.假定在()00,x y 的某一邻域内()f x y ,与()x y ϕ,均有连续的一阶偏导数, 将其代入目标函数()z f x y =,, 得的函数()y x ψ=, 定理, 由方程()0x y ϕ=,确定一个连续且具有连续导数而()00,0y x y ϕ≠. 由隐函数存在一元函数()()z f x x ψ=,.0x x =是一元函数()()z f x x ψ=,的极值点,由取得极值的必要条件, 有即()()0000d d ,,0d d x y x x x x z yf x y f x y xx--=+=()()()()00000000,,,0,x x y y x y f x y f x y x y ϕϕ-=设λϕ-=),(),(0000y x y x f y y , 则函数()z f x y =,在条件 ⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(0000000000y x y x y x f y x y x f y y x x ϕλϕλϕ ()0x y ϕ=,下在()00,x y 取得极值的必要条件是拉格朗日乘数法要找函数()z f x y =,在条件()0x y ϕ=,下的可能极值点, 可以先构成辅助函数()()()L x y f x y x y λϕ=+,,,其中λ为某一常数. 然后解方程组(,)(,)(,)0(,)(,)(,)0(,)0L x y f x y x y x x x L x y f x y x y y y y x y λϕλϕϕ⎧=+=⎪=+=⎨⎪=⎩ 由这方程组解出,x y 及λ, 则其中(),x y 就是所要求的可能的极值点.此方法可以推广到自变量多于两个而条件多于一个的情形.例 求表面积为2a 而体积为最大的长方体的体积.解 设长方体的三棱的长为x y z 、、, 构成辅助函数解方程组()()2,222L x y z xyz xy yz xz a λ=+++-,(,,)2()0(,,)2()0(,,)2()02222L x y z yz y z x L x y z xz x z y L x y z xy y x z xy yz xz aλλλ=++=⎧⎪=++=⎪⎨=++=⎪⎪++=⎩ 得a z y x 66===, 这是唯一可能的极值点. 最大值就在这个可能的值点处取得. 此时3366a V =.。

多元函数的极值及其求法

多元函数的极值及其求法

新课
一、多元函数的极值及最大值、最小值
极值的定义 设函数zf(x y)在点(x0 y0)的某个邻域内有定义 如果对 于该邻域内任何异于(x0 y0)的点(x y) 都有 f(x y)<f(x0 y0)(或f(x y)>f(x0 y0)) 则称函数在点(x0 y0)有极大值(或极小值)f(x0 y0) 极大值、极小值统称为极值 使函数取得极值的点称为极值点
观察极值与切线的关系
x1 x2 x3 x4 x5
定理1(必要条件) 设函数f(x)在点x0处可导 且在x0处取得极值 那么f (x0)0 >>> •驻点 使导数f (x)为零的点(方程f (x)0的实根)称为函数 f(x)的驻点 讨论:
极值点是否一定是驻点? 驻点是否一定是极值点? 考察x0是否是函数yx3的 驻点 是否是函数的极值点
5(x 1) 3 3 x 1 (2)令f (x)0 得驻点x1 x1为f(x)的不可导点 f (x)
(3)列表判断
x
f (x)
( 1)

1
不可导
(1 1)

1
0
(1 )

f(x)

0

33 4

(4)极大值为 f (1)0 极小值为 f (1) 33 4
确定极值点和极值的步骤
(1)求出导数f (x) (2)求出f(x)的全部驻点和不可导点 (3)考察在每个驻点和不可导点的左右邻近f (x)的符号 (4)确定出函数的所有极值点和极值
例 1 求函数 f (x) (x 4)3 (x 1)2 的极值 例 解 (1)f(x)在( )内连续 除x1外处处可导 且
例2、讨论函数 z 1 x 2 y 2 在 (0, 0)处的极值。

第八节多元函数的极值及其求法

第八节多元函数的极值及其求法

山东农业大学
高等数学
主讲人: 苏本堂
注 不是驻点也可能是极值点.
例如 函数 z x2 y 2 在点(0 0)处有极大值
但(0 0)不是函数的驻点
因此, 在考虑函数的极值问题时, 除了考虑函数的驻点外, 如果有偏导 数不存在的点, 那么对这些点也应当 考虑. 多元函数的最值 与一元函数相类似,我们可以利用函数的极值来 求函数的最大值和最小值.
在条件 ( x, y ) 0 下, 求函数 z f ( x, y) 的极值
转 化
从条件 ( x, y ) 0中解出 y ( x)
求一元函数 z f ( x, ( x)) 的无条件极值问题
山东农业大学
高等数学
主讲人: 苏本堂
方法2 拉格朗日乘数法. 例如,
在条件 ( x, y ) 0 下, 求函数 z f ( x, y) 的极值 .
A
B
C
山东农业大学
高等数学
主讲人: 苏本堂
例2.讨论函数
是否取得极值.

在点(0,0)
解: 显然 (0,0) 都是它们的驻点 , 并且在 (0,0) 都有 在(0,0)点邻域内的取值
z
o x
y

可能为 负 , 因此 z(0,0) 不是极值. 0 因此 为极小值.
当 x 2 y 2 0 时, z ( x 2 y 2 ) 2 z (0,0) 0
z
x
y
2z y y z 0
解方程组
2z x x z 0
2( x y) x y 0 x y z V0 0
山东农业大学
高等数学
主讲人: 苏本堂

多元函数的极值与最值的求法

多元函数的极值与最值的求法
解:因为
所以设目标函数为 (1)
限制条件为 (2)
(3)
由(1)(2)(3)知即求
在限制条件 下的极值
因为
所以 即 (4)
由(1)(2)(3)解得
由题意知最长距离为 ,最短距离为 .
1.3.2 在满足条件 下的最值
基本过程(1) 在满足条件 下的可能极值点。
(2)求一元函数 的最值。
例1.3.3求内接于椭球 的体积最大的长方体的体积,长方体的各个面平行于坐标面.
To get the extreme of multivariable function, the thesis adopts the following ways: (1)Using the partial derivative of duality function to get the extreme; (2)Lagrangian multipliermethod to calculate the extremum; (3)Geometric modeling method for solving extremum; (4) Using Jacobi matrix to get the conditional extremum; (5) Using parameter equation to calculate the extremum;(6)Using directional derivative to identify the extremumof multivariable function; (7) Using gradient method to get the extremum.
1.4通过雅可比(Jacobi)矩阵求条件极值
1.4.1问题的提出

多元函数的极值及其求法-26页PPT文档资料

多元函数的极值及其求法-26页PPT文档资料
不存在。
结论:极值点必在驻点和偏导数不存在的点中! 把驻点和偏导数不存在的点称为可疑极值点.
定理2 (充分条件)若函数 z f(x ,y )在 (x 0 ,点 y 0 )的
的某邻域内具有一阶和二阶连续偏导数, 且
fx ( x 0 ,y 0 ) 0 ,fy ( x 0 ,y 0 ) 0 令 A f x x ( x 0 , y 0 ) , B f x y ( x 0 , y 0 ) , C f y y ( x 0 , y 0 )
注意: 驻点
偏导存在的极值点
如例 3, 点(0,0)是函数z xy的唯一驻点,
但 不 是 极 值 点 .
如何判定驻点是否为极值点?(稍后回答)
与一元函数类似,可能的极值点除了驻点之外, 偏导数不存在的点也可能是极值点。
如例2,显然函数 z x2y2 在(0,0)处取得极小. 值
但函数 (0,0在 )处偏导数
第二步 判别. 求二阶偏导数
B
C
fxx(x,y)6x6, fxy(x,y)0, fyy(x,y)6y6
A
在点(1,0) 处
A C B 21 2 60,A0,
为极小值;
在点(1,2) 处
A C B 2 1 2 ( 6 ) 0 ,
不是极值;
在点(3,0) 处
A C B 2 1 2 60,
方法:将函数在D内的所有驻点和偏导不存在的点处的
函数值相互比较,其中最大者即为最大值,最 小者即为最小值. (2)连续函数在闭区域上的最值:
方法:将函数在D内的所有驻点处的函数值及在D的边界
上的最大值和最小值相互比较,其中最大者即为
最大值,最小者即为最小值.
特别, 当区域内部最值存在, 且只有一个极值点P 时,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
D
o x
得 x1 0, x2 4 y 6 x | x 4 2,
f (4,2) 64,
比较后可知 f ( 2) 64 为最小值.
x y 例 7 求z 2 的最大值和最小值. 2 x y 1
( x 2 y 2 1) 2 x( x y ) 解 由 zx 0, 2 2 2 ( x y 1) ( x 2 y 2 1) 2 y( x y ) zy 0, 2 2 2 ( x y 1)
4 f ( x , x ) f ( 0 , 0 ) 2 x 0 沿直线 y x ,有
沿直线 x 0,有
f (0, y ) f (0,0) y ( y 1) 0 符号有改变,所以点( 0,0) 不是函数的极值点.
2 2
求函数 z f ( x , y ) 极值的一般步骤:
定理 1(必要条件) 设函数 z f ( x , y ) 在点 ( x0 , y0 ) 具有偏导数,且 在点 ( x0 , y0 ) 处有极值,则它在该点的偏导数必 然为零: f x ( x0 , y0 ) 0 , f y ( x0 , y0 ) 0 .
证 不妨设 z f ( x , y ) 在点( x 0 , y0 ) 处有极大值,
1 ( x, y, z, t ) 2 ( x, y, z , t )
其中 1 , 2 均为常数,可由 偏导数为零及条件解出 x, y, z, t ,即得极值点的坐标 .
例8
将正数 12 分成三个正数 x , y, z 之和 使得 3 2 u x y z 为最大.
解 令 L( x , y , z ) x 3 y 2 z ( x y z 12) ,
一、问题的提出
实例:某商店卖两种牌子的果汁,本地牌子每 瓶进价1元,外地牌子每瓶进价1.2元,店主估 计,如果本地牌子的每瓶卖 x 元,外地牌子的 每瓶卖 y 元,则每天可卖出 70 5 x 4 y 瓶本 地牌子的果汁,80 6 x 7 y瓶外地牌子的果汁 问:店主每天以什么价格卖两种牌子的果汁可 取得最大收益?
必有
f x ( x 0 , y0 ) 0 ;
类似地可证
f y ( x0 , y0 ) 0 .
推广 如果三元函数u f ( x , y , z ) 在点P ( x0 , y0 , z0 ) 具有偏导数,则它在P ( x0 , y0 , z0 ) 有极值的必要条 件为 f x ( x 0 , y 0 , z 0 ) 0 , f y ( x 0 , y0 , z 0 ) 0 , f z ( x 0 , y0 , z 0 ) 0 .
解 将方程两边分别对 x , y 求偏导
2 x 2 z z x 2 4z x 0 2 y 2 z zy 2 4 zy 0
由函数取极值的必要条件知, 驻点为 P (1,1) ,
将上方程组再分别对 x , y 求偏导数,
1 |P B z C zyy , xy |P 0, 2 z 1 2 0 ( z 2),函数在P 有极值. 故 B AC 2 (2 z )
无条件极值:对自变量除了限制在定义域内
外,并无其他条件.
三、条件极值拉格朗日乘数法
实例: 小王有200元钱,他决定用来购买两 种急需物品:计算机磁盘和录音磁带,设他 购买 x 张磁盘,y盒录音磁带达到最佳效果, 效果函数为 U ( x , y ) ln x ln y.设每张磁 盘8元,每盒磁带10元,问他如何分配这200 元以达到最佳效果.
第一步 解方程组 f x ( x , y ) 0,
f y ( x, y) 0
求出实数解,得驻点。并考虑不可导点。
第二步 对于每一个驻点( x0 , y0 ) ,
求出二阶偏导数的值 A、B、C.
第三步 定出 AC B 的符号,再判定是否是极值.
2
第四步 对不能确定是否为极值点的点,利用定义来判 别.
3、多元函数的最值
与一元函数相类似,我们可以利用函数的 极值来求函数的最大值和最小值.
求最值的一般方法:
将函数在D内的所有驻点处的函数值及在D 的边界上的最大值和最小值相互比较,其中最 大者即为最大值,最小者即为最小值.
例6 求二元函数 z f ( x , y ) x y(4 x y ) 在直线 x y 6, x 轴和 y 轴所围成的闭区域 D 上的最大值与最小值.
则对于( x0 , y0 ) 的某邻域内任意
( x , y ) ( x0 , y0 ) 都有 f ( x , y ) f ( x0 , y0 ),
故当 y y0 , x x0 时, 有 f ( x , y0 ) f ( x 0 , y0 ) ,
说明一元函数 f ( x , y0 ) 在 x x 0 处有极大值,
将 P (1,1) 代入原方程, 有 z1 2,
1 A z , xx |P 2 z
z2 6 ,
所以 z f (1,1) 2 为极小值;
1 当 z1 2 时, A 0 , 4
1 当 z 2 6 时, A 0 , 4
所以z f (1,1) 6 为极大值.
每天的收益为 f ( x , y )
( x 1)(70 5 x 4 y ) ( y 1.2)(80 6 x 7 y )
求最大收益即为求二元函数的最大值.
二、多元函数的极值和最值
观察二元函数 z xy e
x2 y2
的图形
播放
1、二元函数极值的定义
设函数z f ( x , y ) 在点( x0 , y0 ) 的某邻域内 有定义,对于该邻域内异于( x0 , y0 ) 的点( x , y ) : 若满足不等式 f ( x , y ) f ( x0 , y0 ) ,则称函数 在 ( x 0 , y0 ) 有 极 大 值 ; 若 满 足 不 等 式 f ( x , y ) f ( x0 , y0 ) ,则称函数在( x0 , y0 ) 有极 小值;
AC B 0,
2
这时不能确定是否有极值。于是考察(0,0)点 附近的情况.
判断驻点( x0 , y0 )是不是极值点,可以过点( x0 , y0 ) 做直线(或曲线),如果在其中的一条或几条直线 (或曲线)上靠近点 ( x0 , y0 )充分小的邻域内函数值 的差 f ( x, y ) f ( x0 , y0 ),判断它是否改变符号, 来判断点( x0 , y0 )是不是极值点。若符号不改变,恒 大于 0,则该点为极小值点,恒小于 0,则该点为 极大值点;若符号变化,则该点不是极值点.
f y ( x 0 , y0 ) 0 , 又 f x ( x 0 , y0 ) 0 , 令 f xx ( x0 , y0 ) A , f xy ( x0 , y0 ) B , f yy ( x0 , y0 ) C ,
则 f ( x , y )在点( x0 , y0 ) 处是否取得极值的条件如下: (1) AC B 0 时具有极值,
2

如图,
先求函数在D 内的驻点,
y
x y6
D
o x
D
解方程组
2 f x ( x , y ) 2 xy(4 x y ) x y 0 2 2 f ( x , y ) x ( 4 x y ) x y0 y
得区域D 内唯一驻点( 2,1) , 且 f ( 2,1) 4 ,
D 边界上的最值, 再求 f ( x , y ) 在
在边界 x 0 和 y 0 上 f ( x , y ) 0 ,
在边界 x y 6 上,即 y 6 x
于是 f ( x , y ) x (6 x )( 2) ,
2
y
x y6
4 x ( x 6) 2 x 0 , 由 fx
例 5 求函数 z
x y x 2 xy y
4 4 2
2
的极值。
解 将方程两边分别对 x , y 求偏导
f x 4 x 3 2 x 2 y 3 fy 4 y 2x 2 y 0, f y 0 , 令 fx 求得驻点为(-1,-1),(1,1),(0,0).
f x ( x , y ) x ( x , y ) 0, f y ( x , y ) y ( x , y ) 0, ( x , y ) 0. 解出 x , y , ,其中 x , y 就是可能的极值点的坐标.
拉格朗日乘数法可推广到自变量多于两个的情况: 要找函数 u f ( x , y , z , t ) 在条件 ( x , y , z , t ) 0, ( x , y , z , t ) 0 下的极值, 先构造函数 L( x , y , z , t ) f ( x , y , z , t )
问题的实质:求 U ( x , y ) ln x ln y 在条 件 8 x 10 y 200下的极值点.
条件极值:对自变量有附加条件的极值.
拉格朗日乘数法 要找函数 z f ( x , y )在条件 ( x , y ) 0 下的 可能极值点, 先构造函数 L( x , y ) f ( x , y ) ( x , y ) , 其中 为某一常数,可由
二阶偏导数分别为:
f xx 12 x 2, f xy 2, f yy 12 y 2
2 2
在点( 1,1)处, AC B 96 0, A 10 0
2
所以函数在( 1,1)处有极小值,其值为- 2. 在点(1,1)处, AC B 2 96 0, A 10 0 所以函数在(1,1)处有极小值,其值为- 2. 在点(0,0)处,
相关文档
最新文档