线性代数-行列式(完整版)
线性代数第二章方阵的行列式
2 n阶行列式的性质
本节教学内容
行列式按一行(列)展开定理
Laplace定理
3 展开定理与行列式的计算
3 展开定理与行列式的计算
行列式按一行(列)展开定理 三阶行列式的一个计算公式 Mij称为aij的余子式 Aij称为aij的代数余子式
3 展开定理与行列式的计算
线性代数 第二章
本章教学内容
1 n阶行列式的定义
2 方阵行列式的性质
3 展开定理与行列式的计算
第二章 方阵的行列式
1 n阶行列式的定义
1.排列与逆序数 定义 由1,2,…,n按任何一种次序排成的有序数 组i1 i2… in称为一个n级排列,简称排列. 例 3级排列:123,132,213,231,312,321,共6个 性质 不同的n级排列共n!个. 排列123,从小到大排,全顺; 排列132,3>2,但3排在2之前,即32是一个逆序 定义 在一个排列i1 i2… in中,若it> is中,但it排在 is之前,则称it与is组成一个逆序.i1 i2… in中所有逆 序的总数称为此排列的逆序数, 记为(i1 i2… in).
2 n阶行列式的性质
例 =0 2r1+r2
2 n阶行列式的性质
性质2.5 即
2 n阶行列式的性质
或 证 由性质2.1及推论2.3得到.
2 n阶行列式的性质
例1
2 n阶行列式的性质
例2
2 n阶行列式的性质
例3 计算行列式 解
2 n阶行列式的性质
2.方阵行列式的性质 定理2.1 设A,B为n阶方阵,为常数,m为正整 数,则 ⑴ A=nA ; ⑵ AB=AB ; ⑶ Am=Am . 注① 一般的A+B≠A+B ; ② 虽然AB≠BA,但AB=BA ; ⑶由⑵推得,下证⑴ ⑵
线性代数-行列式(完整版)
01
对于二元一次方程组,可以直接应用克拉默法则求解
未知数。
02
对于三元一次方程组,需要先判断系数矩阵的行列式
是否为零,若不为零,则可以使用克拉默法则求解。
03
对于更高元次的线性方程组,克拉默法则同样适用,
但计算量会随着元次的增加而急剧增大。
矩阵可逆性判别方法
01
一个方阵可逆的充分必要条件是其行列式不等于零。
行列式基本性质
行列式中如果有两行(或两列)元素成比例,则此行列式等于零。
若行列式的某一行(或某一列)的元素都是两数之和,例如第i行的元素都是两数之 和:$a_{ij}=b_{ij}+c_{ij}$,则此行列式等于两个行列式之和,这两个行列式的第i行 分别为$b_{ij}$和$c_{ij}$,其余各行与原行列式的相应的行相同。
对于一个n阶方阵A,其行列式记作|A|或det(A), 是一个数值。
行列式的值可以通过对矩阵元素进行特定的运算 得到,该运算满足一定的性质。
行列式基本性质
行列式与它的转置行列式相等。
交换行列式的两行(或两列),行列式变号。 行列式的某一行(或某一列)中所有的元素都乘以同一数k,等于用数k乘 此行列式。
克拉默法则介绍
克拉默法则(Cramer's Rule)是线性 代数中一个关于求解线性方程组的定理。
该法则适用于具有相同数量方程的方程组, 且系数矩阵的行列式不为零的情况。
克拉默法则通过计算系数矩阵的行 列式以及将系数矩阵的某一列替换 为常数项列后得到的新矩阵的行列 式,来求解方程组的解。
克拉默法则在方程组求解中应用
应用领域
范德蒙德行列式在多项式插值、数值分析等领域有广 泛应用。
范德蒙德行列式在多项式拟合中应用
线性代数 第六版 第一章 行列式
2
aa1211xx11
a12 x2 a22 x2
b1 , b2 .
(1)
(2)
(a11a22 a12a21 ) x1 b1a22 a12b2;
类似地,消去 x1,得
(a11a22 a12a21 ) x2 a11b2 b1a21 ,
所以当 a11a22 a12a21 0 时,方程组有唯一解
(a12a21 a11a22 ) x2 (a13a21 a11a23 ) x3 a21b1 a11b2 a32
(a12a31 a11a32 ) x2
(a13a31 a11a33 ) x3
a31b1 a11b3
(a22 )
(a22a31 a21a32 ) x2 (a23a31 a21a33 ) x3 a31b2 a21b3 a12
3 4 2
解 按对角线法则,有 D 1 2(2) 21 (3) (4)(2) 4
12
1 2 4 例 计算三阶行列式 D 2 2 1
3 4 2
解 按对角线法则,有 D 1 2(2) 21 (3) (4)(2) 4
(4) 2(3) 2(2)(2) 114
14.
13
1 23 例3 4 0 5
解
3 D
2 3 (4) 7 0 ,
21
12 2
3 12
D1 1
1 14, D2 2
21, 1
x1
D1 D
14 7
2,
x2
D2 D
21 3. 7
7
(二) 三阶行列式
三元线性方程组
aa2111
x1 x1
a12 x2 a22 x2
a13 x3 a23 x3
b1 b2
(完整版)行列式习题答案
线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 n 阶 行 列 式一.选择题1.若行列式 = 0,则[ C ]x52231521-=x (A )2 (B )(C )3(D )2-3-2.线性方程组,则方程组的解=[ C ]⎩⎨⎧=+=+473322121x x x x ),(21x x (A )(13,5)(B )(,5)(C )(13,)(D )()13-5-5,13--3.方程根的个数是[ C ]093142112=x x (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ](A ) (B ) 665144322315a a a a a a 655344322611a a a a a a (C ) (D )346542165321a a a a a a 266544133251a a a a a a 5.若是五阶行列式的一项,则的值及该项的符号为[ B ]55443211)541()1(a a a a a l k l k N -ij a l k ,(A ),符号为正; (B ),符号为负;3,2==l k 3,2==l k (C ),符号为正;(D ),符号为负2,3==l k 2,3==l k 6.下列n (n >2)阶行列式的值必为零的是 [ BD ](A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个二、填空题1.行列式的充分必要条件是1221--k k 0≠3,1k k ≠≠-2.排列36715284的逆序数是133.已知排列为奇排列,则r =2,8,5s = 5,2,8,t = 8,5,2397461t s r4.在六阶行列式中,应取的符号为 负 。
ij a 623551461423a a a a a a 三、计算下列行列式:1.=181322133212.=55984131113.yxyx x y x yyx y x +++332()x y =-+4.=100011000001001005.000100002000010n n -1(1)!n n -=-6.0011,22111,111 n n nn a a a a a a --(1)212,11(1)n n n n n a a a --=-线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第二节 行列式的性质一、选择题:1.如果, ,则 [ C ]1333231232221131211==a a a a a a a a a D 3332313123222121131211111232423242324a a a a a a a a a a a a D ---==1D (A )8(B )(C )(D )2412-24-2.如果,,则 [ B ]3333231232221131211==a a a a a a a a a D 2323331322223212212131111352352352a a a a a a a a a a a a D ---==1D (A )18(B ) (C )(D )18-9-27-3. = [ C ]2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (A )8 (B )2(C )0(D )6-二、选择题:1.行列式 12246000 2. 行列式-3=30092280923621534215=11101101101101112.多项式的所有根是0211111)(321321321321=+++++=x a a a a x a a a a x a a a a x f 0,1,2--3.若方程= 0 ,则225143214343314321x x --1,x x =±=4.行列式 5==2100121001210012D 三、计算下列行列式:1.2605232112131412-21214150620.12325062r r +=2.xa a a x a a a x 1[(1)]().n x n a x a -=+--线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第三节 行列式按行(列)展开一、选择题:1.若,则中x 的一次项系数是[D]111111111111101-------=x A A (A )1(B )(C )(D )1-44-2.4阶行列式的值等于 [D ]443322110000000a b a b b a b a (A ) (B )43214321b b b b a a a a -))((43432121b b a a b b a a --(C )(D )43214321b b b b a a a a +))((41413232b b a a b b a a --3.如果,则方程组 的解是 [B]122211211=a a a a ⎩⎨⎧=+-=+-0022221211212111b x a x a b x a x a (A ), (B ),2221211a b a b x =2211112b a b a x =2221211a b a b x -=2211112b a b a x =(C ), (D ),2221211a b a b x ----=2211112b a b a x ----=2221211a b a b x ----=2211112b a b a x -----=二、填空题:1.行列式 中元素3的代数余子式是 -6122305403--2.设行列式,设分布是元素的余子式和代数余子式,4321630211118751=D j j A M 44,j a 4则 =,=-6644434241A A A A +++44434241M M M M +++3.已知四阶行列D 中第三列元素依次为,2,0,1,它们的余子式依次分布为1-5,3,4,则D = -15,7-三、计算行列式:1.321421431432432112341234134101131010141201311123031111310131160.311-==---=-=-2.12111111111na a a +++ ==121111011101110111n a a a+++121111100100100na a a---211112111110010010n c c a a a a a+--+111223211111100001000na a cc a a a a++-+11121101111000000ni ni iia a a c a c a=+++∑1211()(1)nn i i a a a a =+∑或121123113111111000000nn a r r a r r a r r a a a a+------211211212311111000000na a aa a a c c a a a a+++--11122313311111100000ni in nnaa a c c a a a c c a a a a=++++∑1122()(1)nn i ia a a a a =++∑或11221121121110111110111111111(1).n n n n nn i ia a a a a a D a a a a a a a --=++++=+=+=+∑线性代数练习题 第一章 行 列 式系专业 班 姓名学号综 合 练 习一、选择题:1.如果,则 = [ C ]0333231232221131211≠==M a a a a a a a a a D 3332312322211312111222222222a a a a a a a a a D =(A )2 M(B )-2 M(C )8 M(D )-8 M2.若,则项的系数是[ A ]xxx x x x f 171341073221)(----=2x (A )34 (B )25 (C )74 (D )6二、选择题:1.若为五阶行列式带正号的一项,则 i = 2 j = 154435231a a a a a j i 2. 设行列式,则第三行各元素余子式之和的值为 8。
线性代数-行列式(完整版)
a11a22 a12a21
数a( ij i, j 1,2)称为它的元素。
今后对任何行列式,横 排称为行, 竖排称为列 ,
aij中i称为行标, j称为列标, aij 表示第i行第j列元素, 左上角到右下角表示主对角线,
4
右上角到左下角表示次对角线, 例1
5 1 3 2
5 2 (1) 3 13
a21 a22 a31 a32
可以用对角线法则来记忆如下.
8
主对角线法
a11
a12
a13 a23 a11a22a33 a12a23a31 a13a21a32 a33 a13a22a31 a12a21a33 a11a23a32
a21 a22 a31 a32
9
例4 计算三阶行列式
定理1.1:任一排列经过一个对换后奇偶性改变。
证明:
19
对换在相邻两数间发生,即
设排列 …jk… (1) 经j,k对换变成 …kj… (2) 此时,排列(1)、(2)中j,k与其他数是否构成逆序的情形未 发生变化;而j与k两数构成逆序的情形有变化: 若(1)中jk构成逆序,则(2)中不构成逆序(逆序数减少1) 若(1)中jk不构成逆序,则(2)中构成逆序(逆序数增加1)
n!个) 称为一个n级排列(总数为 . 如:由1,2,3可组成的三级排列有3!=6个: 123 132 213 231 312 321 注意:上述排列中只有第一个为自然顺序(小大),其 他则或多或少地破坏了自然顺序(元素大小与位置相
反)——构成逆序.
15
(2)排列的逆序数
定义: 在一个n 级排列i1i2…in中,若某两数的前 后位置与大小顺序相反,即is>it(t>s),则称这两数构 成一个逆序.排列中逆序的总数,称为它的逆序数, 记为N (i1i2…in).
线性代数课件PPT第一章 行列式 S1_3 行列式定义
(1) (i1,i2, ,in) ( j1, j2, , jn)
特别的,若我们把各项的列指标按自然顺序排列成
a a k11 k2 2 aknn 时,则有该项前符号应为: (1) (k1,k2 , ,kn ) (1,2, ,n) (1) (k1,k2 , ,kn )
因此n阶行列式的展开式也可以定义为
11 j2 jn
( j2 jn ) 2 j2
anjn
而
a22 a23
B a32 a33
a2n
a3n
(1) ( j2
a jn ) 2 j2
anjn
j2 jn
an2 an3
ann
故 左端= a11 B =右端.
14
回顾: 在行列式的定义中,为了决定每一项的正负号,我们把 n个元按行标自然顺序排列起来。
6
例1 计算反对角行列式 0 0 0 1
0020
0300
解: (分析)
4000
展开式中项的一般形式是 a1 a p1 2 a p2 3 a p3 4 p4 若 p1 4 a1 p1 0, 所以 p1 只需要取4 ,
同理可得 p2 3, p3 2, p4 1
即行列式中不为零的项为 a a a a 14 23 32 41 .
a a a 1 j1 2 j2 3 j3
j1 j1 j3 是1,2,3 的某个排列。这样的排列共有 P33 3! 6
个,分别对应了展开式中的六项。
2
再来计算各项列指标构成排列的反序数:
a11 a12 a13
a21 a22 a23 a11a22a33 a12a23a31 a13a21a32
a31 a32 a33
a11 a12
(完整版)线性代数重要知识点及典型例题答案
线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式TD D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n (零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 初等变换不改变矩阵的可逆性 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
线性代数1行列式
线性代数1⾏列式⼆阶⾏列式所谓⼆阶⾏列式,是由四个数,如a11,a12,a21,a22排列成含有两⾏两列形如a11a12a21a22的式⼦,它表⽰⼀个数值,其展开式为a11a12a21a22=a11a22−a12a21三阶⾏列式所谓三阶⾏列式,是由九个数,如a11,a12,a13,a21,a22,a23,a31,a32,a33排列成含有三⾏三列形如a11a12a13a21a22a23a31a32a33的式⼦,它表⽰⼀个数值,其展开式为a11a12a13a21a22a23 a31a32a33=a11a22a23a32a33−a12a21a23a31a33+a13a21a22a31a32n阶⾏列式我们观察⼆、三阶⾏列式的定义,顺便定义⼀下⼀阶⾏列式:(⼏乎全是复制)所谓⼀阶⾏列式,是由⼀个数,如a11排列成含有⼀⾏⼀列形如a11的式⼦,它表⽰⼀个数值,其展开式为a11=a11有了⼀阶⾏列式的定义,我们考虑像三阶⾏列式⼀样递归的定义⼆阶⾏列式:a11a12a21a22=a11a22−a12a21⾄此,n阶⾏列式的定义⼏乎呼之欲出了:所谓n阶⾏列式,是由n2个数,如a11,a12,⋯,a nn排列成含有n⾏n列形如a11⋯a1n⋯⋱⋯a n1⋯a nn的式⼦,它表⽰⼀个数值,其展开式为a11⋯a1n⋯⋱⋯a n1⋯a nn =n∑i=1(−1)i+1a1ia21⋯a2 i−1a2 i+1⋯a2n⋯⋱⋱⋱⋱⋯⋯⋱⋱⋱⋱⋯⋯⋱⋱⋱⋱⋯⋯⋱⋱⋱⋱⋯a n1⋯a n i−1a n i+1⋯a nn(其实就是对于第⼀⾏的每个元素,⽤它乘除了它同⾏同列的剩下来数构成的⼦⾏列式。
)上式中令M1i=a21⋯a2 i−1a2 i+1⋯a2n⋯⋱⋱⋱⋱⋯⋯⋱⋱⋱⋱⋯⋯⋱⋱⋱⋱⋯⋯⋱⋱⋱⋱⋯a n1⋯a n i−1a n i+1⋯a nn$$,称为元素$a1i$的∗∗余⼦式∗∗。
令A_{1i}=(-1)^{i+1}M_{1i}$$,称为元素a1j的代数余⼦式。
线性代数 矩阵 第2节 行列式
第二章 矩阵与行列式
§2.2 行列式
注: 二阶行列式和三阶行列式的对角线法则: a11 a12 a21 a22 = a11a22 a12a21
a11 a12 a13 a21 a22 a23 a31 a32 a33
= a11 a22 a33 + a12 a23 a31 + a13 a21 a32 a11 a23 a32 a12 a21 a33 a13 a22 a31 .
例4. 设D =
am1 … amm 0 … 0 , c11 … c1m b11 … b1n cn1 … cnm bn1 … bnn …
am1 … amm
, ,
…
D2 =
…
…
bn1 … bnn
…
证明: D = D1D2.
证明: 对D1施行ci+kcj 这类运算, 把D1化为下三 角形行列式:
D1 =
a11 … a1m
.b 0 .. . . . a b . . d =a c +(1)2n+1b . . .. .. c d 0 … 0 d 0
a.
第二章 矩阵与行列式
§2.2 行列式
.b 0 .. . . . a b . . d =a c +(1)2n+1b . . .. .. c d 0 … 0 d 0
§2.2 行列式
补充. 数学归纳法(Principle of mathematical induction) 1. 第一数学归纳法原理: 设P是一个关于自然数n的命题, 若 ① P对于n = n0成立. ② 当nn0时, 由“n = k时P成立”可推出 “n = k+1时P成立”, 则P对于任意的自然数nn0成立.
行列式-线性代数
也可记为 D
a
j 1
n
ain Ain aij Aij
j 1
n
(i 1, 2,
, n)
sj
Atj 当 s t 时,若
s t,
D ?
推论 行列式中任一行(列)的元素与另一行(列)对应元素的
代数余子式的乘积之和 , 等于零. 即
a A a A i1 j 1 i2 j2 a in A jn 0
所以 Dn
1i j n
(a
j
ai )
n2 n2 n2 n 2 n 2 a a a 3 nn 2 a22 a a 3 n
1 1 a ann (a j ai ) 2 i j n
展开定理 D ai1 Ai1 ai 2 Ai 2
较一般 一般
, n)
证明分三步: 特殊
(1)
(2)
(3)
D a11 A11 0 A12 0 A1n D 0 Ai1 0 Aij 1 aij Aij 0 Aij 1 D ai1 Ai1 ai 2 Ai 2 ain Ain
0 Ain
证 ( 1)
1 1 1 1
3 9 1 1 2 4 4 16
27 1 12 8 64
D1
(a 1)2 (a 2) 2 (a 3) 2 (a 4) 2 a 1 1 a2 1 a 3 1 a4 1
a 1 (a 1)2 r2 r3 (a 1)3
r1 r4
1 1 1 a2 a 3 a4 (a 2)2 (a 3)2 (a 4)2 (a 2)3 (a 3)3 (a 4)3
a11 a 1n a in a
线性代数(行列式新)
b b ba
将第 2,3,,n 列都加到第一列上,得
a n 1 b b b b
a n 1 b a b b
D a n 1 b b a b
a n 1 b b b a
-28-
1 b bb 1 a bb
a (n 1)b 1 b a b
1 b ba
1b bb
ri r1 a (n 1)b
-2-
a11 a12 a1n
D
a21
a22
a2n
an1 an2 ann
例如:
a22 a23 a2n
M11
a32
a33
a3n
an2 an3 ann n1
A11 (1)11 M11
a21 a23 a2n
M12
a31
a33
a3n
an1 an3 ann n1
A12 (1)12 M12
-26-
推论5 由 |A| 的各元素的代数余子式 Aij 所构成
矩阵的转置矩阵 A11 A21 An1
A
A12
A22
An2
A1n
A2n
Ann
称为 A 的伴随矩阵。
由行列式展开定理
AA A A A E
伴随矩阵——研究可逆矩阵
-27-
例6 解
a bbb
ba bb计算 n 阶行源自式 D b b a ba11 a1k p11
设为 D1
p11 pkk
ak1 akk pk1 pkk
对 D2 作运算 ci kc j , 把 D2 化为下三角形行列式
b11 b1n q11
0
设为 D2
q11 qnn
bn1 bnn qn1 qnn
线性代数课件第一章行列式
2学分 学期课
线性代数课件第一章行列式
《线性代数》是我校国际商学院各个专业,
教育技术系、行政管理、市场营销、财务管理、
会计学等专业,在二年级上学期开设的一门学 年公该共课必程修的课主。要2内学容分有、:学行期列课式。、12 矩阵21 、0线3性
方程组、向量的线性相关、相似矩阵及二次型。
线性代数课件第一章行列式
线性代数课件第一章行列式
一、二阶行列式的引入
用消元法解二元线性方程组
aa2111
x1 x1
a12 x2 a22 x2
b1 , b2 .
(1)
(2)
1 a22 : a11a22 x1 a12a22 x2 b1a22 , 2 a12 : a12a21 x1 a12a22 x2 b2a12 ,
定义:将a11 a12 称作二阶行列式,它是一 a21 a22
种特殊的运算,即a11 a21
a12 a22
a11a22 a12a21.
aij称 为 行 列 式 的 元 素第一行 第二列
对角线法则:
主对角线 a11 副对角线 a12
a12
a11a22 a12a21 .
a 22
线性代数课件第一章行列式
x1
b1a22 a11a22
a12b2 a12a21
,x2
a11b2 a11a22
b1a21 a12a21
.
(3)
a21
由方程组的系数确定.
a11 a21
x1 x1
a12 x2 a22 x2
b1 , b2 .
为简洁,引进记号: a11 a12
a11
a a 线性代数课件第一章2行1列式 22
线性代数-行列式(完整版).
逆序数的计算方法
不 妨 设 元 素 为1至n的 自 然 数 ,并 规 定 从 小 到 大
为标准次序。设i1i2 in为一个n级排列。 考虑元素 i j (i 1,2 n), 如果比 i j大,且排在
i
前面的元素有
j
t
j个,那么ji的逆序是
t
j
个,全
体
元
素
逆序之和就是 i1i2 in的逆序数,即
411
a2 1 0 a 1 或 a 1
a10
1 a 0 0 a 1 或 a 1
411
练习: 计算下列行列式
x1 1 x2 x2 x 1
1 0 1 35 0
04 1
解 x 1 1 ( x 1) ( x2 x 1) 1 x2 x2 x2 x 1 x3 1 x2
1 0 1
3 5 0 1511 34 7
04 1
§1.2 n阶行列式
1.排列及其逆序数 (1)排列 由自然数1,2,…,n,组成的一个有序数组i1i2…in
称为一个n级排列(. 总数为 n!个) 如:由1,2,3可组成的三级排列有3!=6个:
123 132 213 231 312 321
2
返 回
第1.1节 n阶行列式的定义
本节从二、三阶行列式出发,给 出n阶行列式的概念. 基本内容: 二阶与三阶行列式 排列及其逆序数 n阶行列式定义 转置行列式
3
记号: a11 a12 a21 a22
称其为二阶行列式 .
它表示数:
a11a22 a12a21
即
a11 a12 a21 a22
3 4 2
解:由主对角线法,有
线性代数行列式
上三角形方阵
a11 0 A 0
a12 a22 0
a1n a2 n ann
下三角形方阵
a11 0 a21 a22 A a n1 a n 2
a11 0 A 0 0 a22 0
骣11 a21 ça ç ça12 a22 ç T A =ç çL ç L ç ç ça 桫1n a 2 n
a1n ÷ ÷ ÷ a2 n ÷ ÷ ÷ ÷ L ÷ ÷ ÷ ÷ amn ÷
m´ n
am1 ÷ ÷ ÷ am 2 ÷ ÷ ÷ ÷ L ÷ ÷ ÷ ÷ amn ÷
n´ m
2、性质
( AT )T A (1)
k 1 n
即: ai 1 ain m n
b1 j bnj
n s
cij
, m s
记作 C AB . 要点:左看行,右看列。
【注 1】相乘条件:前一个矩阵的列数等于后一个矩阵的行数。
a12 a 22
a m 2
a1n a2 n a mn
2、性质 (1) A (2) (
( ) A ( A) ( A)
)A A A
(3) ( A B) A B 3、负矩阵
第二章
矩 阵
§2.1
矩阵的定义
一、定义
a11 a12 a a22 21 A am1 am 2
a1n a2 n ( aij ) mn amn mn
m n 称为矩阵 A 的型.
例如:如学生成绩汇算机图形学等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逆序数的计算方法
不 妨 设 元1至 素n的 为自 然并数规定,从小到大 为标准次序。 设i1i2in为一n级 个排列。
考虑i元 j(i1素 ,2n),如果比ij大,且排在 i j前面的元素有t j个,那么ji的逆序t是 j个全,体 元 素 逆序之和 i1i2就 in的 是逆序 即 数,
n
N(i1i2in) t n tn1 t1 t j j1
123 132 213 231 312 321
注意:上述排列中只有第一个为自然顺序(小大),其 他则或多或少地破坏了自然顺序(元素大小与位置相 反)——构成逆序.
15
(2)排列的逆序数 定义: 在一个n 级排列i1i2…in中,若某两数的前
后位置与大小顺序相反,即is>it(t>s),则称这两数构 成一个逆序.排列中逆序的总数,称为它的逆序数, 记为N (i1i2…in). 例1 N (2413)=3 N(312) =2
数a( ij i, j 1,2)称为它的元素。
今后对任何行列式,排 横称为行, 竖排称为列 ,
ai中 j i称为行, j称 标为列, a标 ij 表示i第 行第 j列元,素
左上角到右下角表示主对角线,
4
右上角到左下角表示次对角线,
例1 5 1
52(1)313
32
例2
2
3
设 D
,
31
(1)当为何值时, D 0,
(2)当为何值时 D0.
解 230 0,或 3
2
D
2
31
例3 求二阶行列式
a 1 b2
(2)三阶行列式
记号
a 11 a 12 a 13 a 21 a 22 a 23 称为三阶行列式. a 31 a 32 a 33
它表示数
a 1a 1 2a 2 3 3a 1a 2 2a 3 3 1a 1a 3 2a 1 32 a 1a 3 2a 2 3 1a 1a 2 2a 1 3 3a 1a 1 2a 3 32
第1章 行列式
行列式是线性代数的一个重要组 成部分.它是研究矩阵、线性方程组、
特征多项式的重要工具.本章介绍了n
阶行列式的定义、性质及计算方法, 最后给出了它的一个简单应用——克
莱姆法则.
第1章 行列式
n阶行列式的定义 行列式的性质 行列式按行(列)展开 克莱姆法则—行列式的一个简单应用 数学实验
例3
( 31)
(42)
(43)
3421 1423 1243 1234
N 5N 2N 1N 0
定理1.1:任一排列经过一个对换后奇偶性改变。
证明:
19
对换在相邻两数间发生,即
设排列 …jk… (1) 经j,k对换变成
…kj… (2)
此时,排列(1)、(2)中j,k与其他数是否构成逆序的情形未
2
返 回
第1.1节 n阶行列式的定义
本节从二、三阶行列式出发,给 出n阶行列式的概念. 基本内容: 二阶与三阶行列式 排列及其逆序数 n阶行列式定义 转置行列式
3
记号: a11 a12 a21 a22
称其为二阶行列式 .
它表示数:
a11a22a12a21
即
a11 a12 a21 a22
a11a22a12a21
即
7
a11 a12 a13 a21 a22 a23a11a22a33a12a23a31a13a21a32 a31 a32 a33
a13a22a31a12a21a33a11a23a32
可以用对角线法则来记忆如下.
8
主对角线法
a11 a12 a13 a21 a22 a23a11a22a33a12a23a31a13a21a32 a31 a32 a33
发生变化;而j与k两数构成逆序的情形有变化:
若(1)中jk构成逆序,则(2)中不构成逆序(逆序数减少1)
若(1)中jk不构成逆序,则(2)中构成逆序(逆序数增加1)
由题可得,即使
1 01
a2b2 0, a,bR, ab0.
即 ab0 时,给定的行列式为零.
例7 a 1 0 1 a 0 0 的充分必要条件是什么? 411
解a 1 0
1 a 0 a 2 1
411
a2 10 a 1 或 a1
a10
1 a 0 0 a 1或 a1
411
练习: 计算下列行列式
16
(2)排列的逆序数 定义: 在一个n 级排列i1i2…in中,若某两数的前
后位置与大小顺序相反,即is>it(t>s),则称这两数构 成一个逆序.排列中逆序的总数,称为它的逆序数, 记为N (i1i2…in). 例1 N (2413)=3 N(312) =2 奇偶排列: 若排列i1i2…in的逆序数为奇(偶)数, 称它为奇(偶)排列.
x1 1 x2 x2 x1
1 0 1 35 0
04 1
解 x1 1 (x1)(x2 x1) 1 x 2 x2 x2 x1x3 1 x 2
1 0 1
3 5 0 151 1347
04 1
§1.2 n阶行列式
1.排列及其逆序数 (1)排列 由自然数1,2,…,n,组成的一个有序数组i1i2…in
称为一个n级排列(. 总数为 n!个) 如:由1,2,3可组成的三级排列有3!=6个:
例2 N(n(n-1)…321) =0+1+2+…+(n-1)=n(n-1)/2
N(135…(2n-1)(2n)(2n-2) …42) =2+4…+(2n-2)=n(n-1)
对换:对换在一个排列i1…is…it …in中,若其中某 两排数 列iis1和…iitt互…换is …位i置n,这, 其种余变各换数称位为置一不个变对得换到, 记另为一 ( is it).
10
例5
1 23
4 0 5 10625(1)340
1 0 6 30(1) 246 150
1048 58
1 0 1
0 2 1 12301(1) 100 1 0 3 12(1) 003 101
62 8
例6 a,bR,
a b0 b a 0 0 1 01
a , b 满足什么条件时有
解a b0
b a 0 a 2 b 2
a13a22a31a12a21a33a11a23a32
9
例4 计算三阶行列式
1 2 4 D 2 2 1
3 4 2
解:由主对角线法,有
D 1 2 ( 2 ) 2 1 ( 3 ) ( 4 ) ( 2 ) 4 ( 4 ) 2 ( 3 ) 2 ( 2 ) ( 2 ) 1 1 4
4 6 3 2 2 8 4 4 14