换热器温度控制系统课程设计[1]
温度控制系统课程设计
前言温度是一种最基本的环境参数,日常生活和工农业生产中经常要检测温度。
传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过AD 转换环节获得数字信号后才能与单片机等微处理器接口,使得硬件电路结构复杂,制作成本较高。
近年来,美国DALLAS公司生产的DSI18B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测、科学研究以及日常生活中。
随着科学技术的不断进步与发展,温度传感器的种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中。
其中,比较有代表性的数字温度传感器有DS1820、MAX6575、DS1722、MAX6635等。
智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。
它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶。
目前,国际上已开发出多种智能温度传感器系列产品。
智能温度传感器内部包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路。
有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。
智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,即智能化取决于软件的开发水平。
为了准确获取现场的温度和方便现场控制,本系统采用了软硬件结合的方式进行设计,利用LED数码管显示温度,利用DS18B20检测当前的温度值,通过和设定的参数进行比较,若实测温度高于设定温度,则通过555定时器产生频率可变的报警信号,若实测温度低于设定温度,则加热电路自动启动,到达设定温度后停止。
在软件部分,主要是设计系统的控制流程和实现过程,以及各个芯片的底层驱动设计已达到所要求的功能。
换热器热出温度和冷水流量串级控制
过程控制仪表课程设计题目:换热器热出温度和冷水流量串级控制学生姓名:____________________________________ 班级:___________________________学号:___________________________指导老师:__________________________________2009年5月28日1.系统简介 (3)2.工艺要求 (3)3.流程图 (3)4.方框图 (4)5.仪表选型 (4)6......................................................................................................... 仪表型号清单列表.. (7)系统简介:本设计是以冷水流量和换热器热水出口温度作为被控制量的串级控制系统。
换热器热出温度和冷水流量串级控制的结构是闭环的,有温度控制器、流量控制器、温度传感器、流量传感器和被控对象组成。
温度传感器、流量传感器测量被控流量,并转换成便于利用的信号形式,与给定的值比较产生偏差信号。
偏差信号通过温度控制器、流量控制器,按照消除偏差的方向来改变被测点的温度、流量,将其调节到给定的希望值。
二.工艺要求:水介质一路由泵P101从水箱V104中加压获得压头,经由换热器X-102I进入锅炉,进入锅炉E-101,当锅炉内水量满足实验要求后,关闭阀QV-115,同时打开阀QV-114,这样就使锅炉内的水回流至泵P101而形成热水循环;另一路由泵P102从水箱V104加压获得压头,经由调节阀FV-101、换热器X-102II回流至水箱V104而形成冷水循环;冷、热水在换热器X-102进行热交换,使得流经X-102I的热水温度降低,流经X-102II中的冷水温度升高;其中,热水循环水量可由手阀QV-111、QV-112或QV-114来调节,换热器I出口水温由热电阻TE-103 测得,冷水流量由电磁流量计FT-102测得。
换热器课程设计文档
换热器课程设计文档一、教学目标本课程的教学目标是让学生掌握换热器的基本原理、类型、结构和计算方法,能够运用所学知识分析和解决实际工程问题。
具体分为以下三个部分:1.知识目标:(1)掌握换热器的基本原理和作用;(2)了解不同类型的换热器及其特点;(3)熟悉换热器的结构组成和计算方法。
2.技能目标:(1)能够分析实际工程中的换热问题,并选择合适的换热器;(2)能够运用换热器计算方法,准确计算换热器的性能参数;(3)具备一定的创新能力和解决问题的能力。
3.情感态度价值观目标:(1)培养学生对能源工程领域的兴趣和热情;(2)培养学生严谨的科学态度和团队协作精神;(3)培养学生关注环保、节能和可持续发展意识。
二、教学内容本课程的教学内容主要包括以下几个部分:1.换热器的基本原理:介绍换热器的工作原理、热传递方式及换热效果的影响因素。
2.换热器的类型:分类介绍不同类型的换热器,如管式换热器、板式换热器、壳管式换热器等,并分析其优缺点。
3.换热器的结构组成:详细讲解换热器的主要组成部分,如壳体、管束、换热管、支架等,以及它们的作用和选型依据。
4.换热器计算方法:介绍换热器的传热计算、阻力计算和面积计算等方面的方法。
5.换热器在实际工程中的应用:分析换热器在能源、化工、环保等领域的应用案例,培养学生解决实际问题的能力。
三、教学方法为了提高教学效果,本课程将采用以下几种教学方法:1.讲授法:通过教师的讲解,使学生掌握换热器的基本原理、类型和计算方法。
2.案例分析法:分析实际工程中的换热器应用案例,使学生能够将理论知识应用于实际问题。
3.实验法:安排实验课程,让学生亲自动手操作,加深对换热器结构和工作原理的理解。
4.讨论法:学生进行小组讨论,培养学生的团队协作能力和创新思维。
四、教学资源为实现教学目标,我们将准备以下教学资源:1.教材:选用权威、实用的换热器教材,为学生提供系统、全面的学习资料。
2.参考书:推荐学生阅读相关领域的参考书籍,丰富学生的知识体系。
化工原理换热器课程设计(1)
重庆理工大学化工原理课程设计说明书题目:柴油预热原油的管壳式换热器学生班级:113150202学生姓名:余毛平学生学号:11315020232指导教师:白薇扬化学化工学院2016 年 7 月 4 日目录1.设计任务书 (1)2.概述 (2)3.设计条件及物性参数表 (2)4.方案设计和拟定 (3)5.设计计算 (7)6.参考文献 (11)1.设计任务书1.1设计题目用柴油预热原油的管壳式换热器1.2设计任务1.查阅文献资料,了解换热设备的相关知识,熟悉换热器设计的方法和步骤;2.根据设计任务书给定的生产任务和操作条件,进行换热器工艺设计及计算;3.根据换热器工艺设计及计算的结果,进行换热器结构设计;4.以换热器工艺设计及计算为基础,结合换热器结构设计的结果,绘制换热器装配图;5.编写设计说明书对整个设计工作的进行书面总结,设计说明书应当用简洁的文字和清晰的图表表达设计思想、计算过程和设计结果。
1.3操作条件2.概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,它们也是这些行业的通用设备,并占有十分重要的地位。
随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器也各有优缺点,性能各异。
列管式换热器是最典型的管壳式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。
3.设计条件及物性参数表3.1操作条件原油:入口温度60℃出口温度105℃质量流量:41416 kg/h加热介质柴油:入口温度170℃ 出口温度T2 质量流量:35320kg/h允许压降:不超过0.3×105Pa3.2物性参数表4.方案设计和拟订根据任务书给定的冷热流体的温度,来选择设计列管式换热器中的浮头式换热器;再依据冷热流体的性质,判断其是否易结垢,来选择管程走什么,壳程走什么。
换热器温度控制系统简单控制系统方案
换热器温度控制系统简单控制系统方案(总16页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March目录目录 (2)1、题目 (2)2、换热器概述 (2)换热器的用途............................................................................................... 错误!未定义书签。
换热器的工作原理及工艺流程图............................................................... 错误!未定义书签。
3、控制系统 (3)控制系统的选择 (3)工艺流程图和系统方框图 (3)4、被控对象特性研究 (4)被控变量的选择 (4)操纵变量的选择 (4)被控对象特性 (5)调节器的调节规律的选择 (6)5、过程检测控制仪表的选用 (7)测温元件及变送器 (7)执行器 (10)调节器 (12)、仪表型号清单列表 (12)6、系统方块图 (13)7、调节控制参数,进行参数整定及系统仿真,分析系统性能 (13)调节控制参数 (13)PID参数整定及系统仿真 (14)系统性能分析 (16)8、参考文献 (17)1、题目热交换器出口温度的控制。
2、换热器概述换热器的用途换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。
进行换热的目的主要有下列四种:.使工艺介质达到规定的温度,以使化学反应或其他工艺过程很好的进行;.生产过程中加入吸收的热量或除去放出的热量,使工艺过程能在规定的温度范围内进行;.某些工艺过程需要改变无聊的相态;④.回收热量。
由于换热目的的不同,其被控变量也不完全一样。
在大多数情况下,被控变量是温度,为了使被加热的工艺介质达到规定的温度,常常取出温度问被控温度、调节加热蒸汽量使工艺介质出口温度恒定。
换热器课程设计
目录1.设计任务书-------------------32.概述与设计方案简介-----------43.工艺及设备设计计算-----------94.辅助设备的计算及选型--------115.设计结果汇总表--------------156.设计评述--------------------157.参考资料--------------------168.主要符号说明----------------169.致谢------------------------161.设计任务书2.概述与设计方案简介换热器的类型列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。
一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。
管束的壁面即为传热面。
其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。
为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。
折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。
列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。
若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。
2.1换热器换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。
由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。
按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。
根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。
间壁式换热器又称表面式换热器或间接式换热器。
在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。
过程控制课设--换热器温度控制系统设计
(3) Smith预估器的控制机理
Smith预估器控制的基本思路是:预先估计过程在基本扰动下的动态特性,然后 由预估器进行补偿控制,力图使被延迟了τ的被调量提前反映到调节器,并使之动作, 以此来减小超调量并加速调节过程。对于带长时滞过程而言,Smith预估器是一种非 常有效的通用的补偿器,其主要优点在于滞后时间能从闭环系统的特征方程中消除。 然而,预估器要求被控对象的数学模型非常准确,这在实际工程中很难办到,特别是 对积分和非稳定系统,其控制更为困难。Smith预估器控制原理图如图2.4所示。
2.1.1 串级控制系统设计
控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对 象(出口温度)组成闭合回路。
从冷流体管路阀门或离心泵转速变化到热流体出口温度改变,在这中间要相继通 过冷流体流量变化,换热器热交换速率变化,热流体出口温度变化等一系列过程,因 此整个控制通道的容量滞后大、时间常数大、这就导致控制系统的控制作用不及时、 最大偏差大、过度时间长、抗干扰能力差、控制精度降低。可以讲来自冷流体流量方 面的干扰因素包括在副回路内,因此可以大大减少这些扰动因素对于热流体出口温度 的影响。对于热流体流量和温度方面的干扰,采用串级控制系统也可以得到改善,具 体控制效果明显改善。
2.2 系统组成总体结构 .......................................... 3 2.2.1 换热器温度控制系统的组成与特点 ....................... 3 2.2.2 换热器温度控制原理 ................................... 3
史密斯(Smith)预估补偿器是得到广泛应用的纯滞后系统的控制方法。它针对纯滞 后系统闭环特征方程中含有纯滞后项,在 PID 反馈控制基础上,引入了一个预估补偿 环节,从而使系统闭环特征方程不含纯滞后项,抵消纯滞后特性所造成的影响,明显 地减小超调量和加速调节过程,提高了控制质量。
换热器课程设计
换热器课程设计一、教学目标本课程的教学目标是让学生掌握换热器的基本原理、类型、性能及计算方法,能够运用所学知识分析和解决实际工程问题。
具体目标如下:1.知识目标:(1)理解换热器的基本概念和作用;(2)掌握换热器的各种类型及其特点;(3)熟悉换热器的性能评价指标;(4)学会换热器的计算方法和步骤。
2.技能目标:(1)能够根据工程需求选择合适的换热器类型;(2)能够运用换热器计算方法进行分析;(3)具备绘制换热器原理图和流程图的能力。
3.情感态度价值观目标:(1)培养学生的创新意识和团队合作精神;(2)增强学生对工程实践的认知和兴趣;(3)培养学生关注环保、节能等社会责任。
二、教学内容本课程的教学内容主要包括换热器的基本原理、类型、性能及计算方法。
具体安排如下:1.第一章:换热器概述(1)换热器的定义和作用;(2)换热器的分类及特点;(3)换热器的基本性能评价指标。
2.第二章:换热器类型(1)表面式换热器;(2)对流换热器;(3)混合换热器;(4)蓄热换热器。
3.第三章:换热器性能(1)换热器的热传导方程;(2)换热器的传热系数;(3)换热器的效能和热损失。
4.第四章:换热器计算方法(1)换热器的尺寸计算;(2)换热器的流动阻力计算;(3)换热器的热负荷计算;(4)换热器的效率计算。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式,包括:1.讲授法:通过教师的讲解,使学生掌握换热器的基本原理和计算方法;2.案例分析法:分析实际工程中的换热器应用案例,提高学生的实践能力;3.实验法:安排实验室实践环节,让学生动手操作,加深对换热器的理解;4.讨论法:学生进行小组讨论,培养学生的团队合作精神和创新意识。
四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:《换热器原理与应用》;2.参考书:相关领域的研究论文和书籍;3.多媒体资料:PPT课件、视频教程等;4.实验设备:换热器实验装置,流动阻力测试设备等。
热交换器温度控制系统课程设计
热交换器温度控制系统一.控制系统组成由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。
图1换热器出口温度控制系统流程图控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。
被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。
二、设计控制系统选取方案根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。
其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。
对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。
以下是通过对换热器过程控制系统的分析,确定合适的控制系统。
换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。
热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。
冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。
在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。
在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。
多级离心泵的转速由便频器来控制。
换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。
换热器温度控制系统的设计过程控制系统与装置课程设计(论文)--大学毕业设计论文
过程控制系统与装置课程设计(论文)题目:换热器温度控制系统的设计课程设计(论文)任务及评语院(系):电气工程学院教研室:测控技术与仪器学号学生姓名专业班级课程设计(论文)题目换热器温度控制系统的设计课程设计(论文)任务在某生产过程中,冷物料通过热交换器用热水(工业废水)和蒸汽对进行加热,工艺要求出口温度为140±2℃。
当用热水加热不能满足出口温要求时,则在同时使用蒸气加热,试设计换热器温度控制系统。
1.技术要求:测量范围:0-180℃控制温度:140±2℃最大偏差:5℃;2.说明书要求:确定控制方案并绘制原理结构图、方框图;选择传感器、变送器、控制器、执行器,给出具体型号;确定控制器的控制规律以及控制器正反作用方式;若设计由计算机实现的数字控制系统应给出系统硬件电气连接图及序流程图;编写设计说明书。
指导教师评语及成绩成绩:指导教师签字:年月日目录第1章换热器温度控制系统设计概述 .......................................................................第2章换热器温度控制系统设计方案论证 .................................................................第3章系统内容设计.....................................................................................................3.1 温度传感器的选择 ...............................................3.2 流量变送器的选择 ...............................................3.3 调节器的选择 ...................................................3.4 执行器的选择 ...................................................3.5 变送器的选择 ...................................................3.6 调节阀的选择 ...................................................第4章系统性能分析. (X)4.1参数整定........................................................4.2.控制算法的确定 (X)第5章课程设计总结 (XX)参考文献 (XX)第1章换热器温度控制系统设计概述换热器的应用广泛,比如中央空调系统,机械润滑油冷却系统,制药消毒系统,饮料行业消毒系统,船用冷却,化工行业特殊介质冷却系统日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。
换热器温度控制系统设计
换热器温度控制系统设计热交换器是工业生产中常用的设备之一,用于传递热量并调节流体温度。
热交换器温度控制系统的设计是为了确保热交换器能够稳定运行并提供所需的热量。
本文将介绍热交换器温度控制系统的设计要点和步骤。
1.系统需求分析在开始设计热交换器温度控制系统之前,首先需要对系统的需求进行分析。
这包括流体的类型、流量、温度范围以及所需的温度稳定性等。
根据这些需求,选择合适的控制器和传感器。
2.传感器选择传感器是热交换器温度控制系统中非常重要的组成部分,用来监测流体的温度并传输给控制器。
常用的温度传感器有热电偶和热敏电阻。
选择适合的传感器需要考虑精度、响应时间以及耐高温等因素。
3.控制器选择控制器是热交换器温度控制系统的核心部分,用于读取传感器的信号并根据设定的温度范围进行控制。
常用的控制器包括PID控制器和模糊控制器。
选择控制器时需要考虑可调节的参数、控制精度以及响应速度。
4.控制策略选择合适的控制策略是确保热交换器温度控制系统稳定运行的关键。
常用的控制策略有开环控制和闭环控制。
开环控制根据预先设定的参数进行控制,闭环控制根据传感器反馈的信息进行调节。
根据实际需求选择合适的控制策略。
5.温度设定和调节根据系统需求,设置所需的温度范围和稳定性。
通过控制器对热交换器的供热和冷却进行调节,以保持流体温度在设定的范围内。
6.安全保护热交换器温度控制系统设计中需要考虑安全保护措施,以防止超温和意外故障。
例如,可以设置过温报警和自动断电装置,当温度超出设定范围或发生故障时,及时停止热交换器的运行。
7.控制系统调试和优化在完成热交换器温度控制系统的设计和安装后,需要进行调试和优化,以确保系统的性能和稳定性。
在调试过程中,根据实际情况调整控制器的参数,以达到所需的温度控制效果。
总结:热交换器温度控制系统的设计需要从系统需求分析、传感器选择、控制器选择、控制策略、温度设定和调节、安全保护等方面进行考虑。
通过合理的设计和调试优化,可以确保热交换器能够稳定运行并提供所需的热量。
换热器温度课程设计
换热器温度课程设计一、课程目标知识目标:1. 学生能理解换热器的基本原理,掌握换热器在热力学过程中的作用和应用。
2. 学生能够掌握温度作为热力学过程关键参数的重要性,并学会读取、分析换热器温度数据。
3. 学生能够运用数学公式和物理概念,计算换热器中的热量传递。
技能目标:1. 学生能够设计简单的换热器实验,通过实际操作来加深对热量传递过程的理解。
2. 学生能够使用适当的测量工具和仪表,进行换热器温度的准确测量。
3. 学生通过数据分析,能够解决实际换热过程中的问题,提出优化方案。
情感态度价值观目标:1. 学生能够培养对物理现象的好奇心和探究精神,特别是在热力学和能量转换领域。
2. 学生在学习过程中发展团队合作意识,尊重他人意见,学会共同分析问题、解决问题。
3. 学生能够意识到科学技术在工业发展中的重要性,理解换热器技术对于节能减排的意义,增强社会责任感和创新意识。
课程性质:本课程结合理论知识和实践操作,注重培养学生的动手能力和实际问题解决能力。
学生特点:假设学生为八年级,已具备基本的物理知识和实验技能,对实际应用有较高的兴趣。
教学要求:课程需结合教材内容,注重理论与实践的紧密结合,通过案例分析和实验操作,提高学生的理解和应用能力。
教学过程中应鼓励学生主动探索,注重学习成果的可衡量性,以便进行有效的教学评估。
二、教学内容1. 理论知识:- 换热器原理:介绍换热器的基本概念、分类和工作原理。
- 热量传递方式:深入讲解传导、对流和辐射三种热量传递方式在换热器中的应用。
- 温度测量:讲解温度测量方法、仪表选择和使用注意事项。
2. 实践操作:- 换热器实验设计:引导学生设计简单的换热器实验,观察和记录温度变化。
- 实验操作:分组进行实验,练习使用温度计、热像仪等工具进行温度测量。
- 数据分析:指导学生分析实验数据,探讨影响换热器温度变化的因素。
3. 教学安排与进度:- 第一课时:介绍换热器原理,讲解热量传递方式。
换热器温度控制系统的设计
1换热器温度控制系统的组成与特点1.1换热器的组成换热器温度控制系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。
根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。
其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。
1.2系统控制过程的特点换热器温度控制过程有如下特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。
被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号,测量值与给定值的差值送入调节器,调节器对偏差信号进行运算处理后输出控制作用。
换热器的温度控制系统工艺流程如下:冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。
热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。
冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。
在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。
在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。
多级离心泵的转速由便频器来控制。
1.3引起换热器出口温度变化的扰动因素简要概括起来,引起换热器出口温度变化的扰动因素主要有:(1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。
热流体的温度主要受到加热炉加热温度和管路散热的影响。
(2)冷流体的流量和温度的扰动。
冷流体的流量主要受到离心泵的压头、转速和阀门的开度等因素的影响。
(3)加热炉的启停机的影响。
(4)室内温度与管路内气体变化和阀门开度的影响。
2.1 换热器温度控制原理介绍图2.1为蒸汽水换热器的工作原理图。
加热介质为蒸汽,冷流体为水,控制目标是T ,T 1~T 3 温度传感器 M 电动调节阀图2.1 换热器温度控制原理图其工作原理为:温度传感器T 测量换热器出水温度,把信号传送至DDC 现场控制器,此为温度控制的主回路。
换热器温度控制方案
换热器温度控制方案概述换热器温度控制是工业生产过程中非常重要的一部分,能够有效地控制换热器的温度可保证生产过程的稳定性和产品的质量。
本文档将介绍一种换热器温度控制的方案,以提高工艺过程中的换热效率和温度稳定性。
方案设计1. 温度传感器温度传感器是控制换热器温度的基础,良好的温度传感器能够准确地感知换热器内部的温度变化。
选择合适的温度传感器非常重要,目前市场上常用的温度传感器有热电偶和热敏电阻。
热电偶对高温环境有较好的适应性,而热敏电阻则适用于较低温度范围。
根据具体的工艺要求和环境条件,选择合适的温度传感器进行安装。
2. 温度控制器温度控制器是控制换热器温度的核心部件,能够根据传感器测量到的温度信号进行反馈控制。
根据具体的应用场景,可以选择PID控制器或者模糊控制器等不同类型的温度控制器。
PID控制器通过比较实际温度和设定温度来调节输出信号,具有响应速度快和稳态误差小的特点;而模糊控制器则能够根据温度变化趋势进行模糊推理和控制辨识,适用于非线性和复杂的控制系统。
根据具体的需求选择合适的温度控制器并进行参数调节,以实现对换热器温度的精确控制。
3. 温度调节阀温度调节阀作为温度控制系统的执行部件,通过控制工作介质的流量来调节换热器内部的温度。
温度调节阀的选择和设计需要考虑介质类型、流量要求以及工艺条件等因素。
常见的温度调节阀有旋塞阀、蝶阀和电动调节阀等,根据具体要求选择合适的类型和规格,并进行安装和调试。
方案实施1. 温度传感器安装首先,根据换热器的结构和布置确定合适的温度传感器安装位置。
通常情况下,温度传感器需要安装在换热器的进口和出口处,以便及时感知到换热器的温度变化。
安装时要注意传感器与换热介质的接触良好,并确保传感器固定牢固,避免发生松动或脱落。
2. 温度控制器调试将温度传感器与温度控制器连接,并进行调试。
首先,根据实际情况设置设定温度值,并观察温度控制器的输出信号和换热器的温度变化情况。
如果温度控制不准确,可以通过调整控制器的参数来提高控制精度。
换热器温度控制系统设计
换热器温度控制系统设计热交换器是工业生产中常见的设备,用于传递热量。
为了保证热交换器的高效运行,需要设计一个温度控制系统,使得热交换器内的温度始终保持在合适的范围内。
本文将从系统的硬件组成、控制策略、控制算法和性能评价四个方面对热交换器温度控制系统进行设计。
1.系统的硬件组成热交换器温度控制系统的硬件组成包括传感器、执行器和控制器。
传感器用于实时测量热交换器内的温度,常用的传感器包括热电偶和温度传感器。
执行器通过控制热交换器内的冷却或加热装置,来调节温度。
常用的执行器包括冷却水泵和加热器。
控制器负责采集传感器的数据,并根据控制策略进行控制,常用的控制器包括PLC和单片机。
2.控制策略热交换器温度控制系统的常用控制策略包括比例控制、比例积分控制和模糊控制。
比例控制是基于测量值与设定值之间的误差进行控制的,根据误差的大小来调节执行器,使得误差逐渐减小,温度稳定在设定值附近。
比例积分控制在比例控制的基础上增加了对误差的积分项。
积分项的作用是累积误差,并在误差连续一段时间内较大时进行补偿。
这种控制策略可以更好地消除系统的定常误差,使得温度更加稳定。
模糊控制是一种基于人类智慧的控制方法。
它通过建立模糊规则来描述输入变量和输出变量之间的关系。
根据传感器测量到的温度值和设定值,模糊控制器会根据事先设定的模糊规则来决定执行器的控制信号,从而实现温度的控制。
3.控制算法在选择控制算法时,可以采用经典的PID控制算法或者先进的自适应控制算法。
PID控制算法是一种常见的经典控制算法。
它根据误差的大小和变化率来计算控制信号,并通过加权比例、积分和微分项来调节执行器,最终实现温度的控制。
自适应控制算法是一种先进的控制算法,它能够根据实际的系统动态特性,自动调整控制参数。
自适应控制算法通过建立数学模型来描述系统,并根据系统的响应来修正控制参数,从而实现更好的控制效果。
4.性能评价热交换器温度控制系统的性能评价主要包括控制精度、稳定性和快速性。
换热器课程设计论文
换热器课程设计论文一、教学目标本课程的教学目标是使学生掌握换热器的基本原理、类型、结构及计算方法,培养学生分析问题和解决问题的能力,提高学生的实践操作技能,培养学生的创新意识和团队合作精神。
具体来说,知识目标包括:1.掌握换热器的定义、分类和基本参数。
2.理解换热器的工作原理和计算方法。
3.熟悉换热器的结构和性能。
技能目标包括:1.能够正确选择和使用换热器。
2.能够对换热器进行简单的维护和故障排除。
3.能够运用所学知识分析和解决实际问题。
情感态度价值观目标包括:1.培养学生对换热器技术的兴趣和热情。
2.培养学生的创新意识和团队合作精神。
3.培养学生的社会责任感和职业道德。
二、教学内容本课程的教学内容主要包括换热器的基本原理、类型、结构及计算方法。
具体安排如下:1.换热器的定义、分类和基本参数:介绍换热器的概念、分类和基本参数,包括换热器的面积、热流量、温差等。
2.换热器的工作原理和计算方法:讲解换热器的工作原理,包括热传递的机理和过程,以及常用的计算方法,如NTU法、对数平均温差法等。
3.换热器的结构和性能:介绍不同类型换热器的结构特点和性能指标,如管式换热器、板式换热器、壳管式换热器等。
4.换热器的选择和使用:讲解如何根据实际需要选择合适的换热器,包括换热器的类型、大小、材料等。
5.换热器的维护和故障排除:介绍换热器的日常维护方法和故障排除技巧。
三、教学方法为了实现教学目标,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法、实验法等。
1.讲授法:通过教师的讲解,使学生掌握换热器的基本原理、计算方法和结构特点。
2.讨论法:通过小组讨论,培养学生的思考能力和团队合作精神,提高学生对实际问题的分析能力。
3.案例分析法:通过分析实际案例,使学生能够将理论知识应用到实际问题中,提高学生的解决问题能力。
4.实验法:通过实验操作,使学生熟悉换热器的性能和操作方法,培养学生的实践操作技能。
四、教学资源为了支持教学内容和教学方法的实施,本课程将选择和准备适当的教学资源,包括教材、参考书、多媒体资料、实验设备等。
换热器温度控制系统课程设计
换热器温度控制系统课程设计一、设计背景及目的1.1 设计背景换热器是工业生产中常见的设备,其主要作用是将热量从一个物质传递到另一个物质中。
在换热器的使用过程中,为了保证其正常运行和安全性,需要对换热器进行温度控制。
因此,本课程设计旨在设计一种能够实现换热器温度控制的系统。
1.2 设计目的本课程设计旨在通过对换热器温度控制系统的设计与实现,培养学生对自动控制原理和电气控制技术的理解和应用能力,提高学生对工业自动化技术的认识和应用水平。
二、设计内容2.1 系统结构本系统采用分层结构,包括上位机、下位机、传感器、执行机构等四个部分。
其中上位机负责监测和控制整个系统;下位机负责接收上位机指令并控制执行机构;传感器负责采集温度信号;执行机构则根据下位机指令调节换热器内部水流量。
2.2 系统功能本系统主要包括以下功能:(1)实时监测换热器内部的温度变化,并将数据传输给上位机;(2)根据上位机发送的指令,下位机调节执行机构控制水流量,从而实现对换热器内部温度的控制;(3)当系统出现异常情况时,自动报警并停止运行。
2.3 系统设计2.3.1 上位机设计上位机采用C#语言编写,主要包括以下功能:(1)实时监测温度数据,并进行显示;(2)设置温度控制参数,并发送给下位机;(3)接收下位机状态信息,并进行显示;(4)当系统出现异常情况时,自动报警并停止运行。
2.3.2 下位机设计下位机采用单片机进行设计,主要包括以下功能:(1)接收上位机指令,并解析指令内容;(2)根据指令调节执行机构控制水流量;(3)采集执行机构状态信息,并发送给上位机。
2.3.3 传感器设计本系统采用PT100型号温度传感器进行温度信号采集。
该传感器具有精度高、稳定性好等优点。
2.3.4 执行机构设计本系统采用电磁阀作为执行元件。
电磁阀具有调节水流量的功能,可实现对换热器内部温度的控制。
三、系统实现3.1 系统硬件设计本系统采用单片机作为下位机控制核心,通过串口与上位机进行通信;采用PT100型号温度传感器进行温度信号采集;采用电磁阀作为执行元件,控制水流量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
换热器温度控制系统一.控制系统组成由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。
图1换热器出口温度控制系统流程图控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。
被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。
二、设计控制系统选取方案根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。
其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。
对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。
以下是通过对换热器过程控制系统的分析,确定合适的控制系统。
换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。
热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。
冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。
在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。
在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。
多级离心泵的转速由便频器来控制。
换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。
图2换热器的温度控制系统工艺流程图引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有:(1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。
热流体的温度主要受到加热炉加热温度和管路散热的影响。
(2 )冷流体的流量和温度的扰动。
冷流体的流量主要受到离心泵的压头、转速和阀门的开度等因素的影响。
冷流体的温度与大气温度和换热器回流水的流量等因素有关。
(3)加热炉的启停机的影响。
(4)室内温度与管路内气体变化和阀门开度的影响。
首先考虑采用单回路控制系统。
方块图如下图3所示:图3单回路控制系统原理图从图3所示的控制系统中可以看出,从冷流体管路阀门或离心泵转速变化到热流体出口温度改变,在这中间要相继通过冷流体流量变化,换热器热交换速率变化,热流体出口温度变化等一系列过程,因此整个控制通道的容量滞后大、时间常数大、这就导致控制系统的控制作用不及时、最大偏差大、过度时间长、抗干扰能力差、控制精度降低。
而工艺上对出口温度要求比较严格,一般希望波动范围不超过+-(1%~2%)。
根据大量的工程实践经验和实验的结果证明,采用图3所示单回路控制系统是达不到要求的,必须寻求其他控制方案。
分析各种影响热器出口温度的因素,除了热流体的流量和温度外,冷流体的流量、阀门的开度等因素和进入系统的位置,首先影响冷流体的流量,而后经过换热器从而影响影响热流体的出口温度。
如果以冷流体流量为被控变量,输送冷流体的离心泵转速为操纵变量,够成单回路控制系统,则该控制系统的通道的容量滞后大大减少,对来自离心泵的转速、阀门开度变化等干扰能及时克服,减少他们对热流体出口温度的影响。
但是很显然,热流体的流量和温度的变化没有包含在内,同时系统也没有对热流体出口温度构成闭环控制,因此,仍然不能保证出口温度稳定在设定值上,还需进行改造。
为了解决上述滞后时间和控制要求之间的矛盾,保持热流体的出口温度稳定,可以根据管路冷流量的变化,先调节离心泵的转速,然后再根据热流体出口温度与设定值之间的偏差,根据合适的控制算法,进一步调节流体的流量,以保持出口温度的稳定,这样组成流体出口温度调节器和流体流量调节器串联起来的串级控制系统。
其方块图如下图4所示:图4串级控制系统原理图根据图4可以看出来自冷流体流量方面的干扰因素包括在副回路内,因此可以大大减少这些扰动因素对于热流体出口温度的影响。
对于热流体流量和温度方面的干扰,采用串级控制系统也可以得到改善,具体控制效果明显改善。
综上所述,我们可以对串级控制系统方案的基本参数进行确定:主回路:热流体出口温度——冷流体流量控制回路副回路:冷流体流量——离心泵转速控制回路主变量:换热器出口温度副变量:冷流体流量主检测变送器:铂电阻温度传感器副检测变送器:涡轮流量传感器执行器:变频器三、仪表的选型以及参数的确定1.温度的测量选择装配式热电偶如图5所示图5装配式热电偶测量范围及允许误差范围热电偶类别代号分度号测量范围基本误差限镍铬-康铜WRK E 0-800℃ ±0.75%t 镍铬-镍硅WRN K 0-1300℃ ±0.75%t 铂铑 13 -铂WRB R 0-1600℃ ±0.25%t 铂铑 10 -铂WRP S 0-1600℃ ±0.25%t 铂铑 30 -铂WRR B 0-1800℃ ±0.25%t 铑 6注:t为感温元件实测温度值(℃)热电偶时间常数热惰性级别时间常数(秒)热惰性级别时间常数(秒)Ⅰ 90-180 Ⅲ 10-30Ⅱ 30-90 Ⅳ <10热电偶公称压力:一般是指在工作温度下保护管所能承受的静态外压而破裂。
热电偶最小插入深度:应不小于其保护套管外径的8-10倍(特列产品例外)绝缘电阻:当周围空气温度为15-35℃,相对湿度<80%时绝缘电阻≥5兆欧(电压100V)。
具有防溅式接线盒的热电偶,当相对温度为93± 3℃ 时,绝缘电阻≥0.5兆欧(电压100V)高温下的绝缘电阻:热电偶在高温下,其热电极(包括双支式)与保护管以及双支热电极之间的绝缘电阻(按每米计)应大于下表规定的值。
规定的长时间使用温度试验温度(℃)绝缘电阻值(Ω)(℃)≥600 600 72000≥ 800 800 25000≥1000 1000 50002温度变送器选择通用型智能温度变送器如图6所示,接线端子如图7所图6通用型智能温度变送器图7接线端子性能简介输入单路或双路热电偶、热电阻信号,变送输出隔离的单路或双路线性的电流或电压信号,并提高输入、输出、电源之间的电气隔离性能。
技术特点本产品采用了先进的数字化技术,具备了传统模拟仪表所不具备的多项先进性能,在对高、低频干扰信号的抑制方面均有着优异表现,即使在大功率变频控制系统中依然能够可靠应用,同时,数字化技术的应用彻底克服了传统温度变送器线性差的缺点,内部采用数字化调校、无零点及满度电位器、自动动态校准零点、温度飘移自动补偿等诸多先进技术,并符合IEC61000-4-4:1995中所规定的第四类(恶劣工业现场)环境对产品的抗电磁干扰要求,这一系列技术的应用使产品的稳定性及可靠性得到科学的保证。
以上各项技术领先国际先进水平.适用性可以与单元组合仪表及DCS、PLC等系统配套使用,在油田、石化、制造、电力、冶金等行业的重大工程中有着广泛应用。
技术参数系统传输准确度:±0.2%×F·S温度漂移:≤0.0015%F·S/℃冷端温度补偿准确度:±0.1% 测量热电阻时允许的引线电阻:≤50Ω工作温度:工业级标准 -10~+55℃电流输出允许外接的负载阻抗:4-20mA输出时0~500Ω;0-10mA输出时0~1KΩ需要更大的负载能力请在订货时说明。
电磁兼容:符合IEC61000-4-4:1995中所规定的第四类(恶劣工业现场)环境对产品的抗电磁干扰要求.输入/输出/电源/通讯/双路间绝缘强度:≥1500V.ac储运环境温度:-40~+80℃相对湿度:10-90%RH(40℃时)供电电源:交流: AC 95~265V直流:DC12V~32V(反接保护)输入功率:0.9~1.8W(与型号有关,详见本手册附录中关于输入功率的计算方法)通讯接口:RS232 或 RS485,MODBUS软件协议(选配)。
外形尺寸:宽×高×深:22.5×100×115mm净重:140g±20g型号说明SK-WD- ××××通用型温度变送器输入回路缺省为单回路D 双回路(相互隔离)第一路输出1 4-20mA2 1-5V3 0-10mA4 0-5V5 0-10V第二路输出缺省为无第二输出1 4-20mA2 1-5V3 0-10mA4 0-5V5 0-10V供电方式缺省为交流220VD 直流24V3流量传感器选用SKLUCB型插入式涡街流量计如图8所示图8SKLUCB型插入式涡街流量计工作原理按国际标准化组织IS07145(在环形截面封闭管道中的流体流量测定—在截面一点的速度测量法),采用埋入压电晶体的涡街测速探头,插入大口径工业管道内,将卡门旋涡频率转换为与流量成正比的电流或电压脉冲信号或4~20mADC 电流信号。
仪表特点1、可测量蒸汽,气体,液体的体积流量和质量流量;2、无机械运动部件,测量精度高,结构紧凑维护方便;3、压力损失小,量程范围宽;范围度达1:25;4、采用消扰电路和抗振传感头;5、采用消扰电路和抗振传感头,使仪表具有一定抗环境振动性能;6、可测介质温度达+250℃。
7、可实现不断流拆装传感器,可实现放大器与传感器分离(分离距离15m);技术参数公称通经(mm) 250~1500仪表材质 1Cr18Ni 9Ti公称压力(Mpa) PN1.6Mpa;PN2.5Mpa被测介质温度(℃)-40~+250℃环境条件温度-10~+55℃,相对湿度5%~90%,大气压力86~106Kpa精度等级示值的±2.5%量程比 1:10;1:15阻力损失系数 Cd<2.6输出信号传感器:脉冲频率信号0.1 ~ 3000Hz 低电平≤1V 高电平≥6V变送器:两线制4 ~ 20mADC电流信号供电电源传感器:、+24VDC变送器:+24VDC现场显示型:仪表自带3.2V锂电池信号传输线KVVP3×0.3(三线制),2×0.3(二线制)传输距离≤500m信号线接口内螺纹M20×1.5防爆等级 ExdIIBT6防护等级 IP65允许振动加速度 1.0g4调节器选用SK-808/900系列智能PID调节仪如图9所示,接线端子如图10所示图9 SK-808/900系列智能PID调节仪图10接线端子主要技术指标基本误差:0.5%FS或 0.2%FS±1个字分辨力:1/20000、14位A/D转换器显示方式:双排四位LED数码管显示采样周期:0.5S报警输出:二限报警,报警方式为测量值上限、下限及偏差报警,继电器输出触点容量 AC220V/3A控制输出:⑴继电器触点输出⑵固态继电器脉冲电压输出(DC12V/30mA)⑶单相/三相可控硅过零触发⑷单相/三相可控硅移相触发⑸模拟量4~20mA、0~10mA、1~5V、0~5V 控制输出通讯输出:接口方式--隔离串行双向通讯接口RS485/RS422/RS232/Modem波特率--300~9600bps内部自由设定馈电输出:DC24V/30mA电源:开关电源 85~265VAC 功耗4W以选型表代码说明SK-808/900 智能PID调节仪A 横式160×80×125mm外型尺寸A/S 竖式80×160×125mmB 方式96×96×110 mmC 横式96×48×110 mmC/S 竖式48×96×110 mmD 方式72×72×110 mm报警输出B□ B1-1个报警点,B2-2个报警点控制输出N 无控制输出L 继电器控制输出G 固态继电器输出K1 单相可控硅过零触发K2 三相可控硅过零触发K3 单相可控硅移相触发K4 三相可控硅移相触发X1 4-20mA输出X2 0-10mA输出X3 1-5V输出X4 0-5V输出通讯输出P 微型打印机R 串行通讯RS232 S 串行通讯RS485变送器配电电源无馈电输出V12 带DC12V馈电输出V24 带DC24V馈电输出供电电源220VAC供电W DC24V供电输入信号Sn 见"输入信号类型表"输入类型表参数提示符输入信号内容参数提示符输入信号内容tc-K K型rtd 0-400Ωtc-S S型1000 Pt1000tc-E E型bA1 BA1tc-b B型bA2 BA2tc-t T型0-50 0-50mAtc-n N型0-5V 0-5Vtc-j J型1-5V 1-5VP100 Pt100 0-20 0-20mAC100 Cu100 0-10 0-10mACu50 Cu50 4-20 4-20mA5调节阀选用电动三通合流(分流)调节阀如图11所示ZAZQ(X)型电动三通合流(分流)调节阀有合流和分流二种型式,由DKZ电动执行机构和三通合流或三通分流调节组成,以电源为动力,接受统一的标准信号0~10mA DC或4-20mA Dc驱使阀门开度与此操作信号相对应。