直流电机PWM调速电路

合集下载

直流电机-PWM调速

直流电机-PWM调速
直流电机
PWM调速
脉冲宽度调制 - Pulse Width Modulation
• 利用微处理器的数字输出来对模拟电路进行控制的 一种非常有效的技术 • 应用:测量、通信、功率控制与变换
PWM
V T T/2
0
t
PWM
PWM变换器和PWM-M系统开环机械特性 脉宽调制原理
脉冲宽度调制(PWM)是通过功率管的开关作用,将恒定 直流电压转换成频率一定,宽度可调的方波脉冲电压,通过 调节脉冲电压的宽度而改变输出电压平均值的一种功率变换 技术。由脉宽调制器向电机供电的系统称为脉宽调速系统, 简称PWM-M调速系统。
(二)可逆PWM变换器 其主电路结构有H型,T型等,常用H型变换器,它由4个 电力晶体管和 4个续流二极管组成桥式电路。在控制方式上 分双极式、单极式和受限单极式三种。着重分析双极式H型 PWM变换器,然后再简要说明其它方式的特点。 1、双极式可逆PWM变换器
+
Us
(1)构成特点 4个VT的基极驱动分两组。 VTl 和 VT4 同时导通和关断,
n0
U s
Ce
调速系统的空载转速,与占空比成正比;
n
Id R 负载电流造成的转速降。 Ce
9
2、有制动作用的PWM变换器 (1)电路组成 需制动时须有反向电流-id的通路,应设置控制反向的第 二个电力晶体管,形成VT1和VT2交替开关的电路,如图(a) 所示。电路由VT1和VT2,VD1和VD2组成。VT1是主管,起 控制作用;VT2是辅助管,构成电机的制动电路。
8
Ud
ton U s U s T
图3-2(b)中绘出了电枢的脉冲端电压ud、平均电压Ud和 电枢电流id的波形。id 是脉动的。因开关频率较高,电流脉 动幅值不会很大,影响到转速n和反电动势E的波动就更小了。

直流脉宽(PWM)调速系统设计与研究--触发电路设计

直流脉宽(PWM)调速系统设计与研究--触发电路设计

1绪论1.1背景直流调速技术的研究和应用已达到比较成熟的地步,尤其是随着全数字直流调速的出现,更提高了直流调速系统的精度及可靠性。

目前国内各大专院校,科研单位和厂家也都在开发直流调速装置,但大多数调速技术都是结合工业生产中,而在民用中应用相对较少,所以应用已有的成熟技术开发性能价格比高的,具有自主知识产权的直流调速单元,将有广阔的应用前景。

1.2直流电动机的调速方法本系统采用转速环和电流环双闭环结构,因此需要实时检测电机的电枢电流并把它作为电流调节器的反馈信号。

由电动机理论知,直流电动机的机械特性方程为T R C C C U n m e e Nφφ2N -=式中n N ——直流电动机的转速(r/min )U N ——电动机的额定电压(v):R ——电动机电枢电路总电阻(Ω)C e ——电动势常数(v·min /r); C m ——转矩常数,C m =9.55C e; T ——电动机电磁转矩(N·m);φ——电动机磁通(wb)。

由上式可以知道:直流电动机的调速方法有三种:(1)调节电枢供电电压U 。

改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。

对于要求在一定范围内无级平滑调速的系统来说,这种方法最好。

I a 变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。

(2)改变电动机主磁通Φ。

改变磁通可以实现无级平滑调速,但只能减弱磁通进行调2速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。

I f变化时间遇到的时间常数同I a变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。

(3)改变电枢回路电阻R。

在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。

但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。

1.3选择PWM控制系统的理由脉宽调制器UPW 采用美国硅通用公司(Silicon General)的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM 控制器。

NE555简易直流电机PWM驱动电路的实现

NE555简易直流电机PWM驱动电路的实现

NE555简易直流电机PWM驱动电路的实现NE555是一种常用的集成电路,可以实现各种定时和脉冲宽度调制(PWM)应用。

在直流电机驱动中,使用NE555可以实现简易的PWM调速效果。

本文将详细介绍如何使用NE555实现直流电机的PWM驱动电路,并对其原理进行解释。

一般来说,直流电机通常需要调节电压或者频率来改变其转速。

而PWM调速就是通过调节脉冲的高电平时间与低电平时间的比例来实现对电机的速度控制。

接下来,我们将详细分析NE555的工作原理及其在直流电机PWM驱动中的应用。

首先,我们来了解一下NE555的基本工作原理。

NE555是一种8引脚的集成电路,主要由比较器、RS触发器、输出驱动器以及电源电压稳压器等组成。

在PWM调速应用中,NE555的输入电压Vcc连接至电源正极,引脚2和引脚6接地,引脚5连接电源负极,引脚4连接至电位器PI,辅助引脚1和7置空或者接地。

NE555的主要工作模式有两种:单稳态触发和多谐振荡器。

在直流电机PWM驱动中,我们将使用NE555的多谐振荡器模式来实现PWM调速功能。

多谐振荡器模式下,NE555输出方波信号,其周期和占空比可以通过引脚2和引脚6之间的电压比例来控制。

当引脚2电压高于引脚6时,输出高电平;当引脚2电压低于引脚6时,输出低电平。

接下来,我们将详细讲解如何使用NE555来实现直流电机的PWM驱动电路。

首先,我们需要连接一个电位器来调节占空比。

将电位器PI的中间脚连接至引脚6,一边脚连接至引脚5,另一边脚连接至电源负极。

通过调节电位器的旋钮,可以改变引脚6的电压,从而控制占空比。

同时,为了保护NE555和直流电机,我们还需要连接一个MOS管或者晶体管来作为输出驱动器。

将驱动器的基极或者门极连接至NE555的输出引脚3,将驱动器的集电极或者漏极连接至直流电机的正极,将驱动器的发射极或者源极连接至电源负极。

在NE555的多谐振荡器模式下,我们需要选择一个合适的电容和电阻来设置输出的频率和占空比。

直流电机调速的PWM实现方法

直流电机调速的PWM实现方法
具有使能控制和方向逻辑的H桥电路采用以上方法,电机的运转就只需要用三个信号控制:两个方向信号和一个使能信号。如果DIR-L信号为0,DIR-R信号为1,并且使能信号是1,那么三极管Q1和Q4导通,电流从左至右流经电机(如上图所示);如果DIR-L信号变为1,而DIR-R信号变为0,那么Q2和Q3将导通,电流则反向流过电机。
8
GND

9
VSS
逻辑控制地
10,12
Input 3 Input4
桥式电路B的控制端
13,14
Out3 Out4
桥式电路B的的输出端,接电机

NC
不接
将上面的PWM例程产生的波形作用于电机的使能端上,就可以实现电机的调速。至于方向的控制,只需两个IO接于控制端即可。
PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。通俗的说PWM是采用数字量对模拟量进行合成的方法。
直流电机调速的PWM实现方法
PWM在控制中使用非常广泛,可以以数字量对模拟电路进行控制。这里对PWM的原理进行讲述,并举例说明PWM的重要应用。
1ቤተ መጻሕፍቲ ባይዱPWM简介
采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。

直流电机pwm调速的续流二极管

直流电机pwm调速的续流二极管

直流电机是工业生产中常见的电机之一,它通常以PWM(脉宽调制)方式进行调速。

而在PWM调速过程中,续流二极管扮演了重要角色。

本文将从直流电机的工作原理、PWM调速原理、续流二极管的作用和选择等方面进行详细介绍。

一、直流电机的工作原理直流电机是一种将电能转换为机械能的装置,它的工作原理基于洛伦兹力和带电粒子在磁场中受力的规律。

当直流电流通过电机的线圈时,产生的磁场与永磁体或者电磁铁产生的磁场相互作用,从而使得电机的转子产生力矩,从而驱动机械装置运转。

二、PWM调速原理PWM调速是通过改变电机输入的脉冲宽度来控制电机的平均电压和平均电流,从而改变电机的转速。

具体实现上,PWM调速是将直流电源高频开关,使得电机在分时段内接收到占空比不同的电压脉冲,从而实现调速。

三、续流二极管的作用在PWM调速过程中,电机的正负半周各有一个脉冲开关管,分别为一组导通和一组关断。

当开关管关断时,直流电机线圈中的电流不能突然中断,否则会产生电感压降。

为了避免电感压降引起的反冲电压,需要在开关管关断时,让电流有一条回路可以继续流动,这就是续流二极管的作用。

四、续流二极管的选择续流二极管应具有较快的反向恢复时间,这样才能在开关管关断瞬间尽快导通,避免电感压降引起的反冲电压。

续流二极管的电流和电压等参数也需要根据具体的电机工作条件来选择。

五、总结直流电机的PWM调速是一种常见的调速方式,而续流二极管在PWM调速过程中的作用不可忽视。

正确选择合适的续流二极管,对电机的稳定性和性能有着重要影响。

希望本文对读者对直流电机的PWM 调速和续流二极管有所帮助。

六、续流二极管的工作原理续流二极管在PWM调速过程中,起到了保护开关管和电机的作用。

在电机线圈中的电流无法突然中断的情况下,如果没有合适的续流二极管,就会导致电感压降产生反冲电压,这样会对开关管和电机造成不良影响,甚至损坏设备。

续流二极管的工作原理主要是利用其具有的快速反向恢复时间和导通特性来形成一个回路,让电流有一条通路继续流动,从而避免反冲电压的产生。

PWM直流电机调速电路图原理

PWM直流电机调速电路图原理

PWM直流电机调速电路图原理PWM直流电机调速电路图原理此电路首要由U1(LM324)和Q1构成。

图中,由U1a、U1d构成振动器电路,供应频率约为400Hz 的方波/三角形波。

U1c发作6V的参阅电压作为振动器电路的虚拟地。

这是为了振动器电路能在单电源状况下也能作业而不需求用正负双电源。

U1b这儿接成比照器的办法,它的反相输入端(6脚)接入电阻R6、R7和VR1,用来供应比照器的参阅电压。

这个电压与U1d 的输出端(14脚)的三角形波电压进行比照。

当该波形电压高于U1b 的6脚电压.U1b的7脚输出为高电平;反之,当该波形电压低于U1b的6脚电压,U1b的7脚输出为低电平。

由此咱们可知,改动U1b的6脚电位使其与输入三角形波电压进行比照。

就可添加或减小输出方波的宽度,完结脉宽调制(PWM)。

电阻R6、R7用于操控VR1的完毕点,确保在调度VR1时能够完结输出为全开(全速或全亮)或全关(停转或全灭),正本际的阻值或许会依据实习电路纷歧样有所改动。

图1中,Q1为N沟道场效应管,这儿用作功率开关管(电流拓展),来驱动负载有些。

前面电路供应的纷歧样宽度的方波信号经过栅极(G)来操控Q1的通断。

LED1的亮度改动能够用来指示电路输出的脉冲宽度。

C3能够改进电路输出波形和减轻电路的射频搅扰(RFI)。

D1是用来避免电机的反电动势损坏Q1。

当运用24v的电源电压时,图1电路经过U2将24V改换成12V供操控电路运用。

而Q1能够直接在21v电源上,关于Q1来讲这与接在12v电源上没有啥差异。

参阅图1,改动J1、J2的接法可使电路作业在纷歧样电源电压(12V或24V)下。

当经过Q1的电流不逾越1A时,Q1可不必散热器。

但假定Q1作业时电流逾越1A时,需加装散热器。

假定需求更大的电流(大于3A),可选用IRFZ34N等更换Q1。

1-3 直流电动机的脉宽调制(PWM)调速

1-3 直流电动机的脉宽调制(PWM)调速

若VT1关断时间长,在t=t2时,电枢电流ia衰减 到零,那么在电动机内电势Ea的作用下,VT2导通, 电枢电流ia 将沿着相反的方向从B点流入A点,电机 进入能耗制动。通过控制VT2的时间间隔可以控制电 机的制动转矩 注意:在VT1重新导通之间,必须先关闭VT2, 让电枢电流经过VD1续流,电机短时进入再生制动状 态,否则在VT2还没有完全关断之前就让VT1导通, 电源经过VT2、VT1直接短路,损坏开关元件。
1、单极性脉宽调制方式 系统输出电压UA的极性是通过一个控制电压Uc 来改变的。 Uc为正,VT1与VT2交替导通,VT4一直导通, VT3关断,此时,B点总是为正,A点总是为负 Uc为负,VT3与VT4交替导通,VT2一直导通, VT1关断,此时,B点总是为负,A点总是为正
工作原理: Uc为正时 0<t<t1时,VT1导通,VT2关断,若Us>Ea, 电枢电流经VT1、VT4从B流到A,电机处在电动 机状态。 在t1<t<T时,VT1关闭,VD2与VT4续流,电枢 电流方向不变,电机仍处在电动机状态。 若在t1<t<T期间的某一时刻t2电枢电流衰减到 零,那么在t2<t<T期间,Ea使VT2导通,电枢电 流反向,经VT2、VD4从A流到B,电机进入能耗 制动状态 若Ea>Us,在VT2关断期间,电枢电流经VD1 和VD4输回电网,电机作再生制动 Uc为负时,原理与此类似,电机反向
如果电流连续,则电机始终处于电动状态 若在t1<t<T期间的某一时刻t2电枢电流衰减到 零,那么在t2<t<T期间,Us和Ea共同作用,使 VT2、VT3导通,电枢电流反向,经VT2、VT3从A 流到B,电机进入反接制动状态 在VT1、VT4再次导通之前,必须关断VT2、 VT3,电枢电流VD1、VD4续流,电机进入再生制 动

基于Multisim的PWM直流电机调速控制电路设计与仿真 精品

基于Multisim的PWM直流电机调速控制电路设计与仿真 精品

基于Multisim 的PWM 直流电机调速控制电路设计与仿真李容,谢东,李俊凡,唐俊斌,何佳盈重庆科技学院,电气与信息工程学院,重庆,400050摘要:以Multisim 仿真软件为平台设计PWM 直流电机调速控制电路,对电机驱动电路和脉宽控制电路的设计原理及构成方法作了详细的介绍。

使用Multisim 仿真软件的虚拟示波器、逻辑分析仪等虚拟元件,完成电路的设计与仿真。

关键词:Multisim PWM 直流电动机 电机驱动 脉宽控制Design and Simulation of PWM DC Motor Speed Based on MultisimAbstract: The paper presents a PWM DC motor speed control circuit based on Multisim simulation software. The circuit principle and its composition for the motor drive and the pulse width control are introduced detailedly. Using Multisim simulation software of virtual oscilloscope, logic analyzer and some virtual element, the circuit design and simulation has been completed.Keywords: Multisim PWM dc motor driving pulse width control1 引言电子设计自动化(EDA)技术是电子设计领域的一场革命,它改变了以变量估算和电路实验为基础的电路设计方法。

Multisim 是一个专门用于电子线路仿真与设计的EDA 工具软件, 内台有数万种元器件和l3种常用的虚拟仪嚣仪表,能完成从电路的仿真设计到电路版图生成的全过程。

PWM直流电机调速实验报告

PWM直流电机调速实验报告
2.对象模块(PWM电机调速模块)工作原理
直流电机PWM调速模块由测速电路和PWM调速电路两部分组成。模块的电源由接口总线引入。本模块使用的电机为5V直流电机。
1)电机测速部分
①直流电机测速原理介绍
电机测速部分由光电开关完成,电机带动一个周边均匀分布圆孔的金属圆盘,当电机转动时,圆盘跟着一起转动。光源发出的光通过圆孔照射到光电器件上,当圆孔随着电机轴转动时,光电开关可以输出和圆孔数目相同的脉冲,从而测得转速。
3.观察直流电机转速,一段时间后控制在程序设定的值30转/S的左右。
三、实验原理图
四、实验原理
1.PWM的调速原理
PWM调速是通过改变输出脉冲的占空比,从而改变电机转速的一种调速方法。PWM调速分为单极性和双极性两种。在单极性方式下,电机的转动方向不变,改变的只是转速;而在双极性方式下,电机的转动方向和转速都是可变的。本实验是单极性控制,其基本原理如下:
shortdelay(PWMH);
PWM=0;//turn off电机
shortdelay(PWML);
}
}
五、实验结论及讨论
本实验成功实现了直流电机转速的控制,转速设定值为30r/s,通过数码管显示出当前转速,和设定值,利用脉宽调制原理对电机转速进行间接控制。
本实验实现了通过PWM方法使输出电压改变从而改变直流电机转速的目标,并且电机的转速可以显示出来。因此,本实验既达到了动态调节电机转速,又实现了实时检测电机运转情况。
机电一体化实验报告
题目:
PWM直流电机调速实验
学生姓名:
学号:
指导教师:
张友旺
学院:
机电工程学院
专业班级:
机械1604班
日期2019年12月

基于UC3637的直流电动机PWM控制电路

基于UC3637的直流电动机PWM控制电路

!机械加工与自动化#基于U C 3637的直流电动机PWM 控制电路海军航空工程学院(264001) 刘陵顺 王亭 尚安利 顾文锦【摘要】根据P WM 控制器U C 3637的工作特点,设计了一种直流电动机P WM 控制电路,该电路已成功地应用于数字化舵机控制系统中。

关键词 U C 3637 直流电动机 P WM 控制 U C 3637是一种直流电动机脉宽调制控制器,可以单电源或双电源工作,双路P WM 输出,具有限流保护、欠压封锁和温度补偿等特点。

适用于开环或带测速发电机反馈的闭环直流调速系统。

同时也可以应用于无刷直流电动机P WM 速度控制、位置控制和步进电动机电流细分控制等。

本文应用U C 3637设计了一种直流电动机P WM 开环控制电路,该电路可以与计算机数字控制系统结合起来,实现舵机的位置控制。

P WM 控制电路设计 应用于舵机控制系统的执行元件是一个额定工作电压27V 、额定工作电流为1A 的永磁直流电动机。

舵机控制系统的目标是:根据不同的要求,控制舵角的变化,以满足系统的性能要求。

根据试验的不同要求,舵机要完成阶跃、正弦等运动。

控制框图如图1所示。

图1 舵机控制系统框图采用高精密电阻电位计检测舵角位置,经A D 转换反馈到计算机中与给定控制信号经过适当的计算机控制算法得到一个输出信号,再由D A 转换送到P WM 控制器,驱动舵机运动到期望的位置。

其中信号的给定、反馈信号取样、控制方程的运算及控制脉冲的输出均由计算机完成;P WM 控制器由本文设计的控制电路完成。

1.脉宽信号产生电路脉宽信号由P WM 专用控制器U C 3637产生,C 3637的典型接线图如图2所示。

其工作原理为:外部电阻对供电电源分压后,产生阈值电压,分别接到(1脚)和(3脚),在2脚和18脚分别接电容和电阻,电容和电阻的另一端分别接地。

通过内部缓冲电路与R T 作用产生恒流,给电容线性充电,产生三角波的上升沿,到达+V TH 后,以恒流线性放电,产生三角波的下降沿。

LM324直流电机调速电路

LM324直流电机调速电路

LM324组成的PWM直流电机产生电路它主要由U1(LM324)和Q1组成图4.1中,由U1a、U1d组成振荡器电路,提供频率约为400Hz的方波/三角形波。

U1c产生6V的参考电压作为振荡器电路的虚拟地。

这是为了振荡器电路能在单电源情况下也能工作而不需要用正负双电源。

U1b这里接成比较器的形式,它的反相输入端(6脚)接入电阻R6、R7和VR1,用来提供比较器的参考电压。

这个电压与U1d的输出端(14脚)的三角形波电压进行比较。

当该波形电压高于U1b 的6脚电压.U1b的7脚输出为高电平;反之,当该波形电压低于U1b的6脚电压,U1b的7脚输出为低电平。

由此我们可知,改变U1b的6脚电位使其与输入三角形波电压进行比较。

就可增加或减小输出方波的宽度,实现脉宽调制(PWM)。

电阻R6、R7用于控制VR1的结束点,保证在调节VR1时可以实现输出为全开(全速或全亮)或全关(停转或全灭),其实际的阻值可能会根据实际电路不同有所改变。

图4.1中,Q1为N沟道场效应管,这里用作功率开关管(电流放大),来驱动负载部分。

前面电路提供的不同宽度的方波信号通过栅极(G)来控制Q1的通断。

LED1的亮度变化可以用来指示电路输出的脉冲宽度。

C3可以改善电路输出波形和减轻电路的射频干扰(RFI)。

D1是用来防止电机的反电动势损坏Q1。

当使用24v的电源电压时,图1电路通过U2将24V转换成12V供控制电路使用。

而Q1可以直接在21v电源上,对于Q1来讲这与接在12v电源上没有什么区别。

参考图1,改变J1、J2的接法可使电路工作在不同电源电压(12V或24V)下。

当通过Q1的电流不超过1A时,Q1可不用散热器。

但如果Q1工作时电流超过1A时,需加装散热器。

如果需要更大的电流(大于3A),可采用IRFZ34N等替换Q1。

更换大功率场效应管,如IRF360等可驱动10A以上直流电机。

图4.1 LM324组成的PWM直流电机产生原理图工作原理脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。

直流脉宽(PWM)调速系统设计与研究——主电路设计课设报告

直流脉宽(PWM)调速系统设计与研究——主电路设计课设报告

沈阳理工大学课程设计摘要调速系统是当今电力拖动自动控制系统中应用最广泛的一中系统。

目前对调速性能要求较高的各类生产机械大多采用直流传动,简称为直流调速。

早在20世纪40年代采用的是发电机-电动机系统,又称放大机控制的发电机-电动机组系统。

这种系统在40年代广泛应用,但是它的缺点是占地大,效率低,运行费用昂贵,维护不方便等,特别是至少要包含两台与被调速电机容量相同的电机。

为了克服这些缺点,50年代开始使用水银整流器作为可控变流装置。

这种系统缺点也很明显,主要是污染环境,危害人体健康。

50年代末晶闸管出现,晶闸管变流技术日益成熟,使直流调速系统更加完善。

晶闸管-电动机调速系统已经成为当今主要的直流调速系统,广泛应用于世界各国。

近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。

直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。

不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、高智能化特点。

同时直流电机的低速特性,大大优于交流鼠笼式异步电机,为直流调速系统展现了无限前景。

单闭环直流调速系统对于运行性能要求很高的机床还存在着很多不足,快速性还不够好。

而基于电流和转速的双闭环直流调速系统静动态特性都很理想。

关键字:调速系统直流调速器晶闸管晶闸管-电动机调速系统沈阳理工大学课程设计目录1 绪论 (1)1.1 背景 (1)1.2 直流调速系统的方案设计 (1)1.2.1 设计已知参数 (1)1.2.2 设计指标 (2)1.2.3 现行方案的讨论与比较 (2)1.2.4 选择PWM控制系统的理由 (2)1.2.5 选择IGBT的H桥型主电路的理由 (3)1.2.6 采用转速电流双闭环的理由 (3)2 直流脉宽调速系统主电路设计 (4)2.1 主电路结构设计 (4)2.1.1 PWM变换器介绍 (4)2.1.2 泵升电路 (7)2.2 参数设计 (7)2.2.1 IGBT管的参数 (7)2.2.2 缓冲电路参数 (8)2.2.3 泵升电路参数 (8)3 直流脉宽调速系统控制电路设计 (9)3.1 PWM信号发生器 (9)3.2 转速、电流双闭环设计 (9)3.2.1 电流调节器设计 (10)3.2.2 转速调节器设计 (13)4 系统调试 (17)4.1 系统结构框图 (17)4.2 系统单元调试 (17)4.2.1 基本调速 (17)4.2.2 转速反馈调节器、电流反馈调节器的整定 (18)4.3 实验结果 (18)4.3.1 开环机械特性测试 (18)4.3.2 闭环系统调试及闭环静特性测定 (19)5 总结 (20)参考文献 (21)附录A (22)A.1 晶闸管直流调速系统参数和环节特性的测定 (22)A.2 双闭环可逆直流脉宽调速系统性能测试 (26)沈阳理工大学课程设计1 绪论背景在现代科学技术革命过程中,电气自动化在20世纪的后四十年曾进行了两次重大的技术更新。

常用电机驱动电路及原理

常用电机驱动电路及原理

常用电机驱动电路及原理1.直流电机驱动电路:直流电机驱动电路主要用于控制直流电机的转速和方向。

常用的直流电机驱动电路有H桥驱动电路、PWM调速电路和电流反馈调速电路。

-H桥驱动电路:H桥驱动电路是最常用的直流电机驱动电路之一,可以实现正、反转和制动功能。

它由四个开关管组成,分为上电路和下电路。

通过控制上下电路中的开关管的导通和断开,可以改变电机的运行方向和转速。

-PWM调速电路:PWM调速电路通过调整占空比来控制电机的转速。

PWM调速电路将直流电源与电机连接,通过调节PWM信号的占空比,控制电机的平均输出电压,从而改变电机的转速。

-电流反馈调速电路:电流反馈调速电路是一种闭环控制系统,通过反馈电流信号来控制电机的转速。

它使用电流传感器测量电机的输出电流,并将反馈信号与设定值进行比较,通过PID控制算法来调节PWM信号,控制电机的转速。

2.交流电机驱动电路:交流电机驱动电路主要用于控制交流电机的转向和转速。

常用的交流电机驱动电路有逆变器驱动电路和矢量控制电路。

-逆变器驱动电路:逆变器是将直流电源转换成交流电源的装置。

在交流电机驱动中,逆变器将直流电源的电压和频率转换成交流电压和频率,通过改变输出电压的幅值和频率,控制交流电机的转速。

-矢量控制电路:矢量控制电路是一种先进的交流电机驱动技术,通过对电机的磁场进行独立控制来实现高精度的转速和转向控制。

矢量控制电路使用电流传感器测量电机的输出电流,并通过矢量控制算法,控制电机的磁场和转速。

总结:直流电机驱动电路主要包括H桥驱动电路、PWM调速电路和电流反馈调速电路,用于控制直流电机的转速和方向。

交流电机驱动电路主要包括逆变器驱动电路和矢量控制电路,用于控制交流电机的转向和转速。

这些电机驱动电路在工业自动化、电动车和家用电器等领域广泛应用,具有重要的意义和价值。

pwm直流调速系统电路工作模式

pwm直流调速系统电路工作模式

PWM直流调速系统电路工作模式一、PWM直流调速系统概述PWM(脉宽调制)直流调速系统是一种通过改变电机输入电压的占空比来调节电机速度的电子控制系统。

由于其具有调速范围广、动态响应快、控制精度高等优点,PWM直流调速系统在工业自动化、电动工具、电动车等领域得到了广泛应用。

二、PWM直流调速系统电路工作模式PWM直流调速系统的电路工作模式主要分为以下三种:1.双极性模式在双极性模式下,PWM波形有正负两个电平,占空比在0%~100%之间变化。

这种模式下的电机驱动电路较为简单,但需要使用到H桥或类似的电路结构,以实现对电机正反转的控制。

2.单极性模式在单极性模式下,PWM波形只有正电平或负电平,占空比在0%~100%之间变化。

这种模式下,电机只能在一个方向上旋转,因此需要配合方向控制信号来实现电机的正反转。

3.分段线性模式分段线性模式是一种介于双极性和单极性之间的模式,其PWM波形由多个线性段组成。

这种模式下的电机驱动电路较为复杂,但可以实现更为精确的电机速度控制。

三、PWM直流调速系统电路工作原理PWM直流调速系统的电路工作原理主要基于调节电机输入电压的占空比来实现对电机速度的控制。

具体来说,当占空比增大时,电机输入电压增大,电机转速升高;反之,当占空比减小时,电机输入电压减小,电机转速降低。

这种通过调节占空比来实现电机速度控制的方式称为脉宽调制(PWM)。

在PWM直流调速系统中,通常采用闭环控制方式,即通过反馈电机的实际转速与设定转速的差值来实时调整PWM波形的占空比,以实现对电机速度的精确控制。

这种控制方式可以有效减小系统误差、提高控制精度和响应速度。

此外,为了实现电机的正反转控制,PWM直流调速系统还需要引入方向控制信号。

当方向控制信号为高电平时,电机向正方向旋转;当方向控制信号为低电平时,电机向反方向旋转。

通过调节PWM波形和方向控制信号的配合,可以实现电机的正反转和速度调节。

综上所述,PWM直流调速系统通过调节电机输入电压的占空比来实现对电机速度的控制,具有调速范围广、动态响应快、控制精度高等优点。

直流电机脉宽调制调速

直流电机脉宽调制调速
1)Ub1+,Ub2-,电机 Ub1+,Ub2- +,Ub2 运行于电动状态; 运行于电动状态; Ub1- Ub2+, +,电枢回 2)Ub1-,Ub2+,电枢回 路电感释放能量, 路电感释放能量,电流由 VD2续流 续流, VD2续流,电机仍工作在电 动状态; 动状态; 当电枢电流变为零, 3)当电枢电流变为零,VD2 关断,VT2开通 开通, 关断,VT2开通,电枢电流 能耗制动阶 反向,电机进入能耗制动 反向,电机进入能耗制动阶 转速降低; 段,转速降低; 4)在VT1再次导通之前,必 VT1再次导通之前, 再次导通之前 电动 能耗制动 再生制动 须先关断VT2 VT2, 须先关断VT2,这时电流由 t1 VD1续流,电机再生制动。 t2 t3 T t VD1续流 电机再生制动。 续流,
脉宽调制 直流斩波) (直流斩波)
不控整流
M
Hunan University
一、不可逆脉宽调制调速系统
Hunan University
电流连续情况
t1 U A = U s = ρU s T
Hunan University
电流断续情况
U A = ρ Us
'
Hunan University
带制动功能直流电机脉宽调速系统
Hunan University
1
3
2
4 VT1,VT2 VD2 VT2—VT2 VD2, VT2, VT1,VT2—VD2,VT2 VT2, VD4—VD2 VD2, VD4 VD2,VD4 VT4导通期间,电机能运行于1、2 导通期间,电机能运行于 、 导通期间 象限; 导通期间, 象限;VT2导通期间,电机运行于 导通期间 3、4象限。 象限。 、 象限
能耗制动
能耗制动时, 能耗制动时,电动机作 为他励发电机运行, 为他励发电机运行,由 于发电机的电磁转矩与 电枢旋转的方向是相反 因而产生制动作用, 的,因而产生制动作用, 使电机转速变慢, 使电机转速变慢,直至 电枢旋转的动能全部变 为电能,消耗在电阻上。 为电能,消耗在电阻上。

pwm直流双闭环调速系统设计

pwm直流双闭环调速系统设计

PWM直流双闭环调速系统设计引言PWM(Pulse Width Modulation)直流双闭环调速系统是一种常用于电动机调速的控制系统。

在许多应用中,需要对电动机的速度进行精确控制,以满足不同的工作需求。

PWM直流双闭环调速系统通过不断调整电动机输入电压的占空比,使电动机保持稳定的转速,具有快速响应、良好的稳定性和较大的负载适应能力等优点。

本文将介绍PWM直流双闭环调速系统的设计原理、硬件电路和控制算法,并提供代码示例和性能分析。

设计原理闭环控制系统PWM直流双闭环调速系统由两个闭环控制回路组成:速度闭环和电流闭环。

速度闭环通过反馈电动机的实际转速来调整电动机输入电压,以使其达到期望转速。

电流闭环通过反馈电动机的实际电流来调整PWM信号的占空比,以使电动机输出的扭矩与负载要求相匹配。

速度闭环控制速度闭环控制由速度传感器、比例积分控制器和电动机驱动器组成。

速度传感器通常采用编码器或霍尔传感器来测量电动机转速,并将其转换为电压信号。

比例积分控制器根据速度误差和积分误差来计算控制器输出,并将其输入给电动机驱动器。

电流闭环控制电流闭环控制由电流传感器、比例积分控制器和PWM模块组成。

电流传感器用于测量电动机的电流,并将其转换为电压信号。

比例积分控制器计算电流误差和积分误差,并生成控制器输出,将其输入给PWM模块。

硬件电路设计PWM直流双闭环调速系统的硬件电路设计包括电源模块、电流传感器、速度传感器、比例积分控制器、PWM模块和电动机驱动器等。

电源模块电源模块用于提供系统所需的直流电压。

它可以采用稳压稳流电路来稳定输出电压和电流。

电流传感器电流传感器用于测量电动机的电流。

常用的电流传感器包括霍尔传感器和电阻传感器。

它将电动机的电流转换为电压信号,并输入给比例积分控制器。

速度传感器速度传感器用于测量电动机的转速。

常用的速度传感器有编码器、霍尔传感器和光电传感器等。

比例积分控制器比例积分控制器是PWM直流双闭环调速系统的核心控制模块。

简易直流电机调速电路

简易直流电机调速电路

简易直流电机调速电路1. 引言直流电机调速电路是电机控制领域中的基础知识,它可以实现对直流电机转速的调节。

本文将介绍一种简易的直流电机调速电路,并详细解释其工作原理和相关电路设计。

2. 直流电机调速原理直流电机调速的基本原理是通过改变电机的电压和电流来调节电机的转速。

一般情况下,电机的转速与电压成正比,与电流成反比。

因此,我们可以通过改变电机的电压或电流来实现对其转速的调节。

3. 简易调速电路设计3.1 电源电路首先,我们需要设计一个稳定的直流电源来给电机供电。

一种简单的方式是使用直流电源适配器,它可以将市电的交流电转换为稳定的直流电。

在选择适配器时,需要考虑电机的功率需求和电源的输出能力,以确保能够为电机提供足够的电力。

3.2 控制电路控制电路是实现直流电机调速的关键。

我们可以使用PWM(脉宽调制)技术来控制电机的电压。

PWM技术通过改变信号的占空比来改变电压的平均值,从而控制电机的转速。

3.2.1 PWM信号生成电路PWM信号生成电路可以使用555定时器芯片来实现。

555定时器芯片是一种常用的集成电路,可以产生稳定的方波信号。

通过调节555定时器芯片的参数,如电阻和电容值,我们可以获得不同占空比的PWM信号。

3.2.2 PWM信号调节电路PWM信号调节电路用于调节PWM信号的占空比,从而控制电机的转速。

一种常见的方式是使用可变电阻(如电位器)来调节占空比。

通过改变电位器的阻值,我们可以改变PWM信号的占空比,从而改变电机的转速。

3.3 电机驱动电路电机驱动电路用于将PWM信号转换为适合电机驱动的电流。

一种常见的方式是使用MOSFET(金属氧化物半导体场效应晶体管)作为开关元件。

通过控制MOSFET的导通和截止,我们可以将PWM信号转换为电机所需的电流。

3.4 速度反馈电路为了实现闭环控制,我们需要添加一个速度反馈电路,用于检测电机的实际转速并将其反馈给控制电路。

一种常见的方式是使用光电编码器来检测电机的转速。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电子技术》课程设计报告课题:直流电机PWM调速电路班级电气工程1101学号1101205304学生姓名xxx专业电气信息类系别电子与电气工程学院指导老师电子技术课程设计指导小组xxxxx电子与电气工程学院2012年5月一、设计目的a)培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。

b)学习较复杂的电子系统设计的一般方法,了解和掌握模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。

c)进行基本技术技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。

d)培养学生的创新能力。

二、设计任务与要求1.设计电机驱动主回路,实现直流电机的正反向驱动;2.设计PWM驱动信号发生电路;3.设计电机转速显示电路;4. 设计电机转速调节电路;可以按键或电位器调节电机转速;5.安装调试;6.撰写设计报告。

三、设计思想及设计原理1.信号可以采用数字方法给定,也可以采用电位器给定。

建议采用数字方法。

2.PWM信号可以采用三角波发生器和比较器产生,也可采用数字电路及可编程器件产生。

建议采用数字方法。

3.正反转主回路可以采用双极型器件实现,也可以用MOS器件实现;4.转速测量电路可以采用增量型光电编码器,也可采用自行制作的光电编码电路、霍尔传感器以及其它近似测速方法。

建议采用光电编码器。

5.显用数字方法显示电机转速。

采用光电编码等方法的脉冲测速方法时,可采用计数法测量电机转速;电机转速信号为模拟信号时,可采用数字表头显示转速。

建议采用数字方法。

6.(提高部分)可以采用反馈控制技术对系统进一步完善。

四、单元电路设计4.1 LM324组成的PWM直流电机产生电路4.1.1 它主要由U1(LM324)和Q1组成图4.1中,由U1a、U1d组成振荡器电路,提供频率约为400Hz的方波/三角形波。

U1c产生6V的参考电压作为振荡器电路的虚拟地。

这是为了振荡器电路能在单电源情况下也能工作而不需要用正负双电源。

U1b这里接成比较器的形式,它的反相输入端(6脚)接入电阻R6、R7和VR1,用来提供比较器的参考电压。

这个电压与U1d的输出端(14脚)的三角形波电压进行比较。

当该波形电压高于U1b的6脚电压.U1b的7脚输出为高电平;反之,当该波形电压低于U1b的6脚电压,U1b的7脚输出为低电平。

由此我们可知,改变U1b的6脚电位使其与输入三角形波电压进行比较。

就可增加或减小输出方波的宽度,实现脉宽调制(PWM)。

电阻R6、R7用于控制VR1的结束点,保证在调节VR1时可以实现输出为全开(全速或全亮)或全关(停转或全灭),其实际的阻值可能会根据实际电路不同有所改变。

图4.1中,Q1为N沟道场效应管,这里用作功率开关管(电流放大),来驱动负载部分。

前面电路提供的不同宽度的方波信号通过栅极(G)来控制Q1的通断。

LED1的亮度变化可以用来指示电路输出的脉冲宽度。

C3可以改善电路输出波形和减轻电路的射频干扰(RFI)。

D1是用来防止电机的反电动势损坏Q1。

当使用24v的电源电压时,图1电路通过U2将24V转换成12V供控制电路使用。

而Q1可以直接在21v电源上,对于Q1来讲这与接在12v电源上没有什么区别。

参考图1,改变J1、J2的接法可使电路工作在不同电源电压(12V或24V)下。

当通过Q1的电流不超过1A时,Q1可不用散热器。

但如果Q1工作时电流超过1A时,需加装散热器。

如果需要更大的电流(大于3A),可采用IRFZ34N等替换Q1。

图4.1 LM324组成的PWM直流电机产生原理图4.1.2工作原理脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。

它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。

一种模拟控制方式,根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定。

上述电路中,运算放大器U1A和U1B两级产生三角波,U1C为跟随器,起隔离作用。

U1B输出的三角波与从电位器RP得到的直流电压相加后输入到U1D的反相端,U1D作为脉冲宽度调制电路,其输出一定占空比的矩形脉冲,其占空比与反相端输入信号的瞬时采样值成比例,然后控制三极管Q1的导通时间,使其输出电流随输入电压的平均值大小而变化,进而控制电机的旋转速度。

调节电位器可调节占空比的大小,即可调节电机的转速。

4.2 H桥式电机正反转驱动主回路4.2.1 主电路原理图H桥式可逆直流脉宽调速系统主电路的如图4.2所示。

PWM逆变器的直流电C滤波,以获得恒定源由交流电网经不控的二极管整流器产生,并采用大电容0U由于电容量较大,突加电源时相当短路,势必产生很大的充电电的直流电压s流,容易损坏整流二极管。

为了限制充电电流,在整流器和滤波电容之间串入限流电阻R0(或电抗),合上电源以后,延时用开关将R0短路,以免在运行中造成附加损耗。

滤波电容器往往在PWM装置的体积和重量中占有不小的份额,因此电容量的选择是PWM装置设计中的重要问题。

但对于PWM变换器中的滤波电容,其作用除滤波外,还有当电机制动时吸收运行系统动能的作用。

由于直流电源靠二极管整流器供电,不可能回馈电能,电机制动时只好对滤波电容充电,这将使电容两端电压升高,称作“泵升电压”。

为了限制泵升电压,用镇流电阻Rb消耗掉这些能量,在泵升电压达到允许值时接通VT5。

图4.2 桥式可逆直流脉宽调速系统主电路的原理图4.3光电编码器测速电路4.3.1光电编码器的工作原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。

这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。

光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。

由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

此外,为判断旋转方向,码盘还可提供相位相差90o的两路脉冲信号。

根据检测原理,编码器可分为光学式、磁式、感应式和电容式。

根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

图2光电编码器状态图图3 光电编码器测速原理图4.4频率测量及显示电路图4.4.1系统原理图各部分模块的功能:①光电编码器:采集光电信号.②放大、整形电路:对传感器送过来的信号进行放大和整形,在送入单片机进行数据的处理转换。

③单片机:对处理过的信号进行转换成转速的实际值,送入LED④LED显示:用来对所测量到的转速进行显示。

4.4.1 AT89C51单片机简介单片机我们采用AT89C51(其引脚图如图3-1),相较于INTEL公司的8051它本身带有一定的优点。

AT89C51是一种带4K字节闪烁可编程可擦除只读存贮器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS 8位微处理器,俗称单片机。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器, AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

图4.4.2 AY89C51引脚图(1)VCC:供电电压,(2)GND:接地。

(3)P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

(4)P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为第八位地址接收。

(5)P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

(6)P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口。

P3口管脚备选功能:(7)P3.0 RXD(串行输入口)(8)P3.1 TXD(串行输出口)(9)P3.2 /INT0(外部中断0)(10)P3.3 /INT1(外部中断1)(11)P3.4 T0(记时器0外部输入)(12)P3.5 T1(记时器1外部输入)(13)P3.6 /WR(外部数据存储器写选通)(14)P3.7 /RD(外部数据存储器读选通)(15)P3口同时为闪烁编程和编程校验接收一些控制信号。

(16)?RST:复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

(17)ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

(18)PSEN:外部程序存储器的选通信号。

相关文档
最新文档