向量平行的坐标表示-PPT课件

合集下载

空间向量与平行关系课件

空间向量与平行关系课件

(3)空间直线的向量表达式的两点作用: ①定位置:点A和向量a可以确定直线的_位__置__; ②定点:可以具体表示出l上的任意_一__点__. 3.向量a为平面α的法向量应满足的两个条件 (1)向量a表示直线l的_方__向__向__量__; (2)直线l_⊥__平面α.
4.用向量描述空间平行关系 设空间两条直线l,m的方向向量分别为a=(a1,a2,a3), b=(b1,b2,b3),两个平面α,β的法向量分别为u=(u1,u2,u3), v=(v1,v2,v3),则有如下结论

m
AN
0,
m NM 0,
所以
a 2
x1
0
y1
az1
0,
a 2
x1
a 2
y1
0
z1
0,
所以y1=-x1=-2z1.取z1=1,
所以平面AMN的一个法向量为m=(2,-2,1).
同理由
n n
DB DF
可00,,得x2=-y2,y2=-2z2.
令z2=1,
所以平面EFDB的一个法向量为n=(2,-2,1).
2.应用向量法证明线面平行问题的方法 (1)证明直线的方向向量与平面的法向量垂直. (2)证明直线的方向向量与平面内的某一直线的方向向量共线. (3)证明直线的方向向量可用平面内的任两个不共线的向量表 示.即用平面向量基本定理证明线面平行.
3.证明面面平行的方法 设平面α的法向量为n1=(a1,b1,c1),平面β的法向量为 n2=(a2,b2,c2),则α//β⇔n1∥n2⇔(a1,b1,c1)=k(a2,b2,c2) (k∈R).
位置关系 向量关系 向量运算关系
l∥m
_a_∥__b_ _a_=_k_b_,_k_∈__R_

1.3 空间向量的坐标表示及其运算(共47张PPT)

1.3 空间向量的坐标表示及其运算(共47张PPT)
1.空间向量的坐标运算法则
设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么
向量运算
加法
减法
数乘
数量积
向量表示
a+b
a-b
λa
a·b
坐标表示
(a1+b1,a2+b2,a3+b3)
(a1-b1,a2-b2,a3-b3)
(λa1,λa2,λa3)
a1b1+a2b2+a3b3
2.空间向量的坐标与其端点坐标的关系:
能运用公式解决问
题.(数学运算)
思维脉络
情境导学
我国著名数学家吴文俊先生在《数学教育现
代化问题》中指出:“数学研究数量关系与空间形
式,简单讲就是形与数,欧几里得几何体系的特点是
排除了数量关系,对于研究空间形式,你要真正的
‘腾飞’,不通过数量关系,我想不出有什么好的办
法…….”
吴文俊先生明确地指出中学几何的“腾飞”是
(1)求AB + CA, CB-2BA, AB ·AC;
(2)若点 M 满足AM =
1
3
AB + AC,求点
2
4
M 的坐标;
(3)若 p=,q=,求(p+q)·(p-q).
思路分析先由点的坐标求出各个向量的坐标,再按照空间向量运算的坐标运算法则进行计算求解.
解:(1)因为 A(1,-2,4),B(-2,3,0),C(2,-2,-5),
(2)a⊥b⇔
a·b=0

a1=λb1,a2=λb2,a3=λb3 (λ∈R);
a1b1+a2b2+a3b3=0
.
点睛:当b的坐标中b1,b2,b3都不等于0时,a与b平行的条件还可以表

空间向量与平行关系 课件

空间向量与平行关系  课件
空间向量与平行关系
[知识提炼·梳理] 1.直线的方向向量 直线的方向向量是指和这条直线平行或共线的向 量.
温馨提示 一条直线的方向向量不唯一.直线的方向向量有无数 条,它们都是平行向量.
2.平面的法向量 直线 l⊥α,取直线 l 的方向向量 a,则 a 叫做平面 α 的法向量. 温馨提示 平面的法向量不唯一,平面的法向量有无数条,它们 都是平行向量.
解:(1)①因为 a=(4,6,-2),b=(-2,-3,1), 所以 a=-2b,所以 a∥b,所以 l1∥l2. ②因为 a=(5,0,2),b=(0,1,0), 所以 a·b=0,所以 a⊥b,所以 l1⊥l2.
(2)①因为 u=(-1,1,-2),v=3,2,-12, 所以 u·v=-3+2+1=0,所以 u⊥v,所以 α⊥β. ②因为 u=(3,0,0),v=(-2,0,0), 所以 u=-32 v,所以 u∥v,所以 α∥β.
①u=(-1,1,-2),v=3,2,-12; ②u=(3,0,0),v=(-2,0,0);
(Байду номын сангаас)设 u 是平面 α 的法向量,a 是直线 l 的方向向量, 根据下列条件判断平面 a 与 l 的位置关系:
①u=(2,2,-1),a=(-6,8,4); ②u=(2,-3,0),a=(8,-12,0).
归纳升华 平面法向量的求法
(1)当已知平面的垂线时,在垂线上取一非零向量即 可作为平面的法向量.
(2)当已知平面 α 内两不共线向量 a=(a1,a2,a3),b =(b1,b2,b3)时,常用特定系数法求法向量:
设法向量 n=(x,y,z),
a·n=0, a1x+a2y+a3z=0,


b·n=0 b1x+b2y+b3z=0,

高中数学(新人教A版)选择性必修一:空间向量运算的坐标表示【精品课件】

高中数学(新人教A版)选择性必修一:空间向量运算的坐标表示【精品课件】
3m-n= (5,-11,19)
,(2m)·(-3n)= 168
,
.
解析:m+n=(1,-3,5)+(-2,2,-4)=(-1,-1,1),3m-n=3(1,-3,5)-(-2,2,-4)=(5,-11,19),
(2m)·(-3n)=(2,-6,10)·(6,-6,12)=168.
2
2.已知空间向量a=(2,λ,-1),b=(λ,8,λ-6),若a∥b,则λ=
(a-b)=a2-b2.
2.解决空间中的
平行、垂直问题
例 2 已知空间三点 A(-2,0,2),B(-1,1,2),C(-3,0,4).设 a=,b= .
(1)若|c|=3,c∥ ,求 c;
(2)若ka+b与ka-2b互相垂直,求k.
思路分析(1)根据 c∥,设 c=λ,则向量 c 的坐标可用 λ 表示,再利用|c|=3 求 λ 值;
(2)把ka+b与ka-2b用坐标表示出来,再根据数量积为0求解.
解:(1)∵ =(-2,-1,2)且 c∥ ,
∴设 c=λ =(-2λ,-λ,2λ)(λ∈R).
∴|c|= (-2)2 + (-)2 + (2)2 =3|λ|=3,解得 λ=±1.
∴c=(-2,-1,2)或 c=(2,1,-2).
空间向量运算的坐标表示


01空间向量的坐标运算
02解决空间中的平行、垂直问题
03向量夹角与长度的计算
04利用空间向量解决探索性问题
学习目标
1.会利用空间向量的坐标运算解决简单的运算问
题.(数学运算)
2.掌握空间向量运算的坐标表示,并会判断两个向量
是否共线或垂直.(逻辑推理、数学运算)

空间向量及其运算的坐标表示(15张PPT)——高中数学人教A版选择性必修第一册

空间向量及其运算的坐标表示(15张PPT)——高中数学人教A版选择性必修第一册
深度探究
点的位置
向量位置
坐标
特点
x轴上
平行于x轴
(x,0,0)
纵、竖坐标均为0
y轴上
平行于y轴
(0,y,0)
横、竖坐标均为0
z轴上
平行于z轴
(0,0,z)
横、纵坐标均为0
Oxy平面上
平行于Oxy平面
(x,y,0)
竖坐标为0
Oyz平面上
平行于Oyz平面
(0,y,z)
横坐标为0
Ozx平面上
平行于Ozx平面
典例分析
例4如图,在正方体ABCD-A₁B₁C₁D₁ 中 ,E,F分别是BB₁ ,D₁B₁ 的中点,求证:EF⊥DA₁证明:不妨设正方体的棱长为1,建立如图所示的空间直角坐标系Oxyz, 则
典例分析
所以EF ·所以EF⊥DA₁,即EF⊥DA₁
,又A₁(1,0,1),D(0,0,0),
所以DA₁=(1,0,1)
深度探究
空间向量的坐标:在空间直角坐标系0xyz 中,给定向量a,作 0A=a,
由空间向量基本定理,
(1) 垂面法:过点A作三个平面分别垂直于x轴 ,y 轴 ,z轴于B,C,D三点,点B,C,D在x轴 ,y 轴 ,z 轴上的坐标分别为x,y,z,则(x,y,z)就是点 A的坐标。(2) 垂线段法:先确定点A在0xy平面内的射影A₁,由A₁A的长度及与z轴正方向的异同,确定竖坐标z, 再在0xy平面内确定点A₁ 的横坐标x 和纵坐标y, 那么点A的坐标就是(x,y,z).(3) 向量法:当向量的起点是原点时,向量坐标与向量终点的坐标相同。
例 1 如图,在长方体OABC-D'A'B'C′中 ,OA=3,0C=4,0D'=2,以为单位正交基底,建立如图所示的直角坐标系Oxyz。

平面向量平行的坐标表示及运算课件

平面向量平行的坐标表示及运算课件
设两个向量$overset{longrightarrow}{a} = (x_1, y_1)$和$overset{longrightarrow}{b} = (x_2, y_2)$,如果$overset{longrightarrow}{a}//overset{longrightarrow}{b}$,则它们的坐标之间存在一定的关系。
平面向量平行的坐标表示及运算PPT课件
目录
contents
平面向量平行的坐标表示平面向量平行的性质平面向量平行的运算平面向量平行的应用
01
平面向量平行的坐标表示

平面向量平行是指两个向量在同一平面内,方向相同或相反,且起点和终点分别对应。
数学符号表示为:$overset{longrightarrow}{a}//overset{longrightarrow}{b}$。
平面向量平行时,它们的坐标成比例;而平面向量共线时,它们的坐标不一定成比例。
一个向量与另一个向量平行时,它们不可能垂直;反之亦然。
平面向量平行与垂直都是基于向量的方向和模长来定义的,但它们是两种完全不同的关系。
平面向量平行与向量垂直是两种互斥的关系,即一个向量不能同时与另一个向量平行和垂直。
03
03
02
01
在物理中,向量平行可以用来表示力的合成与分解,从而解决与力相关的物理问题。
向量平行可以用来表示物体的速度和加速度,从而解决与速度和加速度相关的物理问题。
速度和加速度的研究
力的合成与分解
通过分析向量平行,可以研究交通流量的变化规律,从而优化交通流量的分配。
交通流量的分析
通过向量平行,可以优化物流配送路径,提高物流配送效率。
平面向量平行的运算
定义:向量加法运算是指将两个向量首尾相接,形成一个新的向量。

空间向量运算的坐标表示空间向量平行线和垂直的条件课件

空间向量运算的坐标表示空间向量平行线和垂直的条件课件
-3b=( )
A.(6,3,-7) B.(-2,-1,-1) C.(2,1,-5) D.(14,7,-11)
2.若 a=(2,3,-1) ,b=(2,0,3) ,c=(0,2,2) ,则 a·(b+c) 的
值为( )
A.(4,6,-5) B.5
C.7
D.36
3.若向量 a,b 的坐标满足 a+b=(-2,-1,2) ,a-b=(4,-3,-2) ,
所以( (- -xx, ,1--yy,,2- -zz) )= =mn( (- -11, ,01, ,20) ), ,
x=-1, 解得y=1, 即 D(-1,1,2).
z=2,
(2)依题意,得A→B =(-1,1,0),A→C =(-1,0,2),B→C =(0,-1,2).假设
存在实数α,β,使得A→C =αA→B +βB→C 成立,则有(-1,0,2)=α(-1,1,
空间向量运算的坐标表示及应用 第1课时 空间向量运算的坐标表示、空 间向量平行(共线)和垂直的条件
必备知识·自主学习
1.空间向量的坐标运算 设a=(a1,a2,a3),b=(b1,b2,b3), ①a+b=_(_a_1_+__b_1,__a_2_+__b_2_,__a_3+__b_3_)_, ②a-b=_(_a_1_-__b_1,__a_2_-__b_2_,__a_3-__b_3_)_, ③λa=_(_λ__a_1_,__λ__a_2,__λ__a_3_)_, ④a·b=_a_1_b_1+__a_2_b_2_+__a_3b_3_.
关键能力·合作学习 类型一 用坐标表示空间向量(直观想象)
【典例】(1)已知点 A 在基{a,b,c}下的坐标为(8,6,4),其中 a=i+j,b=j +k,c=k+i,则点 A 在基{i,j,k}下的坐标是( ) A.(12,14,10) B.(10,12,14) C.(14,12,10) D.(4,3,2) (2)在棱长为 1 的正方体 ABCD­A′B′C′D′中,E,F,G 分别为棱 DD′,D′C ′,BC 的中点,以{A→B ,A→D , AA' }为基,求向量A→E ,A→G ,A→F 的坐标.

空间向量与平行关系 课件

空间向量与平行关系 课件

【解析】1.选A.(-2,0,2)=-2(1,0,-1),故v1∥v2,又l1和
l2不重合,所以直线l1和l2的位置关系是平行.
2.存在.如图所示,建立空间直角坐标系,设正方体ABCD-
A1B1C1D1的棱长为1,则E(1,1 ,0),F(1,0,1 ),C 0,1,0 ,
2
3
假设在DD1上存在一点G,使CG∥EF则,CG EF,由于点G在z
2.∵l∥α,∴l的方向向量与平面α的法向量垂直,
则2, m,1 (1, 1 , 2) 0,
2 2 1 m 2 0标系,则有D(0,0,0),A(2,
0,0),B1(2,2,2),C1(0,2,2),E(2,2,1),F(0,0,
1),所以 FC1 0,2,1,AD 2,0,0,AE 0,2,1,C1B1 2,0,0,
A(0,0,0),A1(0,0,4),B(1,0,0),
B1(1,0,4),C1(0,2,4).
(1) AB1 1,0,4,AC1 0,2,4,
设平面AB1C1的法向量为n=(x,y,z),则 n AB1且n AC1,

x 4z 0, 2y 4z 0,
令z=1,则x=-4,y=-2,
类型 三 利用空间向量处理线面平行与面面平行问题
【典型例题】
1.已知平面α的一个法向量是(2,3,-1),平面β的一个法
向量是(4,λ,-2),若α∥β,则λ的值是( )
A. 10
B.-6
C.6
D.10
3
3
2.已知l∥α,且l的一个方向向量为(2,m,1),平面α的一个法
向量为 (1, 1 , 2),则m=_________.
2.利用空间向量证明两个平面平行的思路方法 (1)直接证明法:建立空间直角坐标系,分别求出两个平面的法向 量,证明两个法向量平行. (2)间接证明法:根据两个平面平行的判定定理,把证明两个平面 平行转化为证明线面平行或线线平行,再利用空间向量证明.

中职数学拓展模块4.3.2 平面向量平行的坐标表示 课件

中职数学拓展模块4.3.2  平面向量平行的坐标表示 课件
第四单元 平面向量
4.3.2 平面向量平行的坐标表示
知识导入
知识探究
例题讲解
课堂练习
回顾
平面向量共线的充要条件是什么?
b a ( a 0)
你能用坐标来表示共线向
量充要条件吗?
知识总结
知识导入
知识探究
例题讲解
课堂练习
知识总结
推导 设两个非零向量Ԧ = (1 ,1 )与 = 2 ,2 共线.
× (−1)
×2
1
( − 1, ) (2, − 1) ( − 4,2) …
2
你是否能写出一些与向量与 = (4,1)平行(共线)呢?
1
×
2
× (−1)
×2
1
(−4, − 1) (8,2) …
(2, )
2
知识导入
知识探究
例题讲解
课堂练习
例1 设Ԧ = (, ), = , ,判断向量,是否共线.
1 2
有// ⇔
= (2 ≠ 0,且2 ≠ 0)
2 1
口诀:坐标成比例
知识总结
1
2
解:与均为不与坐标轴平行(共线)的非零向量
Ԧ
1
1 3 1
=
= =
2
2 6 2
1 1
=
2 2
所以 //.
知识总结
坐标成比例
知识导入
知识探究
例题讲解
课堂练习
例2 设Ԧ = (, ), = −, ,且//,求m的值.
解:因为//
1
3
=
−2
= −6
+ = (−, + )
因为与 + 共线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则存在实数λ使a λb,由平面向量基本定理可知
x1i y1 j λ x2 i y2 j λx2 i λy2 j
于是x1 λx2①, y1 λy2②

y2

x
,得
2
x1y2 x2y1 0.
若y1 0且y2 (0 即向量b不与坐标轴平行),则上式可变形为
x1 x2 . y1 y2
当 k 为何值时,A,B,C 三点共线?
解:依题意,得
巩固练习 已知 a=(1,2),b=(-3,2), 当 k 为何值时,ka+b 与 a-3b 平行?
解:由已知得,ka+b=(k-3,2k+2), a-3b=(10,-4),
∵ka+b 与 a-3b 平行, ∴(k-3)×(-4)-10(2k+2)=0, 解得 k=-31.
已知向量 a (1, m),b (m,2)
若 a // b , 则实数 m 等于( C )
A. 2
B. 2
C. 2 或 2
D.0
已知向量 a=(1,2),b=(λ,1),
若(a+2b)∥(2a-2b),则 λ 的值等于( A )
1
1
A.2
B.3
C.1
D.2
利用向量共线确定点的坐标
【例 3】 如图,已知点 A(4,0),B(4,4),C(2,6),O(0,0), 求 AC 与 OB 的交点 P 的坐标.
分析:先设出点 P 的坐标,然后利用共线条件求解.
解:设 P(x,y),则O→P=(x,y), 且O→B=(4,4),又O→P与O→B共线,所以 x=y. 又A→P=(x-4,y),A→C=(-2,6),A→P与A→C共线, 则得(x-4)×6-y×(-2)=0,
解之得 x=y=3.
小结:
r
r
a r
解: (2) 6 3 (4) 0a与b共线
(3)a (5,3),b (8,5)
解: 55 83 0 a与b不共线
已知 A(2,1),B(0,4),C(1,3),D(5,-3). 判断A→B与C→D是否共线?
解 A→B=(0,4)-(2,1)=(-2,3). C→D=(5,-3)-(1,3)=(4,-6).
2.共线向量定理 (1)判定定理:a是一个非零向量,若存在一 个实数λ,使 b=λa ,则向量b与非零 向量a 共线 . (2)性质定理:若向量b与非零向量a 共线 , 则存在一个实数λ,使得 b=λa.
a b • 1、设 (1,2) (2,5)
• 则 a b (3,7) a b (1,3)
2、已知 A(-5,-1) , B(3,-2) , 则
AB (8,1)
• 判断下列向量是否共线 根据b=λa
a b • (1) (1,2), (3,6)
b 3aa与b共线
a b • (2) (1,2), (2,3)
b a a与b不共线
探究:向量平行(共线)的坐标表示
设a, b是非零向量,且a (x1, y1), b x2, y2 .若a∥b,
定理:若两个向量(与坐标轴 不平行)平行,则它们相应的 坐标成比例. 定理:若两个向量相对应的坐 标成比例,则它们平行.
• 类型一: 判断向量是否共线
a b x1y2-x2y1=0
与 共线
a b • (1) (3,2), (12,8)
解: 38 12 2 0a与b共线
(2)a (2,4),b (3,6)
向量平行 的坐标表示
1.平面向量的坐标运算 (1)若a=(x1,y1),b=(x2,y2), 则a+b= (x1+x2,y1+y2) ,即两个向量和的坐标等 于这两个向量相应坐标的和. (2)若a=(x1,y1),b=(x2,y2), 则a-b= (x1-x2,y1-y2) ,即两个向量差的坐标 等于这两个向量相应坐标的差. (3)若a=(x,y),λ∈R,则λa= (λx,λy) ,即实数与 向量的积的坐标等于用这个实数乘原来向量的相应 坐标.
• 已知 A(2,3), B(3,-3), C(-1,21) • 证明 : A, B, C 三点共线. 证明: ∵A→B=(1,-6), A→C=(-3,18),
118(3)(6) 0
则A→B,A→C共线 , 即 A,B,C 三点共线.
类型三 根据向量共线求参数
例 设向量O→A=(k,12),O→B=(4,5),O→C=(10,k),
( r
x1
,
yr1
),
b
r
(
Hale Waihona Puke x2,y2)
a Pb b a x1y2 x2 y1 0
作业: 课本练习题
谢谢
∵ (-2)×(-6)-3×4=0, ∴ A→B与C→D共线.
类型二: 三点共线问题 【例】 已知O→A=(3,4),O→B=(7,12),O→C=(9,16),
求证:A,B,C 三点共线.
证明: ∵A→BA→=C=O→BO→-C-O→AO→=A=(4,(6,8),12),
412 68 0
则A→B,A→C共线 , 即 A,B,C 三点共线.
相关文档
最新文档