水力学实验报告课件

合集下载

流体力学(水力学)实验报告

流体力学(水力学)实验报告

5、成果分析及小结
6、对本实验有什么建议或改进意见:
实验报告完成日期:
年月 日
1、实验目的
六、管道局部阻力实验报告
2、计算公式
4、实验数据及计算 (仪器编号:
)实验日期:
1) 有关常数:
大管直径 D= 小管直径 d=
cm;大管断面面积 A1= cm;小管断面面积 A2=
cm2; cm2;
2) 量测记录表格(注意指导和记录所示仪器与实际仪器的编号不同)
4、 用方格厘米纸或双对数纸绘制 lg h f ~ lg v 曲线,并计算层流及紊流时的
斜率 m 值。
5、成果分析研究及小结
6、对仪器设备的使用上,用你所学的其他知识谈谈你对仪器设备的改进建 议。
1、实验目的:
五、管道沿程阻力实验报告
2、计算公式:
3、实验数据及计算值:
1) 有关常数: ①管道直径 d=
cm; cm。
量水 量水 体积 时间
V
T
(cm3) s
10 3) 计算表格 ①文德里管
项目 公 测
式 次
1 2 3 4 5 6 7 8 9 10
测压管高差 Δh=▽2-▽1
cm
实测流量
Q实
=
V T
cm3/s
理论流量 流量系数
K Q理 = K ∆h cm3/s
µ = Q实 Q理
5、绘制文德里管(Δh)与实测流量 Q实 的关系曲线(用方格纸,比例自选)
6、成果分析及小结
报告完成日期:
八、演示类实验 对演示类实验,要求记录观察到的现象,写出你通过该实验演示 后的收获和体会。请在实验报告后附加纸张。 流线演示实验 相对平衡演示实验 粘性演示实验 水击演示实验 虹吸演示实验

水力学经典教学课件PPT课件( 83页)

水力学经典教学课件PPT课件( 83页)





v c, 急 流

一般断面渠道静水中波速c为
c gA/B gh
• 将一块石子投入静水中,水面以投石点为中心 产生一系列同心圆,其以一定速度离开中心向
四周扩散
vw
vw’
• 将石子投入等速运动的水流中,则波传播速度 是水流流速与波速向量和。当水流流速小于波 速(v < vw)时,微波向下游传播的绝对速度 为(v + vw),向上游传播的绝对速度为
2.弗劳德(W.Froude)数法
通过渠中的断面平均速度v与干扰波在静水中的传 播速度c之比来确定流动类型。
弗劳德数 v v Fr
c gh
流动类型的判别
F r 1, 缓 流
F r 1,




F r 1, 急 流

当V=c时,是急流与缓流的临界状态。
对临界流动来说,断面平均流速恰好与微波相对波速相等,
即V= c gh
这时: V c 1 gh gh
V gh 是一个无量纲的数,称为弗劳德数,用Fr表示。
流动是临界流时,弗劳德数等于1。所以液体在明渠中的流动 状态也可用弗劳德数来进行判别。
定义弗劳德(Froude)数 F r V
gh
当 Fr 1 时,水流为缓流, 当 Fr 1 时,水流为临界流, 当 Fr 1 时,水流为急流,
yc1A1gQ2A 1 yc2A2
Q2 gA2
平底坡棱柱形渠道的水 跃基本方程
根据平底坡棱柱形渠道的水跃方程
Q2
Q2
yc1A1gA 1 yc2A2
3. 断面比能法
断面比能 单位重量水 体相对于过水断面最低点 处的水平面的总能量定义 为断面比能,也称为断面 单位能量,记为e( )。

水力学实验报告(静水压强量测实验)

水力学实验报告(静水压强量测实验)

2
������0 = ������������ + ������(∇7 − ∇6) (Pa)
203220 252220 76473 33027
3
������������ = ������[(∇1 − ∇2) + ������0������] (Pa)
199920 248920 73173 29727
答:1、4、5 号管液面不等压,1 号管与外界相通,������0 = ������������,为外界大气压,而 4、 6 号管与箱体连通,������4 = ������6 = ������0,为箱内部气压,二者不同。 1 号管与 3 号管均与外界大气相通,������1 = ������3 = ������������。
差,如读数误差,尺倾斜误差等。
七、 回答实验指导书中有关问题
1、 第 1、2、3 号管和 4、6 号管,可否取等压面?为什么?
答:1、2、3 号管可以取等压面,因为他们连接的介质相同,且都连通箱体液体。
4、6 管上端空气连通,底部液体并不连通,因而不可取等压面
2、 第 1、4、6 号管和 1、3 号管中的液面,是不是等压面?为什么?
学院:水利水电学院
专业:水利水电工程
2014 年 6 月 2 日
实验名称
静水压强量测实验
指导教师
赵昕
年级
2012
学号
2012301580228
成绩
姓名
王頔
一、 实验的目的 1. 量测静水中任一点的压强。 2. 测定另一种液体的重率。 3. 要求掌握 U 形管和连通管的测压原理以及运用等压面概念分析问题的能力。
6
������′
(N/m3)

《水力学》实验PPT64页

《水力学》实验PPT64页

31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
《水力学》实验
1、合法而稳定的权力在使用得当时很失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比

2024版水力学ppt课件

2024版水力学ppt课件
结果分析
根据计算结果,分析管道的水力性能是否满足设计要求,提出改进建议。
21
减少流动损失措施探讨
优化管道设计
通过合理布置管道走向、减少弯 头数量、选用合适的管径等措施
降低沿程损失和局部损失。
采用高效节能设备
选用低阻力阀门、高效水泵等设 备降低流动损失。
2024/1/25
加强管道维护管理
定期清洗管道内壁、更换损坏的 管道附件等措施保持管道畅通, 减少流动阻力。
03
特性比较
恒定流具有稳定的流动特性,便于分析和计算;非恒定流 的流动特性复杂多变,需要采用动态分析方法。
15
流线、迹线和染色线概念辨析
流线
在某一瞬时,流场中每一点都与 速度矢量相切的曲线。流线反映 了该瞬时流场中速度的分布状况。
2024/1/25
迹线
某一质点在流动过程中不同时刻所 在位置的连线。迹线反映了该质点 在流动过程中的运动轨迹。
判别方法
通过计算雷诺数Re来判断流动类型。当Re小于临界雷诺数Rec时,流动为层流;当 Re大于Rec时,流动为湍流。
2024/1/25
14
恒定流与非恒定流特性比较
01
恒定流
流场中各点的流速、压强等流动参数不随时间变化,即流 动处于稳定状态。
2024/1/25
02
非恒定流
流场中各点的流速、压强等流动参数随时间变化,即流动 处于不稳定状态。
7
02 流体静力学分析
2024/1/25
8
静止液体中压强分布规律
液体内部压强随深度 的增加而增大。
液体的压强与液体的 密度和深度有关,密 度越大、深度越深, 压强越大。
2024/1/25
在同一深度,液体向 各个方向的压强相等。

2024年水力学课件

2024年水力学课件

水力学课件1.引言水力学是研究流体静力学和流体动力学的科学,主要研究液体在力的作用下的运动规律和液体与固体边界的相互作用。

水力学广泛应用于水利工程、海洋工程、环境工程、地质工程等领域。

本课件旨在介绍水力学的基本原理、方法和应用,为读者提供水力学的系统学习和研究。

2.流体静力学流体静力学主要研究在静止的流体中,流体粒子所受的力以及流体粒子之间的相互作用。

流体静力学的核心内容是压强、液体的浮力和静力平衡。

2.1压强压强是单位面积上所受到的力的大小,其计算公式为p=F/A,其中p表示压强,F表示作用在面积A上的力。

在液体中,压强随深度的增加而增大,其关系式为p=ρgh,其中ρ表示液体的密度,g 表示重力加速度,h表示液体的深度。

2.2浮力浮力是指液体对浸入其中的物体所产生的向上的力。

浮力的大小等于物体所排开液体的重量,其计算公式为F_b=ρVg,其中F_b 表示浮力,ρ表示液体的密度,V表示物体排开液体的体积,g表示重力加速度。

2.3静力平衡静力平衡是指在静止的流体中,作用在流体上的各个力相互平衡,使流体保持静止状态。

静力平衡的条件是作用在流体上的各个力的合力为零,即∑F=0。

3.流体动力学流体动力学主要研究在力的作用下,流体的运动规律以及流体与固体边界的相互作用。

流体动力学的核心内容是流体的流动、伯努利方程和流体的阻力。

3.1流体的流动流体的流动可以分为层流和湍流两种类型。

层流是指流体以平行层的形式流动,流体粒子之间的相互作用力较小,流动速度分布均匀。

湍流是指流体粒子之间的相互作用力较大,流体粒子呈无序运动,流动速度分布不均匀。

3.2伯努利方程伯努利方程是描述在不可压缩、稳定流动的流体中,流体的总能量守恒的方程。

伯努利方程的表达式为p+1/2ρv^2+ρgh=常数,其中p表示流体的压强,ρ表示流体的密度,v表示流体的速度,h表示流体的位置高度,常数表示流体的总能量。

3.3流体的阻力流体的阻力是指流体在流动过程中,由于与固体边界的相互作用而产生的阻碍流体运动的力。

水力学课件-水动力学

水力学课件-水动力学

数值模拟技术的应用
随着计算机技术的不断发展,数值模拟在水力学领域的应 用将更加广泛,有助于更深入地理解流体运动的规律和特 性。
多学科交叉融合
水力学与多个学科密切相关,如物理学、化学、生物学等 ,未来水力学的研究将更加注重多学科交叉融合,以解决 复杂的水力学问题。
THANKS
感谢观看
水动力学的应用领域
水利工程
环境工程
水动力学在水利工程中广泛应用于水电站 设计、水库调度、堤防工程和河流整治等 领域。
水动力学在环境工程中涉及污水处理、水 体修复和环境监测等方面,水动力学在海洋工程中应用于船舶设计、 海洋能源开发、海底资源勘探和海上风电 等领域。
水力发电
水力发电是利用水流所蕴含的势能和动能转化为机械能,进一步转化为电能的过程。
水力发电站通常由水坝、水轮机和发电机组等组成,通过调节水库水位或水轮机转 轮转速来控制发电量。
水力发电具有可再生、清洁、能源稳定等优点,但也存在建设成本高、对生态环境 影响较大等缺点。
水利工程设计
水利工程是指为了控制和调配自 然水以达到防洪、灌溉、供水、
流体静力学的基本原理包括流体平衡 原理、帕斯卡原理和连通器原理等。
流体动力学基本方程
流体动力学基本概念
流体动力学是研究流体运动规律的科学。
流体动力学基本方程
流体动力学的基本方程包括质量守恒方程、动量守恒方程和能量守 恒方程等。
流体动力学方程的求解方法
流体动力学方程的求解方法有多种,如有限差分法、有限元法和谱 方法等。
水头损失
由于流体流动过程中受到阻力而产生的能 量损失。
流体流动的基本方程
包括质量守恒、动量守恒和能量守恒等基 本物理定律。
对未来的展望

水力学课件.ppt

水力学课件.ppt
水工建筑物的渗流问题 水工建筑物的过水能力问题
前进
水力学的主要研究课题:
作用于建筑物表面上静水总压力 在压管中的恒定流 明渠恒定流 堰流及闸孔出流 泄水建筑物下游的水流衔接与消能 渗流
前进 返回
连续介质的假说
假设液体是一种连续充满其所占据空间的毫无空隙 的连续体。水力学所研究的液体运动是连续介质的连 续流动。 意义:使描述液体运动的一切物理量在空间和时间上 连续,故可利用连续函数的分析方法来研究液体运动。
A线为牛顿液体,当液体种类一定、温
B
度一定时,η=const ,切应力与剪切
τ
C
变形速度成正比
A B线是理想宾汉液体,如泥浆、血浆等
D C线是伪塑性流体,如尼龙、橡胶的溶液、
η 1
颜料、油漆等
O
du/dy D线膨胀性流体,如生面团、浓淀粉糊等
(4)液体的粘滞性是液体运动产生能量损失的主要根源 实际液体与理想液体的概念
单位质量力
若一质量为M的均质液体,作用于其上的总质量力为F,则所受的
单位质量力为
f , F与加速度有一样的量纲[L/T2]
M
若总质量力F在空间坐标上的投影分别为Fx、Fy、Fz、,单位质量
力在相应坐标上的投影为fx、fy、fz,则有
X Fx ,Y Fy , Z Fz MMM
返回
具体说:是以数学、物理、理论力学为基础,采 用理论分析与实验研究的方法,研究液体平衡和机械 运动的规律及其实际应用。
水静力学 按液体的存在形式
水动力学
基本原理 按研究的内容
工程应用
前进 返回
实际工程中的水力学问题
前进
水对水工建筑物的作用力问题 水工建筑物的渗流问题

水力学实验报告

水力学实验报告

水力学实验报告学院:班级:姓名:学号:第三组同学:姓名:学号:姓名:学号:姓名:学号:2015.12.251 平面静水总压力实验1.1实验目的1.掌握解析法及压力图法,测定矩形平面上的静水总压力。

2.验证平面静水压力理论。

1.2实验原理作用在任意形状平面上的静水总压力P 等于该平面形心处的压强p c 与平面面积A 的乘积:A p P c =,方向垂直指向受压面。

对于上、下边与水面平行的矩形平面上的静水总压力及其作用点的位置,可采用压力图法:静水总压力P 的大小等于压强分布图的面积Ω和以宽度b 所构成的压强分布体的体积。

b P Ω=若压强分布图为三角形分布、如图3-2,则He b gH P 31212==ρ式中:e -为三角形压强分布图的形心距底部的距离。

若压强分布图为梯形分布,如图3-3,则2121212321H H H H a e ab H H g P ++)+(⋅==ρ式中:e -为梯形压强分布图的形心距梯形底边的距离。

图1-1 静水压强分布图(三角形) 图1-2 静水压强分布图(梯形)本实验设备原理如图3-4,由力矩平衡原理。

图1-3 静水总压力实验设备图10L P L G ⋅=⋅其中:e L L -=1求出平面静水总压力1L GL P =1.3实验设备在自循环水箱上部安装一敞开的矩形容器,容器通过进水开关K l ,放水开关K 2与水箱连接。

容器上部放置一与扇形体相连的平衡杆,如图3-5所示。

??3-5 ??????图 1-4 静水总压力仪 1.4实验步骤1.熟悉仪器,测记有关常数。

2.用底脚螺丝调平,使水准泡居中。

3.调整平衡锤使平衡杆处于水平状态。

4.打开进水阀门K 1,待水流上升到一定高度后关闭。

5.在天平盘上放置适量砝码。

若平衡杆仍无法达到水平状态,可通过进水开关进水或放水开关放水来调节进放水量直至平衡。

6.测记砝码质量及水位的刻度数。

7.重复步骤4~6,水位读数在100mm 以下做3次,以上做3次。

水力学课件

水力学课件
前进
压强的测量 ——利用静水力学原理设计的液体测压计 利用静水力学原理设计的液体测压计
1.测压管 测压管
pa
2.U形水银测压计 形水银测压计
h h L A h α ρ A b
A B
ρm
p A = ρ gL sin α
B s

p A = pB = ρ gh
p A + ρ gb = ρ m gh

3.差压计 差压计
c
A A
轴平行的轴线的面积惯性矩. L 轴平行的轴线的面积惯性矩. dFP = ∫ L ρ gL sin α dA = ρ 依力矩定理, 依力矩定理, FP LD = ∫Ob轴平行的轴线的面积惯性矩g sin α ∫ L2 dA
I b = I c + L2 A L2 dA 为平面对 为平面对Ob轴的面积惯性矩,记为 轴的面积惯性矩, c 其中 ∫ 轴的面积惯性矩
返回
图解法——作用于矩形平面上的静水总压力的计算 作用于矩形平面上的静水总压力的计算 把某一受压面上压强随水深变化的函数关
系表示成图形,称为静水压强分布图. 系表示成图形,称为静水压强分布图.
静水压强分布图的绘制规则: 的绘制规则:
其中b为矩形受压面的宽度; 其中 为矩形受压面的宽度; 为矩形受压面的宽度 为静水压强分布图形的面积; 为静水压强分布图形的面积; 1.按一定比例 用线段长度代表该点静水压强的大小 按一定比例,用线段长度代表该点静水压强的大小 按一定比例 举例 2.用箭头表示静水压强的方向 并与作用面垂直 用箭头表示静水压强的方向,并与作用面垂直 用箭头表示静水压强的方向
返回
解析法——作用于任意形状平面上的静水总压力 作用于任意形状平面上的静水总压力

水力学实验CAI课件

水力学实验CAI课件

2.流动型态演示
(1)慢慢开启流量调节阀,使通过微小流 量,保持水流稳定,然后打开染色水阀,避 免任何干扰震动,这时染色水成直线流动, 水流作层流运动;
(2)轻轻地调大调节阀,逐步增大管内流量,可 以观察到:染色线开始波动,呈现断裂卷曲,逐渐 形成漩涡,最后极度紊动,色线扩散看不见了,此 时管内水流已成紊流流态。 (3)在确定管内水流为紊流流态时,进行反调上 述过程,即轻轻地逐渐调小调节阀门,可以观察到 紊流向层流转变过程,稳定的水色线出现时,水流 恢复到层流。
二:试验设备
测量仪器:(1)斜比压计、(2)量水 堰、(3)跟踪式水位仪。
三:试验原理及计算公式
1.管路中的突然扩大能量损失
列出两个断面的能量方程,忽略沿程损失,有: 1 1 ( p1 p2 ) (v12 v2 2 ) r 2g 1 1 z1 z2 hj ( p1 p2 ) (v12 v2 2 )实测出p1 , p2, r 2g h v1, v2,由上式可得hj实测值。这样 实测= j实测 2 v 2g 1 理论公式计算:h j (v12 v2 2 ) kQ 2 2g 8 1 式中:k 2 ( 2 ) 2 对一特定管路k为常数 g d1 d 2 2 hj ( z1 z2 )
二:实验仪器和设备
三:实验原理及计算公式
在重力作用下处于静止状态的液体基本方p p0 rh
液体表面压强等于大气压强时称无压。
0 ap 0p
液体表面压强大于大气压强时称正压。
液体表面压强小于大气压强时称负压。
式中
z
p p0
pa
r
p -单位质量液体所具有的压力水头 ( m ) r
图5-12
简单的毕托管就是一根弯称90度的开口的细 管。测量某点的流速时,将弯管的一端放在A点, 正对来流方向,如图5-12所示。这时由于受水流 顶冲,管内的水面上升至H高度。A点为驻点,H p 包括了A点在未受毕托管阻碍时动水压强水头 ra 与该点的动能转化而成的压能,即A点的流速水 头 u g ,这样 2

《水力学实验》

《水力学实验》

河海大学文天学院水力学实验报告系专业班姓名同组者姓名§1 静水压强实验§2 平面静水总压力实验§3 能量方程实验§4 动量方程实验§5 毕托管实验§6 文德里实验§7 雷诺实验§8 沿程阻力系数实验§9局部阻力系数实验§10电拟实验§11堰流实验§1 静水压强实验一、 实验目的二、 实验要求三、 计算公式四、 实验及计算值1、实验工作平台编号:2、有关常数A 点高程A ∇ cm 。

B点高程B ∇ cm 。

3、量测记录表格项目测压管液面高程读数1∇(cm) 2∇(cm)3∇(cm)4∇ (cm)5∇ (cm)6∇(cm)p p >12 3 0p p <12 34、计算表格项目测压管液面高程差12∇-∇(cm)34∇-∇ (cm)56∇-∇ (cm)A ∇-∇5 (cm)B ∇-∇3(cm)p p >1 2 3 0p p < 12 3项目,A B 点静水压强值油密度)(560∇-∇=g p ρ)(N/cm 2AA gh p ρ=')N/cm (2 AA p p p '+=0)N/cm (2BB gh p ρ=')N/cm (2BB p p p '+=0)N/cm (2gp oil )(120∇-∇=ρ)g/cm (3p p >12 3 0p p <12 3五、成果分析及小结§2 平面静水总压力实验一、实验目的二、实验要求三、计算公式四、实验及计算值1、实验工作平台编号:2、有关常数(1)天平臂距离L= cm。

(2)扇形体垂直距离L= cm。

(3)扇形体宽度b= cm。

(4)扇形体平面高度 cm。

3、量测记录表格压强分布形式测次水位读数H(cm)砝码质量m(g)三角形分布1 2 3梯形分布1 2 34、计算表格压强分布形式测次作用点距底部距离作用点距支点垂直距离实测力矩实测静水压力理论静水压力相对值e eLL-=10mgLM=实P理P理实PPy= cm cm cm-N N N三角形分布1 2 3梯形分布1 2 3五、成果分析及小结§3 能量方程实验一、 实验目的二、 实验要求三、 实验及计算值1、实验工作平台编号:2、量测记录表格项目测压管液面高程读数(cm )1∇2∇3∇4∇5∇6∇7∇8∇9∇10∇1 2项目 毕托管液面高程读数(cm )1∇2∇3∇4∇5∇6∇7∇8∇9∇10∇1 2项目急变流断面液面高程读数(cm )渐急变流断面液面高程读数(cm )ABC11∇12∇13∇14∇15∇16∇17∇18∇ 19∇12四、绘制测压管水头线及总水头线五、成果分析及小结§4 动量方程实验一、实验目的二、实验要求三、计算公式四、实验及计算值1、实验工作平台编号:2、有关常数1)喷嘴直径d= cm。

水力学课件 (2)

水力学课件 (2)

水力学课件1. 引言水力学是研究水的运动、水力发电、水的工程应用以及涉及水的各种现象和问题的一门学科。

水是地球上最重要的自然资源之一,水力学的研究对于理解水资源的合理利用和保护非常重要。

本课件将介绍水力学的基本概念、原理和应用。

2. 基本概念2.1 水力学的定义水力学是研究水的运动规律和水的工程应用的学科,涉及到水的流动、水的压力、水的速度、水的量等内容。

2.2 水的运动形式水的运动形式有静水、流水和波动三种形式。

静水是指水在不受外力作用下保持静止的状态;流水是指水在受到某种外力作用下流动的状态;波动是指水因受到干扰而形成波浪的状态。

2.3 水力学的应用领域水力学的应用广泛,包括但不限于以下领域:•水利工程:研究水资源的开发、利用和保护,包括水库、水电站、灌溉等。

•水文学:研究地表水和地下水的形成、分布和运动规律,为水资源管理提供依据。

•水力发电:研究利用水流的动能产生电能的原理和方法。

•污水处理:研究将废水或污水处理成可以再利用的水资源的技术和方法。

3. 基本原理3.1 流体静力学•流体的压强和压力:介绍了流体的压强和压力的概念和计算方法。

•流体的平衡性:讲解了流体在静力平衡状态下的特点和应用。

3.2 流体动力学•流体的流动:介绍了流体流动的基本概念和分类,包括层流和紊流。

•流体的速度和流速:讲解了流体的速度和流速的定义和计算方法。

•流量和流速:介绍了流量和流速的关系,以及流量的计算方法。

3.3 流体力学方程•质量守恒方程:讨论了质量守恒方程的由来和应用。

•动量守恒方程:讲解了动量守恒方程的推导和应用。

•能量守恒方程:介绍了能量守恒方程的原理和适用范围。

4. 水力学实例4.1 水力发电站•水轮机原理:讲解了水轮机的工作原理和分类。

•增压式水轮机和反压式水轮机:介绍了增压式水轮机和反压式水轮机的特点和应用。

•水力发电站的构造和工作原理:介绍了水力发电站的构造和工作原理,包括水库、发电机组等。

4.2 水利工程实例•水库:讲解了水库的作用、分类和设计。

水力学课件

水力学课件

单 位 位 能 单 位 势 能
单 位 压 能 单 位 总 机 械 能 理 的
单 位 动 能
1
Z2 Z1
2
0
0
返回
实际液体恒定流微小流束的能量方程式
2 p1 u 12 p2 u2 ′ Z1 + + = Z2 + + + hw ρg 2g ρg 2g
′ hw ——单位重量液体从断面1-1流至断面2-2所损失 单位重量液体从断面1 流至断面2 单位重量液体从断面
实际液体恒定总流的能量方程式表明: 实际液体恒定总流的能量方程式表明:水流总是从水头大处流向水头 小处;或水流总是从单位机械能大处流向单位机械能小处. 小处;或水流总是从单位机械能大处流向单位机械能小处. 实际液体总流的总水头线必定是一条 逐渐下降的线, 逐渐下降的线,而测压管水头线则可能是 下降的线也可能是上升的线甚至可能是一 条水平线. 条水平线. 单位长度流程上的水头损失, 水力坡度J——单位长度流程上的水头损失,1 单位长度流程上的水头损失
(1)水流必需是恒定流; (2)作用于液体上的质量力只有重力; (3)在所选取的两个过水断面上,水流应符合渐变流的条件,但所 取的两个断面之间,水流可以不是渐变流; (4)在所取的两个过水断面之间,流量保持不变,其间没有流量加 入或分出.若有分支,则应对第一支水流建立能量方程式,例如图示 1 有支流的情况下,能量方程为: 3 p 3 α 3V 32 p1 α 1V12 Q1 Z1 + + = Z3 + + + hw1 3 1 2 2g 2g ρg ρg Q3 Q2 p 3 α 3V 32 p 2 α 2V 22 3 Z2 + + = Z3 + + + hw 2 3 2 2g 2g ρg ρg (5)流程中途没有能量H输入或输出.若有,则能量方程式应为: p1 α 1V12 p 2 α 2V 22 Z1 + + ± Ht = Z2 + + + hw 2g 2g ρg ρg

2024版水力学全套课件

2024版水力学全套课件

水力学全套课件contents •引言•水静力学•水动力学基础•水流阻力与水头损失•有压管道中的恒定流•明渠恒定流•堰流与闸孔出流目录引言水力学概述水力学的定义研究液体(主要是水)的平衡和机械运动规律及其应用的科学。

水力学的重要性在水利、能源、交通、环保等领域有广泛应用,对于国民经济和社会发展具有重要意义。

水力学与其他学科的关系与流体力学、水文学、水利工程学等学科密切相关,相互促进、共同发展。

水力学的研究对象和任务研究对象01研究任务02实际应用03发展历史现状发展趋势030201水力学的发展历史与现状课程内容及学习方法课程内容学习方法水静力学静水压强及其特性静水压强的特性静水压强的定义静水压强具有方向性,垂直于受压面并指向该面;在同一点上,静水压强的大小与受压面的方位无关。

压强的表示方法1 2 3液体平衡微分方程的概念液体平衡微分方程的建立液体平衡微分方程的应用液体平衡微分方程重力作用下液体平衡重力作用下液体平衡的概念等压面的概念重力作用下液体平衡的应用液体的相对平衡液体的相对平衡的概念液体相对平衡的原理液体相对平衡的应用液体作用在平面上的总压力的概念总压力的计算方法总压力的应用液体作用在曲面上的总压力的概念01总压力的计算方法02总压力的应用03水动力学基础描述液体运动的方法宏观描述微观描述欧拉法与拉格朗日法欧拉法拉格朗日法以流体质点为研究对象,追踪流体质点的运动轨迹,考察其在运动过程中各物理量的变化规律。

流场流线迹线流管液体运动的基本概念连续性方程实质质量守恒定律在流体力学中的具体表述。

意义反映了流体运动在空间上的连续性,即流体不可能在某一区域内突然消失或出现。

应用用于求解流体的密度、速度等物理量在空间和时间上的变化规律。

伯努利方程及其应用实质意义应用动量方程及其应用实质意义应用水流阻力与水头损失由于水流与固体边界之间的摩擦而产生的阻力,其大小与水流速度、边界粗糙度等因素有关。

摩擦阻力形状阻力兴波阻力涡流阻力由于物体形状对水流的阻碍而产生的阻力,与物体的形状、尺寸和在水流中的位置有关。

第1章概述 水力学课件ppt

第1章概述 水力学课件ppt

质量力,用
f
表示。
f
F
M
单位质量力在三个坐标轴的投影
fx
Fx M
2020/10/3
fy
Fy M
fz
Fx M
第1章 绪论
五.水力学的研究方法
水力学是一门实践性很强的学科,它的理论都 是生产实践和实验研究的总结,并在解决实际 工程问题过程中经受检验、得到修正和进一步 完善。因此我们在学习本课程的过程中,既要 重视对本课程理论体系的理解,搞清基本方程 和公式的来历、应用条件、使用范围,更要能 正确运用所学的理论知识解实际工程问题,掌 握理论分析、实验研究和数学模拟紧密结合的 水力学研究方法。
du dy
du dy
第20210章/10/绪3 论
流速梯度
为动力粘滞系数
为运动粘滞系数,国际单位:m2/s
牛顿内摩擦定律:作层流运动的液体, 相互邻近层间单位面积上所作用的内摩擦力 (或粘滞力),与流速梯度成正比,同时与 液体的性质无关。
牛顿内摩擦定律的适用条件: 层流运动和牛顿液体。
粘滞性是产生水头损失的根本原因
第20210章/10/绪3 论
• 例题一极薄的平板,在厚度分别为4cm的两种油 层中以 u 0.8m s 的速度运动。已知上层动 力粘滞系数为下层的动力粘滞系数2倍,两油层
在平版上产生的总切应力为 30Nm2
• 。试求上、下油层的动力粘滞系数。
4cm 平版
u
4cm
第20210章/10/绪3 论
解: d u u 2 0 l s dy y
因此液体的基本特性是:易流动性、不易压 缩、均匀等向的连续介质。
第20210章/10/绪3 论
三.液体的主要物理性质

(水力学)-流体力学实验(1)

(水力学)-流体力学实验(1)

壹、静水压强实验一、实验目的1、加深对水静力学基本方程物理意义的理解,验证静止液体中,不同点对于同一基准面的测压管水头为常数(即C gp z =+ρ)。

2、学习利用U 形管测量液体密度。

3、建立液体表面压强a p p >0,a p p <0的概念,并观察真空现象。

4、测定在静止液体内部A 、B 两点的压强值。

二、实验原理在重力作用下,水静力学基本方程为:C gp z =+ρ 它表明:当质量力仅为重力时,静止液体内部任意点对同一基准面的z 与gp ρ两项之和为常数。

重力作用下,液体中任何一点静止水压强gh p p ρ+=0,0p 为液体表面压强。

a p p >0为正压;a p p <0为负压,负压可用真空压强v p 或真空高度v h 表示:abs a v p p p -= gp h v v ρ= 重力作用下,静止均质液体中的等压面是水平面。

利用互相连通的同一种液体的等到压面原理,可求出待求液体的密度。

三、实验设备在一全透明密封有机玻璃箱内注入适量的水,并由一乳胶管将水箱与一可升降的调压筒相连。

水箱顶部装有排气孔1k ,可与大气相通,用以控制容器内液体表面压强。

若在U 形管压差计所装液体为油,水油ρρ<,通过升降调压筒可调节水箱内液体的表面压强,如图1-1所示。

图 1—1四、实验步骤1、熟悉仪器,测记有关常数。

2、将调压筒旋转到适当高度,打开排气阀1k ,使之与水箱内的液面与大气相通,此时液面压强a p p =0。

待水面稳定后,观察各U 形压差计的液面位置,以验证等压面原理。

3、关闭排气阀1k ,将调压阀升至某一高度。

此时水箱内的液面压强a p p >0。

观察各测压管的液面高度变化并测记液面标高。

4、继续提高调压筒,再做两次。

5、打开排气阀1k ,使之与大气相通,待液面稳定后再关闭1k (此时不要移动调压筒)。

6、将调压筒降至某一高度。

此时a p p <0。

水力学小结.ppt

水力学小结.ppt

V C RJ C是反映边界对液体运动影响的综合系数,
称为谢才系数,单位:m1/2/s。
2
h
l
f C2R2
C 1 R1/ 6 (曼宁公式 ) n
7.局部水头损失的计算公式
hj

2
2g
圆管液体流动流态特点
流 流态判别标


管流: 层
流 Re<2000
紊 管流: 流
Re>2000
流区 判别
5.理想液体的概念:无粘性的液体。
6.作用在液体上的力:质量力和表面力。
(1)质量力:作用在液体内部每个质点上,并且与液 体质量成正比。
(2)表面力:作用在液体上,并且与表面积成正比。
水静力学 小 结
一.概念
1.静水压强及其特性
2.重力作用下的静水压强基本公式及意义
p = p0+ρ g h
3.绝对压强、相对压强和真空度
绪论小结
1. 水力学的地位。 2.水力学的任务:研究以水为代表的机械运动规律 及其在工程中的应用。 3.液体的基本特性:易流动性、不易压缩、均匀等 向的连续介质。 4.液体的主要物理特征:惯性.重力特性.均质液体 的质量与密度.粘滞性.压缩性.表面张力特性. 。
其中粘滞性是本章的重点,掌握牛顿内摩擦定律的物 理意义,其适用条件是层流运动和牛顿液体。
失 、 水 流 流 向 2. 注意点
等。
两渐变流断面之间可以有急
变流;当有流量或能量输入、输
出时,方程形式应有所改变;压
强一般采用相对压强。
恒 定 、 反 映 了 液 流 液流对边界的 作用于脱离体上的外力有:
不 可 压 缩 与 边 界 上 作 用 冲击力,或边界 1) 重力 即为脱离体中的流体 流 体 , 质 力之间的关系 对 液 流 的 反 作 重量;

局部水头损失实验

局部水头损失实验
局部水头损失实验
水力学实验教学课件
一、实验目和要求

掌握三点法、四点法量测局部水头阻力系数的技能; 通过对圆管突扩局部阻力系数的包括达西公式和突缩 局部阻力系数的经验公式的实验验证与分析,熟悉用 理论分析法和经验法建立函数式的途径;

加深对局部水头损失机理的理解
二、实验原理
实验管道由 小→大→ 小三种管道 组成,共设 有六个测压 孔,测孔1-3 和3-6分别测 量突扩和突 缩的局部阻 力系数。
二、实验原理
写出局部阻力前后两断面的能量方程,根据推导条件,
扣除沿程水头损失可得:
1、突扩断面 采用三点法计算,测点1-2点间的距离为2-3点间的距 离的一半,故 hf 12 hf 23 / 2 根据实测,建立1-1,2-2两端面能量方程。
即:
理论值:

2、突缩断面 本实验采用四点法计算。4-B点间距与3-4点间距相等; B-5点间距与5-6点间距相等。 故:
三、实验方法与步骤
3.检验测压管液面是否齐平(流量调节阀处于关闭状 态);否则,需排气调平。
4.开始实验 打开流量调节阀至流量Q最大,而且在测量 范围内(即测压管读数在可读范围内),记录流量、 测压管读数;改变流量Q,重复上述实验。
四、实验记录
1.记录、计 hf 34 ; hfB5 h56
根据实测,建立B点突缩前后两端面能量方程:
又由突缩断面局部水头损失的经验公式有:
三、实验方法与步骤
1. 开启开关,待水箱内出现溢流后,关闭流量调节阀。
2.排气。 ① 打开排气阀,排除管内气体(流量调节阀处于关闭状
态);
② 局部气泡的排除:打开流量调节阀或用洗耳球向侧压 架内加气,可排除管道内局部气体(1管除外)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水力学实验报告学院:班级:姓名:学号:第三组同学:姓名:学号:姓名:学号:姓名:学号:2015.12.251 平面静水总压力实验1.1实验目的1.掌握解析法及压力图法,测定矩形平面上的静水总压力。

2.验证平面静水压力理论。

1.2实验原理作用在任意形状平面上的静水总压力P 等于该平面形心处的压强p c 与平面面积A 的乘积:A p P c =,方向垂直指向受压面。

对于上、下边与水面平行的矩形平面上的静水总压力及其作用点的位置,可采用压力图法:静水总压力P 的大小等于压强分布图的面积Ω和以宽度b 所构成的压强分布体的体积。

b P Ω=若压强分布图为三角形分布、如图3-2,则He b gH P 31212==ρ式中:e -为三角形压强分布图的形心距底部的距离。

若压强分布图为梯形分布,如图3-3,则2121212321H H H H a e ab H H g P ++)+(⋅==ρ式中:e -为梯形压强分布图的形心距梯形底边的距离。

图1-1 静水压强分布图(三角形) 图1-2 静水压强分布图(梯形)本实验设备原理如图3-4,由力矩平衡原理。

图1-3 静水总压力实验设备图10L P L G ⋅=⋅其中:e L L -=1求出平面静水总压力1L GL P =1.3实验设备在自循环水箱上部安装一敞开的矩形容器,容器通过进水开关K l ,放水开关K 2与水箱连接。

容器上部放置一与扇形体相连的平衡杆,如图3-5所示。

??3-5 ??????图 1-4 静水总压力仪 1.4实验步骤1.熟悉仪器,测记有关常数。

2.用底脚螺丝调平,使水准泡居中。

3.调整平衡锤使平衡杆处于水平状态。

4.打开进水阀门K 1,待水流上升到一定高度后关闭。

5.在天平盘上放置适量砝码。

若平衡杆仍无法达到水平状态,可通过进水开关进水或放水开关放水来调节进放水量直至平衡。

6.测记砝码质量及水位的刻度数。

7.重复步骤4~6,水位读数在100mm 以下做3次,以上做3次。

8.打开放水阀门K 2,将水排净,并将砝码放入盒中,实验结束。

1.5实验数据记录及处理1.有关常数记录:天平臂距离L 0= cm ,扇形体垂直距离(扇形半径)L = cm ,扇形体宽b = cm ,矩形端面高a 0= cm ,33/100.1cm kg -⨯=ρ 2.实验数据记录3.实验结果100%-⨯=理论值实验值理论值注:误差1.6注意事项1.在调整平衡杆时,进水或放水速度要慢。

2.测读数据时,一定要等平衡杆稳定后再读。

1.7思考题1.实验中,扇形体的其他侧面所受到的压力是否对实验精度产生影响?为什么?2.注水深度在100mm以上时,作用在平面上的压强分布图是什么形状?3.影响本实验精度的原因是什么?2 能量方程实验2.1实验目的1.观察恒定流的情况下,与管道断面发生改变时水流的位置势能、压强势能、动能的沿程转化规律,加深对能量方程的物理意义及几何意义的理解。

2.观察均匀流、渐变流断面及其水流特征。

3.掌握急变流断面压强分布规律。

4.测定管道的测压管水头及总水头值,并绘制管道的测压管水头线及总水头线。

2.2实验原理实际液体在有压管道中作恒定流动时,其能量方程如下w h gv p Z gv p Z +++=++222222221111αγαγ它表明:液体在流动的过程中,液体的各种机械能(单位位能、单位压能和单位动能)是可以相互转化的。

但由于实际液体存在粘性,液体运动时为克服阻力而要消耗一定的能量,也就是一部分机械能要转化为热能而散逸,即水头损失。

因而机械能应沿程减小。

对于均匀流和渐变流断面,压强分布符合静水压强分布规律:C pz =+γ但不同断面的C 值不同。

图2—1 急变流断面动水压强分布图对于急变流,由于流线的曲率较大,因此惯性力亦将影响过水断面上的压强分布规律;上凸曲面边界上的急变流断面如图3-7(a ),离心力与重力方向相反,所以静动p p <。

下凹曲面边界上的急变流断面如图2—1(b),离心力与重力方向相向,所以静动p p >。

2.3实验设备实验设备及各部分名称如图2—2所示。

?3-8 ???????图2—2 能量方程实验仪2.4实验步骤1.分辨测压管与毕托管并检查橡皮管接头是否接紧。

2.启动抽水机,打开进水阀门,使水箱充水并保持溢流,使水位恒定。

3.关闭尾阀K ,检查测压管与毕托管的液面是否齐平。

若不平,则需检查管路是否存在气泡并排出。

4.打开尾阀K ,量测测压管及毕托管水头。

5.观察急变流断面A 及B 处的压强分布规律。

6.本实验共做三次,流量变化由大变小。

2.5实验数据记录与处理1.有关常数记录d5 =cm,d1=cm。

(d5即d,d1即D)2.实验数据记录与计算(测压管高度单位为cm)83.实验结果(1)绘制测压管水头线和总水头线(任选一组)。

?3-8 ???????(2)计算断面5和断面2的平均流速和毕托管测点流速。

2.6注意事项1.尾阀K开启一定要缓慢,并注意测压管中水位的变化,不要使测压管水面下降太多,以免空气倒吸入管路系统,影响实验进行。

2.流速较大时,测压管水面有脉动现象,读数时要读取时均值。

2.7思考题1.实验中哪个测压管水面下降最大?为什么?2.毕托管中的水面高度能否低于测压管中的水面高度?3.在逐渐扩大的管路中,测压管水头线是怎样变化的?3 动量方程实验3.1实验目的1.测定管嘴喷射水流对平板或曲面板所施加的冲击力。

2.将测出的冲击力与用动量方程计算出的冲击力进行比较,加深对动量方程的理解。

3.2实验原理应用力矩平衡原理如图3—1,求射流对平面板和曲面板的作用力。

力矩平衡方程: 1GL FL =,LGL F 1=式中:F -射流作用力;L -作用力力臂;G 1-砝码重量;L 1-砝码力臂。

恒定总流的动量方程为∑-=)(1122v vQ F ββρ若令112==ββ,且只考虑其中水平方向作用力,则可求得射流对平面板和曲面板的作用力公式为)cos 1(αρ-=Qv F式中:Q -管嘴的流量;v -管嘴流速;α-射流射向平面或曲面板后的偏转角度。

90Qv αρ=︒=平时,F 平F :水流对平面板的冲击力135(1cos135) 1.707 1.707Qv Qv F αρρ=︒=-︒==平时,F180(1c o s 180)2Q v Q v F αρρ=︒=-︒==平时,F 3.3实验设备实验设备及各部分名称见图3—2,实验中配有090=α的平面板和0180=α及0135=α的曲面板,另备大小量筒及秒表各一只。

3.4实验步骤1.测记有关常数。

2.安装平面板,调节平衡锤位置,使杠杆处于水平状态。

3.启动抽水机,使水箱充水并保持溢流。

此时,水流从管嘴射出,冲击平板中心,标尺倾斜。

加法码并调节砝码位置,使杠杆处于水平状态,达到力矩平衡。

记录砝码质量和力臂L l 。

4.用质量法测量流量Q 用以计算F 理。

5.改变溢流板高度,使水头和流量变化,重复上述步骤。

6.将平面板更换为曲面板(0135=α及0180=α),又可实测和计算不同流量的作用力。

7.关闭抽水机,将水箱中水排空,砝码从杠杆中取下,实验结束。

图3-2 动量原理实验仪3.5实验数据记录相关常数:L=cm,管径d=cm3.6注意事项1.量测流量后,量筒内水必须倒进接水器,以保证水箱循环水充足。

2.测流量时,计时与量简接水一定要同步进行,以减小流量的量测误差。

3.测流量一般测两次取平均值,以消除误差。

3.7思考题1.F实与F理有差异,除实验误差外还有什么原因?2.流量很大与很小时各对实验精度有什么影响?3.实验中,平衡锤产生的力矩没有加以考虑,为什么?4 雷诺实验4.1实验目的1.观察层流和紊流的流动特征及其转变情况,以加深对层流、紊流形态的感性认识。

2.测定层流与紊流两种流态的水头损失与断面平均流速之间的关系。

3.绘制水头损失h f 和断面平均流速的对数关系曲线,即v h f lg ~lg 曲线,并计算图中的斜率m 和临界雷诺数Re k 。

4.2实验原理同一种液体在同一管道中流动,当流速不同时,液体可有两种不同的流态。

当流速较小时,管中水流的全部质点以平行而不互相混杂的方式分层流动,这种形态的液体流动叫层流。

当流速较大时,管中水流各质点间发生互相混杂的运动,这种形态的液体流动叫做紊流。

层流与紊流的沿程水头损失规律也不同。

层流的沿程水头损失大小与断面平均流速的1次方成正比,即0.1v h f 。

紊流的沿程水头损失与断面平均流速的1.75~2.0次方成正比,即0.2~75.1vh f ∝。

视水流情况,可表示为mf kv h =,式中m 为指数,或表示为v m k h f lg lg lg +=。

每套实验设备的管径d 固定,当水箱水位保持不变时,管内即产生恒定流动。

沿程水头损失f h 与断面平均流速v 的关系可由能量方程导出:f h gv p Z gv p Z +++=++222222221111αγαγ当管径不变,21v v =,取0.121≈=αα 所以h p Z p Z h f ∆=+-+=)()(2211γγh ∆值可以由压差计读出。

在圆管流动中采用雷诺数来判别流态:νvd=Re式中:v -圆管水流的断面平均流速;d -圆管直径;ν-水流的运动粘滞系数。

当Re<Re k (下临界雷诺数)时为层流状态,Re k =2320;Re>Re k ’(上临界雷诺数)时为紊流状态,Re k ’在4000~12000之间。

4.3实验设备实验设备及各部分名称见图4—1所示。

?4—1 ?????4.4实验步骤(一)观察流动形态将进水管打开使水箱充满水,并保持溢流状态;然后用尾部阀门调节流量,将阀门微微打开,待水流稳定后,注入颜色水。

当颜色水在试验管中呈现一条稳定而明显的流线时,管内即为层流流态,如图1所示。

随后渐渐开大尾部阀门,增大流量,这时颜色水开始颤动、弯曲,并逐渐扩散,当扩散至全管,水流紊乱到已看不清着色流线时,这便是紊流流态。

(二)测定v h f ~的关系及临界雷诺数 1.熟悉仪器,测记有关常数。

2.检查尾阀全关时,压差计液面是否齐平、若不平,则需排气调平。

3.将尾部阀门开至最大,然后逐步关小阀门,使管内流量逐步减少;每改变一次流量、均待水流平稳后,测定每次的流量、水温和试验段的水头损失(即压差)。

流量Q 用质量法测量。

用天平量测水的质量m ,根据水的密度计算出体积V ,用秒表计时间T 。

流量T VQ =。

相应的断面平均流速AQ v =。

4.流量用尾阀调节,共做10次。

当Re<2500时,为精确起见,每次压差减小值只能为3~5mm 。

5.用温度计量测当日的水温,由此可查得运动粘滞系数ν,从而计算雷诺数νvd=Re 。

6.相反,将调节阀由小逐步开大,管内流速慢慢加大,重复上述步骤。

相关文档
最新文档