2020届苏科版初中数学知识点梳理归纳
部编版2020届中考数学 基础知识复习 八上 知识点整理 新版 苏科版
八上:第一章——全等三角形知识点整理1.全等形:能够完全重合的两个图形叫做全等形。
2.全等三角形:定义:能够完全重合的两个三角形叫做全等三角形。
表示方法:△ABC全等于△DEF(△ABC △DEF)表示两个全等的三角形时对应顶点要写在对应的位置上。
全等三角形的性质: 1.全等三角形的对应边相等 2.全等三角形的对应角相等 3.全等三角形对应边上的高、中线,对应角的角平分线相等 4.全等三角形的面积相等3.三角形全等的判定:1 边边边(SSS): 三边对应相等的两个三角形全等。
2 边角边(SAS):两边和它们的夹角对应相等的两个三角形全等。
3 角边角(ASA):两角和他们的夹边对应相等的两个三角形全等。
角角边(AAS):两个角和其中一个角的对边对应相等的两个三角形全等。
4 斜边,直角边 (HL):斜边和一条直角边对应相等的两个三角形全等。
注:①边边边、边角边、角边角、角角边四种判定方法实用于所有三角形,斜边,直角边只能判定直角三角形全等。
②三角形全等的判定方法没有角角角(AAA)、边边角(SSA)和角边边(ASS)三种。
4.角的平分线的性质:1.角的平分线的性质:角的平分线上的点到角的两边的距离相等。
2.角的平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。
第二章——轴对称知识点整理1.轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
轴对称图形:长方形、正方形、等腰三角形、等边三角形、圆、正多边形、线段、角等。
正多边形对称轴线条数:正多边形对称轴线条数等于边数。
2.轴对称定义:把一个图形沿着某一条直线折叠,如果它能够和另外一个图形完全重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
性质:如果两个图形成轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
2020年苏科版数学中考考点归纳整理(代数部分)超详细附典型例题与反馈练习
注:a-b 的相反数是 b-a;a+b 的相反数是-a-b.
(3)倒数:1 除以一个不等于零的实数所得的商,叫做这个数的倒数.若 a、b 互为倒数,则 ab=1.
(4)绝对值:在数轴上,一个数对应的点与原点的距离叫做这个数的绝对值.
a (a>0)
或
a (a≥0)
a
0 (a=0)
a=
-a (a<0)
-a (a≤0) 即:| a |是一个非负数,| a |≥0.
例:(a2)3=_________;2a2•a3=_________;(-3x2)3=_________;(-2a)2÷a=_________;(-a)3(-a)2=_________.
(a2b)3=(a2)3b3 运算过程中运用到的“幂的运算”的法则是________________.
7.(1)单项式:由数字与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做次数,数字因数叫做系数.
(2)合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
(3)合并同类项的步骤:①找出同类项;②运用加法交换律,把同类项交换位置后结合在一起;③利用法则,把同类项的系数
相加,字母和字母的指数不变.注:运用加法交换律时改变“项”的位置时,要注意连同符号一起移动.
(4)去(添)括号的法则: ①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;
例:(1)注意配方问题中的分类思想: 若 4m2+1 加上一个单项式可以变成完全平方式,则这个单项式可以是_____________________________;
(2)若 a+b=3,ab=2,求(a-b)2 的值.(尝试自己编一些类似的问题并求解)
初中数学苏教版知识点
初中数学苏教版知识点初中数学苏教版知识点 11.有理数:凡能写成形式的数,都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;p不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;4.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数5.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
6.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的`符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。
7.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c)。
8.有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。
9.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
10.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac 。
11.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
苏科版七年级数学下册全册知识点归纳
苏科版七年级数学下册全册知识点归纳第7章平面图形的认识(二)一、三线八角:两条直线AB、CD与直线EF相交,交点分别为E、F,如图,则称直线AB、CD被直线EF所截,直线EF为截线.两条直线AB、CD被直线EF所截可得8个角,即所谓“三线八角”.二、同位角,内错角,同旁内角:1、同位角:两条直线被第三条直线所截,在二条直线的同侧,且在第三条直线的同旁的两个角叫同位角.2、内错角:两条直线被第三条直线所截,在二条直线的内侧,且在第三条直线的两旁的两个角叫内错角.3、同旁内角:两条直线被第三条直线所截,在两条直线的内侧,且在第三条直线的同旁的两个角叫同旁内角.三、直线平行的条件(判定):1、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简记为:同位角相等,两直线平行2、两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简记为:内错角相等,两直线平行3、两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简记为:同旁内角互补,两直线平行四、平行线的性质:1、两条平行线被第三条直线所截,同位角相等.简记为:两直线平行,同位角相等2、两条平行线被第三条直线所截,内错角相等.简记为:两直线平行,内错角相等3、两条平行线被第三条直线所截,同旁内角互补,简记为:两直线平行,同旁内角互补五、图形的平移:一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。
六、认识三角形1、三边关系:三角形两边之和大于第三边,两边之差小于第三边;2、三角形的三线:(1) 在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点间的线段叫做三角形的角平分线.(2) 从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.(3)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线.2、若AD=BD=21AB (即D 是AB 的中点)时,则CD 是△ABC 的中线. 七、多边形的内角和与外角和三角形的三个内角的和等于180°. 三角形的外角等于与它不相邻的两个内角的和n 边形的内角和等于(n -2)·180° 任意多边形的外角和等于360°.第8章 幂的运算1.同底数幂的乘法法则: 同底数幂相乘,底数不变,指数相加n m n m a a a +=⋅(m,n 都是正数)2.. 幂的乘方法则:幂的乘方,底数不变,指数相乘mn n m a a =)((m,n 都是正数)⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n3. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷ (a ≠0,m 、n 都是正数,且m>n).任何不等于0的数的0次幂等于1,即)0(10≠=a a . 任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即p p a a 1=-( a ≠0,p 是正整数),第9章 整式乘法与因式分解1. 整式的乘法(1) 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
苏教版初中数学最全面知识点大全
苏教版初中数学最全面知识点大全苏教版初中数学包含了丰富的知识点,从基础的四则运算和整数,到代数、几何和概率统计等各个方面。
以下是一个基本的数学知识点大全,供你参考:1. 四则运算及其性质- 加法- 减法- 乘法- 除法2. 整数- 整数的读写与比较- 整数的加减乘除- 整数的绝对值和相反数 - 整数的乘方和乘方根3. 分数- 分数的读写与比较- 分数的加减乘除- 分数的化简与约分- 分数的运算性质4. 小数- 小数的读写与比较- 小数的加减乘除- 小数与分数的相互转换- 小数的运算性质5. 负数- 负数的加减乘除- 负数的乘方和乘方根- 负数在实际问题中的应用6. 代数与方程- 代数式的化简- 简单方程的求解- 一元一次方程与二元一次方程的求解 - 一次方程组的解法7. 平面图形与空间图形- 直线和角的性质- 三角形、四边形、多边形的性质- 圆和圆的性质- 立体图形的名称和性质8. 空间几何- 直线和面的关系- 线段、角的部分与线段的垂直、平行关系 - 平行线的判定及其性质- 同位角、内错角和同旁内角的性质9. 比例与相似- 比例的概念与性质- 比例的四则运算- 图形的相似性质与相似判定- 相似三角形的性质和应用10. 数据分析- 平均数、中位数、众数的概念与计算 - 简单统计图的绘制与分析- 折线图、柱状图、扇形图的制作与应用 - 概率的概念与计算11. 几何证明- 线段垂直的证明- 等腰三角形性质的证明- 相等角、相似三角形的证明- 过定点作直线的证明以上只是一些基本的数学知识点,初中数学知识非常广泛,无法一一列举。
希望这些知识点对你有所帮助。
如果你对特定的知识点有问题,欢迎继续提问。
部编版2020届中考数学 基础知识复习 八下 数学基本概念 新版 苏科版
八(下)数学基本知识基本概念1、为了特定目的对全部进行的叫做普查,被的全体叫做总体,组成叫做个体。
2、在许多情况下,人们常常从总体中抽,根据对这一的调查,估计被的整体情况。
这种调查叫做抽样调查,从总体中抽取的组成总体的一个,叫做样本容量。
3、频数是什么:各个小组内的数据的个数。
4、频率的定义:频数与总数的比为频率。
通过长方形的高代表对应组的频数与组距的比(因为组距是一个常数,为了画图和看图方便,通常直接用高表示频数),这样的统计图称为频数分布直方图.它能:①清楚显示各组频数分布情况;②易于显示各组之间频数的差别.5、在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件。
6、概率论中把在一定条件下不可能发生的事件叫不可能事件。
人们通常用0来表示不可能事件发生的可能性。
即:不可能事件的概率为0。
但概率为0的事件不一定为不可能事件。
7、必然事件和不可能事件统称为确定事件。
8、在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,简称事件。
9、概率:表征随机事件发生可能性大小的量,是事件本身所固有的不随人的主观意愿而改变的一种属性.10、旋转的定义:把一个图形【绕着某一点O按照一定的方向转动一个角度】的图形变换叫做旋转.点O叫做旋转中心,转动的方向叫做旋转方向,转动的角度叫做旋转角.11、对应点:若图形上点P经过旋转变为点P,那么这两个点叫做这个旋转的对应点.12、性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角角旋转角.③旋转前后的图形全等.13、中心对称:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么就说明这两个图形关于这个点成中心对称,这个点叫做它的对称中心,旋转180°后重合的两个点叫做对称点①对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的面积被平分。
苏科版数学七八年级知识点整理
七年级第二章整数正整数有理数负整数分数正分数负分数正有理数正分数正整数有理数0负有理数负分数负整数有理数运算:同号两数相加,取相同符号,绝对值相加绝对值不等的异号两数相加,取较大绝对值符号,较大绝对值减较小绝对值a+b=b+a (a+b)+c=a+(b+c)减去一个数等于加上这个数的相反数两数相乘,同号得正,异号得负,绝对值相乘ab=ba (ab)c=a(bc) a(b+c)=ab+ac除以一个不等于零的数,等于乘以这个数的倒数第三章代数式整式单项式多项式分式合并同类项:同类项系数相加,所得结果为系数,字母和字母的指数不变去括号:括号前是+,把括号前+去掉,括号里各项符号不变括号前是-,把括号前-去掉,括号里各项符号都要改变第四章一元一次方程在一个方程中,只含一个未知数,未知数指数是1,这样的方程是一元一次方程等式基本性质:1、等式两边同时加上或减去同一个数,等式仍成立2、等式两边同时乘或除以同一个数,等式仍成立解一元一次方程:1、去分母2、去括号3、移项4、合并同类项5、未知数系数化为16、检验第五章图形基本要素:点、线、面点动成线,线动成面,面动成体三视图主视图、左视图、俯视图第六章线段中点把一条线段分成相等两条线段的点叫这条线段中点角平分线从一个角的一个顶点出发,把这个角分成两个相等角的射线叫这个角的平分线余角如果两个角的和为90°,那么这两个角互为余角补角如果两个角的和为180°,那么这两个角互为补角对顶角一个角的两边分别是另一个角两边的反向延长线,这两个角是对顶角垂线当两条直线互相垂直时,其中一条直线是另一条直线的垂线平行线在同一平面内,不相交的两条直线叫平行线基本性质:1、两点之间所有连线中,线段最短2、经过两点有一条直线,并且只有一条直线3、同角(等角)余角相等4、同角(等角)补角相等5、对顶角相等6、经过直线外一点,有且只有一条直线与已知直线平行7、经过一点有且只有一条直线与已知直线垂直8、直线外一点与直线上各点的连线中,垂线最短第七章平移在平面内,将某个图形沿某个方向一动一定距离平移不改变图形形状、大小对应点连线平行或在同一直线上且相等对应线段平行或在同一直线上且相等对应角相等三角形外角三角形一边与另一边延长线组成的角叫三角形外角三角形内角和为180°直角三角形两锐角互余N边形内角和为(n-2)³180°n边形外角和为360°三线八角∠1和∠2为同位角∠3和∠4为内错角∠5和∠6为同旁内角基本性质:1、同位角相等两直线平行2、内错角相等两直线平行3、同旁内角互补两直线平行4、两直线平行同位角相等5、两直线平行内错角相等6、两直线平行同旁内角互补第八章幂的运算:1、同底数幂相乘,底数不变,指数相加a m³a n=a m+n(m、n为正整数)2、幂的乘方,底数不变,指数相乘(a m)n=a mn(m、n是正整数)3、积的乘方,把积的每一个因式分别乘方,所得幂相乘(ab)n=a n b n(n为正整数)4、同底数幂相除,底数不变,指数相减a m÷a n=a m-n(m、n是正整数,a≠0)5、任何不等于零的数的0次幂都等于1aº=1(a≠0)6、任何不等于0的数的-n次幂,等于这个数的n次幂的倒数a-n=1/a n(a≠0,n是正整数)第九章因式分解把一个多项式写成几个整式的积的形式运算法则:1、单项式与单项式相乘,把他们的系数、相同字母的幂分别相乘2、单项式与多项式相乘,用单项式乘多项式的每一项,再把积相加3、多项式与多项式相乘,先用一个多项式的每一项乘另一多项式的的每一项,再把积相加完全平方公式(a±b)²=a²±2ab+b²平方差(a+b)(a-b)=a²-b²因式分解方法:1、提公因式法2、平方差公式、完全平方公式第十章二元一次方程含有两个未知数,并且所含未知数的项的次数都是1的方程叫二元一次方程二元一次方程的解适合二元一次方程的一对未知数的值叫做这个二元一次方程的一个解。
苏科版九年级数学全册总结
苏科版九年级数学全册总结(2020年秋)§1 一元二次方程1、一元二次方程4解法①直接开方; ②配方法; ③公式法; ④因式分解法。
2、根的判别式注意前提条件:①0≠a ; ②042≥-ac b △>0<=> 有两个不等的实根△=0 <=> 有两个相等的实根 △<0 <=> 无实根3、根与系数的关系基础: a b x x -=+21 ac x x =21 组合技:2122122212)(x x x x x x -+=+ ;21212111x x x x x x +=+ ;…… 两根异号 0<a c,0≥△※ 3个等价命题: 两个正根 00>,>acb a + ,0≥△两根异号 00>,<acb a + ,0≥△4、换元降次已知: 012=-+x x ,求7223-+x x 的值。
)-1(101222x x x x x x 替换用-=∴=-+7)1(272223--+⋅=-+x x x x x5、一元二次方程的应用(1)n 人互送礼物,共送)1(-n n 件礼物; n 人互相握手,共握手2)1(-n n 次。
(2)平均增长率问题:设增长率为x第一年为a , 第二年为)1(x a +,第三年为2)1(x a +。
(3)利润问题:Step1:一般设减少(增加)的钱 Step2:表示变化后的单利润,销售量Step3:根据“总利润 = 单利润 × 数量”列方程§2 圆1、巧用圆的半径相等点A 、D 、G 、M 在半圆O 上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC =a ,EF =b ,NH =c ,则a =b =c2、点与圆的位置关系:①求范围;②求最值。
3、弧、弦、角、之间的关系在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,其中圆心角的度数与它所对的弧的度数相等。
苏科版初中数学知识点总结
知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。
2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=21-x 的值为1.3.当x=-1时,函数y=321-x 的值为1.知识点4:基本函数的概念及性质1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 21-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(212+-=x y 的顶点坐标是(1,2).7.反比例函数xy 2=的图象在第一、三象限. 知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=23. 2.sin 260°+ cos 260°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1.5.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。
苏教版初中数学知识点总结(适合打印)
初中数学知识点大全第一章 实数 一、重要概念1.数的分类及概念 数系表:2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法 ②性质:≠1/a(a≠±1);a 中,a≠0;<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法 ②性质:≠0时,a≠-a; 与-a 在数轴上的位置; C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示:奇数:2n-1 偶数:2n (n 为自然数)实数无理数(无限不循环小有理数正分数 负分数 正整数 0 负整数 (有限或无限循环性整数分数正无理数负无理数实数负数整数 分数无理数有理数正数整数分数无理数有理数│a │2aa (a ≥0)(a 为一切实数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算运算法则(加、减、乘、除、乘方、开方)运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的分配律)运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。
第二章 代数式1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
苏教版初中数学知识点汇总
苏教版初中数学知识点汇总
苏教版初中数学知识点汇总如下:
1. 整数与运算:加法、减法、乘法、除法,整数的性质及应用。
2. 分数与运算:分数的概念,加减乘除分数,化简分数。
3. 小数和百分数:小数的读法、写法与运算,百分数的意义、应用和转化。
4. 数量关系:比例、比例常用量的关系与计算,百分比,利息和相关应用。
5. 设计图与比例尺:设计图的读取与制作,比例尺的应用。
6. 二次根式:根式的概念,包括平方根、立方根和二次根,算术根式的运算。
7. 线性方程与一元一次方程:线性方程的概念、解和运用,一元一次方程的解法。
8. 计数与排列:基本计数原理、排列、组合的计算与应用。
9. 平面图形:平面图形的性质、分类与构造,计算平面图形的面积和周长。
10. 几何变换:平移、旋转、翻转,相关应用。
11. 数据的收集与处理:调查数据的收集与整理,频数表、柱状图、折线图等的绘制与分析。
12. 几何体:立体图形的性质、分类和计算体积与表面积。
13. 函数与图像:函数的概念、自变量与因变量的关系,函数图像的性质与绘制。
14. 相似与全等:相似和全等图形的判断与性质,相似比例和相似定理的应用。
15. 统计与概率:统计方法的应用,简单事件的概率计算。
苏科版教材初中数学知识点汇编(2020年修订版).doc
编者:袁卉平扬州市江都区国际学校数学学科教研组.苏科版初中数学知识点汇编班级 学号 姓名第一章:实数一、实数与数轴1、整数分为正整数,0和负整数。
正整数和0统称自然数。
能被2整除的整数称为偶数,被2除余1的整数叫作奇数。
2、分数:两个整数之比,叫做分数。
有理数:整数和分数统称有理数。
有理数都可以转化为有限小数或循环小数。
无理数:无限不循环小数称为无理数。
实数:有理数和无理数统称为实数。
(1)实数按性质分类:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无理数负分数正分数分数负整数正整数整数有理数实数0 (2)实数按大小分类:⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数0负有理数负实数负无理数 (2)实数还可以这样分类:⎧⎪⎧⎪⎪⎨⎧⎨⎪⎨⎪⎪⎩⎩⎩整数有限小数实数小数循环小数无限小数无限不循环小数 3、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
4、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
二、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。
2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。
三、实数的运算1、加法:(1)同号两数相加,取相同的符号,并把它们的绝对值相加;(2)异号两数相加,绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数两数相加和为0.(3)一个数与0相加仍得这个数。
(4)加法运算可使用加法交换律、结合律。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法:(1)不为0的两数相乘,同号得正,异号得负,并把绝对值相乘;0乘以任何数都得0. (2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
2020--2021学年苏科版数学七年级下册 知识梳理
·提公因式法的步骤:
(1)确定公因式
(2)把多项式中各项的公因式提出来,所得多项式作为另一个因式
(3)把多项式写成这两个因式的积的形式
【注意点】
·当多项式中的某项和公因式相同时,提取公因式后,该项剩余的项是1,一定不要漏掉;
·当多项式的首相系数是负数时,一般先提出“-”号,使括号内的首相系数为正;
✦平移前后两个图形中,对应线段平行(或在同一条直线上)且相等,对应角相等。
3
平移作图的基本步骤:
(1)定:分析题目要求,确定平移的方向和距离;
(2)找:找出确定图形形状的关键点;
(3)移:按平移的方向和距离确定各关键点平移后的对应点;
(4)连:按原图的顺序依次连接各对应点。
【注意点】
平移作图,找关键点要准确且全面,不要找“无用”的点。
七年级(下)知识梳理
第
7.1
如图所示,两条直线a,b被第三条直线l所截,则
同位角:像∠1和∠6,这样的一对角
特征:①在被截两直线的同一方
②在截线的同旁
③在形如字母“F”的图形(或倒置、反置、旋转)中有同位角
内错角:像∠4和∠5,这样的一对角
特征:①在被截两直线之间
②在截线的两旁
③在形如字母“Z”的图形(或倒置、反置、旋转)中有内错角
✧简说:两直线平行,同位角相等
·两条平行直线被第三条直线所截,内错角相等。
✧简说:两直线平行,内错角相等
·两条平行直线被第三条直线所截,同旁内角互补。
✧简说:两直线平行,同旁内角互补
【思考】如何证明:“两直线平行,同位角相等“?
提示:
利用基本事实:过直线外一点有且只有一条直线与已知直线平行。
【人教版】2020届中考数学 基础知识复习 八上 知识点整理 新版 苏科版
八上:第一章——全等三角形知识点整理1.全等形:能够完全重合的两个图形叫做全等形。
2.全等三角形:定义:能够完全重合的两个三角形叫做全等三角形。
表示方法:△ABC全等于△DEF(△ABC △DEF)表示两个全等的三角形时对应顶点要写在对应的位置上。
全等三角形的性质: 1.全等三角形的对应边相等 2.全等三角形的对应角相等 3.全等三角形对应边上的高、中线,对应角的角平分线相等 4.全等三角形的面积相等3.三角形全等的判定:1 边边边(SSS): 三边对应相等的两个三角形全等。
2 边角边(SAS):两边和它们的夹角对应相等的两个三角形全等。
3 角边角(ASA):两角和他们的夹边对应相等的两个三角形全等。
角角边(AAS):两个角和其中一个角的对边对应相等的两个三角形全等。
4 斜边,直角边 (HL):斜边和一条直角边对应相等的两个三角形全等。
注:①边边边、边角边、角边角、角角边四种判定方法实用于所有三角形,斜边,直角边只能判定直角三角形全等。
②三角形全等的判定方法没有角角角(AAA)、边边角(SSA)和角边边(ASS)三种。
4.角的平分线的性质:1.角的平分线的性质:角的平分线上的点到角的两边的距离相等。
2.角的平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。
第二章——轴对称知识点整理1.轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
轴对称图形:长方形、正方形、等腰三角形、等边三角形、圆、正多边形、线段、角等。
正多边形对称轴线条数:正多边形对称轴线条数等于边数。
2.轴对称定义:把一个图形沿着某一条直线折叠,如果它能够和另外一个图形完全重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
性质:如果两个图形成轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一部分教材知识梳理·系统复习 .......................................... 错误!未定义书签。
第一单元数与式 ...................................................... 错误!未定义书签。
第1讲实数 ..................................................... 错误!未定义书签。
第2讲整式与因式分解 ............................................ 错误!未定义书签。
第3讲分式 ..................................................... 错误!未定义书签。
第4讲二次根式 .................................................. 错误!未定义书签。
第二单元方程(组)与不等式(组) ........................................ 错误!未定义书签。
第5讲一次方程(组) .............................................. 错误!未定义书签。
第6讲一元二次方程 .............................................. 错误!未定义书签。
第7讲分式方程 .................................................. 错误!未定义书签。
第8讲一元一次不等式(组) ........................................ 错误!未定义书签。
第三单元函数 ....................................................... 错误!未定义书签。
第9讲平面直角坐标系与函数 ...................................... 错误!未定义书签。
第10讲一次函数 ................................................ 错误!未定义书签。
第11讲反比例函数的图象和性质.................................... 错误!未定义书签。
第12讲二次函数的图象与性质 ..................................... 错误!未定义书签。
第13讲二次函数的应用 ........................................... 错误!未定义书签。
第四单元图形的初步认识与三角形 ...................................... 错误!未定义书签。
第14讲平面图形与相交线、平行线.................................. 错误!未定义书签。
第15讲一般三角形及其性质 ....................................... 错误!未定义书签。
第16讲等腰、等边及直角三角形.................................... 错误!未定义书签。
第17讲相似三角形 ............................................... 错误!未定义书签。
第18讲解直角三角形 ............................................. 错误!未定义书签。
第五单元四边形 ...................................................... 错误!未定义书签。
第19讲多边形与平行四边形 ....................................... 错误!未定义书签。
第20讲特殊的平行四边形 ......................................... 错误!未定义书签。
第六单元圆 .......................................................... 错误!未定义书签。
第21讲圆的基本性质 ............................................. 错误!未定义书签。
第22讲与圆有关的位置关系 ....................................... 错误!未定义书签。
第23讲与圆有关的计算 ........................................... 错误!未定义书签。
第七单元图形与变换 .................................................. 错误!未定义书签。
第24讲平移、对称、旋转与位似.................................... 错误!未定义书签。
第25讲视图与投影 ............................................... 错误!未定义书签。
第八单元统计与概率 .................................................. 错误!未定义书签。
第26讲统计 ...................................................... 错误!未定义书签。
第27讲概率 ..................................................... 错误!未定义书签。
第一部分教材知识梳理·系统复习第一单元数与式第1讲实数一、知识清单梳理(1)概念:只有符号不同的两个数(2)代数意义:a、b互为相反数 a+b=0(3)几何意义:数轴上表示互为相反数的两个点到原点的距离相等(1)概念:乘积为1的两个数互为倒数.a的倒数为1/a(a≠0)(2)代数意义:ab=1a,b互为倒数(1)数轴比较法:数轴上的两个数,右边的数总比左边的数大.(2)性质比较法:正数>0>负数;两个负数比较大小,绝对值大的反而小.(3)作差比较法:a-b>0a>b;a-b=0a=b;a-b<0a<b.(4)平方法:a>b≥0a2>b2.第2讲整式与因式分解二、知识清单梳理第3讲分式三、知识清单梳理第4讲二次根式四、知识清单梳理第二单元方程(组)与不等式(组)第5讲一次方程(组)五、知识清单梳理第6讲一元二次方程六、知识清单梳理第7讲分式方程七、知识清单梳理第8讲一元一次不等式(组)八、知识清单梳理(2)解集在数轴上表示:x≥a x>a x≤a x<a第三单元函数第9讲平面直角坐标系与函数九、知识清单梳理知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.(2)几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应.点的坐标先读横坐标(x 轴),再读纵坐标(y轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示):点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上点的坐标特征:①在横轴上⇔y=0;②在纵轴上⇔x=0;③原点⇔x=0,y=0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P(a,b)的对称点的坐标特征:①关于x轴对称的点P1的坐标为(a,-b);②关于y轴对称的点P2的坐标为(-a,b);③关于原点对称的点P3的坐标为(-a,-b).(5)点M(x,y)平移的坐标特征:(1)坐标轴上的点不属于任何象限.(2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同.(3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.xy第四象限(+,-)第三象限(-,-)第二象限(-,+)第一象限(+,+)–1–2–3123–1–2–3123OM(x,y) M1(x+a,y) M2(x+a,y+b)3.坐标点的距离问题(1)点M(a,b)到x轴,y轴的距离:到x轴的距离为|b|;)到y轴的距离为|a|.(2)平行于x轴,y轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1-x2|,点M1(x1,y),M2(x2,y)间的距离为|x1-x2|;点M1(0,y1),M2(0,y2)间的距离为|y1-y2|,点M1(x,y1),M2(x,y2)间的距离为|y1-y2|.平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.知识点二:函数4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图(1)分析实际问题判断函数图象的方法:读取函数图象增减性的技第10讲一次函数十、知识清单梳理第11讲反比例函数的图象和性质十一、知识清单梳理(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质十二、知识清单梳理知识点一:二次函数的概念及解析式关键点拨与对应举例1.二次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.第13讲二次函数的应用十三、知识清单梳理第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线十四、知识清单梳理第15讲一般三角形及其性质十五、知识清单梳理如图②,BO、CO分别是∠ABC、∠ACB的平分线,则有∠O=12∠A+90°;如图③,BO、CO分别为∠ABC、∠ACD、∠OCD的平分线,则∠O=12∠A,∠O’=12∠O;如图④,BO、CO分别为∠CBD、∠BCE的平分线,则∠O=90°-12∠A.全等8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件.(2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS可得△ACD≌△EBD,则AC=BE.在△ABE中,AB+BE>AE,即AB+AC>2AD.③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=3.第16讲等腰、等边及直角三角形十六、知识清单梳理知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论.如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.形30°角的性质,即BD=1/2AB.例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即 a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.21P COBAPCO BADABC abc第17讲相似三角形十七、知识清单梳理D c线段那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad=bc;(b、d≠0)(2)合比性质:a cb d=⇔a bb±=c dd±;(b、d≠0)(3)等比性质:a cb d==…=mn=k(b+d+…+n≠0)⇔......a c mb d n++++++=k.(b、d、···、n≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k,再代入所求式子,也可以把原式变形得a=3/5b代入求解.例:若35ab=,则a bb+=85.3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线段成比例.即如图所示,若l3∥l4∥l5,则AB DEBC EF=.利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解.例:如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于53.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即如图所示,若AB∥CD,则OA OBOD OC=.(3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE∥BC,则△ADE∽△ABC.4.黄金分割点C把线段AB分成两条线段AC和BC,如果ACAB==5-12≈,那么线段AB被点C黄金分割.其中点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.例:把长为10cm的线段进行黄金分割,那么较长线段长为5(5-1)cm.知识点二:相似三角形的性质与判定FEDCBAl5l4l3l2l1OD CBAEDC BA5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A=∠D,∠B=∠E,则△ABC∽△DEF.判定三角形相似的思路:①条件中若有平行线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找夹这对等角的两组边对应成比例;③条件中若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证明直角边和斜边对应成比例;⑤条件中若有等腰关系,可找顶角相等或找一对底角相等或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似.如图,若∠A=∠D,AC ABDF DE=,则△ABC∽△DEF.(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC∽△DEF.6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为9:4.(2) 如图,DE∥BC, AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG=1:2.FEDCBAFEDCBAFEDCBA第18讲解直角三角形十八、知识清单梳理1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA3313知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.4.解直角三角形的常用关系(1)三边之间的关系:a2+b2=c2;(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:sin A==cosB=ac,cos A=sinB=bc,tan A=ab.(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;第五单元四边形第19讲多边形与平行四边形十九、知识清单梳理180,每一个外角为5.平行四边形的性质(1)边:两组对边分别平行且相等.即AB∥CD 且AB=CD,BC∥AD且AD=BC.(2)角:对角相等,邻角互补.即∠BAD=∠BCD,∠ABC=∠ADC,∠ABC+∠BCD=180°,∠BAD+∠ADC=180°.(3)对角线:互相平分.即OA=OC,OB=OD(4)对称性:中心对称但不是轴对称.(1)平行四边形相邻两边之和等于周长的一半.(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.例:如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=,则四边形BCEF的周长为.6.平行四边形中的几个解题模型(1)如图①,AF平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABF 为等腰三角形,即AB=BF.(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD≌△CDB;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.(3)如图③,已知点E为AD上一点,根据平行线间的距离处处相等,可得S△BEC=S △ABE+S△CDE.(4)根据平行四边形的面积的求法,可得AE·BC=AF·CD.OD CBA例:如图四边形ABCD 的对角线相交于点O,AO=CO ,请你添加一个条件BO=DO 或AD ∥BC 或AB ∥CD (只添加一个即可),使四边形ABCD 为平行四边形.第20讲 特殊的平行四边形一、 知识清单梳理ODCBA对角线互相垂直平分的四边形是菱形.()对边相等的矩形是正方形.()3.联系包含关系:知识点二:特殊平行四边形的拓展归纳4.中点四边形(1)任意四边形多得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.如图,四边形ABCD为菱形,则其中点四边形EFGD的形状是矩形.5.特殊四边形中的解题模型(1)矩形:如图①,E为AD上任意一点,EF过矩形中心O,则△AOE≌△COF,S1=S2.(2)正方形:如图②,若EF⊥MN,则EF=MN;如图③,P为AD边上任意一点,则PE+PF=AO.(变式:如图④,四边形ABCD为矩形,则PE+PF的求法利用面积法,需连接PO.)图①图②图③图④第六单元圆第21讲圆的基本性质二十、知识清单梳理知识点一:圆的有关概念关键点拨与对应举例1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.如图所示的圆记做⊙O.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.知识点二:垂径定理及其推论2.垂径定理及其推论定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.延伸根据圆的对称性,如图所示,在以下五条结论中:①弧AC=弧BC;②弧AD=弧BD;③AE=BE;④AB⊥CD;⑤CD是直径.只要满足其中两个,另外三个结论一定成立,即推二知三.知识点三:圆心角、弧、弦的关系3.圆心角、弧、弦的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.知识点四:圆周角定理及其推论4.圆周角定理及其推论(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a,∠A=1/2∠O.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周。