机械原理课后答案第六章作业
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴ mbrb= [(mbrb)x2+ (mbrb)y2 ]1/2 =109.09(kg· mm) ∴ mb = mbrb/rb =109.09/200= 0.545(kg)
θb =arctan[(mbrb)y / (mbrb)x]= arctan[(-104.16) /(-32.44)]=252.7°
(m1r1)Ⅱ+(m2r2)Ⅱ+(m3r3)Ⅱ+(m4r4)Ⅱ+(mbrb)Ⅱ=0
(m1r1)Ⅱ=0 (m2r2)Ⅱ=m2r2l12/l=150kg· cm
(m3r3)Ⅱ=m3r3 (l12+l23) /l=266.7kg· cm
(m4r4)Ⅱ= m4r4 =300kg· cm ΣFx=0:150cos240°+266.7cos300°+300cos30°+(mbrb)Ⅱx =0 ΣFy=0:150sin240°+ 266.7sin300°+300sin30°+ (mbrb)Ⅱy =0 (mbrb) Ⅱx = -318.16 (mbrb)Ⅱ y = 210.87 ∴ (mbrb)Ⅱ= [(mbrb)Ⅱx2+ (mbrb)Ⅱy2 ]1/2 =381.70(kg· mm) ∴ mbⅡ = (mbrb)Ⅱ/rb=381.70/50= 7.63(kg) θbⅡ =arctan[(mbrb)Ⅱy / (mbrb)Ⅱx]= arctan(210.87 /-318.16)] =180°- 33.53°= 146.46°
则:(mbrb)Ⅱ=WbⅡ · μW=37×10=370(kg· cm) ∴ mbⅡ=7.4kg 量取θbⅡ = 145°
2)解析法:(m1r1)Ⅰ+(m2r2)Ⅰ+(m3r3)Ⅰ+(m4r4)Ⅰ+(mbrb)Ⅰ=0 (m1r1)Ⅰ=m1r1=400kg· cm (m2r2)Ⅰ=m2r2(l23+l34)/l=kg· cm (m3r3)Ⅰ=m3r3 l34/l=133.3kg· cm (m4r4)Ⅰ=0
ΣFx=0:m1r1 cos135°+ m2r2 cos(210°-180°)+ (mbrb)x =0
ΣFy=0:m1r1 sin135°+ m2r2 sin(210°-180°)+ (mbrb)y =0 (mbrb)x = -(76.6 cos135°+ 100cos30°) = -32.44
(mbrb)y = -(76.6 sin135°+ 100sin30°) = -104.16
6-1 图示为一钢制圆盘,盘厚b=50mm, 位置Ⅰ处有一直径Φ=50mm的通孔,位 置Ⅱ处是一质量m2=0.5kg的重块。为了 使圆盘平衡,拟在圆盘上r=200mm处制 一通孔。试求此通孔的直径与位置。 (钢的密度γ=7.8g/cm3) 解:m1r1+ m2r2+mbrb=0
m1 =πΦ2/4 · b ·γ =0.766kg
m1r1 =76.6kg· mm,m2r2 =100kg· mm; 1)图解法:取μW=2kg· mm/mm作矢量多边形;
则:mbrb =Wb· μW=55×2=110(kg· mm)
∴ mb = 0.55kg mb =πd2/4 · b ·γ ∴ d=42.2mm 量取θb = 252.7°
2)解析法:m1r1+ m2r2+mbrb=0
图b
解:1)图解法:(m1r1)Ⅰ+(m2r2)Ⅰ+(m3r3)Ⅰ+(m4r4)Ⅰ+(mbrb)Ⅰ=0 (m1r1)Ⅰ=m1r1=400kg· cm (m2r2)Ⅰ=m2r2(l23+l34)/l=300kg· cm (m3r3)Ⅰ=m3r3 l34/l=133.3kg· cm (m4r4)Ⅰ=0 取μW=10kg· cm/mm作矢量多边形,图b; 则:(mbrb)Ⅰ=WbⅠ · μW=28×10=280(kg· cm) ∴ mbⅠ =5.6kg 量取θbⅠ = 6°
mb =πd2/4 · b ·γ ∴ d=42.2mm
6-2 在图示的转子中,已知各偏心质量m1=10kg, m2=15kg, m3=
20kg, m4=10kg,它们的回转半径分别为r1=40cm, r2= r4= 30 cm, r3=20cm,又已知各偏心质量所在的回转平面间的距离l12 = l23 = l34 = 30cm,各偏心质量的方位角如图。若置于平衡基面 Ⅰ及Ⅱ中的平衡质量mbⅠ及mbⅡ的回转半径均为50cm,试求此 mbⅠ及mbⅡ的大小和方位。
(m1r1)Ⅱ+(m2r2)Ⅱ+(m3r3)Ⅱ+(m4r4)Ⅱ+(mbrb)Ⅱ=0 (m1r1)Ⅱ=0
图c
(m2r2)Ⅱ=m2r2l12/l=150kg· cm
(m3r3)Ⅱ=m3r3 (l12+l23) /l=266.7kg· cm (m4r4)Ⅱ= m4r4 =300kg· cm
取μW=10kg· cm/mm作矢量多边形,图c;
ΣFx=0:400cos120°+300cos240°+133.3cos300°+(mbrb)Ⅰx =0
ΣFy=0:400sin120°+ 300sin240°+133.3sin300°+ (mbrb)Ⅰy =0
(mbrb)Ⅰx = 283.35 (mbrb)Ⅰy = 28.84 ∴ (mbrb)Ⅰ = [(mbrb)Ⅰx2+ (mbrb)Ⅰy2 ]1/2 =284.81(kg· mm) ∴ mbⅠ = (mbrb)Ⅰ/rb=284.81/50= 5.70(kg) θbⅠ =arctanቤተ መጻሕፍቲ ባይዱ(mbrb)Ⅰy / (mbrb)Ⅰx]= arctan(28.84 / 283.35)]=5.81°
θb =arctan[(mbrb)y / (mbrb)x]= arctan[(-104.16) /(-32.44)]=252.7°
(m1r1)Ⅱ+(m2r2)Ⅱ+(m3r3)Ⅱ+(m4r4)Ⅱ+(mbrb)Ⅱ=0
(m1r1)Ⅱ=0 (m2r2)Ⅱ=m2r2l12/l=150kg· cm
(m3r3)Ⅱ=m3r3 (l12+l23) /l=266.7kg· cm
(m4r4)Ⅱ= m4r4 =300kg· cm ΣFx=0:150cos240°+266.7cos300°+300cos30°+(mbrb)Ⅱx =0 ΣFy=0:150sin240°+ 266.7sin300°+300sin30°+ (mbrb)Ⅱy =0 (mbrb) Ⅱx = -318.16 (mbrb)Ⅱ y = 210.87 ∴ (mbrb)Ⅱ= [(mbrb)Ⅱx2+ (mbrb)Ⅱy2 ]1/2 =381.70(kg· mm) ∴ mbⅡ = (mbrb)Ⅱ/rb=381.70/50= 7.63(kg) θbⅡ =arctan[(mbrb)Ⅱy / (mbrb)Ⅱx]= arctan(210.87 /-318.16)] =180°- 33.53°= 146.46°
则:(mbrb)Ⅱ=WbⅡ · μW=37×10=370(kg· cm) ∴ mbⅡ=7.4kg 量取θbⅡ = 145°
2)解析法:(m1r1)Ⅰ+(m2r2)Ⅰ+(m3r3)Ⅰ+(m4r4)Ⅰ+(mbrb)Ⅰ=0 (m1r1)Ⅰ=m1r1=400kg· cm (m2r2)Ⅰ=m2r2(l23+l34)/l=kg· cm (m3r3)Ⅰ=m3r3 l34/l=133.3kg· cm (m4r4)Ⅰ=0
ΣFx=0:m1r1 cos135°+ m2r2 cos(210°-180°)+ (mbrb)x =0
ΣFy=0:m1r1 sin135°+ m2r2 sin(210°-180°)+ (mbrb)y =0 (mbrb)x = -(76.6 cos135°+ 100cos30°) = -32.44
(mbrb)y = -(76.6 sin135°+ 100sin30°) = -104.16
6-1 图示为一钢制圆盘,盘厚b=50mm, 位置Ⅰ处有一直径Φ=50mm的通孔,位 置Ⅱ处是一质量m2=0.5kg的重块。为了 使圆盘平衡,拟在圆盘上r=200mm处制 一通孔。试求此通孔的直径与位置。 (钢的密度γ=7.8g/cm3) 解:m1r1+ m2r2+mbrb=0
m1 =πΦ2/4 · b ·γ =0.766kg
m1r1 =76.6kg· mm,m2r2 =100kg· mm; 1)图解法:取μW=2kg· mm/mm作矢量多边形;
则:mbrb =Wb· μW=55×2=110(kg· mm)
∴ mb = 0.55kg mb =πd2/4 · b ·γ ∴ d=42.2mm 量取θb = 252.7°
2)解析法:m1r1+ m2r2+mbrb=0
图b
解:1)图解法:(m1r1)Ⅰ+(m2r2)Ⅰ+(m3r3)Ⅰ+(m4r4)Ⅰ+(mbrb)Ⅰ=0 (m1r1)Ⅰ=m1r1=400kg· cm (m2r2)Ⅰ=m2r2(l23+l34)/l=300kg· cm (m3r3)Ⅰ=m3r3 l34/l=133.3kg· cm (m4r4)Ⅰ=0 取μW=10kg· cm/mm作矢量多边形,图b; 则:(mbrb)Ⅰ=WbⅠ · μW=28×10=280(kg· cm) ∴ mbⅠ =5.6kg 量取θbⅠ = 6°
mb =πd2/4 · b ·γ ∴ d=42.2mm
6-2 在图示的转子中,已知各偏心质量m1=10kg, m2=15kg, m3=
20kg, m4=10kg,它们的回转半径分别为r1=40cm, r2= r4= 30 cm, r3=20cm,又已知各偏心质量所在的回转平面间的距离l12 = l23 = l34 = 30cm,各偏心质量的方位角如图。若置于平衡基面 Ⅰ及Ⅱ中的平衡质量mbⅠ及mbⅡ的回转半径均为50cm,试求此 mbⅠ及mbⅡ的大小和方位。
(m1r1)Ⅱ+(m2r2)Ⅱ+(m3r3)Ⅱ+(m4r4)Ⅱ+(mbrb)Ⅱ=0 (m1r1)Ⅱ=0
图c
(m2r2)Ⅱ=m2r2l12/l=150kg· cm
(m3r3)Ⅱ=m3r3 (l12+l23) /l=266.7kg· cm (m4r4)Ⅱ= m4r4 =300kg· cm
取μW=10kg· cm/mm作矢量多边形,图c;
ΣFx=0:400cos120°+300cos240°+133.3cos300°+(mbrb)Ⅰx =0
ΣFy=0:400sin120°+ 300sin240°+133.3sin300°+ (mbrb)Ⅰy =0
(mbrb)Ⅰx = 283.35 (mbrb)Ⅰy = 28.84 ∴ (mbrb)Ⅰ = [(mbrb)Ⅰx2+ (mbrb)Ⅰy2 ]1/2 =284.81(kg· mm) ∴ mbⅠ = (mbrb)Ⅰ/rb=284.81/50= 5.70(kg) θbⅠ =arctanቤተ መጻሕፍቲ ባይዱ(mbrb)Ⅰy / (mbrb)Ⅰx]= arctan(28.84 / 283.35)]=5.81°