模态分析理论应用实际的讨论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模态分析理论应用实际的讨论
模态分析在结构设计中的应用认识小结
在结构设计中,我们通常要运用模态分析的方法来辅助设计,提高结构设计的合理性和科学性。模态参数获取有两种方法:
一种是有限元法,一般的FEA软件都可以计算,WB当然也没有问题拉;
一种是测试的方法,比如用LMS b来测试。
这两种方法对于测试简单的结构是没有问题的,分析结果和试验结果很吻合。但是对于复杂的装配体结构,FEA软件就显得无能为力了,因为装配体有令人讨厌的结合面,对于结合面的分析,据我所知目前还没有比较好的办法(就算是最高的CAE高手恐怕也算不准)。所以复杂装配体的模态一般用测试的方法解决。当然CAE工程师可以用实验数据得到的结合面刚度阻尼值来修正自己的有限元模型。
一般模态分析的结果中,最受关注的是固有频率值及其振型。固有频率主要用以对照结构外的激振频率,看是否出现共振,共振出现的后果很严重,它会使设备的加工精度降低很多,另外固有频率值是衡量结构动静刚度的标杆,如果我想提高结构的动静刚度,不断改变自己设计的结构一般就能实现,当然设计水平也很重要;而通过观察振型我可以判断这个振型是否影响我设备的加工精度,如果影响的话,我会考虑将改变这个振型的频率,避免实际生产中出现加工精度降低的情况。模态分析在CAE中应该很简单,算出固有频率和振型也很轻松。但是如何在设计中运用好这个工具其实有很多学问。对于振型而言,可能不同的领域关注的焦点可能会不一样。以机床为例,如果计算机床的床身模态振型,可能振型有弯曲,扭转等众多振型,如果存在机床进刀、加工方向的振型,那么有可能这些振型会影响机床的加工精度。那么在设计阶段就必须对结构进行调整,比如修改结构内部的肋板分布,提高影响加工精度振型的固有频率,减少发生共振进而影响机床加工精度的可能性。我的看法是,振型模态分析要和结构强度刚度分析结合在一起,强度分析结果的高应力区如果和某一阶模态振型位移较大区域重合,就可认为结构是偏危险的,这些高应力区域有可能就是疲劳裂纹的萌生位置,而实际中的连续结构体振型应该是无穷多的,经典理论认为实际工程中能够对结构安全产生影响的往往只是低阶的频率振型,所以只要结构避开低阶共振区就能安全运行,然而随着结构形式运行条件等因素的不断变化,现代机械的振动形式也越来越复杂,除了静态强度刚度,动态强度刚度也越来越重要,在水中的湿模态分析,目前似乎还没有完美简洁的解决办法,计算分析所采用的模型和计算条件与实际运行中结构之间的差异会直接影响计算结果的精度,所以如何减小这个差异,或者说如何使分析过程更加接近实际是一直以来我们的目标。
模态分析中经常遇到的问题就是当分析对象为装配体的时候。装配体模态计算的正确性绝不仅仅在熟悉产品这么简单,尤其是类似于螺栓结合面、导轨结合面的地方,关于结合面的研究老早就到了一个瓶颈了,由于结合部特性参数的影响因素众多,如结合面材料、加工方法和表面质量,结合面介质及其性质,结合面几何形状及法面压力大小等,特别是在结合部作用机理尚未被真正揭示之前,要在理论上精确获得结合部的特性参数及其分析计算表达式非常困难,故用有限元法识别精度还有待验证。
结合部动力学参数识别问题的确是个技术性难题。目前解决好这一问题的手段是:测试+仿真,建立混合模型。另外对于产品的认知度问题是个值得讨论的问题,比如加强劲板形状的设计就是个问题。你是否已经能够罗列出各种简单振动模式下最好的结构形式?首先列一张表,然后你会心里有数些。但产品并非那么简单,所以需要设计复杂结构。那么,仅仅凭借模态测试是不够的,需要做结构形式的优化,那我们现有的优化技术中,拓扑优化是解决这一问题的好帮手。
曾经拿一家公司的产品,测试和计算发现他们的产品第一阶模态就到了300Hz以上,而同形式的产品,国内仅能到70几Hz.这个差距是何等的大?想办法把我们的产品也做到这样,那你就牛了。
这里谈到结构优化,我就插一句,ANSYS Workbench在分析或者说验证方面很不错,但是要涉及到拓扑优化和形貌优化则比较差,几乎不能应用到实际工程中,最多使用的尺寸优化。如果大家要做结构优化的话,建议使用一下HyperWorks/Optistruct,这个在结构优化上可以说是绝对领先的。.
还有就是共振的实际分析
"打个比方,整机固有频率为50HZ,处于整机装配中的某一个零件的约束模态的固有频率为120HZ,外界的激振频率为120HZ,会否发生共振?如果共振,难道只有那个零件在共振?理论上说得通,实际情况真会如此吗?" 这个问题是个十分典型的问题,在动力学中激励力的作用范围往往是明显的,但并不一定就能说固有频率一定被激励起来,问题在于:能量是否能够传递到子结构中引起响应的放大?能量在传递途中是会发生衰减的,因此,正确考虑激励力和响应之间的关系可以为模态试验更好的服务。例如激励力就选择在结构激励源附近,就可以同时考虑到模态和激励的影响。这一点是十分重要的,传递路径分析就是基于此思想。“如果共振,难道只有那个零件在共振?理论上说得通,实际情况真会如此吗?”这个问题也是十分典型的动力学问题,在这一点上,需要说明的是波动范围大小是由频率和媒体介质共同决定的。例如板类结构其最典型的振动形式是弯曲波,弯曲波速是可以通过计算获得的,也可以通过查资料获得。在获得频率和波速的基础上,波动范围是可以获得的。因此,类似于声学问题,低频波动总是大面积传递,而高频总是局部问题。利用功率流法可以了解结构振动能量的传递问题,更加容易判别振动对周边结构介质的影响。
确实如此,对很多设计成型的结构,设计方案不能轻易修改,可能牵一发而动全身,只能是局部调整,减小应力集中的程度及其区域,尽量避免在使用期限内出现大规模的疲劳断裂等故障。
因为阵型中存在死点,对于总成中的单个零件,即使存在和此零件某阶阵型频率相等的激振力,当激振力作用死点时,此零件不能发生共振。
模态分析如何能更好的验证或知道结构设计?这个问题困扰许久,实际结构在工作中处于复杂的环境中,尤其是高速旋转的机械结合部,由于温度的热效应等边界条件的变化,它的模态振型很难算准,算出来也只是仅参考。
只求第一阶固有频率越高越好,但能高到多少呢?
西工大一位搞振动学的教授在一次会议上曾说到过,有限元算出来前几阶模态能与模态实验的结果拟合就很不错了。再算十几阶,几十阶,还有实际意义么?
德国机床第一阶是300HZ,国内的不到100HZ,这个差距太大了!
希望有实践经验的多上来讨论讨论,将这一理论与实践完美结合啊!
下面是我学习这一理论时的课件,与大家分享!
学习这一理论刚开始比较空泛,要反复推敲,还有就是多看一些相关论文