《控制工程基础第三版》习题答案_清华大学出版社
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
2-1 解:
(1): )](12[)](1[)](5[)]()4[()(t L t t L t L t t L S F ⋅+⋅++=δδ S
S S S 215215022++=+++= (2): )
25(25
3)(2
++=
s s S F (3): 1
1)(2++=-s e S F s
π
(4): )}(1)6
(1)]6(2cos 4{[)(5t e t t L S F t ⋅+-⋅-
=-π
π
5
1
44512426
226
+++=+++=
--S s Se S s Se s
s π
π
(5): S
e S e S F s
s 226600)(--+=+++= (6): )]4
(1)90453cos(6[)(π
-
⋅--=t t L S F
9
636)]4(1)4(3cos 6[24
224
+=+=-⋅-=--S Se
S Se t t L S S
π
πππ
(7): )](18sin 25.0)(18cos [)(66t t e t t e L S F t t ⋅+⋅=--
100
128
8)6(28)6(62
2222+++=++++++=
S S S S S S (8): 9
9)20(52022)(26
2++
++++=-s e
s s S F s π
2-2
解:
(1): )(1)2()3
2
21(
)(321t e e S S L t f t t ⋅+-=+++-=--- (2): )(12sin 2
1
)(t t t f ⋅=
(3): )(1)2sin 2
1
2(cos )(t t t e t f t ⋅+=
(4): )1(1)1
(
)(11
-⋅=-=---t e S e L t f t s
(5): )(1)22()(2t e e te t f t t t ⋅-+-=---
(6): )(1215sin 15158))
2
15()21(215
15158()(22
21t t e S L t f t
⋅=++⋅=-- (7): )(1)3sin 3
1
3(cos )(t t t t f ⋅+=
2-3 解:
(1) 对原方程取拉氏变换,得:
S
S X x S SX x Sx S X S 1)(8)]0()([6)0()0()(2
=
+-+--⋅
• 将初始条件代入,得:
61
)()86(1)(86)(6)(22++=
++=+-+-S S
S X S S S
S X S SX S S X S
4
87247
81)86(1
6)(2
2+-++=++++=S S S S S S S S S X 取拉氏反变换,得:
t t e e t x 428
74781)(---+=
(2) 当t=0时,将初始条件50)0(=•
x 代入方程,得:
50+100x(0)=300 则x(0)=2.5
对原方程取拉氏变换,得: sx(s)-x(0)+100x(s)=300/s 将x(0)=2.5代入,得:
S
300
100X(S)2.5-SX(S)=+ 100
5
.03100)S(S 3002.5S X(S)+-=++=
s s
取拉氏反变换,得:
-100t 0.5e -3x (t)=
2-4
解:该曲线表示的函数为:
)0002.0(16)(-⋅=t t u
则其拉氏变换为:
s
e s U s
0002.06)(-=
2-5 解:
)0
()0()
(3)
(2)(2)(3
0100==+=+i i x y t x dt
t dx t y dt t dy 将上式拉氏变换,得:
2
33
2)()()()32()()23()(3)(2)(2)(30000++=
+=++=+S S S X S Y S X S S Y S S X S SX S Y S SY i i i i
2
3
-S 32-S Z p ==∴零点极点
又当 时)(1)(t t x i =
S
S X i 1
)(=
S S S S X S X S Y S Y i i 12332)()()()(00⋅++=⋅=
32
12332)()0(23
12332)()(lim lim lim lim 000
000=
⋅++⋅=⋅=∴=⋅++⋅=⋅=∞∴∞→∞→→→S S S S S Y S y S S S S S Y S y s s s s
2-6
解:
(a )传递函数:
1321232333211
2
32333
21232333
211111H G G G H G G H G G G G H H G G H G G G G H G G H G G G G R C
+++=
⋅++⋅+++⋅
=