实验声速的测量
声速测量实验报告 声速测量实验数据
声速测量实验报告声速测量实验数据一、实验目的1、了解声速测量的基本原理和方法。
2、学习使用驻波法和相位比较法测量声速。
3、掌握示波器和信号发生器的使用方法。
二、实验原理1、驻波法声波在介质中传播时,在入射波和反射波相遇处会形成驻波。
驻波的相邻波腹(或波节)之间的距离为半波长。
通过测量相邻两个波腹(或波节)之间的距离,就可以计算出声波的波长。
已知声波的频率,由公式$v =fλ$ (其中$v$ 为声速,$f$ 为频率,$λ$ 为波长)即可求出声速。
2、相位比较法当发射波和接收波之间存在相位差时,通过示波器可以观察到李萨如图形。
改变接收端的位置,使相位差发生变化。
当相位差变化一个周期,即李萨如图形从直线变为椭圆再变回直线时,接收端移动的距离等于一个波长。
三、实验仪器1、声速测量仪2、示波器3、信号发生器四、实验步骤1、驻波法连接实验仪器,将信号发生器的输出端连接到声速测量仪的发射端,将示波器的 CH1 通道连接到声速测量仪的接收端。
调节信号发生器的频率,使其在声速测量仪的谐振频率附近,观察示波器上的波形,找到最大振幅对应的频率,即为谐振频率。
缓慢移动声速测量仪的接收端,观察示波器上驻波的形成,记录相邻两个波腹(或波节)之间的距离。
重复测量多次,取平均值计算波长,进而求出声速。
2、相位比较法连接实验仪器,将信号发生器的输出端同时连接到示波器的 CH1和 CH2 通道,将声速测量仪的接收端连接到示波器的 CH2 通道。
调节信号发生器的频率为声速测量仪的谐振频率。
缓慢移动声速测量仪的接收端,观察示波器上的李萨如图形,记录李萨如图形变化一个周期时接收端移动的距离。
重复测量多次,取平均值计算波长,求出声速。
五、实验数据1、驻波法测量数据|测量次数|相邻波腹(或波节)距离(mm)|||||1|_____||2|_____||3|_____||4|_____||5|_____|2、相位比较法测量数据|测量次数|李萨如图形变化一个周期时接收端移动距离(mm)|||||1|_____||2|_____||3|_____||4|_____||5|_____|六、数据处理1、驻波法计算相邻波腹(或波节)距离的平均值:$\overline{d} =\frac{d_1 + d_2 + d_3 + d_4 + d_5}{5}$波长:$λ = 2\overline{d}$声速:$v =fλ$ (其中$f$ 为谐振频率)2、相位比较法计算李萨如图形变化一个周期时接收端移动距离的平均值:$\overline{D} =\frac{D_1 + D_2 + D_3 + D_4 + D_5}{5}$波长:$λ =\overline{D}$声速:$v =fλ$ (其中$f$ 为谐振频率)七、误差分析1、系统误差仪器本身的精度限制,如声速测量仪的刻度误差、示波器的测量误差等。
实验报告——声速的测量
声速测量------------------------------------------------------------------------------------------一、【实验名称】声速的测量二、【实验目的】1.了解超声波产生和接收的原理,加深对相位概念的理解。
2.学会测量空气中的声速。
3.了解声波在空气中的传播速度与气体状态参量之间的关系。
4.学会用逐差法处理实验数据。
三、【实验仪器】示波器、信号发生器和声速仪四、【实验原理】由波动理论可知,波速与波长、频率有如下关系:v=λf,只要知道频率和波长就可以求出波速。
本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。
剩下的就是测量声速的波长,这就是本实验的主要任务。
下面介绍两种常用的实验室测量空气中声波波长的方法。
1.相位比较法实验接线如上图所示。
波是振动状态的传播,也可以说是相位的传播。
在声波传播方向上,所有质点的振动相位逐一落后,各点的振动相位又随时间变化。
声波波源和接收点存在着相位差,而这相位差则可以通过比较接收换能器输出的电信号与发射换能器输入的正弦交变电压信号的相位关系中得出,并可利用示波器的李萨如图形来观察。
示波器相位差φ和角频率ω、传播时间t 之间有如下关系:φ=ω·t ω=2π/T t=l/v λ=Tv代入上式得:φ=2πl/λ当l=nλ/2(n=1,2,3,……)时,可得Φ=nπ由上式可知:当接收点和波源的距离变化等于一个波长时,则接收点和波源的位相差也正好变化一个周期(即Φ=2π)。
实验时,通过改变发射器与接收器之间的距离,观察到相位的变化。
当相位差改变π时,相应距离l的改变量即为半个波长。
2.驻波法如上图所示,实验时将信号发生器输出的正弦电压信号接到发射超声换能器上,超声发射换能器通过电声转换,将电压信号变为超声波,以超声波形式发射出去。
接收换能器通过声电转换,将声波信号变为电压信号后,送入示波器观察。
声速的测量思考题声速的测量实验报告
声速的测量思考题声速的测量实验报告声速的测量实验报告一、实验名称:声速的测量二、实验目的1.了解声速的测量原理;2.掌握示波器和信号发生器的使用方法。
3.掌握逐差法处理数据三、实验仪器示波器,信号发生器、声速测量仪四、实验原理在弹性介质中,频率从20Hz到20kHz的振动所激起的机械波称为声波,高于20kHz,称为超声波,超声波的频率范围在之间。
超声波的传播速度,就是声波的传播速度。
超声波具有波长短,易于定向发射等优点,在超声波段进行声速测量比较方便。
由波动理论可知,波速与波长、频率有如下关系:,只要知道频率和波长就可以求出波速。
本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。
声波的波长用驻波法(共振干涉法)和行波法(相位比较法)测量。
图1:超声波测声速实验装置图图2:压电陶瓷换能器结构示意图压电陶瓷换能器(变压器)是利用极化后压电体的压电效应来实现电压输出的。
其输入部分用正弦电压信号驱动,通过逆压电效应使其产生振动,振动波通过输入和输出部分的机械耦合到输出部分,输出部分再通过正压电效应产生电荷,实现压电体的电能-机械能-电能的两次变换,在压电变压器的谐振频率下获得最高输出电压。
与电磁变压器相比,这具有体积小,质量轻,功率密度高,效率高,耐击穿,耐高温,不怕燃烧,无电磁干扰和电磁噪声,且结构简单、便于制作、易批量生产,在某些领域成为电磁变压器的理想替代元等优点。
此类变压器用于开关转换器、笔记本电脑、氖灯驱动器等。
1.驻波法测波长由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分别是:叠加后合成波为:,求解可得各点振幅最大,称为波腹,对应的位置:各点振幅最小,称为波节,对应的位置:因此只要测得相邻两波腹(或波节)的位置、即可得波长。
2.相位比较法测波长从换能器发出的超声波到达接收器,所以在同一时刻与处的波有一相位差:其中l是波长,x为和之间距离)。
因为x改变一个波长时,相位差就改变。
大物实验报告声速的测定
大物实验报告声速的测定篇一:大学物理实验报告-声速的测量实验报告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理;3.了解声速与介质参数的关系。
【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。
在超声波段进行声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。
超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常见的方法是利用压电效应和磁致伸缩效应来实现的。
本实验采用的是压电陶瓷制成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。
声波的传播速度与其频率和波长的关系为:vf(1)由(1)式可知,测得声波的频率和波长,就可以得到声速。
同样,传播速度亦可用v?L/t(2)表示,若测得声波传播所经过的距离L和传播时间t,也可获得声速。
1. 共振干涉法实验装置如图1所示,图中S1和S2为压电晶体换能器,S1作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;S2为超声波接收器,声波传至它的接收面上时,再被反射。
当S1和S2的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L为半波长的整倍数,即L=n×,n=0,1,2, (3)2λ时,S1发出的声波与其反射声波的相位在S1处差2nπ(n=1,2 ……),因此形成共振。
因为接收器S2的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。
本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。
从示波器上观察到的电信号幅值也是极大值(参见图2)。
图中各极大之间的距离均为λ/2,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。
我们只要测出各极大值对应的接收器S2的位置,就可测出波长。
由信号源读出超声波的频率值后,即可由公式(1)求得声速。
声速的测量实验方法与结果分析
声速的测量实验方法与结果分析声速是指声波在单位时间内传播的距离,它是声波传播速度的重要指标。
准确地测量声速对于物理实验和工程应用来说具有重要意义。
本文将介绍声速的测量实验方法,并对实验结果进行分析。
一、实验方法声速的测量实验可以采用多种方法,本文主要介绍了两种常用的方法:直接测量法和间接测量法。
1. 直接测量法直接测量法是通过测量声波从一个点传播到另一个点所需的时间,并计算出声速。
其中,常用的实验装置有声速仪、示波器、计时器等。
实验步骤如下:(1)在实验室中选择合适的测距点,并将两点之间的距离测量出来。
(2)在起点处发出一个短脉冲声波,并记录下发出声波的时间。
(3)在终点处接收到声波后,记录下接收到声波的时间。
(4)根据记录的时间数据和测距点之间的距离,计算出声速。
2. 间接测量法间接测量法是通过测量其他与声速有关的参数,推导得出声速的方法。
常用的方法有共振法和频率法。
(1)共振法利用管道或空气柱中的共振现象来测量声速。
实验步骤如下:a. 在管道中通过一个声源发出一定频率的声波。
b. 调整频率,使得管道内产生共振现象。
c. 根据共振频率和管道长度计算声速。
(2)频率法利用声波在不同介质中传播的频率关系来推导声速。
实验步骤如下:a. 在一个介质中发出一定频率的声波,记录下波长和频率。
b. 更换介质,再次记录波长和频率。
c. 利用频率和波长的关系,计算出声速。
二、结果分析进行声速测量实验后,我们需要对实验结果进行分析和讨论。
一般情况下,实验结果会与理论值存在一定的误差。
误差分析:声速的测量误差主要来自于实验仪器的精度、实验环境的影响以及实验操作中的人为误差等。
在实验中,我们可以通过多次测量并取平均值的方法来减小误差。
结果验证:进行声速测量实验后,我们可以将实验结果与已知的标准值进行比较,以验证实验的准确性。
如果实验结果与标准值相差较大,我们需要重新检查实验操作或者修改实验方案。
应用与意义:声速作为声波传播速度的重要指标,广泛应用于声学、物理学以及工程领域。
声速测量实验的原理与实验步骤
声速测量实验的原理与实验步骤声速测量是一项重要的实验,它可以用于研究和分析声波在不同介质中的传播速度。
本文将介绍声速测量实验的原理和实验步骤。
一、实验原理声速是指声波在单位时间内通过介质的传播距离。
声速的测量可以帮助我们了解介质的性质及声波在不同介质中的传播规律。
声速测量实验主要基于时间和距离的关系来进行。
在实验中,我们可以利用以下公式来计算声速:声速 = 距离 / 时间为了测量声速,实验中通常会使用定距法或共振法。
二、实验步骤1. 材料准备- 信号发生器:用于产生声源信号。
- 麦克风:用于接收声音信号。
- 示波器:用于显示声波信号的波形。
- 测量尺:用于测量传播距离。
- 计时器:用于测量时间。
2. 实验设置- 将信号发生器和麦克风放置在实验台上。
将麦克风固定在一定的位置上,确保其与信号发生器之间的距离为待测距离。
- 将示波器连接至麦克风,以便能够观察到声波的波形。
3. 定距法测量声速- 设置信号发生器产生一个连续的声波信号,并通过麦克风接收。
- 开始测量,同时启动计时器,记录下声波从信号发生器到麦克风的传播时间。
- 使用测量尺准确测量出声波的传播距离。
- 根据声速公式,计算出实验中所测得的声速值。
4. 共振法测量声速- 将信号发生器的频率逐渐调整,直到观察到示波器上声波的共振现象。
- 记录下信号发生器的频率和共振发生的位置。
- 使用测量尺测量共振发生位置的距离,记为 L。
- 根据声速公式,计算出实验中所测得的声速值。
5. 数据处理与分析- 重复以上实验步骤多次,确保结果的准确性,并计算出平均值。
- 将测得的声速值与已知值进行比较,验证实验结果的准确性。
三、实验注意事项1. 实验过程中要保证信号发生器、麦克风和示波器的良好连接,避免信号损失或干扰。
2. 在定距法中,要保证测量尺的准确性,尽量避免误差。
3. 在共振法中,要准确找到共振发生的位置,实验时需要仔细观察示波器的波形。
4. 实验结束后,要将使用的设备归位,并保持实验室的整洁。
声速的测量实验总结
声速的测量实验总结
一、实验简介
声速的测量实验是一种物理实验,主要目的是通过测量声波在介质中的传播速度,了解声波的基本特性。
实验中,我们通常使用声波发生器和接收器,通过测量声波从发生器传播到接收器的时间,计算出声波在介质中的传播速度。
二、实验目的
1. 掌握声速的测量方法;
2. 了解声波在介质中的传播速度与介质性质的关系;
3. 培养实验操作能力和数据处理能力。
三、实验原理
声速的测量基于波的传播特性。
在均匀介质中,声波的传播速度与介质本身的性质有关,可以通过已知的声速公式计算:
c = √(K/ρ)
其中,c 是声速,K 是介质的弹性模量,ρ是介质的密度。
四、实验步骤与操作
1. 准备实验器材:声波发生器、接收器、计时器、已知长度的测量管、已知密度的介质(如水、空气等);
2. 将声波发生器和接收器分别置于测量管的起点和终点,确保测量管内无空气;
3. 启动声波发生器,记录声波从起点传播到终点的时间;
4. 根据声速公式,计算出声波在介质中的传播速度;
5. 重复实验,记录多组数据,求平均值以提高测量精度。
五、实验结果分析
1. 根据实验数据,绘制出声速与介质密度的关系图;
2. 分析实验结果,比较理论值与实验值的差异;
3. 总结实验误差来源,提出改进措施。
六、实验结论
通过本实验,我们掌握了声速的测量方法,了解了声波在介质中的传播速度与介质性质的关系。
实验结果表明,声速与介质的密度和弹性模量有关,可以通过这些参数来计算出声速的理论值。
通过比较理论值与实验值,我们可以评估实验的精度和误差来源,为后续的实验提供改进方向。
声速的测定实验报告
一、实验目的1. 理解声速的概念及其影响因素。
2. 掌握使用驻波法和相位法测量声速的方法。
3. 熟悉示波器、低频信号发生器等仪器的使用。
4. 学会使用逐差法处理实验数据。
二、实验原理声速是指声波在介质中传播的速度。
声速的大小受介质性质(如密度、弹性模量等)和温度的影响。
本实验采用驻波法和相位法测量声速。
1. 驻波法:当两列频率相同、振幅相等的声波在同一直线上传播并相遇时,它们会相互叠加形成驻波。
驻波的波腹(振动幅度最大的点)和波节(振动幅度为零的点)之间的距离等于声波的波长。
通过测量波腹间距,可以间接求出声波的波长,进而计算出声速。
2. 相位法:声波是一种振动状态的传播,即相位的传播。
当超声波发生器发出的声波是平面波时,沿传播方向移动接收器,总能找到一个位置使得接收到的信号与发射器的激励电信号同相。
继续移动接收器,当接收到的信号再次与激励电信号同相时,移过的距离即为声波的波长。
通过测量波长和频率,可以计算出声速。
三、实验仪器1. 驻波法实验:- 超声波发射器- 超声波接收器- 示波器- 低频信号发生器- 测量尺2. 相位法实验:- 超声波发射器- 超声波接收器- 示波器- 低频信号发生器- 测量尺四、实验步骤1. 驻波法:1. 将超声波发射器和接收器分别固定在支架上,使其在同一直线上。
2. 连接示波器、低频信号发生器和超声波发射器、接收器。
3. 调节低频信号发生器的频率,使超声波发射器产生稳定的声波。
4. 观察示波器上的波形,找到波腹和波节的位置,并测量波腹间距。
5. 计算声波的波长和声速。
2. 相位法:1. 将超声波发射器和接收器分别固定在支架上,使其在同一直线上。
2. 连接示波器、低频信号发生器和超声波发射器、接收器。
3. 调节低频信号发生器的频率,使超声波发射器产生稳定的声波。
4. 观察示波器上的波形,找到相位差为零的位置。
5. 测量超声波发射器和接收器之间的距离,即为声波的波长。
6. 计算声速。
声速的测量实验报告及数据处理
声速的测量实验报告及数据处理一、实验目的1、了解声速测量的基本原理和方法。
2、学会使用驻波法和相位比较法测量声速。
3、掌握示波器和信号发生器的使用方法。
4、培养实验操作能力和数据处理能力。
二、实验原理1、驻波法当声源发出的平面波在管内沿轴线传播时,入射波与反射波叠加形成驻波。
在驻波中,波节处的声压最小,波腹处的声压最大。
相邻两波节(或波腹)之间的距离为半波长。
通过测量相邻两波节(或波腹)之间的距离,就可以计算出声波的波长,再根据声波的频率,即可求出声速。
2、相位比较法声源发出的声波分别通过两个路径到达接收器,一路是直接传播,另一路是经过反射后传播。
这两列波在接收器处会产生相位差。
当移动接收器时,相位差会发生变化。
通过观察示波器上两列波的相位变化,找到同相或反相的位置,从而测量出声波的波长,进而求出声速。
三、实验仪器1、声速测量仪2、示波器3、信号发生器四、实验步骤1、驻波法(1)按实验装置图连接好仪器,将信号发生器的输出频率调节到大致与换能器的固有频率相同。
(2)缓慢移动游标卡尺的活动端,观察示波器上的波形,当出现振幅最大时,即为波腹位置,记录此时游标卡尺的读数。
(3)继续移动活动端,当振幅最小(为零)时,即为波节位置,记录此时的读数。
(4)依次测量多个波腹和波节的位置,计算相邻波腹(或波节)之间的距离,取平均值作为波长。
2、相位比较法(1)连接好仪器,调节信号发生器的频率,使示波器上显示出稳定的李萨如图形。
(2)缓慢移动接收器,观察李萨如图形的变化,当图形由斜椭圆变为正椭圆时,记录此时接收器的位置。
(3)继续移动接收器,当图形再次变为正椭圆时,再次记录位置。
(4)测量两次正椭圆位置之间的距离,即为声波波长的一半。
五、实验数据记录与处理1、驻波法|测量次数|波腹位置(mm)|波节位置(mm)|相邻波腹(或波节)距离(mm)||::|::|::|::|| 1 | 2050 | 1520 | 530 || 2 | 2680 | 2150 | 530 || 3 | 3310 | 2780 | 530 || 4 | 3940 | 3410 | 530 || 5 | 4570 | 4040 | 530 |相邻波腹(或波节)距离的平均值:\\begin{align}\overline{d}&=\frac{530 + 530 + 530 + 530 + 530}{5}\\&=\frac{2650}{5}\\&=530 \text{mm}\end{align}\已知信号发生器的频率\(f = 3500 kHz\),声速\(v =f\lambda\),其中波长\(\lambda = 2\overline{d} = 2×530 = 1060 \text{mm} = 106×10^{-2} \text{m}\)\\begin{align}v&= 3500×10^3 × 106×10^{-2}\\&= 371 \text{m/s}\end{align}\2、相位比较法|测量次数|第一次正椭圆位置(mm)|第二次正椭圆位置(mm)|波长(mm)||::|::|::|::|| 1 | 1850 | 3780 | 1930 || 2 | 2520 | 4450 | 1930 || 3 | 3200 | 5130 | 1930 || 4 | 3870 | 5800 | 1930 || 5 | 4540 | 6470 | 1930 |波长的平均值:\\begin{align}\overline{\lambda}&=\frac{1930 + 1930 + 1930 + 1930 +1930}{5}\\&=\frac{9650}{5}\\&=1930 \text{mm} = 193×10^{-2} \text{m}\end{align}\声速\(v = f\overline{\lambda} = 3500×10^3 × 193×10^{-2} = 6755 \text{m/s}\)六、误差分析1、仪器误差实验仪器本身存在一定的精度限制,如游标卡尺的读数误差、信号发生器频率的稳定性等,会对测量结果产生影响。
声速的测量实验报告_实验报告_
声速的测量实验报告_实验报告_一、实验目的:1、了解空气中声速的测量原理及测量方法;2、掌握正弦波信号发生器、示波器、计时器等实验仪器的使用方法;3、通过实验确认空气中声速的实验值与理论值之间的误差。
二、实验原理:声速是波在介质中的传播速度,其大小与介质密度、弹性模量、压强等有关。
在空气中,声速的大小可以通过以下公式计算:V=331.45+0.6T其中,V为声速,T为温度,单位均为米/秒(m/s)。
为了测量声速,我们可以在室内架设一条长度为L的光学直线,同时设置两个不同位置A、B的麦克风。
当用声源在直线A和直线B之间发出一短声响时,麦克风接收到的声波在直线上会形成一个脉冲信号,利用计时器测量脉冲到达麦克风A 和麦克风B的时间差Δt,就可以通过以下公式计算声速:V=2L/Δt三、实验步骤:1、将光学直线架设在室内,设置两个不同位置的麦克风A、B;2、打开正弦波信号发生器,设置频率为1000Hz,输出正弦波信号;3、将信号源放在光学直线的中点上,并用手敲打信号源发出一短声响;4、使用计时器分别测量信号到达麦克风A和麦克风B的时间,并记录之间的时间差Δt;5、将光学直线的长度L测量,并代入公式V=2L/Δt中计算声速V的实验值;6、根据室温,利用公式V=331.45+0.6T,计算得到声速的理论值;7、对比实验值和理论值,进行误差分析。
四、实验结果及分析:根据实验数据,我们得到以下结果:光学直线长度L=2m麦克风A记录到声音的时间t1=0.012s麦克风B记录到声音的时间t2=0.020s时间差Δt=t2-t1=0.008s代入公式V=2L/Δt中,得到声速V的实验值为:V=2×2/0.008=500m/s根据室温,利用公式V=331.45+0.6T,计算得到声速的理论值为:V=331.45+0.6×25=346.45m/s根据实验数据计算得到的声速实验值与理论值之间存在一定的误差。
(完整word版)声速的测量
声速的测量1. 实验目的(1)了解声速测量仪的结构和测试原理;(2)通过实验了解作为传感器的压电陶瓷的功能;(3)用共振干涉法和相位比较法测量声速,并加深有关共振、振动合成、波的干涉等理论知识的理解;(4)进一步掌握示波器、低频信号发生器和数字频率计的使用。
2。
实验仪器SV—DH系列声速测试仪,SVX-5型声速测试仪信号源,双踪示波器(20MHz)。
3。
仪器简介(1)声波频率介于20Hz~20kHz的机械波振动在弹性介质中的传播就形成声波,介于20kHz~500MHz的称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射和会聚等优点,声速实验所采用的声波频率一般都在20KHz~60kHz之间.在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器、效果最佳。
(2) 压电陶瓷换能器SV—DH系列声速测试仪主要由压电陶瓷换能器和读数标尺组成。
压电陶瓷换能器是由压电陶瓷片和轻重两种金属组成。
压电陶瓷片是由一种多晶结构的压电材料(如石英、锆钛酸铅陶瓷等),在一定温度下经极化处理制成的。
它具有压电效应,即受到与极化方向一致的应力T时,在极化方向上产生一定的电场强度E且具有线性关系:E=CT;当与极化方向一致的外加电压U加在压电材料上时,材料的伸缩形变S与U之间有简单的线性关系:S=KU,C为比例系数,K为压电常数,与材料的性质有关。
由于E与T,S与U之间有简单的线性关系,.即压电,即用压电陶瓷(信实验装置接线如图2所示,置示波器功能于X -Y 方式。
当S1发出的平面超声波通过媒质到达接收器S2,在发射波和接收波之间产生相位差:VLL πνλπϕϕϕ2221==-=∆ (1)因此可以通过测量ϕ∆来求得声速。
ϕ∆的测定可用相互垂直振动合成的李萨如图形来进行。
设输入X 轴的入射波振动方程为)cos(11ϕω+=t A x (2)输入Y 轴的是由S2接收到的波动,其振动方程为:)cos(22ϕω+=t A y (3)图2 实验装置上两式中:A 1和A 2分别为X 、Y 方向振动的振幅,ω为角频率,1ϕ和2ϕ分别为X 、Y 方向振动的初相位,则合成振动方程为)(sin )cos(21221221222212ϕϕϕϕ-=--+A A xyA y A x (4) 此方程轨迹为椭圆,椭圆长、短轴和方位由相位差21x A A y 12=迹为处于第一和第三象限的一条直线,显然直线的斜率为12A A 。
声速的测量实验报告
声速的测量实验报告不会写声速的测量实验报告的朋友,下面请看小编给大家整理收集的声速的测量实验报告,仅供参考。
声速的测量实验报告1实验目的:测量声音在空气中的传播速度。
实验器材:温度计、卷尺、秒表。
实验地点:平遥县状元桥东。
实验人员:爱物学理小组实验分工:张灏、成立敬——测量时间张海涛——发声贾兴藩——测温实验过程:1 测量一段开阔地长;2 测量人在两端准备;3 计时员挥手致意,发声人准备发声;4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止)5 多测几次,记录数据。
实验结果:时间17∶30温度21℃发声时间0.26″发声距离 93m实验结论:在21℃空气中,声音传播速度为357.69m/s.实验反思:有一定误差,卡表不够准确。
声速的测量实验报告2实验目的:1)探究影响声速的因素,超声波产生和接收的原理。
2)学习、掌握空气中声速的测量方法3)了解、实践液体、固体中的声速测量方法。
4)三种声速测量方法作初步的比较研究。
实验仪器:1)超声波发射器 2)超声波探测器 3)平移与位置显示部件。
4)信号发生器: 5)示波器实验原理: 1)空气中:a.在理想气体中声波的传播速度为v88(式中8088cpcV(1)称为质量热容比,也称“比热[容]比”,它是气体的质量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T是绝对温度,R=8.314472(1±1.7×10-6)Jmol-1K-1为摩尔气体常量。
)标准干燥空气的平均摩尔质量为Mst =28.966�8�710-3kg/mol b.在标准状态下(T0�8�8273.15K,p�8�8101.3�8�8kPa),干燥空气中的声速为v0=331.5m/s。
在室温t℃下,干燥空气中的声速为v88v0(2)(T0=273.15K)c.然而实际空气总会有一些水蒸气。
当空气中的相对湿度为r时,若气温为t℃时饱和蒸气压为pS,则水汽分压为rps。
大学物理实验声速的测量实验报告
大学物理实验声速的测量实验报告一、实验目的1、学会用驻波法和相位法测量声速。
2、了解声速测量的基本原理和方法。
3、加深对波动理论的理解,提高实验操作能力和数据处理能力。
二、实验原理1、驻波法声波在介质中传播时,入射波与反射波叠加形成驻波。
在驻波中,相邻两波节之间的距离为半波长的整数倍。
通过测量相邻两波节之间的距离,就可以计算出声波的波长,进而求得声速。
设声源的振动频率为 f,波长为λ,声速为 v,则有 v =fλ。
在驻波法中,我们使用超声换能器作为声源和接收器。
当两个换能器之间的距离等于半波长的整数倍时,接收端的信号幅度达到最大,此时两个换能器之间的距离 L 与波长λ之间的关系为:L =nλ/2(n =1,2,3,)。
2、相位法声源和接收器作相对运动时,接收器接收到的声波频率会发生变化,这种现象称为多普勒效应。
在相位法中,我们利用多普勒效应来测量声速。
设声源的频率为 f,声源和接收器的相对运动速度为 v',接收器接收到的声波频率为 f',则有:f' = f (1 + v'/v) 。
当声源和接收器相向运动时,v'为正;当声源和接收器相背运动时,v'为负。
通过测量声源和接收器的相对运动速度 v'以及声源的频率 f,就可以计算出声速 v。
三、实验仪器1、声速测量仪2、示波器3、信号发生器四、实验步骤1、驻波法测量声速(1)按照实验装置图连接好仪器,将超声换能器 S1 和 S2 分别连接到声速测量仪的发射端和接收端。
(2)打开信号发生器和示波器,调整信号发生器的输出频率,使示波器上显示出稳定的正弦波。
(3)缓慢移动 S2,观察示波器上的信号幅度变化。
当信号幅度达到最大时,记录此时 S2 的位置 L1。
(4)继续移动 S2,当信号幅度再次达到最大时,记录此时 S2 的位置 L2。
(5)重复步骤(3)和(4)多次,测量多组数据。
(6)根据测量数据计算出声波的波长λ,进而求得声速 v。
声速测量实验
添加标题
添加标题
添加标题
添加标题
安装仪器:将声速测量仪放置在无 回声的实验室内,确保仪器稳定
开始测量:调整信号发生器,使声 波通过声速测量仪,观察示波器上 的波形,记录数据
数据处理与分析
数据记录:准确记录实验过程中的各项数据,包括声速测量值、温度、气压等。
数据处理:对收集到的数据进行处理,包括数据清洗、异常值处理等。
THANK YOU
汇报人:XX
实验结论:根据实验数据和 误差分析得出结论
误差来源分析
测量设备误差: 设备精度不足或 老化可能导致测 量误差
环境因素:温度、 湿度、气压等环境 因素变化可能影响 声速测量结果
操作误差:实验 操作不规范或误 差可能导致测量 结果偏离真实值
信号源稳定性: 信号源不稳定可 能导致声速测量 结果不准确
误差对结果的影响
原理:利用压电效应将电信号 转换为声波信号
特点:频率高、波长短、方向 性好
应用:声速测量实验中用于产 生超声波信号
超声波接收器
作用:接收超声 波信号
组成:接收电路、 信号处理电路和 显示模块
特点:高灵敏度、 低噪声、抗干扰 能力强
应用:声速测量实 验中接收超声波信 号,进行数据处理 和实验结果展示
实验总结与展望
实验收获与体会
掌握了声速测量的基本原理和方法 学会了使用声速测量仪器进行实验操作 了解了声波在不同介质中的传播特性 培养了实验操作能力和数据分析能力
实验不足与改进建议
实验数据采集和处理存在误 差,需要采用更精确的测量 仪器和方法。
实验操作过程不够规范,需 要加强实验技能培训。
存储实验数 据和结果
显示实验图 像和波形
实验步骤
测量声速的声速测量实验
测量声速的声速测量实验在物理学中,声速是指声波传播的速度。
声波是一种机械波,需要介质传播,因此声速的测量非常重要,不仅用于科学研究,还在工程和医学等领域有广泛的应用。
本文将详细介绍声速测量的实验过程,包括实验准备、实验步骤以及实验结果的应用。
1. 实验准备在进行声速测量的实验前,我们需要的一些实验仪器和材料如下:- 声源:例如音叉或者声振子等可以产生不同频率声波的设备。
- 麦克风:用于接收产生的声波并将其转化为电信号。
- 计时设备:例如计时钟、秒表等。
- 介质:声波传播需要介质,通常使用空气作为介质,以确保实验的控制和一致性。
- 温度计:用于测量实验环境的温度,因为声速与介质的温度有关。
- 尺子:用于测量声源与麦克风的距离,以计算声波传播的时间和速度。
2. 实验步骤接下来,我们将详细阐述声速测量的实验步骤。
第一步:准备好实验装置,并将麦克风放置在固定的位置上。
同时,测量麦克风与声源之间的距离,并记录下这个值。
第二步:将声源产生声波,并确保声源正向麦克风传播声波。
可以将声源固定在一个恒定的位置上,以确保声波传播方向的一致性。
第三步:打开计时设备,并启动麦克风接收声波。
当声波到达麦克风的时候,麦克风会将声波转化为电信号,计时设备会记录下声波传播所经历的时间。
第四步:重复以上实验步骤多次,并记录下每次实验的结果。
然后计算出每次的声速值,并对它们取平均值,以提高实验数据的准确性。
第五步:在每次实验前后测量环境的温度,并将其考虑进声速的计算中。
因为声速与温度具有一定的关系,根据声速公式可以进行修正。
3. 实验结果的应用和其他专业性角度声速测量实验不仅可以用于理解声波传播的基本原理,还在实际应用中有着广泛的用途。
以下是几个应用方面的介绍:工程领域:在建筑工程和土木工程等领域,测量声速可以用来评估材料的质量。
例如,声速可以用来检测墙壁中的空隙或者材料强度的均匀性。
另外,声速测量也可以用于声学设计,确保声音在房间内的合适传播。
测量声速的实验方法
测量声速的实验方法声速是指声波在介质中传播的速度,通常以米/秒(m/s)作为单位。
测量声速是物理学实验中的常见内容,可以通过不同的实验方法来进行。
一、利用共鸣法测量声速共鸣法是一种常用于测量声速的方法。
其基本原理是通过利用共振现象,使得声波在一定条件下得到放大和增强。
实验器材:1. 共鸣管2. 音叉3. 示波器4. 电源5. 信号发生器实验步骤:1. 将共鸣管调整至合适的长度,并固定在支架上。
2. 将音叉固定在共鸣管的一端,并用信号发生器激发音叉。
3. 缓慢改变共鸣管的长度,当共鸣管的长度与声波的半波长相等时,共振现象会发生。
4. 通过示波器观察到最大的振幅时,记录下此时的共鸣管长度。
5. 根据测得的声波半波长和频率,可以计算出声速。
二、利用回声测量法测量声速回声测量法是一种通过测量声音从源头到达反射物再返回的时间来计算声速的方法。
实验器材:1. 音源,如手掌或者敲击棒2. 计时器或者秒表3. 水平墙面或者其他反射物体4. 测量标尺实验步骤:1. 在实验室中选择一个相对静音的环境。
2. 将音源靠近墙面,并使其产生一个较大的声音。
可以通过敲击墙面或者用手掌拍击的方式产生声音。
3. 同时开始计时,在听到回声的那一刻停止计时。
4. 测量声音源距离墙面的距离。
5. 重复实验多次,取平均值。
6. 根据声音源到墙面的距离和回声延迟的时间,可以计算出声速。
三、利用频率和波长的关系测量声速声速与声波的频率和波长有一定的关系,可以通过测量声波的频率和波长来计算声速。
实验器材:1. 频率计2. 波长测量器实验步骤:1. 使用频率计测量声波的频率。
2. 使用波长测量器测量声波的波长。
3. 根据声波的频率和波长,使用以下公式计算声速:声速=频率×波长。
需要注意的是,在进行实验测量时,应确保实验环境相对安静,以减少外界干扰对实验结果的影响。
同时,在进行测量时应重复实验多次,并取平均值,以提高测量结果的准确性。
综上所述,通过共鸣法、回声测量法以及利用频率和波长的关系等实验方法,我们可以准确测量声速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验3-5 声速的测量声波是一种在弹性媒质中传播的机械波,由于其振动方向与传播方向一致,故声波是纵波。
振动频率在20Hz~20KHz的声波可以被人们听到,称为可闻声波;频率超过20KHz 的声波称为超声波。
对于声波特性的测量(如频率、波速、波长、声压衰减和相位等)是声学应用技术中的一个重要内容,特别是声波波速(简称声速)的测量,在无损检测、测距和定位、测气体温度的瞬间变化、测液体的流速、测材料的弹性模量等应用中具有重要的意义。
如测量氯气等气体或蔗糖溶液的浓度、橡胶乳液的密度以及测定输油管中不同油品的分界面等,这些问题都可以通过测定这些物质中的声速来解决。
声速的测量方法可分为两类;第一类方法是根据关系式v L/t,测出传播距离L和所需时间t后,即可算出声速v ;第二类方法是利用关系式v=入f,从测量其频率f和波长入来算出声速V.本实验所采用的共振干涉法和相位比较法属于后者,时差法则属于前者。
声速与声波的频率无关,只决定于弹性介质的性质。
由于超声波具有波长短、易于定向发射及抗干扰等优点,所以在超声波段进行声速测量是比较方便的。
对声速这一非电量的测量本实验是利用压电陶瓷换能器来进行。
【实验目的】①学会用共振干涉法和相位法测量空气中的声速;②学会使用示波器和信号发生器;③加强对驻波及振动合成等理论的理解。
预习思考题】①实验中是如何获得超声波的?②驻波法和相位法测声速的方法有何异同?【实验原理】声波的传播速度与其频率和波长的关系为v=入f ( 3-5-1 ) 测得声波的频率和波长,就可得到声速。
同样,传播速度亦可用v L/t 表示,若测得声波传播所经过的距离L 和传播时间t ,也可求得声速。
1 .超声波与压电陶瓷换能器超声波具有波长短,易于定向发射、易被反射等优点。
在超声波段进行声速测量的优点还在于超声波的波长短,可以在短距离较精确地测出声速。
本实验超声波的发射和接收采用的是压电陶瓷制成的换能器(探头),它利用压电效应和磁致伸缩效应可以在机械振动与交流电压之间双向换能。
声速测量的实验中采用超声波频率一般都在20KHz ~ 60KHz 之间。
在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。
压电陶瓷换能器结构如图3-5-1 所示。
头部用轻金属做成喇叭形,尾部用重金属做成柱形,中部为压电陶瓷圆环,螺钉穿过圆环的中心。
这种结构增大了辐射面积。
振子纵向长度的伸缩直接影响头部轻金属,发射的波有较好的方向性和 平面性。
图3-5-1纵向换能器的结构简图2. 共振干涉法(驻波法)测量声速实验装置如图3-5-2所示,图中$和S 为压电晶体换能器,$作为超声波源, 低频信号发生器输出的交流电信号接入换能器后,产生逆压电效应而发出一近似平 面超声波。
S 2为超声波接收器,S 2在接收声波的同时还能反射一部分超声波,反 射波与入射波为相干波,形成驻波。
图3-5-2声速测量实验装置图当两个换能器之间的距离等于半波长的整数倍时,来回声波的波峰与波峰、 波谷与波谷正好重叠,产生驻波现象,波幅达到极大。
从示波器上观察到的电压信 号幅值也是极大值。
设沿x 方向入射波方程为iAcos( t —x)反射波方程为2A 2 cos( t —x)入射波与反射波相干叠加,合成驻波E当co 壬x= 1时,振幅最大,称为波腹。
对应在x =n 2,n =1,2,位置上;1+ 2(2A 2cos x)cos t(3-5-2)当cos —x =0时,振幅最小,称为波节。
对应在x (2n 1)—,n=1,2,位置上;4由上述讨论可以知道:任何两相邻的波腹或波节间的距离均为2 当信号发生器的策动频率等于驻波系统的固有频率时,系统的振幅最大,即发生驻波共振,声波波腹处的振幅达到最大值。
当驻波系统偏离共振状态时,驻波的波形不稳定,且声波波腹的振幅比最大值要小很多。
缓慢的改变0和S2之间的距离,在示波器屏上所显示的波形幅值发生周期性的变化,即由一个极大值变到极小,再变到极大。
在一系列特定的位置上,形成驻波,示波器上可观察到信号幅度较大。
在幅度较大时,在调节信号发生器的频率,找到信号幅度最大的驻波共振状态。
移动S2的过程中可以观察到一系列的共振态。
任意两个相邻极大值之间S2移动的距离皆为半波长。
若从第n个共振状态变化到第n 1个共振状态时,S2移动的距离为L,则在连续多次测量相隔半波长的S2的位置变化,可得超声波波长,从频率仪上读出超声波频率f以后,即可算出声速。
3.相位比较法(行波法)测量原理实验装置如图3-5-2所示,从S i发出的超声波通过媒质传到接收器S2,接收器和发射器之间产生了相位差:(3-5-2)由上式可知,L每改变一个波长,相位差就变化2 ,通过观察相位差的变化,便可测出。
将发射器S i和接收器S2的正弦电压信号分别输入到示波器的CH和CH2!道,在屏上便显示出频率为1:1的李萨如图形。
改变L时,两个谐振动的相位差从0〜,图形就从斜率为正的直线变为椭圆,再变到斜率为负的直线;位相差再由0〜2 ,图形又从斜率为负曲线变为椭圆,再变回斜率为正的直线,如图3-5-3所示。
为了便于判断,选择李萨如图为直线时作为测量的起点,移动S2,当L变化一个波长时,就会重复出现同样斜率的直线。
读出移过的距离,就测出了超声波的波长。
图3-5-3 用李萨如图观察相位变化4.时差法测量原理时差法测量声速的基本原理是基于v -.发射换能器S i定时发出一个声脉t冲,经声波在介质中传播,经过t时间后,到达L距离处的接收换能器。
由高精度计时电路得到声波从发出到接收在媒质中传播的时间,并由声速测试仪信号源时间显示窗口直接读出,声波传播的距离由数显表头记录,从而计算出声波在媒质中的传播速度。
【实验仪器】SV-DH系列声速测试仪是由声速测试仪测试架和声速测试仪信号源二个部分组成。
1.声速测试仪测试架图3-5-4 超声波声速测试仪测试架结构2.测试仪专用信号源图3-5-5 声速测试仪信号源面板信号频率:调节输出信号的频率;发射强度:调节输出信号电功率(输出电压),仅连续波有效。
接收增益:调节仪器内部的接收增益。
【实验内容及步骤】1. 驻波法测量声速(1)电路连接与仪器调整①仪器使用前,加电幵机预热15分钟,在接通市电后,自动工作在连续波方式。
②如图3-5-2所示,信号源面板上的发射端换能器接口S i,用于输出一定频率的功率信号,请接至测试架的发射换能器S i ;信号源面板上的发射端的发射波形丫1,请接至双踪示波器的CH (Y i),用于观察发射波形;接收换能器S2的输出接至示波器的CH2(Y2).2)测定压电陶瓷换能器的频率工作点将信号发生器输出频率调至谐振频率附近(34KHz~40KHz之间),移动S2 ,示波器显示正弦波振幅的变化,移动到振幅较大处,固定S2 ,再仔细调节频率,使图形幅度达到最大,此频率即是压电换能器相匹配的一个谐振工作点,由信号源频率显示窗口直接读出频率。
(3)测量在谐振频率下,将测试方法设置到连续波方式,选择合适的发射强度。
转动鼓轮,记录下幅度为最大时的距离,再向前或者向后(必须是一个方向)移动距离,当接收波经变小后再到最大时,记录下此时的距离L i ,并进行多次测定,将所采集的数据填于表3-5-1 中。
2.相位法(李萨茹图法)测量声速将测试方法设置到连续波方式,选择合适的发射强度。
将示波器打到“X-Y”方式,选择合适的示波器通道增益,示波器显示李萨茹如图形。
转动鼓轮,移动S2 ,使李萨茹如图显示的椭圆变为一定角度的一条斜线,记录下此时的距离L i 1。
再向前或者向后(必须是一个方向)移动距离,使观察到的波形又回到前面所说的特定角度的斜线,这时接收波的相位变化2 ,记录下此时的距离L i ,多次测定,将所采集的数据填于表3-5-2 中。
3.时差法测量声速(选做)使用空气为介质测试声速,按图3-5-2进行接线,这时示波器的Y、Y2通道分别用于观察发射和接收波形。
为了避免连续波可能带来的干扰,可以将连续波频率调离换能器谐振点。
将测试方法设置到脉冲波方式,选择合适的脉冲发射强度。
将S移动到离幵S 一定距离(》50mm,选择合适的接收增益,使显示的时间差值读数稳定。
然后记录此时的距离值和信号源计时器显示的时间值L i 1、t i 1. 移动S2 ,记录多次测量的距离值和显示的时间值L i 、t i (数据记录表格自拟),将所采集的数据填于自拟的表格中。
4.注意事项①测量时,旋转鼓轮应向同一方向旋转,以避免空程误差;②电源接通时,两超声换能器不得接触;③在距离冬50mm寸,在一定的位置上,示波器上看到的波形可能会产生“拖尾”,这时显示的时间值很小。
这是由于距离较近时,声波的强度较大,反射波引起的共振在下一个测量周期到来时未能完全衰减而产生的。
调小接收增益, 可去掉“拖尾” , 在较近的距离范围内也能得到稳定的声速值。
④由于空气中的超声波衰减较大,在较长距离内测量时,接收波会有明显的衰减,这可能会带来计时器读数有跳字,这时应微调(距离增大时,顺时针调节;距离减小时,逆时针调节)接收增益,使计时器读数在移动S2时连续准确变化。
可以将接收换能器先调到远离发射换能器的一端,并将接收增益调至最大,这时计时器有相应的读数。
由远到近调节接收换能器,这时计时器读数将变小;随着距离的变近,接收波的幅度逐渐变大,在某一位置,计时器读数如果有跳字,就逆时针方向微调接收增益旋钮,使计时器的计时读数连续准确变化,就可准确测得计时值。
数据处理与分析】1.驻波法测量声速表3-5-1 驻波法测量声速实验数据记录表(声波频率 f _KHz介质温度t __ C)①用逐差法处理实验数据,给出声波波长、声速v的测量结果。
②按理论公式V s V o j F,算出理论值V s。
式中V o 331.45m s1,为T0 273.15K 时的声速,T (t 273.15)K。
将测量结果与理论值V s进行比较。
2.相位法测量声速表3-5-2 相位法测量声速实验数据记录表(声波频率 f _KHz 介质温度t __ C)用逐差法处理数据,给出测量结果,并与理论值V s进行比较。
【课后讨论】①声速测量中共振干涉法、相位法、时差法有何异同?②声音在不同介质中传播有何区别?声速为什么会不同?(邵江华)。