初二数学奥林匹克竞赛题及答案

合集下载

初中数学奥林匹克竞赛题4套带详解

初中数学奥林匹克竞赛题4套带详解

初中数学奥林匹克竞赛题4套带详解初中数学奥林匹克竞赛是挑战数学天赋和才能的绝佳场所。

这种竞赛是为那些对数字和逻辑有天赋和兴趣的人所设计的。

无论是追求数学事业,还是成为一名数学家,初中数学奥林匹克竞赛都是一个巨大的机会,可以开阔思维和向高级数学的道路迈进。

本文所述的四套初中数学奥林匹克竞赛题带有详细解析,可供所有有兴趣的人参考学习。

第一套试题:平方和试题:假设我们有两个正整数 a 和 b。

如果我们写一个等式 a²+ b² = 130, 请问这个方程有多少对正整数解?解析:通过对题目的分析,我们发现 a 和 b 都是小于等于 11 的正整数,因为如果是大于 11,它们的平方数之和会大于 130。

我们可以用双重循环解决这个问题:```ans = 0for a in range(1, 12):for b in range(1, 12):if a * a + b * b == 130:ans += 1print(ans)```第二套试题:比率试题:如果 3 个大苹果的重量等于 4 个小苹果的重量,又知道3 个小苹果重量等于 2 个中等苹果的重量,那么问:如果要将 20 个中等苹果与其中 $x$ 个大苹果混合,让它们的重量相等,求出$x$ 的值。

解析:我们可以用比率法解决这个题目。

首先,根据第一个给出的条件,我们有:```3a = 4b```其中,$a$ 是大苹果的重量,$b$ 是小苹果的重量。

然后,根据第二个条件,我们可以得到:```3b = 2c```其中,$c$ 是中等苹果的重量。

现在我们只需要将 $a$ 和$c$ 的比率相等,即:```a / c = 20x / (20 - x)```通过简单的代数运算,我们可以得到:```60x = 80(20 - x)x = 16```因此,我们需要加入 $16$ 个大苹果。

第三套试题:平均值试题:32 个正整数的平均值为20,当其中一个数字被改变后,平均数变为 19.875。

初中数学奥林匹克竞赛题包括答案.docx

初中数学奥林匹克竞赛题包括答案.docx

初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题 1 分,共 10 分)1.如果 a,b 都代表有理数,并且a+b=0 ,那么 ( ) A.a,b 都是 0B.a,b 之一是 0C.a,b 互为相反数D. a,b 互为倒数答案: C解析:令 a=2 , b= - 2,满足 2+( - 2)=0 ,由此 a、b 互为相反数。

2.下面的说法中正确的是( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案: D3都是单项式.两个单项式33A。

两个单项式解析: x2, x x , x2之和为 x +x 2是多项式,排除x2, 2x2之和为3x2是单项式,排除 B。

两个多项式x3+x2 与 x3-x2之和为2x3 是个单项式,排除 C,因此选 D。

3.下面说法中不正确的是( )A.有最小的自然数B.没有最小的正有理数Word资料C.没有最大的负整数D.没有最大的非负数答案: C解析:最大的负整数是-1 ,故 C 错误。

4.如果 a,b 代表有理数,并且a+b 的值大于 a- b 的值,那么( ) A.a,b 同号B.a,b 异号C.a>0D. b> 0答案: D5.大于-π并且不是自然数的整数有( )A.2 个B.3 个C.4 个D.无数个答案: C解析:在数轴上容易看出:在-π右边0的左边(包括0 在)的整数只有-3,- 2,-1 ,0 共 4 个.选 C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

Word资料这四种说法中,不正确的说法的个数是( )A.0 个B.1 个C.2 个D. 3 个答案: B解析:负数的平方是正数,所以一定大于它本身,故 C 错误。

7.a 代表有理数,那么, a 和- a 的大小关系是( )A.a 大于- aB.a 小于- aC.a 大于- a 或 a 小于- aD. a 不一定大于- a答案: D解析:令 a=0 ,马上可以排除A、 B、 C,应选 D。

初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)

初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)

初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)一、填空题1. 如果函数 f(x)=x^2-2x+1的根为 a,b,那么a + b 等于_____.答案:-12. 已知正整数 m、n 满足 mx+ny=1(m、n 都不为 0),若 m + n 等于 8,则 m - n 等于_____.答案:73. 若等差数列{an}的前 n 项和为 Sn,且 a1=3,Sn=15,则 n 的值是_____.答案:64. 在△ABC 中,已知 a=4,b=4,c=8,若 AB+AC=9,则∠B =_____.答案:45°二、选择题5. 已知 A、B 两点的坐标分别为(3,1)、(5,-1),则 AB 是_______.A. 水平的直线B. 斜率为 1 的直线C. 斜率为 -1/3 的直线D. 竖直的直线答案:B6. 若正方形的边长为 x,周长为 5x,则 x 的值等于_______.A. 4B. 5C. 8D. 10答案:A7. 已知tanα=2,cotβ=-3,则 tan(α-β)等于_______.A. 5B. -5C. -1/5D. 1/5答案:B8. 把一个正整数分成 K 份,第一份的数量是剩下的 K-1 份的总和的()A. 1/2B. 3/2C. 2/3D. 3/4答案:B三、解答题9. 已知函数 f(x)=2x+1,若直线 4x+3y=37 与曲线 f(x) 相切,求该曲线上点 P 的坐标答:设点 P 的坐标为 (x,y),因为直线 4x+3y=37 与曲线 f(x) 相切,所以曲线上点 P 的 y 值可由 4x+3y=37 中求得,即 y=12-4/3x,由函数 f(x)可得 12-4/3x=2x+1,故 x=7,代入 y=12-4/3x 可得 y=12-4/3(7)=8。

点 P的坐标即为 (7, 8)。

10. 已知△ABC 中,a=3,b=3,∠A=120°,求 B 的坐标答:由△ABC 中 A 的坐标为(0,0),a=3,b=3 可知 C 的坐标为(3,0),∠A=120°,∠C=60°,因为∠B=60,则以 C 为外接圆圆心,半径为3 的圆○上可得点B,即B(√3,1),综上所述,点B 的坐标为(√3,1)。

初中数学奥林匹克竞赛模拟试卷(八年级)

初中数学奥林匹克竞赛模拟试卷(八年级)

初中数学奥林匹克竞赛模拟试卷(八年级)全国初中数学奥林匹克竞赛试卷(八年级)一、选择题1、已知三点A(2,3),B(5,4),C(-4,1)依次连接这三点,则三点在同一直线上。

解析:AB的解析式为y= 3x+3,当x= -4时,y=1,即点C在直线AB上,∴选D。

2、边长为整数,周长为20的三角形个数是8个。

解析:设三角形的三边为a、b、c且a≥b≥c,a+b+c=20,a≥7,又b+c>a,2a<20a<10,又7≤a≤9,可列出(a、b、c)有:(9,9,2)(9,8,3)(9,7,4)(9,6,5)(8,8,4)(8,7,5)(8,6,6)(7,7,6)共八组,选C。

3、N=++,则N的个位数字是9.解析:的个位数字为3,的个位数字为9,的个位数字为7,∴N的各位数字为9,选C。

4、P为正方形ABCD内一点,若解析:过P作BP’⊥BP,且使BP’=BP,连P’A。

易得△P’AB≌△PBC,则P’A=PC,设PA=k,则PB=2k,PC=P’A=3k,连PP’,则Rt△PBP’中,∠P’PB=45°且PP’=22k,在△P’AP中有:P’A2=P’P2+PA2,∴∠P’PA=90°,∴∠APB=135°选B。

5、在函数y= -x(a为常数)的图象上有三点:(-1,y1)(-4,y2)(2,y3),则函数值y1,y2,y3的大小关系是y3<y1<y2.解析:-(a2+1)<0,∴在每个象限,y随x的增大而增大,因此y1<y2.又∵(-1,y1)在第二象限,而(2,y3)在第四象限,∴y3<y1,选C。

6、已知a+b+c≠0,且c=a=b。

解析:由c=a=b,可得a=b=c,代入a+b+c≠0中,得3a≠0,∴a≠0,选D。

初二奥数竞赛试题及答案

初二奥数竞赛试题及答案

初二奥数竞赛试题及答案试题一:代数问题题目:若\( a \)、\( b \)、\( c \)为正整数,且满足\( a^2 + b^2 + c^2 = 1 \),求\( a \)、\( b \)、\( c \)的值。

答案:由于\( a \)、\( b \)、\( c \)为正整数,且\( a^2 + b^2 + c^2 = 1 \),我们可以推断出\( a \)、\( b \)、\( c \)的值只能是1或0。

因为\( 1^2 = 1 \),而\( 2^2 = 4 \),所以\( a \)、\( b \)、\( c \)不能大于1。

经过尝试,我们可以发现只有当\( a = b = c = 0 \)或\( a = 1, b = 0, c = 0 \)(或其它两种排列)时,等式成立。

试题二:几何问题题目:在一个直角三角形ABC中,∠C是直角,AC = 6,BC = 8,求斜边AB的长度。

答案:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。

所以,我们有:\[ AB^2 = AC^2 + BC^2 \]\[ AB^2 = 6^2 + 8^2 \]\[ AB^2 = 36 + 64 \]\[ AB^2 = 100 \]\[ AB = \sqrt{100} \]\[ AB = 10 \]试题三:组合问题题目:有5种不同的颜色的球,每种颜色有3个球,现在要从中选出3个球,求不同的选法总数。

答案:这是一个组合问题,我们可以使用组合公式来解决。

组合公式为:\[ C(n, k) = \frac{n!}{k!(n-k)!} \]其中\( n \)是总数,\( k \)是要选择的数目。

在这个问题中,\( n = 15 \)(因为有5种颜色,每种3个球),\( k = 3 \)。

所以:\[ C(15, 3) = \frac{15!}{3!(15-3)!} \]\[ C(15, 3) = \frac{15 \times 14 \times 13}{3 \times 2 \times 1} \]\[ C(15, 3) = 455 \]试题四:逻辑问题题目:有5个盒子,每个盒子里都装有不同数量的糖果,从1到5。

全国初中数学奥林匹克竞赛试题

全国初中数学奥林匹克竞赛试题

1、若一个正多边形的每个内角都等于150度,则这个正多边形是()边形。

A. 六B. 七C. 八D. 九解析:正多边形的内角和外角互补,即内角加外角等于180度。

已知内角为150度,则外角为180-150=30度。

正多边形的所有外角之和为360度,因此这个正多边形有360/30=12个边,但考虑到是内角为150度,实际应为正多边形的边数n满足(n-2)*180/n=150,解得n=12/3+2=6。

(答案:A)2、在直角坐标系中,点A(3,4)关于原点对称的点B的坐标是()。

A. (-3,-4)B. (3,-4)C. (-3,4)D. (4,-3)解析:在直角坐标系中,任意一点关于原点对称的点的坐标,横纵坐标都会变成相反数。

因此,点A(3,4)关于原点对称的点B的坐标应为(-3,-4)。

(答案:A)3、若一个数的平方等于它本身,则这个数是()。

A. 1B. -1C. 0或1D. 0,1或-1解析:设这个数为x,则x2=x,移项得x2-x=0,即x(x-1)=0,解得x=0或x=1。

因此,这个数是0或1。

(答案:C)4、下列四个数中,最大的是()。

A. 1/2B. -1/2C. 0D. -1解析:正数总是大于0,0总是大于负数。

在给出的四个数中,1/2是正数,-1/2和-1是负数,0是零。

因此,1/2是最大的。

(答案:A)5、若a,b,c为三角形的三边,且a=3,b=4,则c的取值范围是()。

A. 1<c<7B. 3<c<4C. 4<c<7D. 无法确定解析:根据三角形的性质,任意两边之和大于第三边,任意两边之差小于第三边。

因此,a+b>c,a-b<c,即3+4>c,4-3<c,所以1<c<7。

(答案:A)6、下列哪个选项中的两个数互为相反数()。

A. 2和-3B. -2和-2C. 3和-3D. 2和1/2解析:相反数的定义是,如果两个数的和等于零,那么这两个数互为相反数。

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:互为相反数。

b,由此a、-2,满足2+(-2)=0令a=2,b=2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D33222解析:3是多项式,排除A+x之和为xx,x。

两个单项都是单项式.两个单项式x,x22223之和为2x3x是个单-之和为3xx是单项式,排除B。

两个多项式x3+x2式x2x,与。

,因此选D项式,排除C3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:错误。

C最大的负整数是-1,故4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,13/ 1初中数学奥林匹克竞赛题及答案。

个.选C0共4-1,6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:。

,应选D、B、C,马上可以排除令a=0A8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

八年级数学奥林匹克试卷

八年级数学奥林匹克试卷

一、选择题(每题5分,共20分)1. 若一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为()A. 24cmB. 26cmC. 28cmD. 30cm2. 下列哪个数是0.2的平方根()A. -0.2B. 0.2C. 0.04D. -0.043. 已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,若OA=3,OB=4,则该一次函数的解析式为()A. y=3x+4B. y=4x+3C. y=3x-4D. y=4x-34. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 120°C. 105°D. 90°5. 若一个数的平方根是±3,则这个数是()A. 9B. -9C. 27D. -27二、填空题(每题5分,共25分)6. 已知一元二次方程x^2-5x+6=0,则该方程的解为______。

7. 在直角坐标系中,点P(-2,3)关于y轴的对称点坐标为______。

8. 一个等边三角形的边长为a,则其面积S为______。

9. 若一个数的立方根是2,则该数是______。

10. 在△ABC中,若AB=AC,则△ABC是______三角形。

三、解答题(每题10分,共30分)11. (10分)已知等腰三角形ABC中,AB=AC,∠B=50°,求∠A的度数。

12. (10分)已知一次函数y=kx+b的图象经过点A(2,-3)和点B(-1,1),求该一次函数的解析式。

13. (10分)在平面直角坐标系中,点P(m,n)在第二象限,且m+n=5,求点P 关于x轴的对称点坐标。

四、附加题(20分)14. (10分)已知一元二次方程x^2-4x+3=0,求该方程的解,并证明该方程的解是方程x^2+2x-15=0的根。

15. (10分)已知等腰三角形ABC中,AB=AC,BC=6cm,AD⊥BC于点D,求三角形ABC的面积。

初中数学奥林匹克竞赛题word版含答案

初中数学奥林匹克竞赛题word版含答案

初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。

两个单项式x²,2x2之和为3x2是单项式,排除B。

两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。

3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

初二奥林匹克数学竞赛试卷

初二奥林匹克数学竞赛试卷

一、选择题(每题5分,共20分)1. 下列数中,不是有理数的是()A. 2/3B. -1/4C. √2D. 3.142. 已知a=2,b=-3,那么a²+b²的值是()A. 1B. 5C. 13D. 173. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 等腰梯形D. 长方形4. 下列等式中,不成立的是()A. a²+b²=c²(c为直角三角形斜边)B. (a+b)²=a²+2ab+b²C. (a-b)²=a²-2ab+b²D. (a+b)(a-b)=a²-b²5. 已知函数f(x)=3x²-4x+1,当x=2时,f(x)的值是()A. 5B. 7C. 9D. 11二、填空题(每题5分,共20分)6. 分数4/5的倒数是__________。

7. 下列数中,最小的负整数是__________。

8. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是__________cm。

9. 若a、b、c为三角形的三边,且满足a+b>c,b+c>a,a+c>b,那么这个三角形一定是__________三角形。

10. 在平面直角坐标系中,点A(2,3),点B(-1,-2),那么线段AB的中点坐标是__________。

三、解答题(每题20分,共80分)11. (10分)已知一元二次方程x²-5x+6=0,求它的两个根。

12. (10分)已知函数f(x)=2x+1,求函数f(x)的值域。

13. (10分)已知等差数列{an}的首项为2,公差为3,求第10项an的值。

14. (10分)已知直角三角形ABC中,∠C=90°,AB=10cm,BC=6cm,求AC的长度。

15. (10分)已知函数f(x)=ax²+bx+c(a≠0),若f(1)=2,f(2)=5,f(3)=10,求a、b、c的值。

数学竞赛资料-数学奥林匹克初中训练题(含答案)

数学竞赛资料-数学奥林匹克初中训练题(含答案)

数学奥林匹克初中训练题第一试一、选择题(每小题7分,共42分) 1.设z y x ++=+++6323,且x 、y 、z 为有理数.则xyz =(). (A)3/4 (B)5/6 (C)7/12(D)13/18 2.设二次函数f (x )=ax 2+ax +1的图像开口向下,且满足f (f (1))=f (3).则2a 的值为( ). (A)-3 (B)-5 (C)-7 (D)-9 3.方程|xy |+|x +y |=1的整数解的组数为(). (A)2 (B)4 (C)6(D)8 **、b 是方程x2+(m -5)x+7=0的两个根.则(a2+ma+7)(b2+mb+7)=( ). (A)365 (B)245 (C)210(D)175 5.如图,Rt △ABC 的斜边BC =4,∠ABC =30°,以AB 、AC 为直径分别作圆.则这两圆的公共部分面积为( ) (A)2332+π (B) 33265-π (C) 365-π(D) 332-π 6.从1,2,…,13中取出k 个不同的数,使这k 个数中任两个数之差既不等于5,也不等于8.则k 的最大值为(). (A)5 (B)6 (C)7 (D)8 二、填空题(每小题7分,共28分)1.若整系数一元二次方程x 2+(a +3)x +2a +3=0有一正根x 1和一负根x 2,且|x 1|<|x 2|,则a = .2.当x =2329-时,代数式x 4+5x 3-3x 2-8x +9的值是的值是. 3.给定两组数,A 组为:1,2,…,100;B 组为:12,22,…,1002.对于A 组中的数x ,若有B组中的数y ,使x +y 也是B 组中的数,则称x 为“关联数”.那么,A 组中这样的关联数有组中这样的关联数有个.4.已知△ABC 的三边长分别为的三边长分别为AB =2576a 2+,BC =62514a a 2++,AC =62514a -a 2+,其中a >7.则△ABC 的面积为面积为 .第二试一、(20分)解方程:(12x +5)2(6x -1)(x +1)=255.二、(25分)如图,四边形ABCD 中,∠ACB =∠ADB =90°,自对角线AC 、BD 的交点N 作NM ⊥AB 于点M ,线段AC 、MD 交于点E ,BD 、MC 交于点F ,P 是线段EF 上的任意一点证明:点P 到线段CD 的距离等于点P 到线段MC 、MD 的距离之和.三、(25分)矩形玻璃台板碎裂成一些小玻璃片,矩形玻璃台板碎裂成一些小玻璃片,每块碎片都是凸多边形,每块碎片都是凸多边形,每块碎片都是凸多边形,将其重新粘合成原将其重新粘合成原矩形后,有交结点30个,其中20个点在原矩形的周界上(包括原矩形的四个顶点),其余10个点在矩形内部.在矩形的内部有45条粘缝(两个结点之间的线段算是一条粘缝,如图所示).试求该矩形台板所碎裂成的各种类型(指三角形、四边形、五边形等)的块数. 说明:若凸多边形的周界上有n 个点,就将其看成n 边形,例如,图中的多边形ABCDE 要看成五边形.数学奥林匹克初中训练题1参考答案参考答案第一试第一试1.A .两边平方得3+2 +3+6=x +y +z +2xy +2yz +2xz .根据有理数x 、y 、z 的对称性,可考虑方程组可考虑方程组 x +y +z =3,2xy =2,2yz =3,2xz = 6.解得x =1,y =1/2,z =3/2.此时,xyz =3/4.**.注意到f(1)=2a+1,f(3)=12a+1,f(f(1))=a(2a+1)2+a(2a+1)+1.由f(f(1))=f(3),得(2a +1)2+(2a +1)=12.所以,2a +1=3或-4.因a <0,故2a =-5. **.因x 、y 为整数,则|xy |、|x +y |为非负整数.于是,|xy |、|x +y |中一个为0,一个为1.分情形考虑得6组解. **.由ab =7,a 2+ma +7=5a ,b 2+mb +7=5b ,所以,(a 2+ma +7)(b 2+mb +7)=25ab =175. **.记两圆公共部分的面积为S .如图,易知S =S 扇形EAD +S 扇形F AD -S 四边形AEDF =5π/6-3 . **.将这13个数按照相邻两数的差为5或8排列于一个圆周上(如图5).若取出的数多于6个,则必有2个数在圆周上相邻.另一方面,可以取出适合条件的6个数(任取圆周上不相邻的6个数即可),因此,k 的最大值为6. 二、1.-2.因方程的两根不等,故Δ>0,即(a +3)2>4(2a +3).解得a >3或a <-1.又由题设条件知,方程的两根和与积皆负,即-(a +3)<0,2a +3<0.从而,a >-3,a <-3/2,即-3<a <-3/2.而a 为整数,则a =-2. 2. 32297-. x =2329-是方程x 2+3x -5=0的根, **.记x +y =a 2,y =b 2,则1≤b <a ≤100.而x =a 2-b 2=(a +b )(a -b )≤100,因a +b 、a -b 同奇偶,故a +b ≥(a -b )+2.(1)若a -b =1,则a +b 为奇数,且3≤a +b ≤99.于是,a +b 可取3,5,7,…,99,共49个值,这时,相应的x 也可取这49个值.(2)若a -b =2,则a +b 为偶数,且4≤a +b ≤50.于是,a +b 可取4,6,8,…,50,共24个值,这时,相应的x 可取8,12,16,…,100这24个值. 其他情况下所得的x 值均属于以上情形.若a -b =奇数,则a +b =奇数.而x =a 2-b 2≥a +b ≥3,归入(1).若a -b =偶数,则a +b =偶数.而x =(a -b )(a +b )为4的倍数,且a -b ≥2,a +b ≥4,故x ≥8,归入(2). 因此,这种x 共有49+24=73个. **.注意到AB 2=(2a )2+482,BC 2=(a +7)2+242,AC 2=(a -7)2+242.如图,以AB 为斜边,向△ABC 一侧作直角△ABD ,使BD =2a ,AD =48,∠ADB =90°=90°. . 在BD 上取点E ,使BE =a +7,ED =a -7,又取AD 的中点F ,作矩形EDFC 1.因BC 21=BE 2+EC 21=(a +7)2+242=BC 2,AC 21=C 1F 2+AF 2=(a -7)2+242=AC 2,故点C 与点C 1重合.而S △ABD =48a ,S △CBD =24a ,S △ACD =24(a -7),则S △ABC =S △ABD -S △CBD -S △ACD =168. 第二试第二试一、将原方程变形得(12x +5)2(12x -2)(12x +12)=660.令12x +5=t ,则t 2(t -7)(t +7)=660,即t 4-49t 2=660.解得t 2=60或t 2=-11(舍去). 由此得t =±=±2 15,2 15,即有12x +5=±+5=±2215.因此,原方程的根为x 1,2=1215 25- .二、如图,易知A 、B 、C 、D 四点共圆,B 、C 、N 、M 四点共圆,因此,∠ACD =∠ABD =∠MCN .故AC 平分∠DCM .同理,BD 平分∠CDM .如图,设PH ⊥MC 于点H ,PG ⊥MD 于点G ,PT ⊥CD 于点T ;过点P 作XY ∥MC ,交MD 于点X ,交AC 于点Y ;过点Y 作YZ ∥CD ,交MD 于点Z ,交PT 于点R ;再作YH 1⊥MC 于点H 1,YT 1⊥CD 于点T 1由平行线及角平分线的性质得PH =YH 1=YT 1=RT 为证PT =PG +PH ,只须证PR =PG 由平行线的比例性质得EP /EF =EY /EC =EZ /ED .因此,ZP ∥DF .由于△XYZ 与△MCD 的对应边分别平行,且DF 平分∠MDC ,故ZP 是∠XZY 的平分线.从而,PR =PG .因此,所证结论成立.三、设全部碎片中,共有三角形a 3个,四边形a 4个,……,k 边形a k 个(a 3,a 4,…,a k 为非负整数).记这些多边形的内角和为S 角,于是,S 角=a 3×π+a 4×2π+…+a k (k -2)π.另一方面,矩形内部有10个结点,对于每个点,围绕它的多边形顶角和为2π,10个内结点共获得10×10×22π弧度;矩形边界上(不含4个顶点)共有16个结点,在每个这种结点处,各多边形的顶角在此汇合成一个平角,16个这种结点共获得16π弧度;而原矩形的4个顶点处,共获得多边形碎片的2π弧度.因此,S 角=20π+16π+2π=38π. 于是,a 3+2a 4+…+(k -2)a k =38.①记这些多边形的边数和为S 边.由于每个n 边形有n 条边,则S 边=3a 3+4a 4+…+ka k .另一方面,在矩形内部的45条粘缝,每条都是两个多边形的公共边,故都计算了两次;矩形周界上的20条线段各被计算了一次,因此,S 边=2×=2×45+20=110. 45+20=110. 于是,3a 3+4a 4+…+ka k =110.② ②-①得2(a 3+a 4+…+a k )=72.故a 3+a 4+…+a k =36.③ ①-③得a 4+2a 5+3a 6+…+(k -3)a k =2.因所有a i ∈N ,故a 6=a 7=…=a k =0,a 4+2a 5=2.所以,或者a 4=2,a 5=0;或者a 4=0,a 5=1.综上,本题的解共有两种情况,即全部碎片共36块,其中,或含有34个三角形,2个四边形;或含有35个三角形,1个五边形.。

2024年全国中学生数学奥林匹克竞赛一试试卷(预赛)(A卷)(含答案)

2024年全国中学生数学奥林匹克竞赛一试试卷(预赛)(A卷)(含答案)

2024年全国中学生数学奥林匹克竞赛一试试卷(预赛)(A卷)一、填空题:本题共8小题,每小题8分,共64分。

1.若实数m>1满足log9(log8m)=2024,则log3(log2m)的值为______.2.设无穷等比数列{a n}的公比q满足0<|q|<1.若{a n}的各项和等于{a n}各项的平方和,则a2的取值范围是______.3.设实数a,b满足:集合A={x∈R|x2−10x+a≤0}与B={x∈R|bx≤b3}的交集为[4,9],则a+b的值为______.4.在三棱锥P−ABC中,若PA⊥底面ABC,且棱AB,BP,BC,CP的长分别为1,2,3,4,则该三棱锥的体积为______.5.一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为a,b.若事件“a+b=7”发生的概率为17,则事件“a=b”发生的概率为______.6.设f(x)是定义域为R、最小正周期为5的函数.若函数g(x)=f(2x)在区间[0,5)上的零点个数为25,则g(x)在区间[1,4)上的零点个数为______.7.设F1,F2为椭圆Ω的焦点,在Ω上取一点P(异于长轴端点),记O为△PF1F2的外心,若PO⋅F1F2=2PF1⋅PF2,则Ω的离心率的最小值为______.8.若三个正整数a,b,c的位数之和为8,且组成a,b,c的8个数码能排列为2,0,2,4,0,9,0,8,则称(a,b,c)为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10<a<b<c的幸运数组(a,b,c)的个数为______.二、解答题:本题共3小题,共56分。

解答应写出文字说明,证明过程或演算步骤。

9.(本小题16分)在△ABC中,已知cosC=sinA+cosA2=sinB+cosB2,求cosC的值.10.(本小题20分)在平面直角坐标系中,双曲线Γ:x2−y2=1的右顶点为A.将圆心在y轴上,且与Γ的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P,圆心距为d,求d|PA|的所有可能的值.11.(本小题20分)设复数z,w满足z+w=2,求S=|z2−2w|+|w2−2z|的最小可能值.参考答案1.40492.[−14,0)∪(0,2)3.74.345.196.117. 648.5919.解:由题意知,sinA +cosA =sinB +cosB ,所以 2sin (A +π4)= 2sin (B +π4),所以A +π4=B +π4或(A +π4)+(B +π4)=π,即A =B 或A +B =π2,当A =B 时,C =π−2A ,且A ∈(0,π2),由cosC =sinA +cosA 2,知cos (π−2A)=sinA +cosA 2,即−2cos2A =sinA +cosA ,所以2(sin 2A−cos 2A)=sinA +cosA ,所以2(sinA +cosA)(sinA−cosA)=sinA +cosA ,因为A ∈(0,π2),所以sinA +cosA ≠0,所以sinA−cosA =12,又sin 2A +cos 2A =1,所以(12+cosA )2+cos 2A =1,解得cosA =7−14或cosA =− 7−14(舍负),所以cosC =−cos2A =1−2cos 2A =1−2×(7−14)2= 74;当A +B =π2时,C =π2,所以cosC =0,此时sinA +cosA = 2sin (A +π4)=0,而A ∈(0,π2),所以A +π4∈(π4,3π4),所以sin (A +π4)>0,与sin (A +π4)=0相矛盾,所以cosC =0不成立,综上,cosC = 74. 10.解:考虑以(0,y 0)为圆心的好圆Ω0:x 2+(y−y 0)2=r 20(r 0>0).由Ω0与Γ的方程联立消去x ,得关于y 的二次方程2y 2−2y 0y +y 20+1−r 20=0.根据条件,该方程的判别式Δ=4y20−8(y20+1−r20)=0,因此y20=2r20−2.对于外切于点P的两个好圆Ω1,Ω2,显然P在y轴上.设P(0,ℎ),Ω1,Ω2的半径分别为r1,r2,不妨设Ω1,Ω2的圆心分别为(0,ℎ+r1),(0,ℎ−r2),则有(ℎ+r1)2=2r21−2,(ℎ−r2)2=2r22−2,两式相减得2ℎ(r1+r2)=r21−r22,而r1+r2>0,故化简得ℎ=r1−r22,进而(r1−r22+r1)2=2r21−2,整理得r21−6r1r2+r22+8=0①,由于d=r1+r2,A(1,0),|PA|2=ℎ2+1=(r1−r2)24+1,而①可等价地写为2(r1−r2)2+8=(r1+r2)2,即8|PA|2=d2,所以d|PA|=22.11.解:根据z+w=2,得w=2−z,可得|z2−2w|=|z2−2(2−z)|=|z2+2z−4|=|z+1+5|⋅|z+1−5|.|w2−2z|=|(2−z)2−2z|=|z2−6z+4|=|z−3+5|⋅|z−3−5|.以上两式的最右边各项分别是z到复平面中实轴上的点(−1−5,0),(−1+5,0),(3−5,0),(3+5,0)的距离,将z=x+yi换成其实部x时,各个距离都不会增大,因此只需考虑函数f(x)=|x2+2x−4|+|x2−6x+4|在R上的最小值.由x2+2x−4=0的根为−1±5,x2−6x+4=0的根为3±5,且−1−5<3−5<−1+5<3+5,分以下几种情况讨论:①若x≤−1−5,则f(x)=2x2−4x,f(x)在(−∞,−1−5]上的最小值为f(−1−5)=16+85;②若x∈(−1−5,3−5],则f(x)=−8x+8,此时f(x)的最小值为f(3−5)=−16+85;③若x∈[3−5,−1+5],则f(x)=−2x2+4x,此时f(x)的最小值为f(3−5)=f(−1+5)=−16+85;④若x∈[−1+5,3+5],则f(x)=8x−8,此时f(x)的最小值为f(−1+5)=−16+85;⑤若x≥3+5,则f(x)=2x2−4x,f(x)在[3+5,+∞)的最小值为f(3+5)=16+85.综上所述,f(x)在R上的最小值为f(3−5)=f(−1+5)=85−16.即S=|z2−2w|+|w2−2z|的最小可能值是85−16.。

2024年全国中学生数学奥林匹克竞赛内蒙古赛区初赛试卷(解析版)

2024年全国中学生数学奥林匹克竞赛内蒙古赛区初赛试卷(解析版)

2024年全国中学生数学奥林匹克竞赛内蒙古赛区初赛试卷(2024年5月19日,8:30~9:50)考生注意:1、本试卷共二个大题(11个小题),全卷满分120分.2、用黑色的钢笔或签字笔作答.3、解题书写不要超出装订线.4、不能使用计算器.一、填空题(本题满分64分,每小题8分)本题共有8小题,要求直接将答案写在横线上.1.集合{}1,2,3,5,6M =的全部非空子集的元素和等于.2.设a ,b ,c 是实数,满足1a b c ++=,2221a b c ++=,0a ≠,3bc a 的取值范围为.3.已知正三棱柱111ABC A B C -的侧棱长为4,底面边长为2,过点A 的一个平面截此棱柱,与侧棱1BB ,1CC 分别交于点M ,N ,若MNA △为直角三角形,则MNA △面积的最大值为.4.已知在ABC V中BC =,π3A =,14BD BC = ,则线段AD 的最大值为.5.从1,2,⋅⋅⋅,11中任取三个不同的数,则这三个数可以构成等差数列的概率为.6.O 是原点,椭圆22145x y +=,直线l 过()1,0且与椭圆交于A ,B 两点,则ABO 面积的最大值为.7.数列{}n a 中,1110a =,且对任意*n ∈N ,21n n n a a a +=+,求2024111n n a =+∑的整数部分是.8.已知关于x 的方程3340x x -+=的三个复数根分别为1z ,2z ,3z ,则()()()222122331z z z z z z ---的值为.二、解答题(本题满分56分)9.已知双曲线22:143x y C -=,直线:1l y kx =+与双曲线C 的左右支分别相交于A ,B 两点,双曲线C 在A ,B 两点处的切线相交于点P ,求ABP 面积的最小值.10.已知函数()21e 21x x f x ax x -=--+.(1)当0a =时,讨论()f x 在14,2⎛⎫- ⎪⎝⎭上的极值.(2)若0x =是()f x 的极小值点,求a 的取值范围.11.设n 是一个给定的正整数,集合(){}*,1,2,,n S i j i j n i j =≤≤∈N ,求最大的正数()c c n =,使得对任意正整数1d ,2d ,都存在集合n S 的子集P ,满足集合P 至少有2cn 个元素,且集合P 的任两个元素(),i j ,(),k l 均有()()221i k j l d -+-≠,()()222i k j l d -+-≠.1.272【分析】分析各元素出现的次数,进而可得结果.【详解】集合{}1,2,3,5,6M =的子集有以下情形;含有元素1的子集有4216=个;含有元素2的子集有4216=个;含有元素3的子集有4216=个;含有元素5的子集有4216=个;含有元素6的子集有4216=个,所有子集的元素的和为()1612356272⨯++++=.故答案为:272.2.(],0-∞【分析】根据已知条件,求出2bc a a =-,1+=-b c a ,根据韦达定理确定a 和b 是关于x 的方程:()2210x a x a a +-+-=的两个根,求出113a -≤≤,又0a ≠,构造函数()21x f x x-=,(]1,00,13x ⎡⎫∈-⋃⎪⎢⎣⎭,对函数求导,利用导数判断函数的单调性,求出函数值域即可求解.【详解】因为1a b c ++=,所以()22222221a b c a b c ab bc ac ++=+++++=,又2221a b c ++=,所以2220ab bc ac ++=,即0ab bc ac ++=,所以()0bc a b c ++=,即()10bc a a +-=,2bc a a =-,又1+=-b c a ,所以由韦达定理得a 和b 是关于x 的方程:()2210x a x a a +-+-=的两个根,所以()()22140a a a ∆=---≥,整理有:23210a a --£,解得113a -≤≤,又0a ≠,所以(]1,00,13a ⎡⎫∈-⋃⎪⎢⎣⎭,所以23321bc a a a a a a--==,(]1,00,13a ⎡⎫∈-⋃⎪⎢⎣⎭,令()21x f x x -=,(]1,00,13x ⎡⎫∈-⋃⎪⎢⎣⎭,()242x x f x x-+'=,(]1,00,13x ⎡⎫∈-⋃⎪⎢⎣⎭,令()0f x '=,解得0x =或2x =,所以当1,03x ⎡⎫∈-⎪⎢⎣⎭时,()0f x '<,()f x 单调递减,当(]0,1x ∈时,()0f x '>,()f x 单调递增;当0x →时,()f x →-∞,1123f ⎛⎫-=- ⎪⎝⎭,()10f =,所以(]1,00,13x ⎡⎫∈-⋃⎪⎢⎣⎭,()(],0f x ∈-∞,所以3bc a 的取值范围为(],0-∞.故答案为:(],0-∞.3【分析】设,,,[0,4]CN x BM y x y ==∈,90ANM ∠=︒,则由直角三角形MQN 可得2y x x=+,从而可得面积的表达式,利用函数的单调性可求最大值.【详解】如图,设,,,[0,4]CN x BM y x y ==∈,不妨设90ANM ∠=︒,则222AM AN MN =+,即222444()y x y x +=+++-,整理得:220x xy -+=,若0x =,显然不成立,可得(]222,0,4x y x x x x+==+∈,又因为04y <≤,即24x x+≤,解得22x -≤≤+设AMN 的面积为S ,则()222444()S x y x ⎡⎤=+⋅+-⎣⎦()22444x x ⎛⎫=+⋅+ ⎪⎝⎭2216204x x =++224204x x ⎛⎫=++ ⎪⎝⎭,令26t x ⎡=∈-+⎣,因为函数()4f t t t =+在)62⎡-⎣上单调递减,在(2,6+上单调递增,且((6612f f -=+=,可知24S 最大值是2041268+⨯=,所以max S =.。

初二奥数竞赛试卷及答案

初二奥数竞赛试卷及答案

八年级数学竞赛练习题一、选择题:1.如果a >b ,则2a -b 一定是( )A.负数B.正数C.非负数D.非正数2.n 是某一正整数,由四位学生分别代入代数式n 3-n 算出的结果如下,其中正确的结果是( )A.337414B.337415C.337404D.3374033.三进位制数201可表示为十进位制数21023031319⨯+⨯+⨯=,二进位制数1011可表示为十进位制数32101202121211⨯+⨯+⨯+⨯=,现有三进位制数a=221,二进位制数b=10111,则a ,b 的大小关系是( )A.a >bB.a=bC.a <bD.不能比较4.若2x+5y+4z=6,3x+y-7z=-4,则x+y-z 的值为( )A.-1B.0C.1D.45.过点P (-1,3)作直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( )A.1条B.2 条C.3条D.4条6.已知731-的整数部分是a ,小数部分是b ,则a 2+(1+7)ab=( )A.12B.11C.10D.97.某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,单片软件至少买3片,盒装磁盘至少买2盒,则不同的选购方式共有( )A.5种B.6种C.7种D.8种8.如图,是一个边长为2的正方体,现有一只蚂蚁要从一条棱的中点A 处沿正方体的表面到C 处,则它爬行的最短线路长是( )A.5B.4C.13D. 17二、填空题:9.如果整数a(a ≠2)使得关于x 的一元一次方程ax+5=a 2+2a+2x 的解是整数,则满足条件的所有整数a 的和是__________.10. 对于所有的正整数k,设直线kx+(k+1)y-1=0与两坐标轴所围成的直角三角形的面积为Sk ,则 S1+S2+S3+…+S2006= .11. 一只猴子爬一个8级的梯子,每次可爬一级或上跃二级,最多上跃三级。

2024年广东省中学生数学奥林匹克竞赛一试+加试试题答案及评分标准

2024年广东省中学生数学奥林匹克竞赛一试+加试试题答案及评分标准

2024年广东省中学生数学奥林匹克竞赛答案及评分标准一试一、填空题1已知m ,a ,b ,c 为正整数,且a log m 2+b log m 3+c log m 5=2024,求m +a +b +c 的最小值是.【答案】 30662已知x >0,y >0,-log 3y +3x=y -2x =15⋅32x -1y,则y +x =【答案】 11 .3若A 、 B 为锐角且sin B ⋅sin A +B =sin A ,则tan A 的最大值为.【答案】434数列a n 满足:对任意n ≥2,a n =2024a n -1-n . 如果该数列的每一项都是正数,则a 1的最小值为【答案】40472023240474092529 5投篮测试规则如下:每人最多投三次,投中为止,且第i 次投中得分为4-i 分(i =1,2,3),若三次均未投中则得分为0分. 假设甲同学的投篮的命中率为p 0<p <1 ,若甲参加投篮测试的投篮次数的均值为 1.56,则p = ,甲投篮测试的得分的均值为. 【答案】 2.376 .6设x ,y 均为非零实数,且满足x sin π12+y cos π12x cos π12-y sin π12=tanπ3 . 在△ABC 中,若tan C =y x,则sin3A +3sin2B 的最大值为.【答案】327已知虚数z 满足z +2z∈R ,则z 2+2z -3 的最大值为【答案】1033 .8n 是正整数, 3n -1没有12以上的质因子,则所有满足条件的n 和是【答案】 129已知四面体PABC ,点A 1在△PBC 内,满足△A 1BP ,△A 1CP ,△A 1BC 的面积之比为3:2:1,G 在线段AA 1上,直线PG 交平面ABC 于点M ,且AG GA 1=PGGM ,则四面体PABC 与A 1AMB的体积之比为.【答案】 1210如图,在一个10×10的方格表中填入0和1,使得任意一个3×3的方格表中都恰有一个1 ,则满足要求的填法数共有种【答案】 261二、解答题1已知抛物线C :y 2=18x +27的焦点与椭圆E :x 2a 2+y 2b2=1a >b >0 的右焦点F 2重合, C 的准线经过E 的左顶点.(1)求E 的方程;(2)已知点F 1为E 的左焦点, P 为E 上的一点(异于左、右顶点), △PF 1F 2外接圆的半径为R ,内切圆的半径为r ,求R ⋅r 的取值范围.【解析】(1) 易知 C 的顶点坐标为 -32,0 ,p 2=184=92,所以 C 的焦点坐标为 -32+92,0 ,即 3,0 ,C 的准线方程为 x =-32-92=-6,所以 a =6,c =3,b 2=a 2-c 2=27 ,所以 E 的方程为 E :x 236+y 227=1;4 分(2)设 ∠F 1PF 2=θ,PF 1=a 1,PF 2=a 2,由正弦定理可得 2R =F 1F 2sin θ=2csin θ,即R =c sin θ=3sin θ,则 cos θ=a 21+a 22-2c 22a 1⋅a 2=a 1+a 2 2-2a 1⋅a 2-4c 22a 1⋅a 2=4b 2-2a 1⋅a 22a 1⋅a 2,即a 1⋅a 2=2b 2cos θ+1=54cos θ+1, -8 分S △PF 1F 2=12a 1a 2sin θ=27sin θcos θ+1=27sin θ2cos θ2cos 2θ2=27tanθ2又 S △PF 1F 2=S △IF 1F 2+S △IF 1P +S △IF 2P =12F 1F 2+PF 1+PF 2 r =122a +2c r =9r , -12 分所以 27tanθ2=9r ,即 r =3tan θ2,所以 R ⋅r =9tan θ2sin θ=92cos 2θ2,又因为当 P 在短轴的端点时, θ 最大,此时, θ=60° , -16 分所以 θ∈0,π3 ,即 θ2∈0,π6 ,所以 cos θ2∈32,1 ,故 R ⋅r =92cos 2θ2∈92,6. -20 分2已知方程ln x +x 1-m =0,m ∈R 有两个不同的零点,分别记为a ,b ,且a <b .(1)求实数m 的取值范围;(2)若不等式t +1<ln a +t ln b 恒成立,求正数t 的取值范围.【解析】(1)设 f x =ln x +x 1-m ,m ∈R 的定义域为 0,+∞ ,f x =1x+1-m ,当 m ≤1 时,因 f x >0,故函数 f x 在 0,+∞ 上单调递增,不存在两个零点,不合题意;当 m >1 时,设 g x =f x =1x +1-m ,g x =-1x2<0 ,故 g x 在 0,+∞ 上单调递减,即 f x =1x+1-m 在 0,+∞ 上单调递减,由 f x =0,得 x =1m -1,当 0<x <1m -1时, f x >0;当1m -1<x 时, f x <0;所以当 x =1m -1 时, f x 取得最大值.即 f 1m -1=ln 1m -1+1m -11-m =-ln m -1 -1,-⋯⋯-4 分若函数 f x 有两个不同的零点,则 -ln m -1 -1>0即 ln m -1 <-1=ln1e ,解得 m <1+1e,又 m >1当 x 趋近于 0+ 时, 1-m x 趋近于 0, ln x 趋近于负无穷, f x 趋近于负无穷;当 x 趋近于正无穷时, f x 趋近于负无穷.所以若函数 f x 有两个不同的零点,则实数 m 的取值范围 1<m <1+1e.---8 分(2)因为 f x =ln x +x 1-m m ∈R 有两个不同的零点 a ,b ,由题知 0<a <b ,且 ln a +a -am =0ln b +b -bm =0 ,相减得到:m -1=ln a -ln b a -b由 t +1<ln a +t ln b 恒成立,所以 t +1<am -a +t mb -b 恒成立,即 t +1<a +tb m -1 恒成立,---12 分所以 t +1<a +tb ln a -ln b a -b 恒成立,即 t +1<ab+t a b-1ln a b 恒成立.设 k =ab ,则 k ∈0,1 时,不等式 t +1<t +k ln k k -1恒成立,因为 t +k >0,k -1<0 进而得 ln k -t +1 k -1t +k<0 在 k ∈0,1 时恒成立,设 h k =ln k -t +1 k -1t +k, k ∈0,1 ,注意到 h 1 =0 .则 h k =1k -t +1 t +k -k -1 t +k2 ,即 hk =1k -t +1 2t +k2=t 2+k 2-t 2k -kk t +k 2=k -1 k -t 2 k t +k 2, -16 分又因为 k ∈0,1 且 t >0,则k -1k t +k 2<0 ,所以当 t ≥1 时, k -t 2<0,即 h k >0,故 h k 在 k ∈0,1 单调递增,而 k =1 时 ln k -t +1k -1t +k=0,所以 h k <0 恒成立,故 t ≥1 满足题意.当 0<t <1 时,若 k ∈t 2,1 ,由 h k <0,则 h k 在 k ∈t 2,1 单调递减,所以当 k ∈t 2,1 时 h k >0,与题设不符.综上所述,正数 t 的取值范围 t ≥1. ---20 分加试1设有限集A ,B ,C ⊆R ,A ,B ,C 为有限集,对任意x ∈R ,定义:N A ,B ,C x =a ,b ,c ∣a ∈A ,b ∈B ,c ∈C ,a +b +c =x ∣ . 证明以下结论:(1)存在x ∈R ,使得0<N A ,B ,C x ≤A ⋅B ⋅C A +B +C(2)x ∈A +B +CN A ,B ,C x 2≥A2⋅B 2⋅C 2A +B +C 其中:A 表示集合A 中的元素个数, A +B +C ={a +b +c ∣a ∈A ,b ∈B ,c ∈C } .【解析】(1)x ∈A +B +CN A ,B ,C x =x ∈A +B +C a ,b ,c ∈A ×B ×C ,a +b +c =x1=a ,b ,c ∈A ×B ×C1=A ⋅B ⋅C由平均值原理,存在 x ∈A +B +C ,使得 0<N A ,B ,C x ≤A ⋅B ⋅C A +B +C. .20 分(2)由柯西不等式x ∈A +B +CN A ,B ,C x 2≥X ∈A +B +C N A ,B ,C x 2⋅1A +B +C .. .30 分=1A +B +C x ∈A +B +C a ,b ,c ∈A ×B ×C a +b +c =x12=1A +B +Ca ,b ,c ∈A ×B ×C12=A2⋅B 2⋅C 2A +B +C. .40 分2如图, AB 为圆O 的一条弦(AB <3R ,R 为圆O 的半径), C 为优弧AB的中点, M 为弦AB 的中点. 点D ,E ,N 分别在BC ,CA和劣弧AB上,满足BD=CE,且AD ,BE ,CN 三线共点于F . 延长CN 至G ,使GN =FN . 求证:∠FMB =∠GMB .【解析一】如图,延长 CM 交圆 O 于 T ,以 T 为圆心, TA 为半径作圆,与 CN 延长线交于 G ∵C 为优弧 AB 中点, ∴B 在圆 T 上,且 CA 与 CB 是圆 T 的切线∵∠AFB =AB+ED2=∠ACB +∠CAB =180°-12∠ATB∴F 在圆 T 上. .10 分∵CT 是圆 O 的直径,所以 ∠TNF =90°∴N 为 FG 的中点, G 与 G 重叠∴AFBG 四点共圆. . .20 分(实际上点出圆心 T 的目的是为了证明 AFBG 的共圆,证明共圆之后这个圆心就再也不会 出现, 只要能够证明 AFBG 共圆无论是否点出圆心都可以获得 20 分)∵CA 与 CB 是圆 T 的切线∴△CAF ∽△CGA ,△CBF ∽△CGB∴AF ⋅BG =AG ⋅BF . .30 分由托勒密定理知, AG ⋅BF =12AB ⋅FG =BM ⋅FG ,且 ∠FBM =∠AGF ∴△BFM ∽△GFA ∴∠BMF =∠FAG同理 ∠BMG =∠FAG ∴BM 平分 ∠FMG .40 分证毕(最后导出等角后面的证明调和四边形, 都是相对平凡的步骤了, 各占 10 分)【解析二】解析二使用了调和点列的一些性质, 答案中会备注使用调和点列的地方, 请审卷 老师注意评分如图,连接 NB ,NA ,CN 交 AB 于 Q ∵C 是优弧 AB 的中点∴∠ANC =∠BNC ∵BD=EC∴∠BFN =BN+EC2=BN +BD2=DN2=∠NAF∴△BNF ∞△FNA∴NF 2=NA ⋅NB .10 分又 NC 平分 ∠ANB ,∴△QNB ∽△ANC ∴NA ⋅NB =NQ ⋅NC∴NF2=NQ⋅NC . . .20 分(每一个相似占 10 分)∵N 为 FG 中点∴NF NC =NQNF, ∴NF-NQNC-NF=NF+NQNC+NF,即FQFC=GQGC∴CFQG 成调和点列 (调和点列的性质) . .30 分(注: 有的学生可能会写成 C,Q;F,G=-1 也代表调和点列,可以给分)∵M 是 AB 中点, ∴CM⊥AB∴MQ 与 MC 分别是 ∠FMG 的内角平分线和外角平分线 (调和点列的性质) . .40 分 证毕。

数学奥林匹克竞赛试卷初中

数学奥林匹克竞赛试卷初中

一、选择题(每题5分,共50分)1. 下列各数中,能被3整除的是()A. 2B. 7C. 12D. 252. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 20cmB. 22cmC. 24cmD. 26cm3. 已知函数y=2x+1,若x=3,则y的值为()A. 5B. 6C. 7D. 84. 在下列各组数中,有最大公约数4的是()A. 16,24B. 12,18C. 20,28D. 15,215. 一个长方体的长、宽、高分别为5cm、4cm、3cm,那么它的体积是()A. 60cm³B. 72cm³C. 80cm³D. 90cm³6. 已知x²-5x+6=0,则x的值为()A. 2B. 3C. 4D. 57. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)8. 下列各图中,是轴对称图形的是()A.B.C.D.9. 下列各数中,有最小公倍数120的是()A. 24,40B. 30,48C. 36,50D. 42,6010. 已知a²+b²=c²,则下列结论正确的是()A. a、b、c都是正数B. a、b、c都是负数C. a、b、c都是整数D. a、b、c都是正整数二、填空题(每题5分,共50分)11. 若a+b=5,ab=6,则a²+b²的值为______。

12. 0.5+0.2+0.1+…+0.05+0.01+0.005+…+0.0005+0.0001的和为______。

13. 一个数的平方根是±2,那么这个数是______。

14. 下列各数中,是质数的是______。

15. 一个圆的半径增加了50%,那么这个圆的面积增加了______。

16. 若一个等边三角形的边长为a,那么它的周长是______。

初二奥数竞赛试题及答案

初二奥数竞赛试题及答案

初二奥数竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于它本身,那么这个数可能是:A. 0或1B. 0或-1C. 1或-1D. 0或2答案:A3. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是多少立方厘米?A. 24B. 12C. 8D. 6答案:A4. 一个数列的前四项是2, 4, 8, 16,那么第五项是多少?A. 32B. 64C. 128D. 256答案:A二、填空题(每题5分,共20分)1. 一个等差数列的前三项是2, 5, 8,那么它的第五项是_________。

答案:112. 如果一个三角形的两边长分别是3cm和4cm,且这两边的夹角是90度,那么第三边的长度是_________。

答案:5cm3. 一个圆的直径是14cm,那么它的周长是_________。

答案:44π cm4. 一个数的立方等于它自身,那么这个数是_________。

答案:0或1或-1三、解答题(每题10分,共60分)1. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和。

求这个数列的第十项。

答案:第十项是76。

2. 一个长方体的长、宽、高分别是5cm、4cm和3cm,求它的表面积和体积。

答案:表面积是94平方厘米,体积是60立方厘米。

3. 一个等比数列的前三项是2, 6, 18,求它的第五项。

答案:第五项是54。

4. 一个圆的半径是7cm,求它的面积。

答案:面积是154π平方厘米。

5. 一个数列的前四项是1, 3, 6, 10,求它的通项公式。

答案:通项公式是n(n+1)/2。

6. 一个长方体的长、宽、高分别是a、b、c,且a+b+c=12,求当a=4时,b和c的可能值。

答案:当a=4时,b和c的可能值是(3, 5)或(4, 4)或(5, 3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学奥林匹克竞赛题及答案1、如图,梯形ABCD 中,AD ∥BC ,DE =EC ,EF ∥AB 交BC 于点F ,EF =EC ,连结DF 。

(1)试说明梯形ABCD 是等腰梯形;(2)若AD =1,BC =3,DC DCF 的形状;(3)在条件(2)下,射线BC 上是否存在一点P ,使△PCD 是等腰三角形,若存在,请直接写出PB 的长;若不存在,请说明理由.2、在边长为6的菱形ABCD 中,动点M 从点A 出发,沿A →B →C 向终点C 运动,连接DM 交AC 于点N 。

(1)如图25-1,当点M 在AB 边上时,连接BN .①求证:△ABN ≌△ADN ; ②若∠ABC = 60°,AM = 4,求点M 到AD 的距离; (2)如图25-2,若∠ABC = 90°,记点M 运动所经过的路程为x (6≤x ≤12)试问:x 为何值时,△ADN 为等腰三角形.3、对于点O 、M ,点M 沿MO 的方向运动到O 左转弯继续运动到N ,使OM =ON ,且OM ⊥ON ,这一过程称为M 点关于O 点完成一次“左转弯运动".正方形ABCD 和点P ,P 点关于A 左转弯运动到P 1,P 1关于B 左转弯运动到P 2,P 2关于C 左转弯运动到P 3,P 3关于D 左转弯运动到P 4,P 4关于A 左转弯运动到P 5,……. (1)请你在图中用直尺和圆规在图中确定点P 1的位置;(2)连接P 1A 、P 1B ,判断 △ABP 1与△ADP 之间有怎样的关系?并说明理由。

(3)以D 为原点、直线AD 为y 轴建立直角坐标系,并且已知点B 在第二象限,A 、P 两点的坐标为(0,4)、(1,1),请你推断:P 4、P 2009、P 2010三点的坐标.BA4、如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt △A1B1C1关于直线QN成轴对称的图形;(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?5、如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图中有几个等腰三角形?猜想: EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由。

6、已知,如图,△ABC中,∠BAC=90°,AB=AC,D为AC上一点,且∠BDC=124°,延长BA到点E,使AE=AD,BD的延长线交CE于点F,求∠E的度数。

7、如图,正方形ABCD的对角线AC,BD交于点O,将一三角尺的直角顶点放在点O处,让其绕点O旋转,三角尺的直角边与正方形ABCD的两边交于点E和F。

通过观察或测量OE,OF的长度,你发现了什么?试说明理由.1、解:(1)证明:∵EF=EC,∴∠EFC=∠ECF, ∵EF∥AB, ∴∠B=∠EFC, ∴∠B=∠ECF,∴梯形ABCD 是等腰梯形;(2)△DCF 是等腰直角三角形, 证明:∵DE=EC,EF=EC ,∴EF= 21CD ,∴△CDF 是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),∵梯形ABCD 是等腰梯形, ∴CF= 21(BC-AD )=1, ∵DC = 2, ∴由勾股定理得:DF=1,∴△DCF 是等腰直角三角形;(3)共四种情况:PB=1,PB=2,PB=3-2,PB=3+22、证明:(1)①∵四边形ABCD 是菱形, ∴AB=AD ,∠1=∠2. 又∵AN=AN , ∴△ABN ≌△ADN .②解:作MH ⊥DA 交DA 的延长线于点H . 由AD ∥BC,得∠MAH=∠ABC=60°. 在Rt △AMH 中,MH=AM •sin60°=4×sin60°=2 3. ∴点M 到AD 的距离为2 3. ∴AH=2. ∴DH=6+2=8.(2)解:∵∠ABC=90°, ∴菱形ABCD 是正方形. ∴∠CAD=45°. 下面分三种情形: (Ⅰ)若ND=NA ,则∠ADN=∠NAD=45°. 此时,点M 恰好与点B 重合,得x=6;(Ⅱ)若DN=DA,则∠DNA=∠DAN=45°. 此时,点M 恰好与点C 重合,得x=12; (Ⅲ)若AN=AD=6,则∠1=∠2. ∵AD ∥BC , ∴∠1=∠4,又∠2=∠3, ∴∠3=∠4. ∴CM=CN . ∴AC=6 2. ∴CM=CN=AC-AN=6 2—6. 故x=12—CM=12—(6 2—6)=18-6 2.综上所述:当x=6或12或18—6 2时,△ADN 是等腰三角形. 3、解:(1)用直尺和圆规作图,作图痕迹清晰;(2)△ABP1≌△ADP,且△ABP 1可看成是由△ADP 绕点A 顺时针旋转90°而得. 理由如下:在△ABP1和△ADP 中, 由题意:AB=AD,AP=AP 1,∠PAD=∠P 1AB , ∴△ABP1≌△ADP ,又∵△ABP 1和△ADP 有公共顶点A ,且∠PAP 1=90°,∴△ABP 1可看成是由△ADP 绕点A 顺时针旋转90°而得; (3)点P (1,1)关于点A(0,4)左转弯运动到P 1(-3,3), 点P 1(-3,3)关于点B (-4,4)左转弯运动到点P 2(-5,3), 点P 2(-5,3)关于点C (—4,0)左转弯运动到点P 3(-1,1), 点P 3(—1,1)关于点D (0,0)左转弯运动到点P 4(1,1),点P 4(1,1)关于点A (0,4)左转弯运动到点P 5(-3,3), 点P 5与点P 1重合,点P 6与点P 2重合,,点P 2009的坐标为(-3,3) 点P 2010的坐标为(—5,3). 4、解:(1)如图1,△A 2B 2C 2是△A 1B 1C 1关于直线QN 成轴对称的图形;(2)当△ABC 以每秒1个单位长的速度向下平移x 秒时(如图2), 则有:MA=x ,MB=x+4,MQ=20, y=S 梯形QMBC —S △AMQ —S △ABC =214+20)(x+4)- 21×20x- 21×4×4 =2x+40(0≤x ≤16). 由一次函数的性质可知:当x=0时,y 取得最小值,且y 最小=40,当x=16时,y 取得最大值,且y 最大=2×16+40=72; (3)解法一:当△ABC 继续以每秒1个单位长的速度向右平移时,此时16≤x ≤32,PB=20—(x —16)=36-x ,PC=PB —4=32—x ,∴y=S 梯形BAQP -S △CPQ —S △ABC = 21(4+20)(36—x)-21×20×(32—x )- 21×4×4=—2x+104(16≤x ≤32). 由一次函数的性质可知:当x=32时,y 取得最小值,且y 最小=—2×32+104=40; 当x=16时,y 取得最大值,且y 最大=-2×16+104=72. 解法二:在△ABC 自左向右平移的过程中,△QAC 在每一时刻的位置都对应着(2)中△QAC 某一时刻的位置, 使得这样的两个三角形关于直线QN 成轴对称. 因此,根据轴对称的性质,只需考查△ABC 在自上至下平移过程中△QAC 面积的变化情况, 便可以知道△ABC 在自左向右平移过程中△QAC 面积的变化情况. 当x=16时,y 取得最大值,且y 最大=72, 当x=32时,y 取得最小值,且y 最小=40. 5、解:(1)图中有5个等腰三角形,EF=BE+CF ,∵△BEO ≌△CFO,且这两个三角形均为等腰三角形, 可得EF=EO+FO=BE+CF ;(2)还有两个等腰三角形,为△BEO 、△CFO, 如下图所示:∵EF ∥BC ,∴∠2=∠3,又∵∠1=∠2,∴∠1=∠3,∴△BEO为等腰三角形,在△CFO中,同理可证.∴EF=BE+CF存在.(3)有等腰三角形:△BEO、△CFO,此时EF=BE—CF,∵如下图所示:OE∥BC,∴∠5=∠6,又∠4=∠5,∴∠4=∠6,∴,△BEO是等腰三角形,在△CFO中,同理可证△CFO是等腰三角形,此时EF=BE-CF,6、解:在△ABD和△ACE中,∵AB=AC,∠DAB=∠CAE=90°AD=AE,∴△ABD≌△ACE(SAS),∴∠E=∠ADB.∵∠ADB=180°—∠BDC=180°—124°=56°,∴∠E=56°.7、解:OE=OF.证明:正方形ABCD的对角线AC,BD交于点O,∴OA=OB,∠OAB=∠OBE=45°,AC⊥BD.∵∠AOF+∠FOB=∠EOB+∠FOB=90°,∴∠AOF=∠EOB.在△AOF和△BOE中∠OAB=∠OBE,OA=OB,∠AOF=∠EOB,∴△AOF≌△BOE(ASA).∴OE=OF.。

相关文档
最新文档