水力学第四章

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章

思考题:

4-1: N・S方程的物理意义是什么?适用条件是什么?

物理意义:N・S方程的精确解虽然不多,但能揭示实际液体流动的本质特征,同吋也作为检验和校核其他近似方程的依据,探讨复杂问题和新的理论问题的参考点和出发点。

适用条件:不可压缩均质实际液体流动。

4-2何为有势流?有势流与有旋流有何区别?

答:从静止开始的理想液体的运动是有势流.有势流无自身旋转,不存在使其运动的力矩.

4—3有势流的特点是什么?研究平面势流有何意义?

有势流是无旋流,旋转角速度为零。研究平面势流可以简化水力学模型,使问题变得简单且于实际问题相符,通过研究平面势流可以为我们分析复杂的水力学问题。

44流速势函数存在的充分必要条件是流动无旋,即竺=竺时存在势函数,存

OV CX

■<

在势函数吋无旋。流函数存在的充分必要条件是平面不可压缩液体的连续性方程,即就是寥+经存在流函数。

ex cy

4—5何为流网,其特征是什么?绘制流网的原理是什么?

流网:等势线(流速势函数的等值线)和流线(流函数的等值线)相互正交所形成的网格

流网特征:(1)流网是正交网格

(2)流网中的每一网格边长之比,等于流速势函数与流函数增值之比。

(3)流网中的每个网格均为曲线正方形

原理:自由表面是一条流线,而等势线垂直于流线。根据入流断面何处流断面的已知条件来确定断面上流线的位置。

46利用流网可以进行哪些水力计算?如何计算?

解:可以计算速度和压强。计算如下:流场中任意相邻之间的单宽流量Aq是一常数。在流场中任取1、2两点,设流速为J, u2,两端面处流线间距为Ami,

A m

则Aq=U lAml=U2A m2,在流网中,各点处网格的Am值可以直接量出来,

根据上式就可以得出速度的相对变化关系。如果流畅中某点速度已知,就可

以其他各点的速度。

当两点位置高度21和72为已知,速度J, u2已通过流亡求出吋,则两点的压 强差为

2 2

Pl P 2 U 2 U 1

pg.pg=z 2-z i +2g -2g

如果流畅中某一点压强已知,则其他个点压强均可求得

4.7利用流网计算平面势流的依据是什么?

(参考4.6的解释)

4-8流网的形状与哪些因素有关?网格的疏密取决于什么因素?

答:流网由等势线和流线构成,流网的形状与流函数q )(x,y )和流速势函数叭x,y ) 有关;由人q=A V =常数,AqpA 〃产常数,得两条流线的间距愈大,则速度愈小, 若间距愈小,则速度愈大。

4-9流函数与流速势函数之间各有哪些性质?两者之间有何联系?

答:流函数的性质:1)同一条流线上各点的流函数为常数。2)平面势 流的流函数是一个调和函数。3)两流线之间的单宽流量等于该两条流线的流 函数值之差。 流速势函数的性质:流速势函数是调和函数。

联系:在平面势流中流函数与流速势函数为共辘调和函数。

4-10

流速势函数e 的增值方向与速度方向一致,即就是©沿着流速u 的方向增 大;流函数。的增值方向垂直于流速方向,即就是沿着等势线增大。

4-11理想液体运动微分方程式的伯努利方程的运用条件是什么?

解:应用吋必须满足以下条件

1液体是不可压缩均质的理想液体,密度P 为常数。

2作用于液体上的质量力是有势的。

3液体运动是恒定流。

流畅中的压强分布, 2 2

Pl U 1 P 2 U 2

zl+Pg+2g=z 2pg 2g 可应用能量方程求得。

dx dy dz

行列式3X 3y G) Z = 0

ux uy uz

根据行列式的性质,满足下列条件之一都能使该行列式的值为零,即

1)3X 二3y = 3Z二0,为有势流

2)ux = uy = uz =0,为静止液体

3)dx/ w x二dy/3y = dz/ z=C,这是涡线微分方程。

4)dx/ux二dy/uy = dz/uz=C,这是流线微分方程。

5)ux/wx =uy /wy = uz /3z=C,为螺旋流。

4-12-S方程中的动水压强p与坐标轴的选取是否有关?

答:无关

4-13为什么说N・S方程是液体运动最基本的方程之一?目前它在水力学中的应用如何?

答:如果液体为理想液体,此方程为理想液体运动微分方程;如果是静止液体,此方程为液体的平衡微分方程。所以,N・S方程是研究液体运动最基本的方程之一。N ・S方程式是阶非线性非齐次的偏微分方程,求其普遍解在数学上是很困难的,仅对某些简单的问题才能求得解析解,但是,随着进算计的广泛应用和数值计算技术的发展,对于许多工程实际问题已能够求的其近似解。

4J5.能量方程式各项的意义是什么?应用中应注意哪些问题?解析:(1)意义

①理想在液体能量方程:

2 2

Pl U1 P2U2

z i+pg+2g =z2+pg+2g

因为在上式中,过水断面和断面2・2是任取的,所以可将上式推广到元流的任意过水断面,即:

2

P 口

zg+ 8 + 2二常数

2

P 口

1 •物理意义:zg代表位能;6代表压能;°是单位液体所具有的动能。

所以(Zg+g + 2)就代表单位质量液体所具有的总机械能,通常用E来表示。

2 2

p U p U 2•几何意义:z代表位置水头,P8代表压强水头,2g为速度水头,(z+ Pg+2g)则表示总水头。

②实际液体元流的能量方程

2 2

Pl U1 P2U2

r

z i+pg+2g =z2+pg+2g+h w

1 •物理意义:元流各过水断面上单位质量液体所具有的总机械能沿流程减少, 部分机械能转化为热能或声能而损失;同时也表示了各项能量之间沿流程可以相互转化关系。

2.hw在水力学中习惯上称为水头损失。

(2)注意:

①是不是理想液体,若是,用理想在液体能量方程;若不是,用实际液体元流的能量方程

②幻彳2是同一基准面。

③提到压强,若为相对压强,式子左右都为相对压强;若为绝对压强,式子左右都为绝对压强。

4J6.何为总水头线和测压管水头线?水头坐标为何取垂直向上?解析:(1)测压管水头线是沿水流方向各个测点的测压管液面的连线,它反应的是流体的势能,测压管水头线可能下降,也可能上升(当径管沿流向增大时),因为径管增大时流速减小,动能减小而压能增大,如果压能的增大大于水头损失吋,水流的势能就增大,测压管水头就上升。

水头总线是沿着测压管水头线的基线上再加上流速水头,它反应的是流体的总能量,由于沿流向总是有水头损失,所以总水头线沿程只能下降,不能上升。

(2)为了直观反应总流沿流程各种能量的变化规律及相互关系,可以把能

量方程沿流程用儿何线段图形来表示。

相关文档
最新文档