吉林省数学高二上学期理数10月月考试卷
吉林省长春市第二实验中学2024-2025学年高二上学期10月月考生物学试题(含答案)
长春二实验中学高二上学期月考生物学试卷考生注意:1.满分100分,考试时间75分钟。
2.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
3.本卷命题范围:选择性必修1第1~5章第1节。
一、选择题:本题共15小题,每小题2分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.血浆、组织液和淋巴液等细胞外液共同构成人体细胞赖以生存的内环境。
下列关于淋巴细胞分布的叙述,正确的是()A.只存在于淋巴液B.只存在于血浆和淋巴液C.只存在于血浆和组织液D.存在于血浆、组织液和淋巴液2.头孢类药物可以抑制乙醛脱氢酶的活性,因此口服或注射了头孢类药物的人不能饮酒。
乙醇主要在肝脏中代谢,过程如图所示。
下列相关叙述错误的是()A.相对于口服,静脉注射的头孢类药物更先到达病灶B.过量饮酒可能会使人体内环境失去稳态C.乙醇脱氢酶和乙醛脱氢酶均属于内环境的物质D.口服或注射了头孢类药物的人饮酒后可能出现乙醛中毒现象3.尿酸是人体中嘌呤代谢的终产物,主要通过肾脏排出体外,是人体血浆中非蛋白氮的主要成分之一,尿酸水平偏高或偏低均可能指示一些健康问题。
导致尿酸高的原因有多种,包括生理性因素(如高嘌呤饮食)和疾病因素(如淋巴增生性疾病)等。
下列叙述错误的是()A.尿酸偏高的个体不一定患淋巴增生性疾病B.非蛋白氮属于内环境的组成成分,不止一种C.健康人的血浆中尿酸含量是处于动态平衡的D.组织细胞坏死不会导致血浆中尿酸含量升高4.瞳孔开大肌是分布于眼睛瞳孔周围的肌肉,只受自主神经系统支配。
当抓捏面部皮肤时,会引起瞳孔开大肌收缩,导致瞳孔扩张,该反射称为瞳孔皮肤反射,其反射通路如下所示,其中网状脊髓束是位于脑干和脊髓中的神经纤维束。
下列说法错误的是()面部皮肤感受器→传入神经①→脑干→网状脊髓束→脊髓(胸段)→传出神经②→瞳孔开大肌A.该反射属于非条件反射B.传入神经①属于脑神经C.传出神经②属于躯体运动神经D.若完全阻断脊髓(颈段)中的网状脊髓束,该反射不能完成5.面包店的香味并不是都出自面包,有些烘焙店借助一种叫作面包香氛的“黑科技”(有机化合物)来吸引顾客。
辽宁点石联考2024-2025学年高三上学期10月月考(二模)数学试题(原卷版)
2024—2025学年高三(25届)二模数学科试卷命题人:孙方辉 校对人:王立冉一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知12i i z −=,则z =( ) A. 1 B. 2C. D. 32. 为了得到函数sin(2)3yx π−的图像,只需把函数sin(2)6y x π+的图像 A. 向左平移4π个长度单位 B. 向右平移4π个长度单位 C. 向左平移2π个长度单位 D. 向右平移2π个长度单位 3. ABC 中,点M 、N 在边BC 上,BM MN NC ==,设AM m = ,AN n = ,则AB = ( ) A. 2m n −B. 2n m −C. 2m n −D. 2n m −4. 设函数()()cos f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( ) A. ()01f =B. ()00f =C. ()01f ′=D. ()00f ′=5. 已知函数()112,02,0x x x f x x +− ≥= −< ,则不等式()()2f x f x −>解集为( )A. (),1∞−−B. (),1−∞C. ()1,−+∞D. ()1,+∞6. 已知函数()()2cos 1f x x a x =−+,若()f x 在()1,1−有唯一的零点,则a =( ) A. 1 B. 2C. 3D. 4 7. 已知函数()()2f x x x c =⋅−在1x =处有极大值,则c =( )A. 1B. 2C. 3D. 48. 已知函数()()()sin ,,0f x A x A ωϕωϕ=+>最小正周期为π,当6074π3x =时,函数()f x 取最小在的的值,则下列结论正确的是( )A. ()()()220f f f <−<B. ()()()202f f f −<<C. ()()()022f f f <<−D. ()()()202f f f <<− 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知O 为坐标原点,()2,1A −,()1,2B ,()1,2C −−,则( )A. AB方向的单位向量为B. 若2AP PB = ,则点P 坐标为4,13 C. π4ACB ∠=D. CA 在CB10. 设函数()πsin 2sin23f x x x=++ ,则下列结论正确的是( )A. 函数()f x 的最大值为2B. ()f x 区间π11π,1212− 有两个极值点C. ()5π06f x f x +−=D.直线3y x =+()y f x =的切线11. ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,下列结论中正确的是()A. ()2222a b c ab bc ca ++<++B. 1a a +,1b b +,1cc +不能构成三角形C. 若333a b c +=,则ABC 为锐角三角形D. 若a ,b ,c 均为有理数,则()cos A B −为有理数三、填空题:本题共3小题,每小题5分,共15分.的在12. 已知单位向量1e ,2e 满足1212e e ⋅= ,则()12R e te t −∈ 的最小值为______.13. 函数y =[)0,+∞,则实数a 的取值范围是______.14. 如图,圆内接四边形ABCD 中,BD 为直径,AB AC ==,1AD =.则BC 的长度为______;AC BD ⋅=______.四、解答题:本题共5小题,共77分,解答应写出文字说明,证明过程或演算步骤 15. 等差数列{aa nn }的前n 项和为n S ,已知60a =,126S =.(1)求数列{aa nn }的通项公式; (2)求数列{}n a 的前n 项和n T .16. 已知函数()22x x f x a −−⋅. (1)若()f x 为偶函数,求()f x 的最小值;(2)当0a >时,判断()f x 的单调性(不用证明),并借助判断的结论求关于x 的不等式()()22log 20f a x f x −+−>的解集.17. 在ABC 中,D 为BC 的中点,π2BCA BAD ∠+∠=,记ABC α∠=,ACB β∠=. (1)证明:αβ=或π2αβ+=;(2)若3AB =,且3BC AC ≥,求AD 的最大值.18. 如图,函数()()πsin 0,02f x x ωθωθ =+>≤≤的图象与y 轴相交于点10,2 ,且在y 轴右侧的第一个零点为5π12.(1)求θ和ω的值;(2)已知π0π2αβ<<<<,π12123f α −= ,π26f αβ+ + cos β的值. 19. 已知函数()e e cos x x f x k x −=++.(1)若2k =−,求()f x 的单调区间; (2)若()f x 在()0,∞+上单调递增,求正实数k 的取值范围;(3)π0,2x ∈ 时,证明:ππ22π1e e e 4x x x − ++≥+ .。
吉林省长春2023-2024学年高二上学期12月月考试题 数学含答案
长春2023-2024学年第一学期高二年级第二次月考数学试卷(答案在最后)出题人:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.考试结束后,将答题卡交回.注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第I 卷(选择题)一、单选题(本题共8小题,每题5分,共40分.在每小题列出的选项中,选出符合题目的一项)1.下列函数中,与函数1y x =-相同的是()A.y =B.211x y x -=+ C.1y t =- D.y =2.为了调查老师对微课堂的了解程度,某市拟采用分层抽样的方法从A ,B ,C 三所中学抽取60名教师进行调查,已知A ,B ,C 三所学校中分别有180,270,90名教师,则从C 学校中应抽取的人数为()A.10B.12C.18D.243.已知函数()2xf x x =+,()f x 一定有零点的区间为()A.()23,B.()12,C.()10-,D.()32--,4.已知0.5log 0.4a =,0.60.4b =,0.50.4c =,则()A.a b c<< B.c b a<< C.b<c<aD.a c b<<5.已知圆()()222212251:2:244C x y C x y ++=-+=,,动圆P 与圆12C C ,都外切,则动圆圆心P 的轨迹方程为()A.221(0)3y x x -=> B.()22103y x x -=<C.()22105y x x -=> D.()22105y x x -=<6.已知M 是抛物线216x y =上任意一点,()0A ,4,()11B -,,则MA MB +的最小值为()A.B.3C.8D.57.设1F 、2F 是椭圆()2222:10x y E a b a b +=>>的左、右焦点,P 为直线2a x c=上一点,若21F PF 是底角为30 的等腰三角形,则椭圆E 的离心率为()A.12B.2C.34D.458.P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值为()A.6B.7C.8D.9二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.设m ,n 为不同的直线,α,β为不同的平面,则下列结论中正确的是()A.若//m α,//n α,则//m nB.若m α⊥,n α⊥,则//m nC.若//m α,m β⊂,则//αβD.若m α⊥,n β⊥,m n ⊥,则αβ⊥10.已知抛物线C :24y x =的焦点为F ,点()00,M xy 在抛物线C 上,若4MF =,则()A.03x =B.03y =C.OM =D.F 的坐标为()0,111.已知曲线22:1C mx ny +=.()A.若m >n >0,则C 是椭圆,其焦点在y 轴上B.若m =n >0,则C 是C.若mn <0,则C是双曲线,其渐近线方程为y =D.若m =0,n >0,则C 是两条直线12.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,长轴长为4,点P 在椭圆C 外,点Q 在椭圆C 上,则()A.椭圆C 的离心率的取值范围是20,2⎛⎫⎪ ⎪⎝⎭B.当椭圆C的离心率为2时,1QF的取值范围是[2-+C.存在点Q 使得120QF QF ⋅= D.1211QF QF +的最小值为1第Ⅱ卷(非选择题)三、填空题(本题共4小题,每小题5分,共20分)13.已知tan 2α=,则tan 4πα⎛⎫+= ⎪⎝⎭__________.14.已知向量a ,b 满足1a b == ,π,3a b = ,则2a b -= ______.15.椭圆2214x y +=的右焦点到直线y =的距离是__________.16.过抛物线()220y px p =>的焦点F 的直线交抛物线于点A,B,交其准线l 于点C,若点F 是AC 的中点,且4AF =,则线段AB 的长为_____________四、解答题(本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.求适合下列条件的圆锥曲线的标准方程:(1)以直线y =为渐近线,焦点是(4,0)-,(4,0)的双曲线;(2)离心率为35,短轴长为8的椭圆.18.如图,四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,E F 、分别是AC PB 、的中点.(1)求证://EF 平面PCD ;(2)求证:平面PBD ⊥平面PAC .19.已知函数()f x 是定义在R 上的奇函数,当0x >时,()34f x x x=+-.(1)求函数()f x 在R 上的解析式;(2)用单调性定义证明函数()f x 在区间)3,+∞上是增函数.20.已知双曲线22:12x C y -=.(1)求与双曲线C 有共同的渐近线,且过点(2,2)-的双曲线的标准方程;(2)若直线l 与双曲线C 交于A 、B 两点,且A 、B 的中点坐标为(1,1),求直线l 的斜率.21.已知函数()3)2sin cos 3f x x x x π=--.(1)求()f x 的最小正周期、最大值、最小值;(2)求函数的单调区间;22.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,椭圆C 的下顶点和上顶点分别为12,B B ,且122B B =,过点(0,2)P 且斜率为k 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程;(2)当k =2时,求△OMN 的面积;(3)求证:直线1B M与直线2B N的交点T 恒在一条定直线上.长春2023-2024学年第一学期高二年级第二次月考数学试卷出题人:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.考试结束后,将答题卡交回.注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第I 卷(选择题)一、单选题(本题共8小题,每题5分,共40分.在每小题列出的选项中,选出符合题目的一项)1.下列函数中,与函数1y x =-相同的是()A.y =B.211x y x -=+ C.1y t =- D.y =【答案】C 【解析】【分析】根据两个函数的定义域相同,对应关系也相同,即判断这两个函数为相同函数.【详解】解:对于A ,1y x ===-,与函数1y x =-的对应关系不相同,故不是相同函数;对于B ,函数211x y x -=+的定义域为{}1x x ≠-,函数1y x =-的定义域为R ,两函数的定义域不相同,故两函数不是相同函数;对于C ,两函数的定义域都是R ,且对应关系相同,故两函数为相同函数;对于D ,1y x ==--,与函数1y x =-的对应关系不相同,故不是相同函数.故选:C.2.为了调查老师对微课堂的了解程度,某市拟采用分层抽样的方法从A ,B ,C 三所中学抽取60名教师进行调查,已知A ,B ,C 三所学校中分别有180,270,90名教师,则从C 学校中应抽取的人数为()A.10B.12C.18D.24【答案】A 【解析】【分析】按照分层抽样原则,每部分抽取的概率相等,按比例分配给每部分,即可求解.【详解】A ,B ,C 三所学校教师总和为540,从中抽取60人,则从C 学校中应抽取的人数为609010540⨯=人.故选:A.【点睛】本题考查分层抽样抽取方法,按比例分配是解题的关键,属于基础题.3.已知函数()2xf x x =+,()f x 一定有零点的区间为()A.()23,B.()12,C.()10-, D.()32--,【答案】C 【解析】【分析】根据题中所给函数用零点存在性定理即可判断正确答案.【详解】由题知函数()2xf x x =+在R 上单调递增,因为()()002110,1f f =->=<-,所以在区间()10-,上()f x 一定有零点.故选:C4.已知0.5log 0.4a =,0.60.4b =,0.50.4c =,则()A.a b c << B.c b a<< C.b<c<aD.a c b<<【答案】C 【解析】【分析】利用对数函数、指数函数和幂函数的单调性比较大小即可.【详解】因为0.50.5log 0.4log 0.51a =>=,0.60.500.40.40.41b c =<=<=,所以b c a <<,故选:C.5.已知圆()()222212251:2:244C x y C x y ++=-+=,,动圆P 与圆12C C ,都外切,则动圆圆心P 的轨迹方程为()A.221(0)3y x x -=> B.()22103y x x -=<C.()22105y x x -=> D.()22105y x x -=<【答案】A 【解析】【分析】由图结合两圆相外切性质可得122PC PC -=,后由双曲线定义可得答案.【详解】由题可得圆1C 圆心()2,0-,半径为52;圆2C 圆心()2,0,半径为12由图设动圆P 与圆1C ,圆2C 外切切点分别为A ,B .则1,,C A P 共线,2,,C B P 共线.则()1212PC PC PA AC PB BC -=+-+,注意到PA PB =,则12122PC PC AC BC -=-=,又1242C C =>,则点P 轨迹为以12C C ,为焦点双曲线的右支.设双曲线方程为:()222210x y x a b-=>,由题可得222123a c b c a ==⇒=-=,.故相应轨迹方程为:221(0)3y x x -=>.故选:A6.已知M 是抛物线216x y =上任意一点,()0A ,4,()11B -,,则MA MB +的最小值为()A. B.3 C.8 D.5【答案】D 【解析】【分析】作MC l ⊥,利用定义将MA MB +转化为MC MB +,然后结合图形可得.【详解】易知,抛物线216x y =的焦点为()0A ,4,准线为:4l y =-,作MC l ⊥,垂足为C ,由抛物线定义可知,MA MB MC MB +=+,则由图可知,MC MB +的最小值为点B 到准线l 的距离,即()145--=.故选:D7.设1F 、2F 是椭圆()2222:10x y E a b a b +=>>的左、右焦点,P 为直线2a x c=上一点,若21F PF 是底角为30 的等腰三角形,则椭圆E 的离心率为()A.12B.2C.34D.45【答案】B 【解析】【分析】设直线2a x c=交x轴于点M ,推导出222PF F M =,可得出关于a 、c 的等式,由此可解得该椭圆的离心率.【详解】设直线2a x c=交x轴于点M ,21F PF △是底角为30 的等腰三角形,260PF M ∠= ,2122PF F F c ==,在2Rt PF M 中,290PMF ∠= ,230MPF ∠=,222PF F M ∴=,P 为直线2a x c =上一点,222a c c c ⎛⎫∴-= ⎪⎝⎭,即222a c =,2c e a ∴==.故选:B .【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.8.P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值为()A.6B.7C.8D.9【答案】D 【解析】【分析】可得双曲线221916x y -=的焦点分别为1F (-5,0),2F (5,0),由已知可得当且仅当P 与M 、1F 三点共线以及P 与N 、2F 三点共线时所求的值最大,可得答案.【详解】解:易得双曲线221916x y -=的焦点分别为1F (-5,0),2F (5,0),且这两点刚好为两圆的圆心,由题意可得,当且仅当P 与M 、1F 三点共线以及P 与N 、2F 三点共线时所求的值最大,此时PM PN -=21(2)(1)PF PF +--=6+3=9【点睛】本题主要考查双曲线的定义及性质的应用,判断P 与M 、1F 三点共线以及P 与N 、2F 三点共线时所求的值最大是解题的关键.二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.设m ,n 为不同的直线,α,β为不同的平面,则下列结论中正确的是()A.若//m α,//n α,则//m nB.若m α⊥,n α⊥,则//m nC.若//m α,m β⊂,则//αβD.若m α⊥,n β⊥,m n ⊥,则αβ⊥【答案】BD 【解析】【分析】根据线线、线面、面面的位置关系,逐一分析各选项即可得答案.【详解】解:对A :若//m α,//n α,则//m n 或m 与n 相交或m 与n 异面,故选项A 错误;对B :若m α⊥,n α⊥,则//m n ,故选项B 正确;对C :若//m α,m β⊂,则//αβ或α与β相交,故选项C 正确;对D :若m α⊥,n β⊥,m n ⊥,则αβ⊥,故选项D 正确.故选:BD.10.已知抛物线C :24y x =的焦点为F ,点()00,M xy 在抛物线C 上,若4MF =,则()A.03x =B.03y =C.OM =D.F 的坐标为()0,1【答案】AC 【解析】【分析】根据抛物线的定义逐项判断即可.【详解】由抛物线C :24y x =,可得()1,0F ,故D 错误;由抛物线的定义可得014MF x =+=,所以03x =,故A 正确;因为点()00,Mxy 在抛物线C 上,所以204312y =⨯=,所以0y =±,故B 错误;则OM ===C 正确.故选:AC.11.已知曲线22:1C mx ny +=.()A.若m >n >0,则C 是椭圆,其焦点在y 轴上B.若m =n >0,则C是圆,其半径为C.若mn <0,则C是双曲线,其渐近线方程为y =D.若m =0,n >0,则C 是两条直线【答案】ACD 【解析】【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=,因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=,此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确;对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=,此时曲线C 表示双曲线,由220mx ny +=可得y =,故C 正确;对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确;故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.12.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,长轴长为4,点P 在椭圆C 外,点Q 在椭圆C 上,则()A.椭圆C的离心率的取值范围是0,2⎛⎫⎪ ⎪⎝⎭B.当椭圆C的离心率为2时,1QF的取值范围是[2-+C.存在点Q 使得120QF QF ⋅= D.1211QF QF +的最小值为1【答案】BCD 【解析】【分析】根据点)P在椭圆C 外,即可求出b 的取值范围,即可求出离心率的取值范围,从而判断A ,根据离心率求出c ,则[]1,QF a c a c ∈-+,即可判断B ,设上顶点A ,得到120AF AF <,即可判断C ,利用基本不等式判断D.【详解】解:由题意得2a =,又点)P在椭圆C 外,则22114b+>,解得b <所以椭圆C的离心率22c e a==>,即椭圆C的离心率的取值范围是,12⎛⎫ ⎪ ⎪⎝⎭,故A 不正确;当2e =时,c =1b ==,所以1QF 的取值范围是[],a c a c -+,即22⎡+⎣,故B 正确;设椭圆的上顶点为()0,A b ,()1,0F c -,()2,0F c ,由于222212·20AF AF b c b a =-=-<,所以存在点Q 使得120QF QF ⋅=,故C 正确;()21121212112224QF QF QF QF QF QF QF QF ⎛⎫++=++≥+= ⎪ ⎪⎝⎭,当且仅当122QF QF ==时,等号成立,又124QF QF +=,所以12111QF QF +≥,故D 正确.故选:BCD第Ⅱ卷(非选择题)三、填空题(本题共4小题,每小题5分,共20分)13.已知tan 2α=,则tan 4πα⎛⎫+= ⎪⎝⎭__________.【答案】-3【解析】【分析】根据正切的和角公式计算可得答案.【详解】∵tan 2α=,∴tan tan214tan 341211tan tan 4παπαπα++⎛⎫+===- ⎪-⨯⎝⎭-⋅,故答案为:-3.14.已知向量a ,b 满足1a b == ,π,3a b = ,则2a b -= ______.【解析】【分析】由向量模、数量积公式先求出2211,2a b a b ==⋅= ,再由公式2a b -=即可得解.【详解】由题意22222211,11a a b b ====== ,π1cos ,11cos 32a b a b a b ⋅==⨯⨯=,所以2a b -====.15.椭圆2214x y +=的右焦点到直线y =的距离是__________.【答案】32##1.5【解析】【分析】由椭圆方程可得右焦点为),代入点到直线距离公式即可得出结果.【详解】由题可知椭圆的右焦点坐标为),所以右焦点到直线y =的距离是32d ==.故答案为:3216.过抛物线()220y px p =>的焦点F 的直线交抛物线于点A,B,交其准线l 于点C,若点F 是AC 的中点,且4AF =,则线段AB 的长为_____________【答案】163【解析】【详解】设过抛物线()220y px p =>的焦点(,0)2pF 的直线交抛物线于点1122(,),(,)A x y B x y ,交其准线:2p l x =-于3(,)2p C y -,因为F 是AC 的中点,且4AF =,所以1122242pp x p x ⎧-+=⨯⎪⎪⎨⎪+=⎪⎩,解得123p x =⎧⎨=⎩,即(1,0),(3,F A ,则AF的方程为1)y x =-,联立241)y xy x ⎧=⎪⎨=-⎪⎩,得231030x x -+=,解得213x =,所以1164133AB AF BF =+=++=.四、解答题(本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.求适合下列条件的圆锥曲线的标准方程:(1)以直线y =为渐近线,焦点是(4,0)-,(4,0)的双曲线;(2)离心率为35,短轴长为8的椭圆.【答案】(1)221412x y -=;(2)2212516x y +=或2212516y x +=.【解析】【分析】(1)由题意设双曲线方程为22221x y a b-=(0a >,0b >),根据焦点坐标和双曲线的渐近线方程求出a ,b 即可;(2)分椭圆的焦点在x 轴时和y 轴时讨论求解即可.【详解】解:(1)由题意设双曲线方程为22221x y a b-=(0a >,0b >),由焦点可得4c =,双曲线的渐近线方程为y =,可得ba=,又222+=a b c ,解得2a =,b =,所以双曲线的方程为221412x y -=.(2)当焦点在x 轴时,设椭圆方程为22221x ya b+=(0)a b >>,由题可得2223528c a b a b c ⎧=⎪⎪=⎨⎪=+⎪⎩,解得5a =,4b =,所以椭圆方程为2212516x y +=;当焦点在y 轴时,设椭圆方程为22221y xa b+=(0)a b >>,由题可得2223528c a b a b c ⎧=⎪⎪=⎨⎪=+⎪⎩,解得5a =,4b =,所以椭圆方程为2212516y x +=;所以综上可得椭圆方程为2212516x y +=或2212516y x +=.18.如图,四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,E F 、分别是AC PB 、的中点.(1)求证://EF 平面PCD ;(2)求证:平面PBD ⊥平面PAC .【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)连接BD ,根据线面平行的判定定理只需证明EF ∥PD 即可;(2)利用线面垂直的判定定理可得BD ⊥面PAC ,再利用面面垂直的判定定理即证.【小问1详解】如图,连结BD ,则E 是BD 的中点,又F 是PB 的中点,∴//EF PD ,又∵EF ⊄平面PCD ,PD ⊂面PCD ,∴//EF 平面PCD ;【小问2详解】∵底面ABCD 是正方形,∴BD AC ⊥,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA BD ⊥,又PA AC A = ,∴BD ⊥面PAC ,又BD ⊂平面PBD ,故平面PBD ⊥平面PAC .19.已知函数()f x 是定义在R 上的奇函数,当0x >时,()34f x x x=+-.(1)求函数()f x 在R 上的解析式;(2)用单调性定义证明函数()f x在区间)+∞上是增函数.【答案】(1)()34,00,034,0x x x f x x x x x ⎧+->⎪⎪==⎨⎪⎪++<⎩;(2)证明见解析.【解析】【分析】(1)设0x <时,则0x ->,根据已知解析式和奇偶性可得0x <时的解析式,再由奇函数性质可知()00f =,然后可得在R 上的解析式;(2)根据定义法证明单调性的步骤:取值,作差,变形,定号,下结论可证.【小问1详解】设0x <时,则0x ->,所以()34f x x x-=---,因为()f x 为奇函数,所以()()34f x f x x x=--=++,又()00f =,所以函数()f x 在R 上的解析式为()34,00,034,0x x x f x x x x x ⎧+->⎪⎪==⎨⎪⎪++<⎩.【小问2详解】)12,x x ∞∀∈+,且12x x <,则()()()211212*********44x x f x f x x x x x x x x x -⎛⎫-=+--+-=-+ ⎪⎝⎭()()1212123x x x x x x --=,因为21x x >>1212120,0,30x x x x x x -->,故()()120f x f x -<,即()()12f x f x <,所以函数()f x在)+∞上单调递增.20.已知双曲线22:12x C y -=.(1)求与双曲线C有共同的渐近线,且过点(的双曲线的标准方程;(2)若直线l 与双曲线C 交于A 、B 两点,且A 、B 的中点坐标为(1,1),求直线l 的斜率.【答案】(1)2212x y -=;(2)12.【解析】【分析】(1)设所求双曲线方程为22(0)2x y k k -=≠,代入点坐标,求得k ,即可得答案;(2)设1122(,),(,)A x y B x y ,利用点差法,代入A 、B 的中点坐标为(1,1),即可求得斜率.【详解】(1)因为所求双曲线与双曲线C 有共同的渐近线,所以设所求双曲线方程为22(0)2x y k k -=≠,代入(,得1k =-,所以所求双曲线方程为2212x y -=;(2)设1122(,),(,)A x y B x y ,因为A 、B 在双曲线上,所以221122221(1)21(2)2x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩,(1)-(2)得12121212()()()()2x x x x y y y y -+=-+,因为A 、B 的中点坐标为(1,1),即12122,2x x y y +=+=,所以1212121212()2l y y x x k x x y y -+===-+.21.已知函数())2sin cos 3f x x x x π=--.(1)求()f x 的最小正周期、最大值、最小值;(2)求函数的单调区间;【答案】(1)T π=,最大值1,最小值-1;(2)在()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增;()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上单调递减;【解析】【分析】(1)利用两角差余弦公式、两角和正弦公式化简函数式,进而求()f x 的最小正周期、最大值、最小值;(2)利用()sin()f x A x ωϕ=+的性质求函数的单调区间即可.【详解】(1)())2sin cos sin(2)33f x x x x x ππ=--=+,∴2||T ππω==,且最大值、最小值分别为1,-1;(2)由题意,当222232k x k πππππ-≤+≤+时,()f x 单调递增,∴51212k x k ππππ-≤≤+,Z k ∈,()f x 单调递增;当3222232k x k πππππ+≤+≤+时,()f x 单调递减,∴71212k x k ππππ+≤≤+,Z k ∈,()f x 单调递减;综上,当()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,()f x 单调递增;()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,()f x 单调递减;【点睛】关键点点睛:应用两角和差公式化简三角函数式并求最小正周期、最值;根据()sin()f x A x ωϕ=+性质确定三角函数的单调区间.22.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,椭圆C 的下顶点和上顶点分别为12,B B ,且122B B =,过点(0,2)P 且斜率为k 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程;(2)当k =2时,求△OMN 的面积;(3)求证:直线1B M 与直线2B N 的交点T 恒在一条定直线上.【答案】(1)2212x y +=;(2)9;(3)证明见解析.【解析】【分析】(1)由122B B =可得1b =,结合离心率和222c a b =-可求出1,c a ==,进而可得椭圆的方程.(2)写出l 的方程为22y x -=与椭圆进行联立,设()()1122,,,M x y N x y ,结合韦达定理可得1212162,93x x x x +=-=,即可求出MN ,由点到直线的距离公式可求出原点到l 的距离d ,从而可求出三角形的面积.(3)设()()1122,,,M x y N x y ,联立直线和椭圆的方程整理后结合韦达定理可得12122286,2121k x x x x k k +=-=++,设(),T m n ,由1,,B T M 在同一条直线上,得113n k m x +=+,同理211n k m x -=+,从而可得()1212311340x x n n k m m x x ++-+⋅=+=,即可证明交点在定直线上.【详解】解:(1)因为122B B =,所以22b =,即1b =,因为离心率为2,则22c a =,设c =,则2,0a k k =>,又222c a b =-,即22241k k =-,解得2k =或2-(舍去),所以1,c a ==,所以椭圆的标准方程为2212x y +=.(2)设()()1122,,,M x y N x y ,由直线的点斜式方程可知,直线l 的方程为22y x -=,即22y x =+,与椭圆方程联立,222212y x x y =+⎧⎪⎨+=⎪⎩,整理得291660x x ++=,则1212162,93x x x x +=-=,所以MN ==1029,原点到l的距离d ==,则OMN的面积112299S d MN ===.(3)由题意知,直线l 的方程为2y kx -=,即2y kx =+,设()()1122,,,M x y N x y ,则22212y kx x y =+⎧⎪⎨+=⎪⎩,整理得()2221860k x kx +++=,则12122286,2121k x x x x k k +=-=++,因为直线和椭圆有两个交点,所以()()22824210k k ∆=-+>,则232k >,设(),T m n ,因为1,,B T M 在同一条直线上,则111111313y kx n k m x x x +++===+,因为2,,B T N 在同一条直线上,则222221111y kx n k m x x x -+-===+,所以()21212283311213440621k x x n n k k k m m x x k ⎛⎫⋅- ⎪++-+⎝⎭+⋅=+=+=+,所以12n =,则交点T 恒在一条直线12y =上.【点睛】关键点睛:本题第三问的关键是设交点(),T m n ,由三点共线结合斜率公式得111111313y kx n k m x x x +++===+和222221111y kx n k m x x x -+-===+,两式进行整理后可求出12n =,即可证明交点在定直线上.。
吉林省长春市2023-2024学年高一上学期10月联考试题 数学含解析
2023-2024学年度上学期第一次月考高一数学试卷(答案在最后)本试卷满分150分,共2页考试试卷:120分钟考试结束后只上交答题卡一、单选题(每题5分,共40分)1.已知全集为U ,M N M = ,则其图象为()A .B .C .D .2.对于实数a ,b ,c ,下列说法正确的是()A .若a b >,则11a b<B .若a b >,则22ac bc >C .若0a b >>,则2ab a<D .若c a b >>,则a bc a c b>--3.下列四个命题中正确命题的个数是()①“2x >”是“3x <”的既不充分也不必要条件②“三角形为正三角形”是“三角形为等腰三角形”的必要不充分条件③()200ax bx c a ++=≠有实数根2Δ40b ac ⇔=-≥④若集合A B ⊆,则x A ∈是x B ∈的充分不必要条件A .1B .3C .2D .04.下列不等式一定成立的是()A .222x x +≥B .1323x x ++≥+(其中3x >-)C 2的最小值为2D .111x x -+-的最小值为2(其中2x >)5.若集合U 有71个元素,S ,T U ⊆且各有14,28个元素,则()S T S T ð的元素个数最少是()A .14B .30C .32D .426.已知关于x 的不等式()()()2233100,0a m x b m x a b +--->>>的解集为()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭,则下列结论错误的是()A .21a b +=B .ab 的最大值为18C .12a b +的最小值为4D .11a b+的最小值为3+7.定义:设A 是非空实数集,若a A ∃∈,使得x A ∀∈,都有()x a x a <>,则称a 是A 的最大(小)值.若B 是一个不含零的非空实数集,且0a 是B 的最大值,则()A .当00a >时,10a -是集合{}1x x B -∈的最小值B .当00a >时,10a -是集合{}1x x B -∈的最大值C .当00a <时,10a --是集合{}1x x B --∈的最小值D .当00a <时,10a --是集合{}1x x B --∈的最大值8.一元二次等式20ax bx c ++≥的解集为R ,则32a cb a++最小值为()A .1B .0C .2D .3二、多选题(每题5分,漏选得2分,错选和不选不得分,共20分)9.若22811a x x =-+,269b x x =-+,1c =,则()A .b a >B .a c>C .ac bc>D .b c>10.下列选项正确的有()A .已知全集{}2320U x x x =-+=,{}220A x x px =-+=,U A =∅ð,则实数p 的值为3.B .若{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则202320231a b +=C .已知集合{}220,A x ax x a =++=∈R 中元素至多只有1个,则实数a 的范围是18a ≥D .若{}25A x x =-≤≤,{}121B x m x m =+≤≤-,且B A ⊆,则3m ≤11.关下列结论中正确的是()A .若p q ⇒,则p 是q 的充分条件B .已知x ,y 是实数,则“xy 为无理数”是“x ,y 均为无理数”的充分条件C .“x M ∀∈,()p x ”的否定是“x M ∃∈,()p x ⌝”D .“x M ∃∈,()p x ”的否定是“x M ∃∈,()p x ⌝”12.(多选)《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图(1),用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图(2)所示的矩形,该矩形长为a b +,宽为内接正方形的边长d .由刘徽构造的图形可以得到许多重要的结论,如图(3),设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形的对角线AE ,过点A 作AF BC ⊥于点F ,则下列推理正确的是()A .由题图(1)和题图(2)面积相等得2ab d a b=+B .由AE AF ≥2222a b a b++≥C .由AD AE ≥222112a b a b+≥+D .由AD AF ≥可得222a b ab+≥三、填空题(每题5分,共20分)13.“生命在于运动”,某学校教师在普及程度比较高的三个体育项目——乒乓球、羽毛球、篮球中,会打乒乓球的教师人数为30,会打羽毛球的教师人数为60,会打篮球的教师人数为20,若会至少其中一个体育项目的教师人数为80,且三个体育项目都会的教师人数为5,则会且仅会其中两个体育项目的教师人数为______.14.若集合94a xx ⎧⎫<<⎨⎬⎩⎭恰有8个整数元素,写出整数a 的一个值:______.15.已知命题p :x ∀,y 满足21x y +=,且0xy >,不等式2122a a x y+≥-恒成立,命题q :45a -<<,则p 是q 的______条件.16.设全集{}2,3,5,6,9U =,对其子集引进“势”的概念:①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大,最大的元素相同,则第二大的元素越大,子集的“势”就越大,依次类推.若将全部的子集按“势”从小到大的顺序排列,则排在第23位的子集是______.四、解答题17.(本题满分10分)已知全集{}4U x x =≤,集合{}23A x x =-<<,{}32B x x =-≤≤,求(1)()U A B ð;(2)()U A B ð.18.(本题满分12分)2018年9月,习近平总书记在东北三省考察并明确提出“新时代东北振兴,是全面振兴、全方位振兴”。
北京市中学2024-2025学年高三上学期10月月考数学试卷含答案
北京35中2025届10月月考数学(答案在最后)2024.10本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}212,340,ZA x xB x x x x =-≤≤=--<∈,则A B = ()A.{}0,1B.{}11x x -≤<C.{}0,1,2 D.{}12x x -<≤【答案】C 【解析】【分析】计算{}0,1,2,3B =,再计算交集得到答案.【详解】{}{}{}2340,Z 14,Z 0,1,2,3B x x x x x x x =--<∈=-<<∈=,{}12A x x =-≤≤,{}0,1,2A B = .故选:C.2.已知223,tan2,log 3a b c -===,则()A.a b c >>B.a c b >>C.b c a >>D.c a b>>【答案】D 【解析】【分析】确定19a =,0b <,1c >,得到答案.【详解】2139a -==,tan20b =<,22log 3log 21c >==,故c a b >>.故选:D.3.下列函数中既是奇函数,又在区间(0,1)上单调递减的是A.3()f x x = B.()lg ||f x x = C.()f x x=- D.()cos f x x=【答案】C【解析】【分析】判断四个选项中的函数的奇偶性和在()0,1上的单调性,得到答案.【详解】选项A 中,()3f x x =,是奇函数,但在()0,1上单调递增,不满足要求;选项B 中,()lg f x x =,是偶函数,不满足要求,选项C 中,()f x x =-,是奇函数,在()0,1上单调递减,满足要求;选项D 中,()cos f x x =,是偶函数,不满足要求.故选:C.【点睛】本题考查判断函数的奇偶性和单调性,属于简单题.4.在621x x -⎛⎫ ⎪⎝⎭的展开式中,常数项是()A.20-B.15- C.15D.30【答案】C 【解析】【分析】利用二项展开式的通项公式可求常数项.【详解】621x x -⎛⎫ ⎪⎝⎭的展开式的通项公式为()()623616611rrrr r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令360r -=,则2r =,故常数项为()2236115T C =-=,故选:C.【点睛】本题考查二项展开中的指定项,注意利用通项公式帮助计算,本题为基础题.5.已知函数||||()x x f x e e -=-,则函数()f x ()A.是偶函数,且在(0,+∞)上单调递增B.是奇函数,且在(0,+∞)上单调递减C.是奇函数,且在(0,+∞)上单调递增D.是偶函数,且在(0,+∞)上单调递减【答案】A 【解析】【分析】由偶函数的定义判断函数()f x 的奇偶性,结合指数函数的单调性判断函数()f x 的单调性.【详解】∵||||()x x f x e e -=-∴||||||||()()x x x x f x e e e e f x -----=-=-=,∴函数||||()x x f x e e -=-为偶函数,当(0,)x ∈+∞时,1()=x x xxf x e e e e -=--,∵函数x y e =在(0,+∞)上单调递增,函数1x y e=在(0,+∞)上单调递减,∴()e e x x f x -=-在(0,+∞)上单调递增,即函数||||()x x f x e e -=-在(0,+∞)上单调递增.故选:A.6.阅读下段文字:“为无理数,若a b ==ba 为有理数;若则取无理数a =,b =,此时(22ba ====为有理数.”依据这段文字可以证明的结论是()A.是有理数B.C.存在无理数a ,b ,使得b a 为有理数 D.对任意无理数a ,b ,都有b a 为无理数【答案】C 【解析】【分析】根据给定的条件,提取文字信息即可判断作答.【详解】这段文字中,没有证明AB 错误;这段文字的两句话中,都说明了结论“存在无理数a ,b ,使得b a 为有理数”,因此这段文字可以证明此结论,C 正确;这段文字中只提及存在无理数a ,b ,不涉及对任意无理数a ,b ,都成立的问题,D 错误.故选:C 7.若点5π5πsin,cos 66M ⎛⎫⎪⎝⎭在角α的终边上,则tan2α=()A.33 B.33-C.D.【答案】C 【解析】【分析】根据三角函数定义得到tan α=.【详解】5π5πsin ,cos 66M ⎛⎫ ⎪⎝⎭,故5πcos6tan 5πsin6α==,22tan 23tan21tan 13ααα-===--故选:C.8.已知函数()=ln af x x x+,则“0a <”是“函数()f x 在区间()1,+∞上存在零点”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】把函数()f x 拆解为两个函数,画出两个函数的图像,观察可得.【详解】当0a <时,作出ln ,ay x y x==-的图像,可以看出0a <时,函数()f x 在区间()1,+∞上存在零点,反之也成立,故选C.【点睛】本题主要考查以函数零点为载体的充要条件,零点个数判断一般通过拆分函数,通过两个函数的交点个数来判断零点个数.9.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为v (单位:/m s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3log 100Q成正比.当1v m /s =时,鲑鱼的耗氧量的单位数为900.当2m /s v =时,其耗氧量的单位数为()A.1800 B.2700C.7290D.8100【答案】D 【解析】【分析】设3log 100Qv k =,利用当1v m /s =时,鲑鱼的耗氧量的单位数为900求出k 后可计算2m /s v =时鲑鱼耗氧量的单位数.【详解】设3log 100Q v k =,因为1v m /s =时,900Q =,故39001log 2100k k ==,所以12k =,故2m /s v =时,312log 2100Q =即8100Q =.故选:D.【点睛】本题考查对数函数模型在实际中的应用,解题时注意利用已知的公式来求解,本题为基础题.10.已知各项均为整数的数列{}n a 满足()*12121,2,3,n n n a a a a a n n --==>+≥∈N ,则下列结论中一定正确的是()A.520a >B.10100a <C.151000a >D.202000a <【答案】C 【解析】【分析】依题意根据数列的递推公式可分别判断各选项,再利用各项均为整数即可判断只有C 选项一定正确.【详解】根据题意可知3123a a a >+=,又数列的各项均为整数,所以3a 最小可以取4,即34a ≥;同理可得4236a a a >+≥,所以4a 最小可以取7,即47a ≥;同理53411a a a >+≥,所以5a 最小可以取12,即512a ≥,即520a <可以成立,因此可得A 不一定正确;同理易得645619,20a a a a >+≥≥;756732,33a a a a >+≥≥;867853,54a a a a >+≥≥;978987,88a a a a >+≥≥;108910142,143a a a a >+≥≥,即10100a <不成立,B 错误;又1191011231,232a a a a >+≥≥;12101112375,376a a a a >+≥≥;131********,609a a a a >+≥≥;14121314985,986a a a a >+≥≥,151314151595,1596a a a a >+≥≥,即可得151000a >一定成立,即C 正确;显然若32000a =,则202000a <明显错误,即D 错误.故选:C第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.复数1ii+的虚部为________.【答案】-1【解析】【详解】试题分析:1ii 1i+=-+,所以其虚部为-1考点:复数的虚部12.函数()f x =的定义域为R ,请写出满足题意的一个实数a 的值______.【答案】1-(答案不唯一)【解析】【分析】根据函数的定义域求解即可.【详解】因为()f x =R ,所以20x a -≥在R 上恒成立,即2a x ≤,由于20x ≥在R 上恒成立,故实数a 的取值范围为(],0-∞.故答案为:1-(答案不唯一).13.已知数列{}n a 的通项公式为12n n a -=,{}n b 的通项公式为12n b n =-.记数列{}n n a b +的前n 项和为n S ,则4S =____;n S 的最小值为____.【答案】①.1-②.2-【解析】【分析】(1)由题可得1212n n n n a b c n -+==+-,根据等比数列及等差数列的求和公式可得n S ,利用数学归纳法可得3n ≤时,0n c <,4n ≥时,0n c >,进而即得.【详解】由题可知1212n n n a b n -+=+-,所以()()()()()423441712112325271122S +-++-++-++-+-==--=,()()()()1212112112321221122n n n n n n n S n -+--+-++-+++-=-=---= ,令1212n n c n -=+-,则123450,1,1,1,7c c c c c ==-=-==,当4n ≥时,0n c >,即1221n n ->-,下面用数学归纳法证明当4n =时,1221n n ->-成立,假设n k =时,1221k k ->-成立,当1n k =+时,()()()122222121123211k k k k k k -=⋅>-=+-+->+-,即1n k =+时也成立,所以4n ≥时,0n c >,即1221n n ->-,所以3n ≤时,0n c <,4n ≥时,0n c >,由当3n =时,n S 有最小值,最小值为3322132S =--=-.故答案为:1-;2-.14.已知函数()e ,,x x x af x x x a⎧<=⎨-≥⎩,()f x 的零点为__________,若存在实数m 使()f x m =有三个不同的解,则实数a 的取值范围为__________.【答案】①.0②.11,e ⎛⎫- ⎪⎝⎭【解析】【分析】利用导函数判断函数单调性,利用求解极值的方法画出函数的大致图象,分析运算即可得出结果.【详解】令()e xg x x =,可得()()1e xg x x +'=,由()0g x '=可得1x =-,当(),1x ∞∈--时,()0g x '<,此时()g x 在(),1∞--上单调递减,当()1,x ∞∈-+时,()0g x '>,此时()g x 在()1,∞-+上单调递增,因此()g x 在1x =-处取得极小值,也是最小值,即()()min 11eg x g =-=-,又()00g =,且0x <时,()10eg x -≤<,当0x >时,>0,令()h x x =-,其图象为过原点的一条直线,将()(),g x h x 的大致图象画在同一直角坐标系中如下图所示:当0a <时,如下图,在[),+∞a 上()()f x h x x ==-的零点为0,当0a =时,如下图,在[)0,∞+上()()f x h x x ==-的零点为0当0a >时,如下图,在(),a ∞-上()()e xf xg x x ==的零点为0,综上可知,()f x 的零点为0;当1a ≤-时,如下图所示,曲线()f x 与直线y m =至多有两个交点,当11ea -<<时,如下图所示,曲线()f x 与直线y m =至多有三个交点,当1ea ≥时,如下图所示,曲线()f x 与直线y m =至多有两个交点;综上可知,若使()f x m =有三个不同的解,则实数a 的取值范围为11,e ⎛⎫- ⎪⎝⎭.故答案为:0;11,e ⎛⎫- ⎪⎝⎭15.已知函数()()e 111xf x k x =----,给出下列四个结论:①当0k =时,()f x 恰有2个零点;②存在正数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有2个零点;④对任意()0,k f x <只有一个零点.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】把函数()f x 的零点个数问题,转化为函数e 1xy =-与函数()11y k x =-+的交点个数,作出图象分类讨论可得结论.【详解】令()()e 1110xf x k x =----=,得()e 111xk x -=-+,函数()f x 的零点个数,即为方程()e 111xk x -=-+的根的个数,方程()e 111xk x -=-+根的个数,即为e 1xy =-与函数()11y k x =-+的交点个数,又函数()11y k x =-+是过定点(1,1)A 的直线,作出e 1xy =-的图象如图所示,当0k =直线()11y k x =-+与函数e 1xy =-有一个交点,故()()e 111xf x k x =----有一个零点,故①错误;当()11y k x =-+在第一象限与函数e 1xy =-相切时,函数()()e 111xf x k x =----有一个零点,故②正确;函数()11y k x =-+绕着A 顺时针从1y =转到1x =时,两图象只有一个交点,故0k <时,函数()()e 111xf x k x =----只有一个零点,故③错误,④正确.故答案为:②④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在平面直角坐标系xOy 中,锐角α和钝角β的终边分别与单位圆交于,A B 两点.点A 的纵坐标是45,点B 的横坐标是513-.(1)求cos2α的值;(2)求()sin βα-的值.【答案】(1)725-(2)5665.【解析】【分析】(1)利用三角函数定义可得4sin 5α=,再由二倍角公式计算可得7cos225α=-;(2)利用同角三角函数之间的基本关系以及两角差的正弦公式计算可得结果.【小问1详解】由题可知,锐角α和钝角β的终边分别与单位圆交于,A B 两点;点A 的纵坐标是45,点B 的横坐标是513-,所以45sin ,cos 513αβ==-.即可得27cos212sin 25αα=-=-.【小问2详解】由于22sin cos 1αα+=,且π0,2α⎛⎫∈ ⎪⎝⎭,所以23cos 1sin 5αα=-=,同理由于2π12,π,sin 1cos 213βββ⎛⎫∈=-= ⎪⎝⎭,所以()56sin sin cos cos sin 65βαβαβα-=-=.17.某校举办知识竞赛,已知学生甲是否做对每个题目相互独立,做对,,A B C 三道题目的概率以及做对时获得相应的奖金如表所示.题目A B C做对的概率451214获得的奖金/元204080规则如下:按照,,A B C 的顺序做题,只有做对当前题目才有资格做下一题.[注:甲最终获得的奖金为答对的题目相对应的奖金总和.](1)求甲没有获得奖金的概率;(2)求甲最终获得的奖金X 的分布列及期望;(3)如果改变做题的顺序,最终获得的奖金期望是否相同?如果不同,你认为哪个顺序最终获得的奖金期望最大?(不需要具体计算过程,只需给出判断)【答案】(1)15(2)分布列见解析,40(元)(3)不同,按照,,A B C 的顺序获得奖金的期望最大,理由见解析.【解析】【分析】(1)甲没有获得奖金,则题目A 没有做对,从而求得对应的概率;(2)易知X 的可能取值为0,20,60,140,再根据题目的对错情况进行分析求解概率与分布列,求出期望值;(3)可以分别求出每种顺序的期望,然后比较得知.【小问1详解】甲没有获得奖金,则题目A 没有做对,设甲没有获得奖金为事件M ,则()41155P M =-=.【小问2详解】分别用,,A B C 表示做对题目,,A B C 的事件,则,,A B C 相互独立.由题意,X 的可能取值为0,20,60,140.41412(0)()1;(20)()155525P X P A P X P AB ⎛⎫===-====⨯-= ⎪⎝⎭;4134111(60)()1;(140)()52410524101P X P ABC P X P ABC ===⨯⨯-===⨯⎛⎫ ⎪⎝=⎭=⨯.所以甲最终获得的奖金X 的分布列为X02060140P 1525310110()12310206014040551010E X =⨯+⨯+⨯+⨯=(元).【小问3详解】不同,按照,,A B C 的顺序获得奖金的期望最大,理由如下:由(2)知,按照,,A B C 的顺序获得奖金的期望为40元,若按照,,A C B 的顺序做题,则奖金X 的可能取值为0,20,100,140.141(0)1;(250)1554435P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;41411(100)1;(140)5105421011142P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为110201001403613110550⨯+⨯+⨯+⨯=元;若按照,,B A C 的顺序做题,则奖金X 的可能取值为0,40,60,140.1114(0)1;(400)1212125P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;143141(60)1;(140)254102541011P X P X ==⨯⨯-===⨯⎛⨯ ⎝=⎫⎪⎭.故期望值为131040601403611110200⨯+⨯+⨯+⨯=元;若按照,,B C A 的顺序做题,则奖金X 的可能取值为0,40,120,140.1111(0)1;(480)122432P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1114(120)1;(140)24024510141145P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为131040601403611110200⨯+⨯+⨯+⨯=元,若按照,,C A B 的顺序做题,则奖金X 的可能取值为0,80,100,140.1314(0)1;(800)1414245P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1141(100)1;(140)10452104111452P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为1080100140284101311200⨯+⨯+⨯+⨯=元,若按照,,C B A 的顺序做题,则奖金X 的可能取值为0,80,120,140.1311(0)1;(880)144214P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1114(100)1;(140)40425101411425P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为5311108010014026.401048⨯+⨯+⨯+⨯=元,显然按照,,A B C 的顺序获得奖金的期望最大.18.已知()2cos sin ,f x ax x x x a =++∈R .(1)当0a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若函数()f x 在区间ππ,22⎡⎤-⎢⎣⎦上为增函数,求实数a 的取值范围.【答案】(1)2y =(2)[)1,+∞.【解析】【分析】(1)利用导数的几何意义即可求得切线方程;(2)将()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上为增函数转化为sin cos a x x x ≥-在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,构造函数()sin cos g x x x x =-并求导得出其单调性,求出最大值可得实数a 的取值范围.【小问1详解】当0a =时,()2cos sin f x x x x =+,易知()2sin sin cos cos sin f x x x x x x x x'=-++=-可得()()00,02f f ='=,所以切线方程为2y =.【小问2详解】易知()sin cos f x a x x x=+'-由函数()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上为增函数,可得′≥0在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,即sin cos a x x x ≥-在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,令()()ππsin cos ,sin ,,22g x x x x g x x x x ⎡⎤=-=∈-⎢⎣'⎥⎦法一:令()sin 0g x x x '==,得0x =,()(),g x g x '的变化情况如下:x π,02⎛⎫- ⎪⎝⎭0π0,2⎛⎫ ⎪⎝⎭()g x '+0+()g x所以()g x 为ππ,22⎡⎤-⎢⎥⎣⎦上的增函数,()g x 最大值为π12g ⎛⎫= ⎪⎝⎭.即a 的取值范围是[)1,+∞.法二:当π02x -<<时,sin 0,sin 0x x x <>;当π02x ≤<时,sin 0,sin 0x x x ≥≥.综上,当ππ22x -<<时,()()0,g x g x '≥为ππ,22⎡⎤-⎢⎥⎣⎦上的增函数,()g x 最大值为π12g ⎛⎫= ⎪⎝⎭.即a 的取值范围是[)1,+∞.19.现有一张长为40cm ,宽为30cm 的长方形铁皮ABCD ,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,在长方形ABCD 的一个角剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为cm x ,高为y cm ,体积为()3cm V .(1)求出x 与y 的关系式;(2)求该铁皮盒体积V 的最大值.【答案】(1)21200,0304x y x x-=<≤;(2)34000cm .【解析】【分析】(1)由题意得到244030x xy +=⨯,化简得到212004x y x -=,并由实际情境得到030x <≤;(2)表达出()()3112004V x x x =-,求导得到其单调性,进而得到最大值.【小问1详解】因为材料利用率为100%,所以244030x xy +=⨯,即212004x y x -=;因为长方形铁皮ABCD 长为40cm ,宽为30cm ,故030x <≤,综上,212004x y x-=,030x <≤;【小问2详解】铁皮盒体积()()222312*********x V x x y x x x x -==⋅=-,()()21120034V x x '=-,令()0V x '=,得20,x =()(),V x V x '的变化情况如下:x ()0,2020()20,30()V x +0-()V x '()V x 在()0,20上为增函数,在()20,30上为减函数,则当20x =时,()V x 取最大值,最大值为()3311200202040040cm ⨯⨯-=.20.已知函数1e ()x f x x-=.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间;(3)当211x x >>时,判断21()()f x f x -与2122x x -的大小,并说明理由.【答案】(1)230x y +-=;(2)单调递增区间为(,1)∞--,单调递减区间为(1,0)-和(0,)+∞;(3)212122()()f x x x f x -->,理由见解析.【解析】【分析】(1)求出函数()f x 的导数,利用导数的几何意义求出切线方程.(2)利用导数求出函数()f x 的单调区间.(3)构造函数2()(),1g x f x x x=->,利用导数探讨函数单调性即可判断得解.【小问1详解】函数1e ()x f x x -=,求导得12(1)e ()xx f x x---=',则()12f '=-,而(1)1f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为12(1)y x -=--,即230x y +-=.【小问2详解】函数()f x 的定义域为(,0)(0,)-∞+∞ ,且12(1)e ()x x f x x---=',当1x <-时,()0f x '>,当10x -<<或0x >时,()0f x '<,所以()f x 的单调递增区间为(,1)∞--,单调递减区间为(1,0)-和(0,)+∞.【小问3详解】当211x x >>时,212122()()f x x x f x -->,证明如下:令2()(),1g x f x x x =->,求导得12(1)e 2()x x g x x-'--+=,令1()(1)e 2,1x h x x x -=--+>,求导得1()e 0x h x x -='>,函数()h x 在(1,)+∞上单调递增,则()(1)0h x h >=,即()0g x '>,函数()g x 在(1,)+∞上为增函数,当211x x >>时,21()()g x g x >,所以212122()()f x x x f x -->.21.已知项数为()*2m m N m ∈≥,的数列{}n a 满足如下条件:①()*1,2,,n a Nn m ∈= ;②12···.m a a a <<<若数列{}n b 满足()12*···1m n n a a a a b N m +++-=∈-,其中1,2,,n m = 则称{}n b 为{}n a 的“伴随数列”.(I )数列13579,,,,是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(II )若{}n b 为{}n a 的“伴随数列”,证明:12···m b b b >>>;(III )已知数列{}n a 存在“伴随数列”{}n b ,且112049m a a ==,,求m 的最大值.【答案】(I )不存在,理由见解析;(II )详见解析;(III )33.【解析】【分析】(I )根据“伴随数列”的定义判断出正确结论.(II )利用差比较法判断出{}n b 的单调性,由此证得结论成立.(III )利用累加法、放缩法求得关于m a 的不等式,由此求得m 的最大值.【详解】(I )不存在.理由如下:因为*413579751b N ++++-=∈-,所以数列1,3,5,7,9不存在“伴随数列”.(II )因为*11,11,1n n n n a a b b n m n N m ++--=≤≤-∈-,又因为12m a a a <<< ,所以10n n a a +-<,所以1101n n n n a a b b m ++--=<-,即1n n b b +<,所以12···m b b b >>>成立.(III )1i j m ∀≤<≤,都有1j i i j a a b b m --=-,因为*i b N ∈,12m b b b >>> ,所以*i j b b N -∈,所以*11204811m m a a b b N m m --==∈--.因为*111n n n n a a b b N m ----=∈-,所以11n n a a m --≥-.而()()()()()()111221111m m m m m a a a a a a a a m m m ----=-+-++-≥-+-++- ()21m =-,即()2204911m -≥-,所以()212048m -≤,故46m ≤.由于*20481N m ∈-,经验证可知33m ≤.所以m 的最大值为33.【点睛】本小题主要考查新定义数列的理解和运用,考查数列单调性的判断,考查累加法、放缩法,属于难题.。
吉林省高二上学期数学10月月考试卷
吉林省高二上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)若复数z满足,则z的虚部为()A .B . -C . 4D . -42. (2分)设Sn是等差数列{an}的前n项和,若,则()A .B .C .D .3. (2分)若(、是实数,是虚数单位),则复数对应的点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)在等比数列{an}中,设Tn=a1a2…an ,n∈N* ,则()A . 若T2n+1>0,则a1>0B . 若T2n+1<0,则a1<0C . 若T3n+1<0,则a1>0D . 若T4n+1<0,则a1<05. (2分)已知a,b,a+b成等差数列,a,b,ab成等比数列,且0<logm(ab)<1,则m的取值范围是()A . m>1B . 1<m<8C . m>8D . 0<m<1或m>86. (2分)若等比数列的前n项和,则a的值为()A . -4B . -1C . 0D . 17. (2分) (2016高一下·宜昌期中) 各项均为正数的等比数列{an}中,a2 ,,a1成等差数列,那么=()A .B .C .D .8. (2分) (2019高二上·大冶月考) 已知数列为等比数列,首项,数列满足,且,则()A . 8B . 16C . 32D . 649. (2分) (2016高一下·湖北期中) 设等差数列{an}的前n项和为Sn且满足S15>0,S16<0则中最大的项为()A .B .C .D .10. (2分)为等差数列的前项和,,正项等比数列中,,则()A . 8B . 9C . 10D . 1111. (2分) (2017高三上·漳州期末) 等差数列{an}中,Sn是前n项和,且S3=S8 , S7=Sk ,则k的值为()A . 4B . 11C . 2D . 1212. (2分) (2018高二上·大港期中) 已知数列则是它的()A . 第项B . 第项C . 第项D . 第项二、填空题 (共4题;共4分)13. (1分) (2019高二上·沈阳月考) 在数列中,,,,则________.14. (1分) (2019高三上·广东月考) 已知是数列的前项和,且,则数列的通项公式为________.15. (1分)若正实数x,y满足(2xy﹣1)2=(5y+2)(y﹣2),则x+的最大值为________16. (1分) (2016高二下·温州期中) “斐波那契数列”是数学史上一个著名数列,在斐波那契数列{an}中,a1=1,a2=1,an+2=an+1+an(n∈N*)则a8=________;若a2018=m2+1,则数列{an}的前2016项和是________.(用m表示).三、解答题 (共6题;共75分)17. (10分)(2019·浙江) 设等差数列{an}的前n项和为Sn , a3=4.a4=S3 ,数列{bn}满足:对每个n∈N* , Sn+bn , Sn+1+bn、Sn+2+bn成等比数列(1)求数列{an},{bn}的通项公式(2)记Cn= ,n∈N*,证明:C1+C2+…+Cn<2 ,n∈N*18. (15分) (2018高二上·太和月考) 如图所示,已知两点分别在轴和轴上运动,点为延长线上一点,并且满足 , ,试求动点的轨迹方程.19. (10分) (2019高三上·深圳月考) 等差数列中,且成等比数列,求数列前20项的和.20. (15分)(2019·奉贤模拟) 若对任意的正整数,总存在正整数,使得数列的前项和,则称数列是“回归数列”.(1)前项和为的数列是否是“回归数列”?并请说明理由;(2)设是等差数列,首项,公差,若是“回归数列”,求的值;(3)是否对任意的等差数列,总存在两个“回归数列” 和,使得()成立,请给出你的结论,并说明理由.21. (10分)(2019·怀化模拟) 已知等差数列的前项的和为,, .(1)求数列的通项公式;(2)设,记数列的前项和为,求 .22. (15分)数列{an}的通项公式是an=n2-7n+6.问:(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共75分) 17-1、17-2、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、第11 页共11 页。
吉林省白城市部分学校2024-2025学年七年级上学期第三次月考试数学试卷(含答案)
名校调研系列卷·七年上第三次月考试卷数学(人教版)题号一二三四五六总分得分一、选择题(每小题2分,共12分)1.下列各数中,比小的数是( )A. B. C.0D.62.下列各式中,属于方程的是( )A.B.C. D.3.我国的长城始建于西周时期,被国务院确定为全国重点文物保护单位,长城总长约6700000米.数据6700000用科学记数法表示为( )A. B. C. D.4.已知一个单项式的系数是1,次数是4,则这个单项式可以是( )A. B. C. D.5.下列等式变形正确的是( )A.如果,那么 B.如果,那么C.如果,那么 D.如果,那么6.下列选项中,计算错误的是( )A. B.C. D.二、填空题(每小题3分,共24分)7.《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升记作.则下降记作______.8.对于多项式,它的二次项是______.9.参观河南嵩山少林寺的成人门票单价是100元,儿童门票单价是50元.某旅行团有名成人和名儿童,则旅行团的门票费用总和为______元(用含、的代数式表示).10.若是关于的一元一次方程,则的值是______.11.如图,小天有5张写着不同数的卡片,从中抽出2张卡片,使卡片上的数相除,所得到的商最小,最小的商是______.12.若关于的方程与的解相同,则______.5-7-4-6(2)4+-=225x -75x >215x -=56710⨯66.710⨯56.710⨯70.6710⨯23xy4x -23x y+3x ymx my =x y =||||x y =x y =182x -=4x =-22x y -=-x y=(3)3--=(1)1x x --=-+.(2)a a a--=-22xy y x -=5m 5m +3m m 223210xy x --a b a b 7320m x --=x m x 231x -=1x k +=k =13.若单项式与是同类项,则的值为______.14.定义:对于任意两个有理数、,可以组成一个有理数对,我们规定:.例如:,则有理数对______.三、解答题(每小题5分,共20分)15.计算:.16.化简:.17.解方程:.18.先化简,再求值:,其中,.四、解答题(每小题7分,共28分)19.老师在黑板上出了一道解方程的题:,小明马上举手,要求到黑板上做,他是这样做的:……①……②……③……④……⑤老师说:小明解一元一次方程的一般步骤都知道,却没有掌握好,因此解题时有一步出现了错误.(1)请你指出他错在______(填序号),该方程正确的解是______;(2)请你自己细心地解下面的方程:.20.如图,在长方形中,,在它内部有三个小正方形,正方形的边长为,正方形的边长为.(1)求图中阴影部分的周长(用含、的代数式表示);(2)当,时,求图中阴影部分的周长.21.学校实验室需要向某工厂定制一批三条腿的桌子,已知该工厂有24名工人,每人每天可以生产20块桌面或者300条桌腿,1块桌面需要配3条桌腿,为了使每天生产的桌面和桌腿刚好配套,则应该安排多少人生产桌面,多少人生产桌腿?2113m x +-43nx y m n +m n (,)m n (,)(2)a b a b =-+-(2,5)25(2)9-=--+-=-(2,1)-=()477216483⎛⎫-+÷--⨯- ⎪⎝⎭(2)(32)xy x xy xy x --+-2(1)25(2)x x -=-+2222(3)[5()2]mn m m mn m mn -----+1m =2n =-212134x x -+=-4(21)13(2)x x -=-+84136x x -=--83164x x +=-+111x =-111x =-2454146y y ---=ABCD 3AD AB =AEFG m GBIH n m n 3m =2n =22.已知多项式是五次四项式,且单项式的次数与该多项式的次数相同.(1)求、的值;(2)把这个多项式按的降幂排列.五、解答题(每小题 8分,共16分)23.若、互为相反数,、互为倒数,的绝对值为3.(1)求代数式的值;(2)若多项式中不含项,求的值.24.定义:关于的方程与方程(、均为不等于0的常数)称互为“反对方程”,例如:方程与方程互为“反对方程”.(1)若关于的方程与方程互为“反对方程”,则______;(2)若关于的方程与其“反对方程”的解都是整数,求整数的值.六、解答题(每小题10分,共20分)25.某电器商店销售一种洗衣机和电磁炉,洗衣机每台定价800元,电磁炉每台定价200元.“十一”假期商店决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一台洗衣机送一台电磁炉;方案二:洗衣机和电磁炉都按定价的90%付款.现某客户要在该商店购买洗衣机10台,电磁炉台().(1)若该客户按方案一、方案二购买,分别需付款多少元(用含的代数式表示)?(2)试求当取何值时,方案一和方案二的购买费用一样;(3)若两种方案可同时使用,当时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元.26.如图,在数轴上点表示的数为,点表示的数为,、满,点是数轴原点.(1)点表示的数为______,点表示的数为______;(2)若点与点之间的距离表示为,点与点之间的距离表示为,请在数轴上找一点.使,则点在数轴上表示的数为______;(3)现有动点、都从点出发,点以每秒1个单位长度的速度向终点运动;当点出发5秒后,点也从点出发,并以每秒3个单位长度的速度向右运动,且当点到达点时,点就停止移动,设点运动的时间为秒.①当、两点相距4个单位长度时,求的值;②当、两点到原点的距离相等时,______.313435m x yxy x ++--3245n m x y --m n x a b c d m 2024()23a b cd m +-+223()x kxy y a b xy m cdxy ++++--xy k x 0ax b -=0bx a -=a b 210x -=20x -=x 230x -=30x c -=c =x 23x d -=d x 10x >x x 40x =A a B b a b 2|4|(8)0,a b -++=O A B A C AC B C BC C 3AC BC =C P Q B P A P Q B Q A P Q t P Q t P Q t =名校调研系列卷·七年上第三次月考试卷数学(人教版)参考答案一、1.A 2.D 3.B4.D5.D6.C 二、7.8.9.10.811.12.13.14.1三、15.解:原式.16.解:原式.17.解:.18.解:原式,当,时,原式.四、19.解(1)①;.(2).20.解:(1)根据观察可知:图中阴影部分的周长与长为、宽为的长方形周长相同,在长方形中,,,正方形的边长为,正方形的边长为,,,,,阴影部分的周长.(2)当,时,阴影部分的周长.21.解:设需要安排名工人生产桌面,则安排()名生产桌腿,由题意,得,解得,.答:需要安排20名工人生产来面,安排4名工人生产桌腿.22.解:(1);.(2).五、23.解:(1)7或.(2)的值为24.解:(1)2.(2)关于的方程的解,将整理,得,其“反对方程”为,解为,和都是整数,,解得或.25.解:(1)(元),(元).3-22x -(10050)a b +72-1-521=63xy x =-67x =-mn =1m =2n =-2=-1011x =4y =-CI AB ABCD AD BC =3AD AB = AEFG m GBIH n AB m n ∴=+3()BC m n =+ CI BC BI =-3()32m n n m n CI +-==+∴∴2()2(32)AB CI m n m n =+=+++86m n =+3m =2n =86836236m n =+=⨯+⨯=x 24x -320300(24)x x ⨯=-20x =244x -=1m =43n =432335x x y xy -++-11-k 13x 23x d -=32d x +=23x d -=2(3)0x d -+=(3)20d x +-=23x d =+ 32d +23d +∴32d +=±1d =-5-80010200(10)2006000x x ⨯+-=+(80010200)90%1807200x x ⨯+⨯=+答:按方案一、方案二购买,分别需付款元和元.(2)当,解得.答:当为60时,方案一和方案二的购买费用一样。
吉林省吉林市高二上学期数学第三次月考试卷
吉林省吉林市高二上学期数学第三次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018高二下·绵阳期中) 已知命题则为()A .B .C .D .2. (2分)已知实数构成一个等比数列,则圆锥曲线的离心率为()A .B .C . 或D . 或73. (2分)(2016·韶关模拟) 已知不恒为零的函数f(x)在定义域[0,1]上的图象连续不间断,满足条件f (0)=f(1)=0,且对任意x1 ,x2∈[0,1]都有|f(x1)﹣f(x2)|≤ |x1﹣x2|,则对下列四个结论:①若f(1﹣x)=f(x)且0≤x≤ 时,f(x)= x(x﹣),则当<x≤1时,f(x)= (1﹣x)(﹣x);②若对∀x∈[0,1]都有f(1﹣x)=﹣f(x),则y=f(x)至少有3个零点;③对∀x∈[0,1],|f(x)|≤ 恒成立;④对∀x1 ,x2∈[0,1],|f(x1)﹣f(x2)|≤ 恒成立.其中正确的结论个数有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2018高二下·辽宁期末) 已知实数满足,则的取值范围是()A .B .C .D .5. (2分) (2020高一下·广东月考) 把红、蓝、白3张纸牌随机地分发给甲、乙、丙三个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A . 对立事件B . 不可能事件C . 互斥但不对立事件D . 以上都不对6. (2分) (2018高二上·凌源期末) “ ”是“ ”的()A . 必要不充分条件B . 充分不必要条件C . 充要条件D . 既不充分也不必要条件7. (2分) (2020高一下·广东月考) 口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为()A . 0.45B . 0.67C . 0.64D . 0.328. (2分) (2018高三上·福建期中) 设,则P是Q成立的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件9. (2分) (2019高二上·滁州月考) 在椭圆内,过点M(1,1)且被该点平分的弦所在的直线方程为()A . 9x-16y+7=0B . 16x+9y-25=0C . 9x+16y-25=0D . 16x-9y-7=010. (2分) (2016高二下·南城期中) 甲、乙、丙、丁、戊五位同学站成一排照相留念,则在甲乙相邻的条件下,甲丙也相邻的概率为()A . 1B .C .D .11. (2分) (2018高二上·深圳期中) 的内角,,的对边分别为,,,若,,,则的面积为()A .B .C .D .12. (2分)已知数据的平均数为,方差为,则数据的平均数和方差为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分) (2016高一下·吉林期中) 某工厂生产A、B、C三种不同型号的产品,产品数量这比依次为1600,1600,4800.现用分层抽样的方法抽出一个容量为N的样本,样本中A种型号的产品共有16件,那么此样本的容量N=________件.14. (1分) (2017高一下·包头期末) 椭圆的离心率为,则的值为________.15. (1分) (2018高一下·芜湖期末) 已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.16. (1分)(2020·海安模拟) 从集合中随机取一个元素,记为,从集合中随机取一个元素,记为,则的概率为________.17. (1分)我们把离心率e=的双曲线﹣=1(a>0,b>0)称为黄金双曲线.给出以下几个说法:(1)双曲线x2﹣=1是黄金双曲线;(2)若b2=ac,则该双曲线是黄金双曲线;(3)若MN经过右焦点F2且MN⊥F1F2 ,∠MON=90°,则该双曲线是黄金双曲线;(4)若F1 , F2为左右焦点,A1 , A2为左右顶点,B1(0,b),B2(0,﹣b)且∠F1B1A2=90°,则该双曲线是黄金双曲线.其中正确命题的序号为________18. (1分)(2018·中山模拟) 已知椭圆方程为,、为椭圆上的两个焦点,点在上且。
江苏省镇江市扬中市第一中学2024-2025学年上学期九年级数学10月月考试卷[含答案]
九年级数学阶段性学习评价2024.10时间:120分钟满分:120分一、选择题(本题共10小题,每小题只有1个选项符合题意.每小题3分,共30分)1.下列方程是一元二次方程的是( )A .20y x -=B .25630x y -=-C .20x -+=D .220y -=2.一元二次方程2230x x +-=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根3.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值为( )A .1B .1-C .1或1-D .24.已知点P 在半径为r 的O e 内,且3OP =,则r 的值可能为( )A .1B .2C .3D .45.已知等腰三角形的两边长分别是一元二次方程27100x x -+=的两根,则该等腰三角形的周长为( )A .9B .12C .2或5D .9或126.如图所示的网格由边长相同的小正方形组成,点A 、B 、C .D 、E 、F 在小正方形的顶点上,则△ABC 的外心是( )A .点DB .点EC .点FD .点G7.唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮航行模式之先导,如图,某桨轮船的轮子被水面截得的弦AB 长8m ,轮子的吃水深度CD 为2m ,则该浆轮船的轮子半径为( )A .2mB .3mC .4mD .5m8.如图,半径为5的A e 中,弦BC ,ED 所对的圆心角分别是BAC Ð,EAD Ð,若8BC =,180BAC EAD Ð+Ð=°,则弦DE 的长等于( )A .6B .4C .5D .89.某中学教师党小组开展民主生活会,为了更好地改进工作,要求小组每位组员给同组的其他教师各提一条建议,该党小组一共收到72条建议,则这组的党员人数为( )A .7B .8C .9D .1010.对于一元二次方程,我国古代数学家还研究过其几何解法.以方程()672x x +=为例加以说明.数学家赵爽在其所著的《勾股圆方注》中记载的方法是:如图,将四个长为6x +,宽为x 的长方形纸片拼成一个大正方形,则大正方形的边长是6x x ++,面积是四个矩形的面积与中间小正方形的面积之和,即24726´+,据此易得18662x -==.小明用此方法解关于x 的方程()324x x n -=,其中3x n x ->构造出同样的图形,已知小正方形的面积为4,则n 的值为( )A .2B .4C .6D .8二、填空题(本题共6小题,每空3分,共18分)11.已知关于x 的一元二次方程260x kx +-=(k 是常数)的一个根是2,则k 是 .12.在平面直角坐标系内,点()3,0A ,点B 的坐标为()0,a ,A e 的半径为5.若点B 在A e 内,则a 的范围是.13.如图,O e 的直径AB 与弦CD 的延长线交于点E ,若72DE OB AOC =Ð=°,,则E Ð=.14.如图,ABC V 内接于O e ,45A Ð=°,6BC =,则O e 的直径为 .15.若22222()3()40a b a b +-+-=,则代数式22a b +的值为 16.若x 、y 均为实数,则代数式224614x y x y ++-+的最小值是.三、解答题(本大题共9小题,共72分)17.解下列方程(1)()219x -=;(2)2410x x --=(配方法);(3)()()124x x +-=;(4)()3224x x x -=-.18.某商场经销种高档水果 ,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同求每次下降的百分率19.已知关于x 的一元二次方程()2(23)0kk x k x m ++-+=有两个不相等的实数根.(1)k 的值为__________;(2)求实数m 的取值范围;(3)请你给出m 的一个值,使得这个方程的两个根都是有理数,并求出这两个根.20.如图所示,以ABCD Y 的顶点A 为圆心,AB 为半径作圆,分别交AD ,BC 于点E ,F ,延长BA 交A e 于G .(1)求证: GEEF =;(2)若劣弧 BF所对圆心角的度数为70°,求C Ð的度数.21.小亮改编了苏轼的诗词《念奴娇・赤壁怀古》;“大江东去浪淘尽,千古风流人物,而立之年督东吴,早逝英才两位数,十位恰小个位三,个位平方与寿符.哪位学子算得快,多少年华属周瑜?”大意为:“周瑜去世时年䍅为两位数,该数的十位数字比个位数字小3,个位的平方恰好等于该数.”若设周瑜去世时年龄的个位数字为x ,求周瑜去世时年龄.注:“而立之年”指的是三十岁,两位数表示为10´(十位数字)+(个位数字).22.如图,OA OB =,AB 交O e 于点C ,D ,OE 是半径,且OE AB ^于点F .(1)求证:AC BD =;(2)若6CD =,1EF =,求O e 的半径.23.对于代数式2ax bx c ++,若存在实数n ,当x n =时,代数式的值也等于n ,则称n 为这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A .特别,当代数式只有一个不变值时,则0A =.(1)代数式22x -的不变值是________,A =________;(2)说明代数式231x +没有不变值;(3)已知代数式21x bx -+,若0A =,求b 的值.24.如图1,在Rt △ABC 中,∠B =90°,AB =BC =12cm ,点D 从点A 出发沿边AB 以2cm /s 的速度向点B 移动,移动过程中始终保持DE ∥BC ,DF ∥AC (点E 、F 分别在AC 、BC 上).设点D 移动的时间为t 秒.(1)试判断四边形DFCE 的形状,并说明理由;(2)当t 为何值时,四边形DFCE 的面积等于20cm 2?(3)如图2,以点F 为圆心,FC 的长为半径作⊙F ,在运动过程中,当⊙F 与四边形DFCE 只有1个公共点时,请直接写出t 的取值范围.25.根据以下素材,完成探索任务.探索果园土地规划和销售利润问题素材1其农户承包了一块长方形果园ABCD ,图1是果园的平面图,其中200AB =米,300BC =米.准备在它的四周铺设道路,上下两条横向道路的宽度都为2x 米,左右两条纵向道路的宽度都为x 米,中间部分种植水果.出于货车通行等因素的考虑,道路宽度x 不超过12米,且不小于5米.素材2该农户发现某一种草莓销售前景比较不错,经市场调查,草莓培育一年可产果.若每平方米的草莓销售平均利润为100元,每月可销售5000平方米的草莓;受天气原因,农户为了快速将草莓出手,决定降价,若每平方米草莓平均利润下调4元,每月可多销售500平方米草莓,果园每月的承包费为2万元.问题解决任务1解决果园中路面宽度的设计对种植面积的影响.(1)请直接写出纵向道路宽度x 的取值范围.(2)若中间种植的面积是244800m ,则路面设置的宽度是否符合要求.任务2解决果园种植的预期利润问题.(总利润=销售利润-承包费)(3)若农户预期一个月的总利润为55.2万元,则从购买草莓客户的角度考虑,每平方米草莓平均利润应该降价多少元?1.D【分析】本题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”,“一个未知数”,“未知数的最高次数是2”,“二次项的系数不等于0”,“整式方程”.【详解】解:A .20y x -=,含有两个未知数,不是一元二次方程,故该选项不符合题意;B .25630x y -=-,含有两个未知数,不是一元二次方程,故该选项不符合题意;C .20x -+=,未知数的最高次数是1,不是一元二次方程,故该选项不符合题意;D .220y -=是一元二次方程,故该选项符合题意;故选:D .2.B【分析】本题主要考查了根的判别式,一元二次方程()200ax bx c a ++=¹,当240b ac ->时,方程有两个不相等的实数根;当240b ac -<时,方程没有实数根;当240b ac -=时,方程有两个相等的实数根.先求出一元二次方程根的判别式的值,然后判断即可.【详解】解:∵一元二次方程2230x x +-=,∴()2243160D =-´-=>,∴方程有两个不相等的实数根.故选:B .3.B【分析】本题主要考查了一元二次方程的定义和一元二次方程的根,方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于a 的方程,从而求得a 的值.【详解】解:把0x =代入方程得到:210a -=,解得:1a =±,10a -¹Q ,1a \=-,故选:B .4.D【分析】此题考查了点与圆的位置关系,熟练掌握点与圆的位置关系定理是解决问题的关键.根据点与圆的位置关系求解即可.【详解】解:∵点P 在半径为r 的O e 内,且3OP =,∴3r >.故选D .5.B【分析】因式分解法求得方程的根,根据等腰三角形的性质,确定三边,在三角形存在的前提下,计算周长.【详解】∵27100x x -+=,∴122,5x x ==,∴等腰三角形的三边长为2,2,5,不满足三边关系定理,舍去;或2,5,5,满足三边关系定理,∴等腰三角形的周长为2+5+5=12,故选B .【点睛】本题考查了一元二次方程的解法,三角形的三边关系定理,等腰三角形的性质,熟练掌握一元二次方程的解法,三角形三边关系定理是解题的关键.6.A【分析】本题主要考查了三角形的外心的定义,根据三角形三边中垂线相交于一点,这一点叫做它的外心,据此解答即可.【详解】解:根据图形可知,直线DG 是ABC V 的BC 边上的中垂线,点D 在ABC V 的AB 边上的中垂线DH 上,∴点D 是ABC V 外心.故选:A .7.D【分析】设半径为r ,再根据圆的性质及勾股定理,可求出答案【详解】解:设半径为r ,则OA OC r ==2OD r \=-8AB =Q4AD \=在Rt ODA V 中,有222OA OD AD =+ ,即()22224r r =-+解得=5r 故选:D【点睛】本题考查垂径定理,勾股定理,关键在于知道OC 垂直平分AB 这个隐藏的条件.8.A【分析】本题考查了圆周角定理、勾股定理.作直径CF ,连接BF ,先利用勾股定理求得BF 的长,再利用等角的补角相等得到DAE BAF Ð=Ð,然后再根据同圆中,相等的圆心角所对的弦相等求得答案.【详解】解:作直径CF ,连接BF ,如图,则90FBC Ð=°,210CF AC ==,∴6BF ==,∵180BAC EAD Ð+Ð=°,而180BAC BAF Ð+Ð=°,∴DAE BAF Ð=Ð,∴ DEBF =,∴6DE BF ==,故选:A .9.C【分析】本题考查了一元二次方程的应用.设该小组共有x 人,则每人需提(1)x -条建议,根据该党小组一共收到72条建议,即可得出关于x 的一元二次方程,再解方程即可.【详解】解:设该小组共有x 人,则每人需提(1)x -条建议,根据题意得:1(72)x x -=,18x =-(不符合题意),29x =.答:该小组共有9人.故选:C .10.C【分析】本题考查了一元二次方程的应用,仿照题干,正确理解一元二次方程的几何解法是解题关键.参照已知方法,将四个长为3x n -,宽为x 的长方形纸片拼成一个大正方形,求出大正方形的边长为10,得到410n x =-,再根据小正方形的边长为102x -,小正方形的边长的面积是4,求出4x =,即可得到n 的值.【详解】解:由题意可知,将四个长为3x n -,宽为x 的长方形纸片拼成一个大正方形,则大正方形的边长是3x n x -+,面积是四个矩形的面积与中间小正方形的面积之和,∵()324x x n -=,小正方形的面积为4,∴大正方形的面积为4244100´+=,∴大正方形的边长为10,∴3410x n x x n -+=-=,∴410n x =-,∵小正方形的边长为3x n x --,即102x -,∵3x n x ->,即1020x ->,故()21024x -=,∴1022x -=±,∵1020x ->,∴4x =,∴44106n =´-=,故选:C .11.1【分析】本题考查了一元二次方程的根.熟练掌握一元二次方程的根是解题的关键.将2x =代入260x kx +-=得,4260k +-=,计算求解即可.【详解】解:将2x =代入260x kx +-=得,4260k +-=,解得,1k =,故答案为:1.12.44a -<<【分析】本题考查了垂径定理,勾股定理,点和圆的位置关系.设A e 交y 轴于点C D 、,连接AC ,利用勾股定理求得4OD OC ==,根据点和圆的位置关系即可求解.【详解】解:如图,设A e 交y 轴于点C D 、,连接AC ,∵点()3,0A ,A e 的半径为5,∴5AC =,3OA =,∴4OD OC ===,若点()0,B a 在A e 内,∴44a -<<,故答案为:44a -<<.13.24°【分析】本题考查了圆,等腰三角形的判定与性质,三角形外角的性质等知识.熟练掌握圆,等腰三角形的判定与性质,三角形外角的性质是解题的关键.如图,连接OD ,则OD OB OC ==,由DE OB =,可得DE OD =,则DOE E Ð=Ð,2CDO DOE E E Ð=Ð+Ð=Ð,由OD OC =,可得2C CDO E Ð=Ð=Ð,由372AOC C E E Ð=Ð+Ð=Ð=°,计算求解即可.【详解】解:如图,连接OD ,则OD OB OC ==,∵DE OB =,∴DE OD =,∴DOE E Ð=Ð,∴2CDO DOE E E Ð=Ð+Ð=Ð,∵OD OC =,∴2C CDO E Ð=Ð=Ð,∵2372AOC C E E E E Ð=Ð+Ð=Ð+Ð=Ð=°,∴24E Ð=°,故答案为:24°.14.【分析】此题考查了圆周角定理,勾股定理.连接OB ,OC ,利用“同一条弧所对的圆周角等于它所对圆心角的一半”得出90BOC Ð=°,再用勾股定理即可求解.【详解】解:如图,连接OB ,OC ,∴1452A BOC Ð=Ð=°,∴90BOC Ð=°,在Rt BOC V 中,由勾股定理得:22226OC OB BC +==,∵OB OC =,∴OB =故答案为:15.4【分析】设22t a b =+,将原方程变为2340t t --=求解即可.【详解】解:设22t a b =+,则原方程为2340t t --=,解得124,1t t ==-,∵22a b +≥0,∴t =4,∴22a b +=4,故答案为:4.【点睛】此题考查利用换元法解一元二次方程,注意要根据方程的特点灵活选用合适的方法,解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.16.1【分析】此题考查了配方法,将224614x y x y ++-+转化为()()22231x y ++-+,即可得到原式的最小值,熟练掌握配方法是解本题的关键.【详解】解:224614x y x y ++-+可转换为()()22231x y ++-+,当2,3x y =-=时,原式取到最小值,为1,故答案为:1.17.(1)14x =,22x =-(2)12x =+22x =(3)13x =,22x =-(4)12x =,223x =,【分析】本题主要考查了解一元二次方程.(1)直接利用开平方法解方程即可.(2)把1移到方程的右边,方程两边同时加上4,方程左边得出完全平方式即可求解.(3)先根据D 判断根的情况,再代入公式法直接求解即可.(4)方程右边先提公因式2,然后再提公因式()2x -,即可利用因式分解法解方程.【详解】(1)解:()219x -=13x -=±∴14x =,22x =-(2)2410x x --=241x x -=24441x x -+=+()225x -=2x -=12x =22x =(3)()()124x x +-=整理得:260x x --=()2414625b ac D =-=-´-=,∴152x ±==,∴13x =,22x =-(4)()3224x x x -=-()()3222x x x -=-()()2320x x --=∴12x =,223x =18.每次下降的百分率为20%【分析】设每次下降的百分率为a ,然后根据题意列出一元二次方程,解方程即可.【详解】解:设每次下降的百分率为a ,根据题意得:50(1-a )2=32解得:a =1.8(舍去)或a =0.2=20%,答:每次下降的百分率为20%,【点睛】本题主要考查一元二次方程的应用,读懂题意,列出方程是解题的关键.19.(1)2(2)116m <;(3)取0m =,10x =,214x =-.【分析】本题考查了因式分解法解一元二次方程,根的判别式以及一元二次方程20(a 0)++=¹ax bx c 的根与24b ac D =-有如下关系:当0D >时,方程有两个不相等的实数根;当0D =时,方程有两个相等的实数根;当0D <时,方程无实数根.(1)根据一元二次方程的定义得到20k +¹且||2k =,解得2k =;(2)原方程化为240x x m ++=,然后根据根的判别式的意义得到1160m D =->,再解不等式即可;(3)取0m =,方程变形为240x x +=,然后利用因式分解法解方程.【详解】(1)解:根据题意得20k +¹且||2k =,解得2k =;故答案为:2;(2)解:由(1)知,原方程化为240x x m ++=,Q 方程有两个不相等的实数根,\Δ=b 2−4ac =1−16m >0,解得116m <,即实数m 的取值范围为116m <;(3)解:取0m =,则方程变形为240x x +=,\()410x x +=,\0x =,410x +=,解得10x =,214x =-.20.(1)证明见解析(2)125°【分析】本题考查了平行四边形性质,平行线性质,弧与圆心角的关系等知识点的应用,关键是求出DAF GAD Ð=Ð.(1)要证明 EFGE =,则要证明DAF GAD Ð=Ð,由等边对等角以及平行四边形性质即可证明;(2)根据劣弧 BF所对圆心角的度数为70°,得到70BAF Ð=°,于是得到()1180552B AFB BAF Ð=Ð=°-Ð=°,根据平行四边形的性质即可得到结论.【详解】(1)解:如图,连接AF ,A Q 为圆心,AB AF \=,ABF AFB \Ð=Ð,Q 四边形ABCD 为平行四边形,AD BC \∥,AFB DAF \Ð=Ð,GAD ABF Ð=Ð,DAF GAD \Ð=Ð,EFGE \=;(2)∵劣弧 BF所对圆心角的度数为70°,70BAF \Ð=°,()1180552B AFB BAF \Ð=Ð=°-Ð=°,Q 四边形ABCD 为平行四边形,AB CD \∥,180125C B \Ð=°-Ð=°.21.周瑜去世时年龄为36岁【分析】本题考查了从实际问题中抽象出一元二次方程,正确理解题意找到等量关系是解题的关键.设周瑜去世时年龄的个位数字为x ,则设周瑜去世时年龄的十位数字为()3x -,然后根据个位的平方恰好等于该数列出方程求解即可.【详解】解:设周瑜去世时年龄的个位数字为x ,则设周瑜去世时年龄的十位数字为()3x -,由题意得()2103x x x -+=,解得15x =,26x =∴十位数字为2或3∵而立之年督东吴,“而立之年”指的是三十岁,∴15x =应舍去,∴周瑜去世时年龄为36岁.22.(1)证明见解析(2)O e 的半径是5.【分析】本题考查垂径定理、勾股定理等知识;(1)由垂径定理得CF DF =,根据等腰三角形的性质可得AF BF =,再根据线段的和差关系可得结论;(2)连接OC ,结合垂径定理和勾股定理列方程求解即可.【详解】(1)证明:OE AB ^Q ,CD 为O e 的弦,CF DF \=,OA OB =Q ,OE AB ^,AF BF \=,AF CF BF DF \-=-,AC BD \=;(2)解:如图,连接OC ,OE AB ^Q ,CD 为O e 的弦,\132CF CD ==,90OFC Ð=°,∴222CO CF OF =+设O e 的半径是r ,∴()22231r r =+-,解得=5r ,O \e 的半径是5.23.(1)1-和2;3;(2)见解析(3)b 的值为3-或1.【分析】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.(1)根据不变值的定义可得出关于x 的一元二次方程,解之即可求出x 的值,再做差后可求出A 的值;(2)由方程的系数结合根的判别式可得出方程2310x x -+=没有实数根,进而可得出代数式231x +没有不变值;(3)由0A =可得出方程()2110x b x -++=有两个相等的实数根,进而可得出0D =,解之即可得出结论.【详解】(1)解:依题意,得:22x x -=,即220x x --=,解得:11x =-,22x =,∴()213A =--=.故答案为:1-和2;3;(2)解:依题意,得:231x x +=,∴2310x x -+=,∵()21431110D =--´´=-<,∴该方程无解,即代数式231x +没有不变值;(3)解:依题意,得:方程21x bx x -+=即()2110x b x -++=有两个相等的实数根,∴()214110b éùëûD =-+-´´=,∴13b =-,21b =.答:b 的值为3-或1.24.(1)平行四边形,理由见解析;(2)1秒或5秒;(3)12﹣<t <6【分析】(1)由两组对边平行的四边形是平行四边形可证四边形DFCE 是平行四边形;(2)设点D 出t 秒后四边形DFCE 的面积为20cm 2,利用BD ×CF =四边形DFCE 的面积,列方程解答即可;(3)如图2中,当点D 在⊙F 上时,⊙F 与四边形DECF 有两个公共点,求出此时t 的值,根据图象即可解决问题.【详解】解:(1)∵DE ∥BC ,DF ∥AC ,∴四边形DFCE 是平行四边形;(2)如图1中,设点D 出发t 秒后四边形DFCE 的面积为20cm 2,根据题意得,DE =AD =2t ,BD =12﹣2t ,CF =DE =2t ,又∵BD ×CF =四边形DFCE 的面积,∴2t (12﹣2t )=20,t 2﹣6t +5=0,(t ﹣1)(t ﹣5)=0,解得t 1=1,t 2=5;答:点D 出发1秒或5秒后四边形DFCE 的面积为20cm 2;(3)如图2中,当点D 在⊙F 上时,⊙F 与四边形DECF 有两个公共点,在Rt △DFB 中,∵∠B =90°,AD =DF =CF =2t ,BD =BF =12﹣2t ,∴2t (12﹣2t ),∴t =12﹣由图象可知,当12﹣t <6时,⊙F 与四边形DFCE 有1个公共点.【点睛】本题考查圆综合题,考查了圆的有关知识,平行四边形的判定,勾股定理,等腰直角三角形的性质等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.25.(1)512x ££(2)符合要求(3)48元【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)根据“道路宽度x 不超过12米,且不小于5米”,即可得出纵向道路宽度x 的取值范围;(2)由果园的长、宽及四周道路的宽度,可得出中间种植部分是长为(3002)x -米、宽为(20022)x -´米的长方形,根据中间种植的面积是244800m ,可列出关于x 的一元二次方程,解之可得出x 的值,取其符合题意的值,再对照(1)中x 的取值范围,即可得出结论;(3)设每平方米草莓平均利润下调y 元,则每平方米草莓平均利润为(100)y -元,每月可售出50005004y æö+´ç÷èø平方米草莓,利用总利润=销售利润-承包费,可列出关于y 的一元二次方程,解之可得出y 的值,再结合要让利于顾客,即可确定结论.【详解】解:(1)根据题意得:512x ££(2)根据题意得:()()30022002244800x x --´=,整理得:220019000x x -+=,解得:110x =,2190x =(不符合题意,舍去),512x ££Q ,\路面设置的宽度符合要求;(3)设每平方米草莓平均利润下调y 元,()1005000500200005520004y y æö-+´-=ç÷èø整理得:2605760y y -+=.解得:112y =,248=y ,又Q 要让利于顾客,48y \=.答:每平方米草莓平均利润下调48元.。
2024年西师新版高二数学下册月考试卷778
2024年西师新版高二数学下册月考试卷778考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共8题,共16分)1、若函数在(0,1)内有极小值,则()A. 0<<1B. <1C. >0D. <2、在样本的频率分布直方图中,共有11个小长方形,且样本容量为160,若中间一个小长方形的面积等于其他10个小长方形面积的和的则该组的频数为()A. 32B. 0.2C. 40D. 0.253、计算( )A.B.C.D.4、已知函数与的图象在处有相同的切线,则()A.B.C.D.5、【题文】直线与平行,则的值等于()A. -1或3B. 1或3C. -3D. -16、【题文】将函数y=sin2x的图象向左平移0<的单位后,得到函数y=sin的图象,则等于()A.B.C.D.7、设是两个非零向量,且|+|=|-|,则与夹角的大小为()A. 120°B. 90°C. 60°D. 30°8、曲线y=xex鈭�1在点(1,1)处切线的斜率等于()A. 2eB. eC. 2D. 1评卷人得分二、填空题(共5题,共10分)9、【题文】已知则不等式的解集为10、如图,已知在一个二面角的棱上有两个点A、B,线段AC、BD分别在这个二面角的两个面内,并且都垂直于棱AB,AB=4cm,AC=6cm,BD=8cm,CD=2 cm,则这个二面角的度数为____.11、如图所示,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB,AC于不同的两点M,N,若==m则m的值为______ .12、为了响应国家号召;某企业节能降耗技术改造后,在生产某产品过程中的产量x(吨)与相应的生产能耗y(吨)的几组对应数据如表所示:。
x 3 4 5 6y 2.5 3 4 4.5若根据表中数据得出y关于x的线性回归方程为y=0.7x+a,若生产7吨产品,预计相应的生产能耗为 ______ 吨.13、计算:(22)23隆脕(0.1)鈭�1鈭�lg2鈭�lg5= ______ .评卷人得分三、作图题(共6题,共12分)14、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?15、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)16、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?17、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)18、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)19、分别画一个三棱锥和一个四棱台.评卷人得分四、解答题(共4题,共40分)20、已知:直三棱柱ABC-A1B1C1中,CA=CB=1,∠BCA=90°,侧棱AA1=2,N是棱AA1的中点,求:异面直线BN 与CB1的所成角的余弦值.21、【题文】在△中,角所对的边分别为已知.(1)求角C的值;(2)求及△ABC的面积.22、【题文】(14分)等差数列{a n}中,公差其前项和为且满足(1)求数列{a n}的通项公式;(2)构造一个新的数列{b n},若{b n}也是等差数列,求非零常数.23、长方体ABCD-A1B1C1D1中,AA1=2,BC= E为CC1的中点.(Ⅰ)求证:平面A1BE⊥平面B1CD;(Ⅱ)平面A1BE与底面A1B1C1D1所成的锐二面角的大小为θ,当时,求θ的取值范围.评卷人得分五、计算题(共3题,共27分)24、如图,已知正方形ABCD的边长是8,点E在BC边上,且CE=2,点P是对角线BD上的一个动点,求PE+PC的最小值.25、1. (本小题满分12分)已知数列满足且()。
河北省石家庄市第二中学2024-2025学年高一上学期10月月考数学试卷(含答案)
石家庄二中高一年级10月月考数学试卷一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A .B .C .D .2.命题“”的否定为( )A .B .C .D .3.已知全集,集合,则()A .B .C .D .4.已知,若集合,则的值为( )A .B .C .1D .25.已知集合,若不是的子集,则下列说法正确的是( )A .对,都有B .对,都有C .存在,满足且D .存在,满足,且6.若变量满足约束条件,则的最小值为( )A .B .C .D .7.设集合,若,则的取值范围是( )A .B .C .D .8.已知命题,命题,若是成立的必要不充分条件,求的范围是( )A .B .C .D .二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列不等式中,推理正确的是( ){}{}2230,1,2,3,4,1,2,3,4A x x x B =-->=----A B = {}4,2,3,4A B =--- {}2,3,4,4A B =- {}3A B x x => {}1A B x x =<- 2,240x R x x ∀∈-+≥2,240x R x x ∃∈-+≥2240x Rx x ∃∈-+<2,240x R x x ∀∉-+≥2,240x R x x ∃∉-+<{}0U x x =>{}12A x x =≤<U A =ð{}12x x x ≤-≥或{}012x x x <<≥或{}12x x x <->或{}012x x x <<>或,a b R ∈{}2,,1,,0b a a a b a ⎧⎫=-⎨⎬⎩⎭20192019a b +2-1-,A B A B a A ∀∈a B∉b B ∀∈b A ∉a a A ∈a B ∉a a A ∈a B∈,x y 329,69x y x y ≤+≤≤-≤2z x y =+7-6-5-4-{}{}24,2A x x B x x a =≥=<A B A = a 4a ≤-1a ≤-1a ≥4a ≥2:230p x x --≤22:240q x mx m -+-≤p ⌝q m35m m <->或35m -<<35m -≤≤35m m ≤-≥或A .若,则B .若,则C .若,则D .若,则10.下列说法正确的是( )A .的一个必要条件是B .若集合中只有一个元素,则.C .“”是“一元二次方程有一正一负根”的充要条件D .已知集合,则满足条件的集合的个数为411.设和是满足以下三个条件的有理数集的两个子集:(1)和都不是空集;(2);(3)若,则,我们称序对为一个分割.下列选项中,正确的是( )A .若,则序对()是一个分割.B .若,,则序对()是一个分割C .若序对()为一个分割,则必有一个最大元素,必有一个最小元素D .若序对)为一个分割,则可以是没有最大元素,有一个最小元素三、填空题:本题共3小题,每小题5分,共15分.12.已知,则的范围___________.13.设全集,,,则集合__________.14.已知正数满足,则的最小值为_________.四、解答题:本题共4小题,共47分.解答应写出文字说明,证明过程或演算步骤.15.(10分)已知全集,集合.(1)当时,求;11,a b a b >>0ab <110a b <<a b <22a x a y >x y>0,0a b c >>>a c b c->-2x >3x >{}210A x ax x =++=4a =0ac <20ax bx c ++={}0,1M =M N M ⋃=N 1A 2A Q 1A 2A 12A A Q = 1122,a A a A ∈∈12a a <12(,)A A {}{}123,5A x Q x A x Q x =∈<=∈≥12,A A {}103A x Q x x =∈<≤或{}2203A x Q x x =∈>>且12,A A 12,A A 1A 2A 12(,A A 1A 2A 231480x x -+≤x {}10U x N x =∈≤{}{}(,)0,1,8,9,(,)2,4A C B B C A == {}()()5,7,10U U C A C B = B =,,a b c 1,4c a b <+=21(1)ab bc c +-U R ={}{}(2)(4)0,()(3)0A x x x B x x a x a =--<=---<3a =A B(2)命题,命题,若是的必要条件,求实数的取值范围.16.(12分)解关于的不等式17.(12分)如图所示,将矩形花坛扩建成一个更大的矩形花坛,要求在上,在上,且对角线过点,已知米,米,设的长为米().(1)要使矩形的面积大于54平方米,则的长应在什么范围内?(2)求当、的长度是多少时,矩形花坛的面积最小?并求出最小面积.18.(13分)命题对,不等式成立;命题,使得不等式成立.(1)若为真命题,求实数的取值范围;(2)若命题、有且只有一个真命题,求实数的取值范围.石家庄二中高一年级10月月考数学试卷·答案1—5 ABBBC6—8 BAA 9.ACD 10.CD 11.BD 12. 13. 14.215.(10分)(1)当时,则(2)若是的必要条件,即可知,由从而可得解得实数的取值范围是:p x A ∈:q x R ∈q p a x 2(1)10()ax a x a R +-->∈ABCD AMPN M AB N AD MN C 4AB =3AD =AN x 3x >AMPN AN AM AN AMPN :p {}01x x x ∀∈≤≤2223x m m -≥-{}:11q x x x ∃∈-≤≤210x x m --+≤p m p q m 243x ≤≤{}2,3,4,63a ={}{}24,36A x xB x x =<<=<<{}34A B x x =<< q p p q ⇒A B ⊆{}{}3,24B x a x a A x x =<<+=<<234a a ≤⎧⎨+≥⎩a 12a ≤≤16.(12分)当时,可得,即;当时,∵,∴当时,,所以不等式解集为;当时,,所以不等式解集为;当时不等式解集为空集当时,,所以不等式解集为综上所述,当时,不等式解集为;时,不等式解集为;当时,不等式解集为当时不等式解集为空集;当时,不等式解集为17.(12分)解:设的长为米,∵是矩形∴,∴∴(1)由,得,∴ ∴又∵,∴ ∴长的取值范围是(2)令,令,则 ∴整理得0a =10x ->1x >0a ≠2(1)10ax a x --->(1)(1)0x ax -+>1211,x x a==-0a >11a -<11x x x a ⎧⎫><-⎨⎬⎩⎭或10a -<<11a ->11x x a ⎧⎫<<-⎨⎬⎩⎭1a =-1a <-11a -<11x x a ⎧⎫-<<⎨⎬⎩⎭0a ={}1x x >0a >11x x x a ⎧⎫><-⎨⎬⎩⎭或10a -<<11x x a ⎧⎫<<-⎨⎬⎩⎭1a =-1a <-11x x a ⎧⎫-<<⎨⎬⎩⎭AN x (3)x >ABCD DN DC AN AM=43x AM x =-4(3)3AMPN S AN AM x x =⋅=>-54AMPN S >24543x x >-(29)(9)0x x -->992x x <>或3x >9392x x <<>或AN 9392x x <<>或43x y x =-3(0)t x t =->3x t =+4(3)t y t +=24(3)94(6)482t y t t +==++≥当且仅当,即时取等号.此时,最小面积为48平方米.18.(13分)(1)对于命题:对,不等式恒成立,可得有∴,∴,所以实真时,实数的取值范围是;(2)命题:存在,使得不等式成立,只需而,∴∴,即命题为真时,实数的取值范围是,依题意命题一真一假,若为假命题 为真命题,则得;若为假命题,为真命题,则,得,综上,或9(0)t t t=>3t =6,8AN AM ==p {}01x x x ∀∈≤≤223x m m -≥-2min (22)3x m m-≥-min (22)2x -=-223m m -≥-12m ≤≤p m 12m ≤≤q [1,1]x ∈-210x x m -+-≤2min (1)0x x m -+-≤22151()24x x m x m -+-=-+-2min 5(1)4x x m m -+-=-+550,44m m -+≤≤q m 54m ≤,p q p q 1254m m m <>⎧⎪⎨≤⎪⎩或1m <q p 1254m m ≤≤⎧⎪⎨>⎪⎩524m <≤1m <524m <≤。
吉林省长春外国语学校2022-2023学年高二上学期第一次月考数学试题(含答案)
长春外国语学校2022-2023学年第一学期第一次月考高二年级数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
考试结束后,将答题卡交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一、 单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在空间直角坐标系中,已知两点坐标(1,1,1),(0,2,1)A B --,则=ABA 14B 3C . 3D .12. 已知直线l 的倾斜角为=150α,则其斜率为 A .3-B 3C .33D .33-3. 若直线l 的方向向量为(3,1,2)a =-,平面α的法向量为(6,2,4)n =--,则 A. l α⊥ B. l α C. l α⊂ D. l 与α斜交4. 正四面体O ABC -棱长为1,E 为BC 中点,则OE AB ⋅=A . 12-B .14C .14-D .125. 以(1,1),(2,1),(1,4)A B C --为顶点的三角形是 A .钝角三角形B .锐角三角形C .以A 为直角的直角三角形D .以C 为直角的直角三角形6. 如图,设直线123,,l l l 的斜率分别为123,,k k k ,则123,,k k k 的大小关系为 A .123k k k << B .213k k k << C .321k k k << D .132k k k <<7. 在正方体1111ABCD A B C D -中,,P Q 分别为11,BC A B 的中点,则异面直线PQ 与11A C 所成角的正弦值为A .23 B .13C. 63 D .33 8. 经过点(0,1)P -作直线l ,若直线l 与连接(23),(-12)A B ,,的线段总有公共点,则直线l 的 斜率的取值范围是A .[)(]2+--3∞∞,,B .[]-32,C .[)2+∞,D .(]--3∞, 二、多选题:本题共2小题,每小题5分,共10分.在每小题给出的四个选项中,至少有两项 是符合题目要求的. 9. 下列说法正确的有A. 每一条直线都有且仅有一个倾斜角与之对应B. 倾斜角为135的直线的斜率为1C. 一条直线的倾斜角为α,则其斜率为tan k α=D.直线斜率的取值范围是(,)-∞+∞ 10. 如图,在正方体1111ABCD A B C D -中,以D 为原点建立空间直角坐标系,E 为1BB 的中点,F 为11A D 的中点,则下列向量中,能作为平面AEF 的法向量的是A. (8,2,4)-B. (4,1,2)--C. (2,2,1)-D. (1,2,2)-第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.11. 已知-131(2,0,4),(3,2,3)a b c ==-=-(,,),,则()a b c +=_________. 12. 已知直线l 经过点(1,0),(3,3)A B .则直线l 的一个方向向量为________. 13. 若直线l 的方向向量与平面α法向量的夹角为120,则直线l 平面α所成角 的大小为 .14. 如图,在四棱锥P ABCD -中,AC BD O =,底面ABCD 为菱形, 边长为2,60ABC ∠=,PO ABCD ⊥平面,异面直线BP 与CD 所成 的角为60,若E 为线段OC 的中点,则点E 到直线BP 的距离为 .四、解答题:每小题10分,共5小题,共50分.15. 在平面直角坐标系中,已知点(1,2)A m -,(1,1)B , (4,1)C m + (1)若,,A B C 三点共线,求实数m 的值; (2)若AB BC ⊥,求实数m 的值.16. 如图,在平行六面体1111ABCD A B C D -中,设AB a =,AD b =,1AA c =,,E F 分别是1,AD BD 的中点.(1)用向量,,a b c 表示1,D B EF ;(2)若1D F xa yb zc =++,求实数,,x y z 的值.17. 已知空间向量24-2(1,0,2),(x,2,-1)a b c ==-=(,,),. (1)若a c ,求c ;(2)若b c ⊥,求cos a c <⋅>的值.18.如图,在边长为2的正方体1111ABCD A B C D -中,,E F 分别为1,AB A C 的中点. (1)证明:1EF A CD ⊥平面; (2)求点1C 到平面1A CD 的距离.19. 如图,在四棱锥P ABCD -中,底面ABCD 为菱形,,E F 分别为,PA BC 的中点. (1)证明:EF PCD 平面;(2)若PD ABCD ⊥平面,120ADC ∠=,且,求平面DEF 与平面ABCD 夹角的余弦值..长春外国语学校2021-2022学年高一下学期第一次月考数学答案一 单选题 1. A 2. D 3. A 4. B 5. C 6. D 7. C 8. A 二 多选 9. AD 10. AB 三 填空 11. 12-12. 13. 30 14.32四 解答15. (1)13-或 (2)3216. (1) 1D B a b c =-- ; 1122EF a c =- (2)11,,122x y z ==-=-17. (1)(218. (1) 略 (219. (1)略 (2。
河北省石家庄市第二中学2024-2025学年高一上学期10月月考数学试卷
河北省石家庄市第二中学2024-2025学年高一上学期10月月考数学试卷一、单选题1.已知集合{}2230A x x x =-->,{}1,2,3,4,1,2,3,4B =----,则A B =I ( ) A .{}4,2,3,4A B =---I B .{}2,3,4,4A B =-IC .{}3A B x x ⋂=>D .{}1A B x x ⋂=<-2.命题“2R,240x x x ∀∈-+≥”的否定为( )A .2R,240x x x ∃∈-+≥B .2R,240x x x ∃∈-+<C .2R,240x x x ∀∉-+≥D .2R,240x x x ∃∉-+<3.已知全集{}0U x x =>,集合{}12A x x =≤<,则U A =ð( )A .{|1x x ≤-或}2x ≥B .{|01x x <<或}2x ≥C .{|1x x <-或x >2D .{|01x x <<或x >24.已知R a ∈,R b ∈,若集合{}2,,1,,0ba a ab a ⎧⎫=-⎨⎬⎩⎭,则20192019a b +的值为( )A .-2B .-1C .1D .25.已知集合,A B ,若A 不是B 的子集,则下列命题中正确的是( )A .对任意的a A ∈,都有aB ∉B .对任意的b B ∈,都有b A ∉C .存在0a ,满足0a A ∈,0a B ∉D .存在0a ,满足0a A ∈,0a B ∈6.若变量x ,y 满足约束条件329x y ≤+≤,69x y ≤-≤,则2z x y =+的最小值为( )A .−7B .6-C .5-D .4-7.设集合{}24A x x =≥,{}2B x x a =<,若A B A =U ,则a 的取值范围是( ) A .(],4-∞- B .(],1-∞-C .[)1,+∞D .[)4,+∞8.已知命题2:230p x x --≤,命题22:240q x mx m -+-≤,若p ⌝是q 成立的必要不充分条件,求m 的范围是( )A .3m <-或5m >B .35m -<<C .35m -≤≤D .3m ≤-或5m ≥二、多选题9.下列不等式中,推理正确的是( )A .若11,a b a b >>,则0ab <B .若110a b<<,则a b < C .若22a x a y >,则x y >D .若0,0a b c >>>,则a c b c ->-10.下列说法正确的是( )A .2x >的一个必要条件是3x >B .若集合{}210A x ax x =++=中只有一个元素,则4a =. C .“0ac <”是“一元二次方程20ax bx c ++=有一正一负根”的充要条件D .已知集合{}0,1M =,则满足条件M N M ⋃=的集合N 的个数为411.设1A 和2A 是满足以下三个条件的有理数集Q 的两个子集:(1)1A 和2A 都不是空集;(2)12A A Q =U ;(3)若11a A ∈,22a A ∈,则12a a <,我们称序对()12,A A 为一个分割.下列选项中,正确的是( )A .若{}13A x Q x =∈<,{}25A x Q x =∈≥,则序对()12,A A 是一个分割B .若{10A x Q x =∈<或}23x ≤,{20A x Q x =∈>且}23x >,则序对()12,A A 是一个分割C .若序对()12,A A 为一个分割,则1A 必有一个最大元素,2A 必有一个最小元素D .若序对()12,A A 为一个分割,则可以是1A 没有最大元素,2A 有一个最小元素三、填空题12.已知231480x x -+≤,则x 的范围.13.设全集{}N 10U x x =∈≤,{}{}()0,1,8,9,()2,4U U A B B A ==I I 痧,{}()()5,7,10U U A B =I 痧,则集合B =.14.已知正数a ,b ,c 满足1c <,4a b +=,则()211ab bc c +-的最小值为.四、解答题15.已知全集U R =,集合()(){}|240A x x x =--<,()(){}|30B x x a x a =---<.(1)当3a =时,求A B ⋂;(2)命题:p x A ∈,命题:q x R ∈,若q 是p 的必要条件,求实数a 的取值范围.16.解关于x 的不等式()2110ax a x +-->.17.如图所示,将一个矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求M 在射线AB 上,N 在射线AD 上,且对角线MN 过C 点.已知4AB =米,3AD =米,设AN 的长为()3x x >米.(1)要使矩形AMPN 的面积大于54平方米,则AN 的长应在什么范围内?(2)求当AM ,AN 的长度分别是多少时,矩形花坛AMPN 的面积最小,并求出此最小值; 18.设命题[0]:,1p x ∀∈,不等式2223x m m -≥-恒成立;命题[]:1,1q x ∃∈-,使得不等式210x x m --+≤成立.(1)若p 为真命题,求实数m 的取值范围;(2)若命题p q 、有且只有一个是真命题,求实数m 的取值范围.。
吉林省2024-2025学年高二上学期第一次月考数学试卷含答案
2024—2025学年上学期高二年级数学学科阶段验收考试试卷(答案在最后)考试时间:90分钟满分:120分命题人:一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若随机试验的样本空间为{}Ω0,1,2=,则下列说法不正确的是()A.事件{}1,2P =是随机事件B.事件{}0,1,2Q =是必然事件C.事件{}1,2M =--是不可能事件D.事件{}1,0-是随机事件【答案】D 【解析】【分析】根据随机事件,必然事件,不可能事件的概念判断即可.【详解】随机试验的样本空间为{}Ω0,1,2=,则事件{}1,2P =是随机事件,故A 正确;事件{}0,1,2Q =是必然事件,故B 正确;事件{}1,2M =--是不可能事件,故C 正确;事件{}1,0-是不可能事件,故D 错误.故选:D2.已知点()1,0A ,(1,B -,则直线AB 的倾斜角为()A.5π6B.2π3C.π3 D.π6【答案】B 【解析】【分析】由两点坐标求出斜率,由倾斜角与斜率的关系即可求【详解】0tan 11AB k α-===--,()0,πα∈,故直线AB 的倾斜角2π3α=.故选:B3.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图为一幅唐朝的投壶图,甲、乙、丙是唐朝的三位投壶游戏参与者,假设甲、乙、丙每次投壶时,投中的概率均为0.6且投壶结果互不影响.若甲、乙、丙各投壶1次,则这3人中至少有2人投中的概率为()A.0.648B.0.432C.0.36D.0.312【答案】A 【解析】【分析】由独立事件概率乘法公式可得.【详解】记甲、乙、丙投中分别即为事件123,,A A A ,由题知()()()()()()1231230.6,0.4P A P A P A P A P A P A ======,则3人中至少有2人投中的概率为:()()()()123123123123P P A A A P A A A P A A A P A A A =+++320.630.60.40.648=+⨯⨯=.故选:A.4.设,A B 是一个随机试验中的两个事件,且()()()131,,+252P A P B P A B ===,则()P AB =()A.13B.15C.25D.110【答案】D 【解析】【分析】先利用和事件的概率公式求出()P AB ,然后利用()()()P AB P A P AB =-求解即可.【详解】因为1()2P A =,3()5P B =,所以()251,()2P A P B ==,又()()()()()122512P A B P A P B P AB P AB +=+-=+-=,所以()25P AB =,所以()()()1102512P P P A AB A B ==-=-.故选:D.5.若()2,2,1A ,()0,0,1B ,()2,0,0C ,则点A 到直线BC 的距离为()A.5B.5C.5D.5【答案】A 【解析】【分析】由题意得()2,2,0BA = ,()2,0,1BC =-,再根据点线距离的向量公式即可求解.【详解】()2,2,0BA = ,()2,0,1BC =- ,则BA 在BC上的投影向量的模为BA BC BC⋅= 则点A 到直线BC5=.故选:A.6.某乒乓球队在长春训练基地进行封闭式集训,甲、乙两位队员进行对抗赛,每局依次轮流....发球,连续赢2个球者获胜,通过分析甲、乙过去对抗赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为14,不同球的结果互不影响,已知某局甲先发球.则该局打4个球甲赢的概率为()A.13B.16C.112 D.524【答案】C 【解析】【分析】由于连胜两局者赢,则可写出四局的结果,计算即可.【详解】由于连胜两局者赢,甲先发球可分为:该局:第一个球甲赢、第二个球乙赢、第三个球甲赢、第四个球甲赢,则概率为22133231441⨯⨯⨯=;故选:C.7.据史书记载,古代的算筹是由一根根同样长短和粗细的小棍制成,如图所示,据《孙子算经》记载,算筹记数法则是:凡算之法,先识其位,一纵十横,百立千僵,千十相望,万百相当.即在算筹计数法中,表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推.例如⊥‖表示62,=T 表示26,现有6根算筹,据此表示方式任意表示两位数(算筹不剩余且个位不为0),则这个两位数不小于50的概率为()A.13B.12C.23D.35【答案】B 【解析】【分析】根据6根算筹,分为五类情况:51,42,33,24,15+++++,逐一分类求解满足要求的两位数,即可求解概率.【详解】根据题意可知:一共6根算筹,十位和个位上可用的算筹可以分为51,42,33,24,15+++++一共五类情况;第一类:51+,即十位用5根算筹,个位用1根算筹,那十位可能是5或者9,个位为1,则两位数为51或者91;第二类:42+,即十位用4根算筹,个位用2根算筹,那十位可能是4或者8,个位可能为2或者6,故两位数可能42,46,82,86;第三类:33+,即十位用3根算筹,个位用3根算筹,那么十位可能是3或者7,个位可能为3或者7,故两位数可能是33,37,73,77;第四类:24+,即十位用2根算筹,个位用4根算筹,那么十位为2或6,个位可能为4或者8,则该两位数为24或者28或者64或者68,第五类:15+,即十位用1根算筹,个位用5根算筹,那十位是1,个位为5或者9,则两位数为15或者19;综上可知:用6根算筹组成的满足题意的所有的两位数有:15,19,24,28,33,37,42,46,51,64,68,73,77,82,86,91共计16个,则不小于50的有:51,64,68,73,77,82,86,91共计8个,故概率为81=162,故选:B.8.正三棱柱111ABC A B C -中,12,3,AB AA O ==为BC 的中点,M 为棱11B C 上的动点,N 为棱AM上的动点,且MN MOMO MA=,则线段MN 长度的取值范围为()A.4⎡⎫⎢⎣⎭B.,27⎢⎣⎦C.34747⎢⎣⎦D.【答案】B 【解析】【分析】根据正三棱柱建立空间直角坐标系,设动点坐标,结合线线关系求线段MN 的表达式,利用函数求最值即可.【详解】因为正三棱柱11ABC A B C -中,O 为BC 的中点,取11B C 中点Q ,连接OQ ,如图,以O 为原点,,,OC OA OQ 为,,x y z轴建立空间直角坐标系,则()()((110,0,0,,1,0,,1,0,O A B C -,因为M 是棱11B C上一动点,设(M a ,且[1,1]a ∈-,所以(()0OM OA a ⋅=⋅=,则OA OM ⊥,因为ON AM ⊥,且MN MOMO MA=所以在直角三角形OMA 中可得:~OMN AMO 即222MO MN MA===,于是令tt =∈,2233tt t t-==-,t ∈,又符合函数3=-y t t 为增增符合,所以在t ∈上为增函数,所以当t =min 32t t ⎛⎫-== ⎪⎝⎭,即线段MN 长度的最小值为62,当t =时,max 37t t ⎛⎫-== ⎪⎝⎭,即线段MN长度的最大值为7,故选:B.【点睛】关键点睛:1.找到~OMN AMO ,再利用函数单调性求出最值.2.建系,设出动点(M a ,利用空间向量法求出ON AM ⊥,再结合线线关系求线段MN 的表达式,利用函数求最值即可.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中正确的是()A.若表示两个空间向量的有向线段的终点不同,则这两个向量可能相等;B.在所有棱长都相等的直平行六面体1111ABCD A B C D -中,BD ⊥平面11ACC A ;C.对于空间三个非零向量,,a b c,一定有()()a b c a b c ⋅⋅=⋅⋅r r r r r r 成立;D.在棱长为2的正方体1111ABCD A B C D -中,点,M N 分别是棱11A D ,AB 的中点,则异面直线MD 与NC 所成角的余弦值为25.【答案】ABD 【解析】【分析】由相等向量的概念即可判断选项A ,利用线面垂直的判定定理证明即可判断选项B ,由数量积的性质即可判断选项C ,建立空间直角坐标系利用向量的坐标即可计算异面直线MD 与NC 所成角的余弦值判断选项D.【详解】若表示两个空间向量的有向线段的终点不同,而当两向量方向和长度相等时,这两个向量相等;故A 正确;在所有棱长都相等的直平行六面体1111ABCD A B C D -中,即直棱柱1111ABCD A B C D -中底面为菱形,因为BD AC ⊥,1AA ⊥平面ABCD ,BD ⊂平面ABCD ,所以1AA BD ⊥,又1AA AC A = ,所以BD ⊥平面11ACC A ;故B 正确;对于空间三个非零向量,,a b c ,有()a b c c λ⋅⋅= ,()a b c a μ⋅⋅=,所以不一定有()()a b c a b c ⋅⋅=⋅⋅成立,故C错误;建立如图所示的空间直角坐标系,则()0,0,0D ,()1,0,2M ,()2,1,0N ,()0,2,0C ,所以()1,0,2DM = ,()2,1,0NC =-,所以2cos ,5DM NC ==-,所以异面直线MD 与NC 所成角的余弦值为25,故D 正确.故选:ABD.10.连续抛掷一枚质地均匀的骰子两次,用数字x 表示第一次抛掷骰子的点数,数字y 表示第二次抛掷骰子的点数,用(),x y 表示一次试验的结果.记事件A =“7x y +=”,事件B =“3x ≤”,事件C =“()21N xy k k *=-∈”,则()A.()14P C =B.A 与B 相互独立C.A 与C 为对立事件D.B 与C 相互独立【答案】AB 【解析】【分析】用列举法列出所有可能结果,再结合互斥事件、对立事件、相互独立事件及古典概型的概率公式计算可得.【详解】依题意依次抛掷两枚质地均匀的骰子,基本事件总数为6636⨯=个;其中事件A =“7x y +=”包含的样本点有:()1,6,()2,5,()3,4,()4,3,()5,2,()6,1共6个;事件C =“()*21Nxy k k =-∈”,包含的样本点有:()1,1,()3,3,()5,5,()1,3,()1,5,()3,1,()3,5,()5,1,()5,3共9个,事件B =“3x ≤”,包含的样本点有:()1,1,()1,2,()1,3,()1,4,()1,5,()1,6,()2,1,()2,2,()2,3,()2,4,()2,5,()2,6,()3,1,()3,2,()3,3,()3,4,()3,5,()3,6共18个,对于A ,()91364P C ==,故A 正确;对于B ,事件AB 包含的样本点有()1,6,()2,5,()3,4共3个,所以()()()6118131,,3663623612P A P B P AB ======,所以()()()P A P B P AB =,所以A 与B 相互独立,故B 正确;对于C ,A C U 包含的样本点个数满足691536+=<,所以A 与C 不为对立事件,故C 错误;对于D ,事件BC 包含的样本点有:()1,1,()1,3,()1,5,()3,1,()3,3,()3,5,共6个,而()14P C =,()12P B =,()61366P BC ==,从而()()()1816P P P BC B C ≠==,所以B 与C 不相互独立,故D 错误.故选:AB.11.在棱长为1的正方体1111ABCD A B C D -中,P 为棱1BB 上一点,且12B P PB =,Q 为正方形11BB C C 内一动点(含边界),则下列说法中正确的是()A.若1D Q ∥平面1A PD ,则动点Q 的轨迹是一条长为3的线段B.存在点Q ,使得1D Q ⊥平面1A PD C.三棱锥1Q A PD -的最大体积为518D.若12D Q =,且1D Q 与平面1A PD 所成的角为θ,则sin θ【答案】ACD 【解析】【分析】在111,BC CC 取点,E F ,使得1112,2C E B E C F CF ==,证得平面//DEF 平面1A PD ,进而得到1//D Q 平面1A PD ,可判定A 正确;以1D 为原点,建立空间直角坐标系,求得平面1A PD 的一个法向量(3,2,3)m =-,根据1D Q m λ= ,得出矛盾,可判定B 不正确;利用向量的数量积的运算及三角形的面积公式,求得16A PD S =,在求得点Q 到平面1A PD的最大距离max d =,结合体积公式,可判定C 正确;根据题意,求得点点Q 的轨迹,结合线面角的公式,求得11(,1,)22Q 时,取得最大值,进而可判定D 正确.【详解】对于A 中,如图所示,分别在111,BC CC 取点,E F ,使得1112,2C E B E C F CF ==,可得1//EF B C ,因为11//A D B C ,所以1//EF A D ,因为1A D ⊂平面1A PD ,EF ⊄平面1A PD ,所以//EF 平面1A PD ,又由11//D F A P ,且1A P ⊂平面1A PD ,1D F ⊄平面1A PD ,所以1//D F 平面1A PD ,又因为1EF D F F ⋂=,且1,EF D F ⊂平面DEF ,所以平面//DEF 平面1A PD ,且平面DEF ⋂平面11BCC B EF =,若1//D Q 平面1A PD ,则动点Q 的轨迹为线段EF ,且223EF =,所以A 正确;对于B 中,以1D 为原点,以11111,,D A D C D D 所在的直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,可得12(1,0,0),(0,0,1),(1,1,)3A D P ,则112(1,0,1),(0,1,)3A D A P =-= ,设(,1,)(01,01)Q x z x z ≤≤≤≤,可得1(,1,)D Q x z =,设(,,)m a b c = 是平面1A PD 的一个法向量,则110203m A D a c m A P b c ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取3c =,可得3,2z b ==-,所以(3,2,3)m =-,若1D Q ⊥平面1A PD ,则1//D Q m,所以存在R λ∈,使得1D Q m λ= ,则3[0,1]2x z ==-∉,所以不存在点Q ,使得1D Q ⊥平面1A PD ,所以B 错误;对于C 中,由112(1,0,1),(0,1,3A D A P =-=,可得1111132,33A D A P A D A P ==⋅=,则11cos ,A D A P =11sin ,A D A P = ,所以111111sin 2236A PD S A D A P DA P =⋅∠=⨯ ,要使得三棱锥1Q A PD -的体积最大,只需点Q 到平面1A PD 的距离最大,由1(1,1,)AQ x z =- ,可得点Q 到平面1A PD的距离1)5A Q m d x z m ⋅==+-,因为01,01x z ≤≤≤≤,所以当0x z +=时,即点Q 与点1C重合时,可得max d =,所以三棱锥1Q A PD -的最大体积为111533618A PD S =⋅=,所以C 正确;对于D 中,在正方体中,可得11D C ⊥平面11BCC B ,且1C Q ⊂平面11BCC B ,所以111D C C Q ⊥,则12C Q ==,所以点Q 的轨迹是以1C为圆心,以2为半径的圆弧,其圆心角为π2,则1(,0,)C Q x z =,所以12C Q == ,即2212x z +=,又由1(,1,)D Q x z =,设1D Q 与平面1A PD 所成的角θ,所以111sin cos ,m D Q m D Q m D Qθ⋅===,因为2212x z +=,可得222()2()x z x z +≤+,当且仅当x z =时,等号成立,所以1x z +≤,即12x z ==时,1D Q 与平面1A PD 所成的角最大值,sin θ=D 正确.故选:ACD.【点睛】方法点睛:求解立体几何中的动态问题与存在性问题的策略:1、解答方法:一般时根据线面平行,线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程;2、对于线面位置关系的存在性问题,首先假设存在,然后再该假设条件下,利用线面位置关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论,则否定假设;3、对于探索性问题用向量法比较容易入手,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若由解且满足题意则存在,若有解但不满足题意或无解则不存在,同时,用已知向量来表示未知向量,一定要结合图形,以图形为指导思想是解答此类问题的关键.三、填空题:本大题共3小题,每小题5分,第14题第一个空2分,第二个空3分,共15分.12.已知()3,2,1a =- ,()2,1,2b =r,当()()2ka b a b +⊥- 时,实数k 的值为____________.【答案】6【解析】【分析】由题意依次算得22,,a b a b ⋅ 的值,然后根据()()2ka b a b +⊥-列方程即可求解.【详解】因为()3,2,1a =-,()2,1,2b = ,所以()2294114,4149,3221126a ba b =++==++=⋅=⋅+⋅+-⋅=,因为()()2ka b a b +⊥-,所以()()()()22221214186122120ka b a b ka b k a b k k k +⋅-=-+-⋅=-+-=-=,解得6k =.故答案为:6.13.柜子里有3双不同的鞋子,分别用121212,,,,,a a b b c c 表示6只鞋,从中有放回地....取出2只,记事件M =“取出的鞋是一只左脚一只右脚的,但不是一双鞋”,则事件M 的概率是____________.【答案】13【解析】【分析】列举法写出试验的样本空间,根据古典概型的概率公式直接可得解.【详解】设111,,a b c 表示三只左鞋,222,,a b c 表示三只右鞋,则从中有放回取出2只的所有可能为:()()()()()()111211121112,,,,,,,,,,,a a a a a b a b a c a c ()()()()()()212221222122,,,,,,,,,,,a a a a a b a b a c a c ()()()()()()111211121112,,,,,,,,,,,b a b a b b b b b c b c ()()()()()()212221222122,,,,,,,,,,,b a b a b b b b b c b c ()()()()()()111211121112,,,,,,,,,,,c a c a c b c b c c c c ()()()()()()212221222122,,,,,,,,,,,c a c a c b c b c c c c ,共计36种,其中满足取出的鞋一只左脚一只右脚,但不是一双鞋的有12种,()121363P M ∴==.故答案为:13.14.已知正四面体ABCD 的棱切球1T (正四面体的中心与球心重合,六条棱与球面相切)的半径为1,则该正四面体的内切球2T 的半径为______;若动点,M N 分别在1T 与2T 的球面上运动,且满足MN x AB y AC z AD =++,则2x y z ++的最大值为______.【答案】①.3②.26+【解析】【分析】第一空:将正四面体ABCD 放入正方体中,由等体积法可知,只需求出正四面体的表面积以及体积即可列式求解该正四面体的内切球2T 的半径;第二空:由不等式可知,()maxmin222MN x y z AT MN x y z x y z AT AT AT++++≤++==≤,只需求出max MN 、minAT 即可.【详解】第一空:连接,AD EF ,设交点为M ,则M 是AD 中点,如图所示,将正四面体ABCD 放入正方体中,由对称性可知正方体中心就是正四面体ABCD 的中心,设正方体棱长为2a ,则棱切球球心到正四面体ABCD 的六条棱的距离都等于a ,设正四面体ABCD 的棱切球1T 的半径为1r ,所以11r a ==,正方体棱长为2,AD =,而正四面体ABCD 的体积为1182224222323A BCD V -⎛⎫=⨯⨯-⨯⨯⨯⨯⨯=⎪⎝⎭,正四面体ABCD的表面积为(21422A BCD S -=⨯⨯⨯=设该正四面体的内切球2T 的半径为r,则由等体积法可知,1833⨯=,解得33r =;第二空:取任意一点T ,使得()22x y z AT MN xAB y AC z AD xAO y AC z AD ++==++=++,所以点T 在面OCD 内(其中O 是AB 中点),所以()13213x y z AT MN r r ++=≤+=+,而点A 到平面OCD 的距离为d AO ==所以()1232226x y z AT x y z x y z AT+++++≤++=≤+,等号成立当且仅当2x y z ++是正数且,T O重合且13MN =+ ,综上所述,2x y z ++的最大值为26+.故答案为:33,2626+.【点睛】关键点点睛:第二空的关键是得出()maxmin222MN x y z AT MN x y z x y z AT AT AT++++≤++==≤,由此即可顺利得解.四、解答题:本大题共4小题,共47分.解答应写出文字说明,证明过程或演算步骤.15.如图,在三棱柱111ABC A B C -中,,M N 分别是111,A B B C 上的点,且1112,2A M MB B N NC ==.设1,,AB a AC b AA c ===.(1)试用,,a b c 表示向量MN;(2)若11190,60,1BAC BAA CAA AB AC AA ∠=∠=∠====,求异面直线MN 与AC 的夹角的余弦值.【答案】(1)122333a b c-++(2)11【解析】【分析】(1)由空间向量的基本定理求解即可;(2)先用基向量,,a b c 表示AC 与MN ,然后求解MN 与AC 以及数量积MN AC ⋅,然后计算夹角的余弦值即可.【小问1详解】由图可得:()()1111111112123333MN MB BB B N A B AA B C AB AA AA AC AB=++=++=-++- 1122122333333AB AC AA a b c =-++=-++.【小问2详解】由(1)可知122333MN a b c =-++ ,因为11190,60,1BAC BAA CAA AB AC AA ∠=∠=∠====,所以0a b ⋅=,12a c ⋅= ,12b c ⋅= ,2222212214444814424110333999999999999MN a b c a b c a b a c b c ⎛⎫=-++=++-⋅-⋅+⋅=++--+= ⎪⎝⎭ ,所以113MN = ,AC b = ,1AC =,212212221·133333333MN AC a b c b a b b c b ⎛⎫⋅=-++=-⋅++⋅=+= ⎪⎝⎭所以cos ,11MN AC MN AC MN AC⋅==,所以异面直线MN 与AC的夹角的余弦值为11.16.如图,在正四棱柱1111ABCD A B C D -中,122AA AB ==,,E F 分别为1BB ,1CC的中点.(1)证明:1A F ∥平面CDE ;(2)求三棱锥1A CDE -的体积;(3)求直线1A E 与平面CDE 所成的角.【答案】(1)证明过程见解析(2)16(3)π6【解析】【分析】(1)借助正四棱柱的性质可建立空间直角坐标系,求出空间向量1A F与平面CDE 的法向量后,借助空间向量计算即可得;(2)求出空间向量1A E与平面CDE 的法向量后,借助空间向量夹角公式计算即可得直线1A E 与平面CDE 所成的角的正弦值,进一步求得三棱锥的高以及底面积即可得解.(3)由(2)可知直线1A E 与平面CDE 所成的角的正弦值,从而即可得解.【小问1详解】在正四棱柱1111ABCD A B C D -中,AB ,AD ,1AA 两两垂直,且122AA AB ==,以A 为坐标原点,AB ,AD ,1AA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()1,1,0C ,()0,1,0D ,()10,0,2A.因为E ,F 分别为11,BB CC 的中点,所以()1,0,1E ,()1,1,1F ,则()1,0,0CD =- ,()0,1,1CE =- ,()11,1,1A F =-,设平面CDE 的法向量为(),,m x y z = ,则00CD m CE m ⎧⋅=⎪⎨⋅=⎪⎩,即00x y z -=⎧⎨-+=⎩,令1y =,则有0x =,1z =,即()0,1,1m =,因为()11011110A F m ⋅=⨯+⨯+-⨯= ,所以1A F m ⊥ ,又1⊄A F 平面CDE ,所以1//A F 平面CDE ;【小问2详解】由(1)可知,()11,0,1A E =-,1111cos ,2A E m A E m A E m⋅==-,所以1A E 与平面CDE 所成角的正弦值为12.注意到1A E =所以点1A 到平面CDE122=,而()1,0,0CD =- ,()0,1,1CE =-,从而0CD CE =⋅,1,CD CE == 所以CD CE ⊥,三角形CDE的面积为1122⨯=,所以三棱锥1A CDE -的体积为113226⨯⨯=;【小问3详解】由(2)可知,1A E 与平面CDE 所成角的正弦值为12,所以直线1A E 与平面CDE 所成的角为π6.17.2023年10月31日,东北师大附中以“邂逅数学之美,闪耀科技之光”为主题的第17届科技节在自由、青华两校区开幕.在科技节中数学教研室组织开展了“送书券”活动.该活动由三个游戏组成,每个游戏各玩一次且结果互不影响.连胜两个游戏可以获得一张书券,连胜三个游戏可以获得两张书券.游戏规则如下表:游戏一游戏二游戏三箱子中球的颜色和数量大小质地完全相同的红球4个,白球2个(红球编号为“1,2,3,4”,白球编号为“5,6”)取球规则取出一个球有放回地依次取出两个球不放回地依次取出两个球获胜规则取到白球获胜取到两个红球获胜编号之和不超过m 获胜(1)分别求出游戏一,游戏二的获胜概率;(2)甲同学先玩了游戏一,当m 为何值时,接下来先玩游戏三比先玩游戏二获得书券的概率更大.【答案】(1)13,49(2)m 可能取值为7,8,9,10,11【解析】【分析】(1)利用列举法,结合古典概型的概率公式即可得解;(2)利用互斥事件与独立事件的概率公式求得先玩游戏二与先玩游戏三获得书券的概率,从而得到游戏三获胜的概率,由此得解.【小问1详解】设事件A 表示“游戏一获胜”,B 表示“游戏二获胜”,C 表示“游戏三获胜”,游戏一中取出一个球的样本空间为{}1Ω1,2,3,4,5,6=,则()1Ω6n =,()2n A =,()2163P A ∴==,所以游戏一获胜的概率为13.游戏二中有放回地依次取出两个球的样本空间(){}21Ω,,Ωx y x y =∈,则()2Ω36n =,而(){}{},,1,2,3,4B x y x y =∈,所以()16n B =,()164369P B ∴==,所以游戏二获胜的概率为49.【小问2详解】设M 表示“先玩游戏二,获得书券”,N 表示“先玩游戏三,获得书券”,则M ABC ABC ABC =⋃⋃,且ABC ,ABC ,ABC 互斥,,,A B C 相互独立,()()()()()P M P ABC ABC ABC P ABC P ABC P ABC ∴=⋃⋃=++()()()()()()()()()11P A P B P C P A P B P C P A P B P C ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦()()()1424141393939P C P C P C ⎡⎤=⨯-+⨯+⨯⎣⎦()482727P C =+,则N AC B ACB ACB =⋃⋃,且,AC B ACB ACB 互斥,,,A B C 相互独立,()P N =()()()()P ACB ACB ACB P ACB P ACB P ACB ⋃⋃=++()()()()()()()()()11P A P C P B P A P C P B P A P C P B ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦()()()152414393939P C P C P C =⨯⨯+⨯⨯+⨯⨯()1727P C =,若要接下来先玩游戏三比先玩游戏二获得书券的概率更大,则()()P N P M >,即()()1748272727P C P C >+,解得()49P C >,设游戏三中两次取球的编号和为X ,则()26113C 15P X ===,()26114C 15P X ===,()26225C 15P X ===,()26226C 15P X ===,()26337C 15P X ===,()26228C 15P X ===,()26229C 15P X ===,()261110C 15P X ===,()261111C 15P X ===,所以当3m =时,()()143159P C P X ===<,不合题意;当4m =时,()()()2434159P C P X P X ==+==<,不合题意;当5m =时,()()()()44345159P C P X P X P X ==+=+==<,不合题意;当6m =时,()()()()()643456159P C P X P X P X P X ==+=+=+==<,不合题意;当7m =时,()()()()()()9434567159P C P X P X P X P X P X ==+=+=+=+==>,符合题意;所以当7m ≥时,都有()49P C >,所以符合题意的m 的取值有7,8,9,10,11.18.球面三角学是研究球面三角形的边、角关系的一门学科.如图,球O 的半径为R ,A 、B 、C 为球面上的三点,设a O 表示以O 为圆心,且过B 、C 的圆,劣弧BC 的长度记为a ,同理,圆b O ,c O 的劣弧AC 、AB 的长度分别记为b ,c ,曲面ABC (阴影部分)叫做球面三角形.如果二面角,,C OA B A OB C B OC A ------的大小分别为,,αβγ,那么球面三角形的面积为()2++πABC S R αβγ=- 球面.(1)若平面OAB 、平面OAC 、平面OBC 两两垂直,求球面三角形ABC 的面积;(2)若平面三角形ABC 为直角三角形,AC BC ⊥,设1AOC θ∠=,2BOC θ∠=,3AOB θ∠=.①求证:123cos cos cos 1θθθ+-=;②延长AO 与球O 交于点D ,若直线DA ,DC 与平面ABC 所成的角分别为ππ,43,,(0,1]BE BD λλ=∈,S 为AC 的中点,T 为BC 的中点.设平面OBC 与平面EST 的夹角为θ,求cos θ的最大值及此时平面AEC 截球O 的面积.【答案】(1)2π2R (2)①证明见解析;②cos 5θ=,253π78R 【解析】【分析】(1)根据题意结合相应公式分析求解即可;(2)①根据题意结合余弦定理分析证明;②建系,利用空间向量求线面夹角,利用基本不等式分析可知点E ,再利用空间向量求球心O 到平面AEC 距离,结合球的性质分析求解.【小问1详解】若平面,,OAB OAC OBC 两两垂直,有π2αβγ===,所以球面三角形ABC 面积为()22ππ2ABC S R R αβγ=++-= 球面.【小问2详解】①证明:由余弦定理有:2222122222222232cos 2cos 2cos AC R R R BC R R R AB R R R θθθ⎧=+-⎪=+-⎨⎪=+-⎩,且222AC BC AB +=,消掉2R ,可得123cos cos cos 1θθθ+-=;②由AD 是球的直径,则,AB BD AC CD ⊥⊥,且AC BC ⊥,CD BC C ⋂=,,CD BC ⊂平面BCD ,所以AC ⊥平面BCD ,且BD ⊂平面BCD ,则AC BD ⊥,且AB AC A ⋂=,,AB AC ⊂平面ABC ,可得BD ⊥平面ABC ,由直线DA ,DC 与平面ABC 所成的角分别为ππ,43,所以ππ,43DAB DCB ∠=∠=,不妨先令R =,则2AD AB BD BC AC =====,由AC BC ⊥,AC BD ⊥,BC BD ⊥,以C 为坐标原点,以CB ,CA 所在直线为x ,y 轴,过点C 作BD 的平行线为z 轴,建立如图空间直角坐标系,设(,BE t t =∈,则())()0,2,0,,0,0,0,A B C D ,可得()20,1,0,,0,02S T ⎛⎫ ⎪ ⎪⎝⎭,)26,,1,22E t O ⎛⎫ ⎪ ⎪⎝⎭,则),22CB CO ⎛⎫== ⎪ ⎪⎝⎭,,1,0,22ST TE t ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设平面OBC 法向量()111,,m x y z =,则11110022m CB m CO x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,取12z =-,则110y x ==,可得()2m =- ,设平面EST 法向量()222,,n x y z =,则222202202n ST x y n TE x tz ⎧⋅=-=⎪⎪⎨⎪⋅=+=⎪⎩,取2x =,则22,1y t z ==-,可得),,1n t =- ,因为cos cos ,m n m n m n θ⋅======,令(]1,1,13m m=+∈,则()2218mt t-==,可得()2221888293129621218m mt m mm mm+===≤=+-+--+-+,当且仅当3,m t==取等.则cosθ5=,此时点E,可得CE=,()0,2,0CA=,设平面AEC中的法向量(),,k x yz=,则20k CE zk CA y⎧⋅==⎪⎨⎪⋅==⎩,取1x=,则0,y z==-,可得(1,0,k=-,可得球心O到平面AEC距离为AO kdk⋅==设平面AEC截球O圆半径为r,则2225326r R d=-=,所以截面圆面积为225353πππ2678r R==.【点睛】方法点睛:1.利用空间向量求线面角的思路:直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角ϕ求得,即sin cosθϕ=.2.利用空间向量求点到平面距离的方法:设A为平面α内的一点,B为平面α外的一点,n为平面α的法向量,则B到平面α的距离AB ndn⋅=.。
吉林省高二数学10月月考试卷
吉林省高二数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列判断正确的是()A . 1.72.5>1.73B . 0.82<0.83C . π2<πD . 1.70.3>0.92. (2分) (2020高二下·都昌期中) 已知命题,则为()A .B .C .D .3. (2分) (2019高二上·安徽月考) 已知,且,则的取值范围是()A .B .C .D .4. (2分)设为等比数列的前项和,,则的值为()A .B .C . 11D .5. (2分)已知双曲线的离心率是,其焦点为, P是双曲线上一点,且,若的面积等于9,则a+b=()A . 5B . 6C . 7D . 86. (2分) (2019高二上·静海月考) 在等差数列中,,则()A . 20B . 18C . 16D . -87. (2分)若直线mx+ny﹣5=0与圆x2+y2=5没有公共点,则过点P(m,n)的一条直线与椭圆的公共点的个数是()A . 0B . 1C . 2D . 1或28. (2分)命题“ 恒成立”是假命题,则实数的取值范围是()A .B . 或C . 或D . 或9. (2分) (2019高二下·雅安期末) 直线被椭圆截得的弦长是()A .B .C .D .10. (2分)到两定点F1(-3,0),F2(3,0)的距离之差的绝对值等于6的点M的轨迹是()A . 椭圆B . 线段C . 双曲线D . 两条射线二、填空题 (共5题;共5分)11. (1分)(2018·鸡西模拟) 在各项均为正数的等比数列中,若 ,则________.12. (1分) (2019高二上·株洲月考) 若双曲线的左右焦点分别为 , 是双曲线左支上的一点,且 ,那么 ________.13. (1分) (2020高二上·上海期中) 已知,为椭圆上两动点,,且的垂直平分线的方程为,则的取值范围是________14. (1分)(2019·浙江模拟) 设为三个非零向量,且,则的最大值是________.15. (1分)如图所示,椭圆 + =1(a>b>0)与过点A(2,0)、B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e= ,则椭圆方程是________.三、解答题 (共5题;共40分)16. (5分) (2019高一上·北京月考) 已知关于的不等式,解集为 .(1)若或,求的值.(2)解关于的不等式, .17. (10分) (2020高一下·元氏期中) 已知等差数列的前n项和为,且满足,.(1)求数列的通项公式;(2)设,数列的前n项和为,求 .18. (5分) (2018高二上·会宁月考) 已知等差数列满足且,数列的前项和记为,且 .(1)分别求出的通项公式;(2)记,求的前项和 .19. (10分) (2015高三上·厦门期中) 已知椭圆E的方程:,P为椭圆上的一点(点P在第三象限上),圆P 以点P为圆心,且过椭圆的左顶点M与点C(﹣2,0),直线MP交圆P与另一点N.(1)求圆P的标准方程;(2)若点A在椭圆E上,求使得取得最小值的点A的坐标;(3)若过椭圆的右顶点的直线l上存在点Q,使∠MQN为钝角,求直线l斜率的取值范围.20. (10分) (2017高三上·甘肃开学考) 己知⊙O:x2+y2=6,P为⊙O上动点,过P作PM⊥x轴于M,N为PM上一点,且.(Ⅰ)求点N的轨迹C的方程;(Ⅱ)若A(2,1),B(3,0),过B的直线与曲线C相交于D、E两点,则kAD+kAE是否为定值?若是,求出该值;若不是,说明理由.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共5分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共5题;共40分)答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、考点:解析:。
吉林省吉林市高二上学期数学10月月考试卷
吉林省吉林市高二上学期数学 10 月月考试卷姓名:________班级:________成绩:________一、 单选题 (共 10 题;共 20 分)1. (2 分) 平面直角坐标系中,直线 x+ y+2=0 的斜率为( )A. B.C. D.2. (2 分) (2015 高二下·伊宁期中) 过点 A(3,0)且与 y 轴相切的圆的圆心的轨迹为( ) A.圆 B . 椭圆 C . 直线 D . 抛物线3. (2 分) 已知 F1 , F2 是椭圆 C:(a>b>0)的两个焦点,C 的上顶点 A 在圆(x-2)2+(y-1)2=4 上,若∠F1AF2=,则椭圆 C 的标准方程为( )A.B. C.D.第 1 页 共 10 页4. (2 分) 过点 A(4,a)与 B(5,b)的直线与直线 y=x+m 平行,则|AB|= ( ) A.6B. C.2 D . 不确定 5. (2 分) 已知圆 C1: () A., 圆 C2 与圆 C1 关于直线对称,则圆 C2 的方程为B.C.D.6. (2 分) (2018·南充模拟) 直线对称,则()与曲线交于两点,且这两个点关于直线A.5B.4C.3D.27. (2 分) 若直线 l 经过两点(﹣1,2),(﹣3,4),则直线 l 的倾斜角为( )A . 45°B . 60°C . 120°第 2 页 共 10 页D . 135° 8. (2 分) 与椭圆 A. B.共焦点且过点 P(2,1)的双曲线方程是( )C.D.9. (2 分) (2019 高三上·牡丹江月考) 已知 是直线 :圆:的两条切线,切点分别为 、 ,若四边形上一动点, 、 是 的最小面积为 ,则 ( )A.B. C.D.10. ( 2 分 ) (2019 高 一 下 · 吉 林 月 考 )各角分别为,,,满足,则角 的范围是( )A.B.C. D.二、 多选题 (共 3 题;共 9 分)第 3 页 共 10 页11. (3 分) (2019 高二上·中山月考) 已知曲线A . 关于 轴对称B . 关于 轴对称C . 关于原点对称D . 关于直线轴对称,则曲线 ( )12. (3 分) (2019 高二上·辽宁月考) 已知双曲线 为 ,以 为圆心, 为半径作圆 ,圆 与双曲线的一条渐近线交于的离心率为,右顶点, 两点,则有( )A . 渐近线方程为B . 渐近线方程为 C. D.13. (3 分) (2019 高二上·辽宁月考) 已知椭圆 离心率为 ,椭圆 的上顶点为 ,且,双曲线的左、右焦点分别为,和椭圆 有相同焦点,且双曲线的离心率为 , 为曲线 与 的一个公共点,若,则正确的是 ( )A.B. C. D.三、 填空题 (共 4 题;共 4 分)14. (1 分) 直线 2xcosα﹣y﹣3=0(α∈[ , ])的倾斜角的范围是________.第 4 页 共 10 页15. (1 分) (2016 高二下·金堂开学考) 若直线 y=x+b 与曲线 数 b 的取值范围是________.16. (1 分) (2018 高二上·南宁月考) 已知双曲线 上,则双曲线 的标准方程是________的渐近线方程为有 2 个不同的公共点,则实,点在双曲线17. (1 分) (2017 高二上·哈尔滨月考) 设 F1,F2 分别为椭圆存在一点 P,使得则椭圆的离心率为________.的左、右焦点,椭圆上四、 解答题 (共 6 题;共 65 分)18. (10 分) (2019 高二上·四川期中) 平面直角坐标系中,已知三个顶点的坐标分别为,,.(1) 求 边上的高所在的直线方程;(2) 求的面积.19. (10 分) (2016 高一下·肇庆期末) 已知 α 是第三象限角,且 sinα=﹣ .(1) 求 tanα 与 tan(α﹣ )的值; (2) 求 cos2α 的值. 20. (10 分) 已知圆心为 C 的圆经过点 A(1,1)和 B(2,-2),且圆心 C 在直线 l:x-y+1=0 上,求圆心为 C 的圆的标准方程. 21. (10 分) (2016 高二上·宜春期中) 设等差数列{an}满足 a3=5,a10=﹣9. (Ⅰ)求{an}的通项公式; (Ⅱ)求{an}的前 n 项和 Sn 及使得 Sn 最大的序号 n 的值. 22. (10 分) 已知两点 F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,求动点 P 的轨迹方 程.23. (15 分) (2018 高三上·三明期末) 已知 是椭圆第 5 页 共 10 页()的左顶点,左焦点是线段 的中点,抛物线的准线恰好过点 .(1) 求椭圆的方程;(2) 如图所示,过点 作斜率为 的直线 交椭圆于点 ,交 轴于点 ,若 为线段的中点,过 作与直线 垂直的直线 ,证明对于任意的 ( ) ,直线 过定点,并求出此定点坐标.第 6 页 共 10 页一、 单选题 (共 10 题;共 20 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、二、 多选题 (共 3 题;共 9 分)11-1、 12-1、 13-1、三、 填空题 (共 4 题;共 4 分)14-1、参考答案第 7 页 共 10 页15-1、 16-1、 17-1、四、 解答题 (共 6 题;共 65 分)18-1、18-2、 19-1、 19-2、 20-1、第 8 页 共 10 页21-1、22-1、 23-1、第 9 页 共 10 页23-2、第 10 页 共 10 页。
吉林省长春市第二实验中学2023-2024学年高一上学期10月月考数学试题
A. y x2
B. y 3 x3
2
C. y x
D.
y
x3 x2
6.已知命题“ x R ,使 2x2 (a 1)x 1 0 ”是假命题,则实数 a 的取值范围是( ) 2
A. (, 1)
B. (1, 3)
C. (3, )
D. (3,1)
7.若a,b R 且 ax b 0 的解集为 , 3 ,则关于 x 的不等式 bx2 a 2b x 2b 0
B.x 5 x 2
C.x 3 x 3
D.x 5 x 3
2.“ x 2 ”是“ x 1”的 ( ) A.充分不必要条件 C.充要条件
B.必要不充分条件 D.既不充分也不必要条件
3.命题“ x R , | x | x 2 0 ”的否定是( )
A. x R , | x | x 2 0
一个元素,则称 M , N 为戴德金分割 .试判断下列选项中,可能成立的是( )
A. M x x 0, N x x 0 是一个戴德金分割
B.M 没有最大元素,N 有一个最小元素 C.M 有一个最大元素,N 有一个最小元素 D.M 没有最大元素,N 也没有最小元素
三、填空题
13.已知函数 f (x) 由下表给出,则 f (3) 等于
()
A. 1 5
B. 0
C. 3
D.
1 3
11.若实数 m 0 , n 0 ,满足 2m n 1,以下选项中正确的有( )
A. mn 的最大值为 1 8
B.
4m2
n2
的最小值为
1 2
C.
2 m
1
n
9
2
的最小值为
5
D.
1 m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林省数学高二上学期理数10月月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分)设m,n是两条不同直线,是两个不同的平面,下列命题正确的是()
A . 且,则
B . 且,则
C . ,则
D . ,则
2. (2分)(2019·嘉兴期末) 直线的倾斜角为()
A .
B .
C .
D .
3. (2分)如图所示是水平放置三角形的直观图,点D是△ABC的BC边中点,AB,BC分别与y′轴、x′轴平行,则三条线段AB,AD,AC中()
A . 最长的是AB,最短的是AC
B . 最长的是AC,最短的是AB
C . 最长的是AB,最短的是AD
D . 最长的是AC,最短的是AD
4. (2分)(2017·南阳模拟) 中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:
①对于任意一个圆O,其“优美函数“有无数个”;
②函数可以是某个圆的“优美函数”;
③正弦函数y=sinx可以同时是无数个圆的“优美函数”;
④函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.
其中正确的命题是()
A . ①③
B . ①③④
C . ②③
D . ①④
5. (2分)平行线3x+4y-9=0和6x+8y+2=0的距离是()
A .
B . 2
C .
D .
6. (2分)若点(1,1)和点(0,2)一个在圆(x﹣a)2+(y+a)2=4的内部,另一个在圆的外面,则正实
数a的取值范围是()
A . (1,+∞)
B . (0,)
C . (0,1)
D . (1,2)
7. (2分)“m=-1”是“直线mx+(2m-1)y+2=0与直线3x+my+3=0垂直”的()条件
A . 充分而不必要
B . 必要而不充分
C . 充要
D . 既不充分也不必要
8. (2分)(2019·晋城模拟) 在四棱锥中,平面平面,为等边三角形,四边形为直角梯形,其中,,若,分别是线段与线段的中点,则直线和所成角的余弦值为()
A .
B .
C .
D .
9. (2分) (2017高一下·双鸭山期末) 已知一几何体的三视图,则它的体积为()
A .
B .
C .
D .
10. (2分) (2019高一上·中山月考) 下列说法不正确的是()
A . 三角形一定是平面图形
B . 若四边形的两对角线相交于一点,则该四边形是平面图形
C . 圆心和圆上两点可确定一个平面
D . 三条平行线最多可确定三个平面
11. (2分)(2019·随州模拟) 已知圆C的方程为, .过点P作圆C的切线,切点分别为A,B两点.则最大为()
A .
B .
C .
D .
12. (2分) (2019高三上·浙江期末) 如图,在三棱柱中,点在平面内运动,
使得二面角的平面角与二面角的平面角互余,则点的轨迹是()
A . 一段圆弧
B . 椭圆的一部分
C . 抛物线
D . 双曲线的一支
二、填空题 (共6题;共6分)
13. (1分) (2016高二上·屯溪期中) 过两直线3x+y﹣5=0,2x﹣3y+4=0的交点,且在两坐标轴上截距相等的直线方程为________.
14. (1分) (2020高一下·诸暨期中) 如图所示,在平面直角坐标系xOy中,已知点A(0,2),B(﹣2,0),C (1,0),分别以AB,AC为边向外作正方形ABEF与ACGH,则点H的坐标为________,直线FH的一般式方程为________.
15. (1分) (2019高一上·周口期中) 一个几何体的主视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).
①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.
16. (1分)过边长为2的正方形的中心作直线l将正方形分成两部分,将其中的一个部分沿直线l翻折到另一个部分上.则两个部分图形中不重叠的面积的最大值是________
17. (1分) (2019高三上·上高月考) 已知为锐角三角形,满足
,外接圆的圆心为,半径为1,则的取值范围是________.
18. (1分)如图,已知正方体ABCD﹣A1B1C1D1中,E,F分别是AD,AA1的中点.则直线AB1和EF所成的角为________.
三、解答题 (共5题;共65分)
19. (10分)(2020·南京模拟) 在平面直角坐标系中,椭圆的方程为,且直线与以原点为圆心,椭圆C短轴长为直径的圆相切.
(1)求b的值;
(2)若椭圆C左右顶点分别为,过点作直线与椭圆交于两点,且位于第一象限,A在线段上.
①若和的面积分别为,问是否存在这样的直线使得?请说明理由;
②直线与直线交于点C,连结,记直线的斜率分别为,求证:为定值.
20. (10分)(2020·长春模拟) 以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为,直线的参数方程为(t为参数).
(1)求曲线C的参数方程与直线l的普通方程;
(2)设点过P为曲线C上的动点,点M和点N为直线l上的点,且满足为等边三角形,求
边长的取值范围.
21. (15分) (2019高二下·哈尔滨月考) 平面直角坐标系中,是过定点且倾斜角为的直线,在极坐标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为 .
(1)写出直线的参数方程,并将曲线的方程为化直角坐标方程;
(2)若曲线与直线相交于不同的两点,求的取值范围。
22. (15分) (2020高二下·黑龙江期末) 已知两个定点A(0,4),B(0,1),动点P满足|PA|=2|PB|,设动点P的轨迹为曲线E,直线l:y=kx﹣4.
(1)求曲线E的轨迹方程;
(2)若l与曲线E交于不同的C、D两点,且(O为坐标原点),求直线l的斜率;
(3)若k=1,Q是直线l上的动点,过Q作曲线E的两条切线QM、QN,切点为M、N,探究:直线MN是否过定点,若存在定点请写出坐标,若不存在则说明理由.
23. (15分)(2019·全国Ⅰ卷文) 已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切。
(1)若A在直线x+y=0上,求⊙M的半径。
(2)是否存在定点P,使得当A运动时,|MA|-|MP|为定值?并说明理由。
参考答案一、单选题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、
考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
二、填空题 (共6题;共6分)答案:13-1、
考点:
解析:
答案:14-1、考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、考点:
解析:
答案:17-1、考点:
解析:
答案:18-1、考点:
解析:
三、解答题 (共5题;共65分)答案:19-1、
答案:19-2、考点:
解析:。