八年级数学一次函数图像的应用
初中数学一次函数的图象、性质、解析式及应用

初中数学一次函数的图象、性质、解析式及应用1、一次函数的定义:一般地,如果变量y与变量x有关系式y=kx+b(k,b是常数,且k≠0)那么y叫x的一次函数。
一次函数y=kx+b中,若b=0,此时变成y=kx(k≠0)称y是x的正比例函数。
2、一次函数的图象(1)一次函数y=kx+b的图象是一条直线,这条直线与y 轴相交于(0,b),这里b叫作直线y=kx+b的截距。
(2)y=kx(k≠0)的图象经过原点,y=kx+b(k≠0,b≠0)的图象不经过原点,与两坐标轴交点分别为(0,b),(,0)。
(3)对于直线,如果,且,那么这两条直线平行,反之也成立。
如果,那么这两条直线相交,反之也成立。
(4)直线y=kx+b可以看作是由直线y=kx平移而来。
(5)(k≠0)的图象的不同情形,即当k值、b值不同时图象所处的位置。
3、一次函数的性质一般地,一次函数y=kx+b(k,b为常数,k≠0)有下列性质当k>0时,y随x的增大而增大,图象是自左到右上升的直线当k<0时,y随x的增大而减小,图象是自左到右下降的直线4、用待定系数法求一次函数的解析式待定系数法:先设待求函数关系式(其中含有未知常数,系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法。
用待定系数法求一次函数解析式的步骤:第一步:设关系式第二步:列方程(组)第三步:求出结果,写出关系式5、运用一次函数解决实际问题建立数学模型运用一次函数解决实际问题的一般步骤(1)通过实验,测量获得数量足够多的两个变量的对应值。
(2)建立合适的直角坐标系,在坐标系中,以各对应值为坐标描点,并画出函数图象。
(3)观察图象特征,判定函数类型。
(4)运用得到的经验公式,进一步求得所需要的结果。
例1、已知函数是一次函数,求m的值及函数关系式。
分析:一次函数满足:自变量的次数为1;自变量的系数不为0。
解析:∵是一次函数所以解得m=1所以函数关系式例2、下图不可能是关于x的一次函数的图象是()分析:一次函数中的m的取值应是一致的,应从一次函数的图象和性质出发A中,m>0,3-m>0,即A是0<m<3时的图象B中,直线经过原点,所以,m=3,即B是m=3时的图象C中,截距在x轴下方,∴3-m<0,m>3直线是呈下降趋势的,所以m<0,而无解,即C不可能D中,截距在x轴上方,所以3-m>0,m<3,图象呈下降趋势,故m<0即D是m<0时的图象解析:选C例3、已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,求直线y=kx+b的解析式。
2020-2021学年八年级数学人教版下册第19章一次函数应用之图像专题 (一)

2021 -2021学年人教版八年级|数学下册第19章一次函数应用之图像专题 (一 )1.小明家所在地的供电公司实行 "峰谷电价〞 ,峰时 (8:00~21:00 )电价为0.5元/度 ,谷时 (21:00~8:00 )电价为0.3元/度.为了解空调制暖的耗能情况 ,小明记录了家里某天0时~24时内空调制暖的用电量 ,其用电量y (度 )与时间x (h )的函数关系如下图.(1 )小明家白天不开空调的时间共h ;(2 )求小明家该天空调制暖所用的电费;(3 )设空调制暖所用电费为w 元 ,请画出该天0时~24时内w 与x 的函数图象. (标注必要数据 )2.如图 ,l 1表示振华商场一天的某型电脑销售额与销售量的关系 ,l 2表示该商场一天的销售本钱与电脑销售量的关系.观察图象 ,解决以下问题:(1 )当销售量x =2时 ,销售额=万元 ,销售本钱=万元;(2 )一天销售台时 ,销售额等于销售本钱;当销售量时 ,该商场实现赢利 (收入大于本钱 );(3 )分别求出l 1和l 2对应的函数表达式;(4 )直接写出利润w 与销售量x 之间的函数表达式 ,并求出当销售量x 是多少时 ,每天的利润到达5万元 ?3.敦煌到格尔木铁路开通后 ,l 1与l 2分别是从敦煌北开往格尔木的动车和从格尔木站开往敦煌北的高铁到敦煌北的距离与行驶时间的图象 ,两车同时出发 ,设动车离敦煌北的距离为y 1 (千米 ) ,高铁离敦煌北的距离为y 2 (千米 ) ,行驶时间为t (小时 ) ,y 1和y 2与t 的函数关系如下图:(1 )高铁的速度为km /h ;(2 )动车的速度为km /h ;(3 )动车出发多少小时与高铁相遇 ?(4 )两车出发经过多长时间相距50千米 ?4.甲、乙两地相距300千米 ,一辆货车和一辆轿车先后从甲地出发向乙地 ,轿车比货车晚出发1.5小时 ,如图 ,线段OA 表示货车离甲地的距离y (千米 )与时间x (小时 )之间的函数关系;折线BCD 表示轿车离甲地的距离y (千米 )与时间x (时 )之间的函数关系 ,请根据图象解答以下问题:(1 )轿车到达乙地时 ,求货车与甲地的距离;(2 )求线段CD对应的函数表达式;(3 )在轿车行进过程 ,轿车行驶多少时间 ,两车相距15千米.5.为落实 "精准扶贫〞精神 ,市农科院专家指导贫困户李大爷种植优质百香果喜获丰收 ,上市20天全部销售完 ,专家对销售情况进行了跟踪记录 ,并将记录情况绘成图象 ,日销售量y (单位:千克 )与上市时间x (单位:天 )的函数关系如下图.(1 )观察图示 ,直接写出日销售量的最|大值为.(2 )根据图示 ,求李大爷家百香果的日销售量y与上市时间x的函数解析式 ,并求出第15天的日销售量.6.如图 ,自行车与摩托车从甲地开往乙地 ,OA与BC分别表示自行车、摩托车与甲地距离s (千米 )和自行车出发时间t (小时 )的关系.根据图象答复:(1 )摩托车每小时行驶千米 ,自行车每小时行驶千米;(2 )自行车出发后小时 ,两车相遇;(3 )求摩托车出发多少小时时 ,两车相距15千米 ?7.甲乙两位老师同住一小区 ,该小区与学校相距2000米.甲从小区步行去学校 ,出发10分钟后乙再出发 ,乙从小区先骑公共自行车 ,骑行假设干米到达还车点后 ,立即步行走到学校.乙骑车的速度为170米/分 ,甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分 ) ,图1中线段OA与折线B﹣C﹣D分别表示甲、乙离小区的路程y(米 )与甲步行时间x(分 )的函数关系的图象;图2表示甲、乙两人之间的距离s(米 )与甲步行时间x (分 )的函数关系的图象 (不完整 ).根据图1和图2中所给的信息 ,解答以下问题:(1 )求甲步行的速度和乙出发时甲离开小区的路程;(2 )求直线BC的解析式;(3 )在图2中 ,画出当20≤x≤25时 ,s关于x的函数的大致图象.8.甲乙两人沿相同的路线同时登山 ,甲、乙两人距地面的高度y(米 )与登山时间x(分钟 )之间的函数图象如下图 ,根据图象所提供的信息解答以下问题:=.(1 )甲距地面的高度y (米 )与登山时间x (分 )之间的函数关系式为:y甲(2 )假设乙提速后 ,乙的速度是甲登山速度的3倍 ,登山多长时间时 ,乙追上了甲 ?此时乙距A地的高度为多少米 ?9.某市端午节期间 ,甲、乙两队举行了赛龙舟比赛 ,两队在比赛时的路程s(米 )与时间t (分钟 )之间的图象如下图 ,请你根据图象 ,答复以下问题:(1 )这次龙舟赛的全程是多少米 ?哪队先到达终点 ?(2 )求甲与乙相遇时甲、乙的速度.10.某种机器工作前先将空油箱加满 ,然后停止加油立即开始工作.当停止工作时 ,油箱中油量为5L ,在整个过程中 ,油箱里的油量y (单位:L )与时间x (单位:min )之间的关系如下图.(1 )机器每分钟加油量为L ,机器工作的过程中每分钟耗油量为L.(2 )求机器工作时y关于x的函数解析式 ,并写出自变量x的取值范围.(3 )直接写出油箱中油量为油箱容积的一半时x的值.11.一辆慢车和一辆快车沿相同的路线由甲地到乙地匀速前进 ,甲、乙两地之间的路程为200km ,他们离甲地的路程y (km )与慢车出发后的时间x (h )的函数图象如下图.(1 )慢车的平均速度是km/h;(2 )分别求出表示快车、慢车所行驶的路程y (km )与时间x (h )的函数关系式; (不要求写出自变量的取值范围 )(3 )求慢车出发后多长时间两车第|一次相遇 ?(4 )快车到达乙地后 ,慢车距乙地还有多远 ?12.书籍是人类进步的台阶.为了鼓励全民阅读 ,某图书馆开展了两种方式的租书业务:一种是使用租书卡 ,另一种是使用会员卡 ,图中l1 ,l2分别表示使用租书卡和会员卡时每本书的租金y (元 )与租书时间x (天 )之间的关系.(1 )直接写出用租书卡和会员卡时每本书的租金y (元 )与租书时间x (天 )之间的函数关系式;(2 )小红准备租某本名著50天 ,选择哪种租书方式比拟合算 ?小明准备花费90元租书 ,选择哪种租书方式比拟合算 ?13.小明来到奥体中|心观看比赛.进场时 ,发现门票还在家里 ,此时离比赛开始还有25分钟 ,于是立即步行回家取票 ,同时 ,他爸爸从家里出发骑自行车以小明3倍的速度给小明送票 ,两人在途中相遇 ,相遇后爸爸立即骑自行车把小明送回奥体中|心.如图 ,线段AB、OB分别表示父子俩送票、取票过程中 ,离奥体中|心的距离S(米 )与所用时间t (分钟 )之间关系的图象 ,结合图象解答以下问题 (假设骑自行车和步行的速度始终保持不变 ):(1 )从图中可知 ,小明家离奥体中|心米 ,爸爸在出发后分钟与小明相遇.(2 )求出父亲与小明相遇时离奥体中|心的距离 ?(3 )小明能否在比赛开始之前赶回奥体中|心 ?请计算说明.14.一条笔直的公路上有甲、乙两地相距2400米 ,|王明步行从甲地到乙地 ,每分钟走96米 ,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地设他们同时出发 ,运动的时间为t (分 ) ,与乙地的距离为s (米 ) ,图中线段EF ,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象(1 )李越骑车的速度为米/分钟;F点的坐标为;(2 )求李越从乙地骑往甲地时 ,s与t之间的函数表达式;(3 )求|王明从甲地到乙地时 ,s与t之间的函数表达式;(4 )求李越与|王明第二次相遇时t的值.15.一列快车从甲地匀速驶往乙地 ,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系 ,根据图象解决以下问题:(1 )甲、乙两地的距离为km;(2 )慢车的速度为km/h ,快车的速度为km/h;(3 )求当x为多少时 ,两车之间的距离为500km ,请通过计算求出x的值.参考答案1.解: (1 )小明家白天不开空调的时间为:18﹣8=10 (h ) ,故答案为:10;(2 )峰时所用电费为:3×3×0.5=4.5 (元 ) ,谷时所用电费为:11×3×0.3=9.9 (元 ) ,所以小明家该天空调制暖所用的电费为:4.5 +9.9=14.4 (元 );(3 )根据题意 ,可得该天0时~24时内w与x的函数图象如下:2.解: (1 )由图象可得 ,当销售量x=2时 ,销售额为2万元 ,销售本钱为3万元 ,故答案为:2 ,3;(2 )由图象可得 ,一天销售4台时 ,销售额等于销售本钱;当销售量大于4台时 ,该商场实现赢利 (收入大于本钱 ) ,故答案为:4 ,大于4台;(3 )设l1的表达式为y1=k1x ,将 (4 ,4 )代入得 ,4k1=4 ,解得k1=1 ,即l1的表达式为y1=x;设l2的表达式为y2=k2x +b ,将 (0 ,2 ) , (4 ,4 )分别代入y2=k2x +b ,得,解得 ,即l2的表达式为y2x +2;(4 )由题意可得 ,利润w与销售量x之间的函数表达式为w=xxx﹣2 ,当wx﹣2 ,解得x=14 ,答:利润w与销售量x之间的函数表达式是wx﹣2 ,当销售量x是14台时 ,每天的利润到达5万元.3.解: (1 )由图象可得 ,高铁的速度为300÷1.5=200 (km/h ) ,故答案为:200;(2 )由图象可得 ,动车的速度为300÷2=150 (km/h ) ,故答案为:150;(3 )设动车出发a小时与高铁相遇 ,200a +150a=300 ,解得a= ,即动车出发小时与高铁相遇;(4 )设两车出发经过b小时相距50千米 ,200a +150a=300﹣50或200a +150a=300 +50 ,解得a =或a =1 ,即两车出发经过小时或1小时相距50千米. 4.解: (1 )由图象可得 ,货车的速度为300÷5=60 (千米/小时 ) ,那么轿车到达乙地时 ,货车与甲地的距离是60×4.5=270 (千米 ) ,即轿车到达乙地时 ,货车与甲地的距离是270千米;(2 )设线段CD 对应的函数表达式是y =kx +b ,∵点C (2.5 ,80 ) ,点D (4.5 ,300 ) ,∴, 解得 ,即线段CD 对应的函数表达式是y =110x ﹣195 (2.5≤x ≤4.5 );(3 )当x =2.5时 ,两车之间的距离为:60×2.5﹣80=70 ,∵70>15 ,∴在轿车行进过程 ,两车相距15千米时间是在2.5~4.5之间 ,由图象可得 ,线段OA 对应的函数解析式为y =60x ,那么|60x ﹣ (110x ﹣195 )|=15 ,解得x 1=3.6 ,x 2=4.2 ,∵轿车比货车晚出发1.5小时 ,3.6﹣1.5=2.1 (小时 ) ,4.2﹣1.5=2.7 (小时 ) , ∴在轿车行进过程 ,轿车行驶2.1小时或2.7小时 ,两车相距15千米 ,答:在轿车行进过程 ,轿车行驶2.1小时或2.7小时 ,两车相距15千米.5.解: (1 )由图象可得 ,日销售量的最|大值为960千克 ,故答案为:960千克;(2 )当0≤x ≤12时 ,设y 与x 的函数关系式为y =kx ,12k =960 ,得k =80 ,即当0≤x ≤12时 ,y 与x 的函数关系式为y =80x ;当12<x ≤20时 ,设y 与x 的函数关系式为y =ax +b ,,得 ,即当12<x≤20时 ,y与x的函数关系式为y=﹣120x +2400 ,由上可得 ,y与x的函数关系式为y=;当x=15时 ,y=﹣120×15 +2400=600 ,答:李大爷家百香果的日销售量y与上市时间x的函数解析式为y=,第15天的日销售量是600千克.6.解: (1 )由图象可得 ,摩托车每小时行驶80÷ (5﹣3 )=40 (千米 ) ,自行车每小时行驶80÷8=10 (千米 ) , 故答案为:40 ,10;(2 )设自行车出发后a小时 ,两车相遇 ,10a=40 (a﹣3 ) ,解得 ,a=4 ,即自行车出发后4小时 ,两车相遇 ,故答案为:4;(3 )设摩托车出发b小时时 ,两车相距15千米 ,10 (b +3 )﹣40b=15或40b﹣10 (b +3 )=15 ,解得 ,bb=1.5 ,即摩托车出发0.5小时或1.5小时时 ,两车相距15千米.7.解: (1 )由图可知 ,甲步行的速度为:2000÷25=80 (米/分 ) ,乙出发时甲离开小区的路程是80×10=800 (米 ) ,答:甲步行的速度是80米/分 ,乙出发时甲离开小区的路程是800米;(2 ) (20﹣10 )×170=1700 (米 ) ,那么点C的坐标为 (20 ,1700 ) ,设直线BC对应的解析式为y=kx +b ,,得 ,即直线BC的解析式为y=170x﹣1700;(3 )∵甲步行的速度比乙步行的速度每分钟快5米 ,甲步行的速度是80米/分 ,∴乙步行的速度为80﹣5=75 (米/分 ) ,那么乙到达学校的时间为:20 + (2000﹣1700 )÷75=24 (分钟 ) ,当乙到达学校时 ,甲离学校的距离是:80× (25﹣24 )=80 (米 ) ,那么当20≤x≤25时 ,s关于x的函数的大致图象如以下图所示:=kx+b, 8.解: (1 )设甲距地面的高度y(米 )与登山时间x(分 )之间的函数关系式为y甲∵点 (0 ,100 ) , (20 ,300 )在函数y=kx +b的图象上 ,甲∴ ,解得 ,=10x +100 , 即甲距地面的高度y (米 )与登山时间x (分 )之间的函数关系式为y甲故答案为:10x +100;(2 )由图象可得 ,甲的速度为: (300﹣100 )÷20=10 (米/分 ) ,∵乙提速后 ,乙的速度是甲登山速度的3倍 ,∴乙提速后的速度为30米/分 ,设乙登山a分钟时追上甲 ,那么15÷1×2 +30× (a﹣2 )=10a +100 ,解得a=6.5 ,当a=6.5时 ,乙距A地的高度为:30× (6.5﹣2 )=135 (米 ) ,即乙提速后 ,乙的速度是甲登山速度的3倍 ,登山6.5分钟时 ,乙追上了甲 ,此时乙距A 地的高度为135米.9.解: (1 )由函数图象可得 ,这次龙舟赛的全程是1000米 ,乙队先到达终点;(2 )由图象可得 ,甲与乙相遇时 ,甲的速度是1000÷4=250 (米/分钟 ) ,乙的速度是: (1000﹣400 )÷(3.8﹣2.2 )=600÷1.6=375 (米/分钟 ) ,即甲与乙相遇时甲、乙的速度分别为250米/分钟、375米/分钟.10.解: (1 )由图象可得 ,机器每分钟加油量为:30÷10=3 (L ) ,机器工作的过程中每分钟耗油量为: (30﹣5 )÷ (60﹣10 )=0.5 (L ) ,故答案为:3 ,0.5;(2 )当10<x≤60时 ,设y关于x的函数解析式为y=ax +b ,,解得 , ,即机器工作时y关于x的函数解析式为yx +35 (10<x≤60 );(3 )当3x=30÷2时 ,得x=5 ,x +35=30÷2时 ,得x=40 ,即油箱中油量为油箱容积的一半时x的值是5或40.11.解: (1 )由图象可得 ,慢车的速度为:200÷5=40 (km/h ) ,故答案为:40;(2 )设慢车所行驶的路程y (km )与时间x (h )的函数关系式是y=kx ,5k=200 ,得k=40 ,即慢车所行驶的路程y (km )与时间x (h )的函数关系式是y=40x;设快车所行驶的路程y (km )与时间x (h )的函数关系式是y=ax +b , ,解得 ,即快车所行驶的路程y (km )与时间x (h )的函数关系式是y=100x﹣200;(3 )令40x=100x﹣200 ,解得x= ,即慢车出发后时两车第|一次相遇;(4 )将x=4代入y=40x ,得y=160 ,200﹣160=40 (km ) ,答:快车到达乙地后 ,慢车距乙地还有40km.12.解: (1 )设直线l对应的函数解析式为y=kx ,1200k=60 ,解得k=0.3 ,对应的函数解析式为yx ,即直线l1对应的函数解析式为y=ax +b ,设直线l2,解得 ,对应的函数解析式为yx +20 ,即直线l2由上可得 ,用租书卡时每本书的租金y(元 )与租书时间x(天 )之间的函数关系式是yx,用会员卡时每本书的租金y (元 )与租书时间x (天 )之间的函数关系式是yx +20;(2 )当x=50时 ,租书卡的租金为0.3×50=15 (元 ) ,会员卡的租金为0.2×50 +20=30 (元 ) ,∵15<30 ,∴小红准备租某本名著50天 ,选择租书卡租书方式比拟合算;当y=90时 ,租书卡可以租用90÷0.3=300 (天 ) ,会员卡可以租用 (90﹣20 )÷0.2=350 (天 ) ,∵300<350 ,∴小明准备花费90元租书 ,选择会员卡租书方式比拟合算.13.解: (1 )有图可知 ,小明家离体育馆3600米 ,父子俩在出发后15分钟相遇.其中小明路程与时间的图象用图中的线段OB表示 ,父亲路程与时间的图象用图中的线段AB表示.故答案为3600 ,15;(2 )设小明的速度为x ,父亲的速度为3x ,根据题意得 ,15 (x +3x )=3600 ,∴x=60米/分钟 ,∴小明与父亲相遇时距离体育馆还有60×15=900m ,答:父亲与小明相遇时离奥体中|心的距离为900m;(3 )由 (2 )知 ,小明的速度为60米/分钟 ,∴父亲的速度为180米/分钟 ,∴900÷180=5分钟 ,∴5 +15=20分钟<25分钟 ,∴小明能在比赛开始之前能赶回体育馆.14.解: (1 )由图象可得 ,李越骑车的速度为:2400÷10=240米/分钟 ,2400÷96=25 ,所以F点的坐标为 (25 ,0 ).故答案为:240; (25 ,0 );公众号:惟微小筑(2 )设李越从乙地骑往甲地时 ,s与t之间的函数表达式为s=kt ,2400=10k ,得k=240 ,即李越从乙地骑往甲地时 ,s与t之间的函数表达式为s=240t ,故答案为:s=240t;(3 )设|王明从甲地到乙地时 ,s与t之间的函数表达式为s=kt +2400 ,根据题意得 ,25k +2400=0 ,解得k=﹣96 ,所以|王明从甲地到乙地时 ,s与t之间的函数表达式为:s=﹣96t +2400;(4 )根据题意得 ,240 (t﹣2 )﹣96t=2400 ,解得t=20.答:李越与|王明第二次相遇时t的值为20.15.解: (1 )甲、乙两地的距离为720km ,故答案为:720;(2 )设慢车的速度为akm/h ,快车的速度为bkm/h ,根据题意 ,得 ,解得 ,故答案为80 ,120;(3 )由题意 ,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前: (80 +120 )x=720﹣500 ,解得x=1.1 ,相遇后:∵点C (6 ,480 ) ,∴慢车行驶20km两车之间的距离为500km ,∵慢车行驶20km需要的时间是=0.25 (h ) ,∴x=6 +0.25=6.25 (h ) ,故x=1.1 h或6.25 h ,两车之间的距离为500km.。
一次函数的函数图像与方程解析解的实际应用

一次函数的函数图像与方程解析解的实际应用一次函数是数学中常见的一种函数类型,它可以表示为y = ax + b的形式,其中a和b为已知值,x和y为自变量和因变量。
在这篇文章中,我们将讨论一次函数的函数图像以及如何使用方程解析解来解决实际应用问题。
一、一次函数的函数图像一次函数的函数图像是一条直线,其斜率确定了直线的倾斜程度,截距则决定了直线与y轴的交点。
根据斜率的正负,可以判断直线是上升还是下降。
下面我们来看几个具体的例子。
1. 实例一:y = 2x + 1这个函数表示了一个斜率为2,截距为1的直线。
根据斜率的正值,我们知道这条直线上升。
当x增加1个单位时,y增加2个单位。
当x减小1个单位时,y减小2个单位。
通过这些关系,我们可以画出该函数的函数图像。
2. 实例二:y = -3x + 2这个函数表示了一个斜率为-3,截距为2的直线。
根据斜率的负值,我们知道这条直线下降。
当x增加1个单位时,y减小3个单位。
当x减小1个单位时,y增加3个单位。
同样地,我们可以通过这些关系画出该函数的函数图像。
通过观察这些例子,我们可以发现直线的倾斜程度(斜率)以及它与y轴的交点(截距)等信息可以从一次函数的解析解中推导出来。
这样,我们可以在解析解的基础上直观地了解一次函数的函数图像。
二、一次函数方程解析解的实际应用一次函数的解析解除了可以用来绘制函数图像之外,还可以应用于解决实际问题。
我们将通过以下两个实际应用问题来说明。
1. 实例一:销售收入问题假设一个公司以每件产品x销售价y的方式进行销售。
已知该公司每个月的固定成本是1000元,每件产品的可变成本是30元。
我们希望找到销售多少件产品时,公司能够实现盈亏平衡。
根据以上信息,我们可以写出一次函数的方程:总收入 = 总成本根据题意,总收入为yx,总成本为1000 + 30x。
将它们相等并整理方程,可得:yx = 1000 + 30x解这个一次方程,我们可以求得x的解析解。
八年级数学北师大版上册 第4章《4.4 一次函数的应用》教学设计 教案

第四章第四节一次函数的应用(2)一、教材分析本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第四章第四节,课题为《一次函数图象的应用》。
本节课为第2课时。
其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。
使学生体会到数学学习过程中“数形结合”思想的重要性。
在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。
二、教学目标及分析知识与能力目标:(1)能通过函数图象获取信息,发展形象思维。
(2)能利用函数图象解决简单的实际问题,发展学生的数学应用能力。
过程与方法目标:(1)在亲身的经历与实践探索过程中体会数学问题解决的办法。
(2)初步体会方程与函数的关系,体会数形结合思想。
情感态度与价值观目标:(1)进一步体会数学知识与现实生活的密切联系,丰富数学情感。
(2)树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。
重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。
难点:体会函数与方程的关系,发展“数形结合”的思想”。
三、教学对象分析学生已学习了一次函数及其图象,认识了一次函数的性质。
在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础。
但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力。
四、教法学法根据本节课的特点、目标要求及学生的实际情况,在教法上主要采用探究式教学法,引导学生进行观察探索、合作交流、归纳总结等学习活动。
初中数学八年级下册 19.2《一次函数》一次函数图像与性质应用课件

性质 应用
k>0时,在Ⅰ, Ⅲ象限; k<0时,在Ⅱ, Ⅳ象限.
k>0,b>0时在Ⅰ, Ⅱ,Ⅲ象限; k>0,b<0时在Ⅰ, Ⅲ, Ⅳ 象限 k<0, b>0时,在Ⅰ,Ⅱ, Ⅳ象限.
正比例函数是特殊的一次函数
k<0, b<0时,在Ⅱ, Ⅲ, Ⅳ象限
当k>0时,y随x的增大而增大; 当k平<行0时于 y,y=随k xx,可的由增它大平移而而减得 小.
如果y关于x的函数图象如图2所示,则当x=9时,点R应运动
到( )
A.N处 B.P处
C.Q处 D.M处 C
Q
P
y
R
M (图1)
N
O
4
9
x
(图2)
一个一次函数的图象是经过原点的直线, 并且这条直线过第四象限及点(2,-3a)与点 (a,-6),求这个函数的解析式。
b 40
k 5
分别代入上式,得 22.5 3.5k b 解得 b 40 图象是包括
解析式为:Q=-5t+40 (0≤t≤8) Q (2)取点A(0,40),B(8,0), 40
点然评后:连画成函数线图段象AB时,即,是应所根求据的函图数形自。变量的
取值范围来确定图象的范围,比如此题中, 因为自变量0≤t≤8,所以图像是一条线段。
3.一个函数图像过点(-1,2),且y随x增大而减少, 则这个函数的解析式是___ y=-x+1
1、直线y=2x+1与y=3x-1的交点P的坐标为(_2_,_5_),点P到x轴的距 离为____5___,点P到y轴的距离为___2___。 2.一次函数的图象过点(0,3) ,且与两坐标轴围成的三角形面 积3.为如图9,/4将,直一线次O函A数向的上解平析移式1个为单__位_y_,=_±__2_x_+_3_______。
冀教版数学八年级下册数学21.4 一次函数的应用课件(共24张PPT)

(2)超过30千克后,每千克需付 多少元? 0.2元
30
2.某手机的电板剩余电量y毫安是使用天数x的一次函数x和y
关系如图 : 此种手机的电板最大带电量是多少?
y/毫安
1 000毫安
x/天
小结
通过这节课的学习,你有什么收获? 1.知识方面:通过一次函数的图像获取相关的信息; 2.数学思维:①数形结合,函数与方程的思想
车每行驶100千米消耗2升汽油. (3)当y=1时,x=450,因此行驶了450千米后,摩托车将 自动报警.
上题中摩托车行至加油站加完油后,摩托车油箱的剩余油量y(升)和摩 托车行驶路程x(千米)之间 的关系变为图1:
( ,6)
图1
( ,2)
图1为加油后的图象 试问: ⑴加油站在多少千米处?
400千米
用了4 升,,因此摩托车每行驶100千米消耗 2 升汽油.
上题中摩托车行至加油站加完油后,摩托车油箱的剩余油量
y(升)和摩托车行驶路程x(千米)之间 的关系变为图1:
图1
原图
⑶若乙地与加油站之间还有250千米,要到达乙地所加的油是否够用?
答:够
理由:由图像上观察的:400千米处设加油站,到700米处油用
21.4 一次函数的应用
1.能根据实际问题中变量之间的关系, 确定一次函数关系式.
2.能将简单的实际问题转化为数学问题 (建立一次函数),从而解决实际问题.
一次函数图像可获得哪些信息?
1. 由一次函数的图像可确定k 和 b 的符号; 2.由一次函数的图像可估计函数的变化趋势; 3.可直接观察出x与y 的对应值; 4.由一次函数的图像与y 轴的交点的坐标可确定b值,
北师大版八年级上册数学 一次函数图像应用(典型题选)

6 1 020 30 60 80 s /千米t /分 函数图像应用专题训练1、某中学九年级甲、乙两班商定举行一次远足活动,A 、B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地.两班同时出发,相向而行.设步行时间为x 小时,甲、乙两班离A 地的距离分别为y 1、y 2千米,y 1、y 2与x 的函数关系图象如图所示.根据图象解答下列问题:(1)直接写出,y 1、y 2与x 的函数关系式;(2)求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A 地多少千米?(3)甲、乙两班相距4千米时,时间x 是多少小时?2、邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计.(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.(2)求小王从县城出发到返回县城所用的时间. (3)李明从A 村到县城共用多少时间?3、某物流公司的快递车和货车每天往返于A 、B 两地,快递车比货车多往返一趟.下图表示快递车距离A 地的路程y (单位:千米)与所用时间x (单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A 地晚1小时. ⑴请在图11中画出货车距离A 地的路程y (千米)与所用时间x (时)的函数图象;⑵求两车在途中相遇的次数(直接写出答案);⑶求两车最后一次相遇时,距离A 地的路程和货车从A 地出发了几小时?O 2 2.5 x /小时y 1 y 2 10 y /千米480 y (千米)甲 乙 D F C A B E O 1.25 3 6 4.9 7 7.25 x (小时) 4、为了参观上海世博会,某公司安排甲、乙两车分别从相距300千米的上海、泰州两地同时出发相向而行,甲到泰州带客后立即返回,下图是它们离各自出发地的距离y (千米)与行驶时间x (小时)之间的函数图象.(1)请直接写出甲离出发地的距离y (千米)与行驶时间x (小时)之间的函数关系式,并写出自变量x 的取值范围;(2)当它们行驶4.5小时后离各自出发点的距离相等,求乙车离出发地的距离y (千米)与行驶时间x (小时)之间的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下,甲、乙两车从各自出发地驶出后经过多少时间相遇?5、2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组所走路程y 甲(千米)、y 乙(千米)与时间x (小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了 小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米.请通过计算说明,按图像所表示的走法是否符合约定.6、一辆客车从甲地开往甲地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y 1(km ),出租车离甲地的距离为y 2(km ),客车行驶时间为x (h ),y 1,y 2与x 的函数关系图象如图所示(1)根据图象,直接写出....y 1,y 2关于x 的函数关系式。
一次函数的图像课件

图像是一条直线,其上每一个点 的坐标 $(x, y)$ 都满足该函数的 解析式。
解析式中参数对图像的影响
$k$ 的影响
当 $k > 0$ 时,图像为上升直线;当 $k < 0$ 时,图像为下降直线。
$b$ 的影响
当 $b > 0$ 时,图像与 $y$ 轴交于 正半轴;当 $b < 0$ 时,图像与 $y$ 轴交于负半轴。
如果将一次函数的x替换 为x+h(h>0),则图 像向左移动h个单位。
如果将一次函数的x替换 为x-h(h>0),则图像
向右移动h个单位。
03 一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本与产量的关 系、价格与需求的关系等。
一次函数在物理学中的应用
截距
一次函数的截距为b,表示函数图像 与y轴的交点。当b>0时,交点在y轴 的正半轴上;当b<0时,交点在y轴的 负半轴上。
一次函数图像的平移
上平移
下平移
左平移
右平移
如果一次函数的b值增加 (即向上平移),则图 像向上移动相应的距离。
如果一次函数的b值减小 (即向下平移),则图 像向下移动相应的距离。
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在统计学中的应用
在统计学中,一次函数可以用来拟合数据,例如线性回归分析等。
一次函数在数学题目中的应用
一次函数在代数题中的应用
在代数题目中,一次函数可以用来解决方程和不等式问题,例如求解一元一次方 程、一元一次不等式等。
描点,最后将这些点连接成一条直线。
(苏科版)八年级数学上册《第6章一次函数6.3一次函数

一次函数的图像的绘制方法
选择两个点,一个为起点,一个为终点,确定一次函数的关系式。
在坐标系上描出这两个点,并连接两点形成一条直线。
根据一次函数的斜率公式,计算出直线的斜率。
根据斜率和已知点,绘制出一次函数的图像。
确定两点
描点
确定斜率
绘制直线
截距
一次函数与y轴的交点称为截距。当x=0时,y的值即为截距。截距可以是正数、负数或零。
极值点的x坐标可以通过求导数并令其为零得到,然后通过判断导数的符号变化来确定极值点的存在。
极值点的函数值即为函数的极值,可能是极大值或极小值。
一次函数的极值
03
CHAPTER
一次函数的应用
一次函数可以用于解决生活中的一些最优化问题,例如时间与速度的关系、成本与数量的关系等。
线性规划
预测模型
物理问题
解决实际问题
结合实际问题,利用一次函数的图像和性质进行分析和解决。例如,分析商品价格与销售量的关系、预测股票价格走势等。
确定函数表达式
通过观察图像上的点,可以确定一次函数的表达式。
利用图像研究一次函数的性质
THANKS
感谢您的观看。
利用一次函数进行趋势预测,如预测产品销售量、人口增长等。
在物理中,一次函数可以描述一些线性关系,如弹簧的伸长与力的关系。
03
02
01
一次函数在生活中的应用
一次函数是数学建模中常用的一种函数形式,可以用来描述两个变量之间的线性关系。
建立数学模型
通过已知的数据点,利用一次函数来估计未知参数的值。
参数估计
一次函数在平面直角坐标系中的图像是一条直线。
当$k>0$时,函数图像为上升直线;当$k<0$时,函数图像为下降直线。
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用教案 新版北师大版

八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用教案新版北师大版一. 教材分析本次课的内容是北师大版八年级数学上册4.4一次函数的应用第3课时,主要讲述了两个一次函数图象的应用。
本节课的内容是学生学习一次函数的进一步延伸,通过分析两个一次函数图象的交点、斜率等特征,培养学生解决实际问题的能力。
二. 学情分析学生在学习了八年级数学上册前几章的内容后,对一次函数的基本概念、性质和图象已经有了一定的了解。
但在解决实际问题时,还需要进一步引导他们运用一次函数的知识进行分析。
此外,学生可能对两个一次函数图象的交点、斜率等特征的理解不够深入,需要通过实例进行讲解和练习。
三. 教学目标1.理解两个一次函数图象的交点、斜率等特征,并能够运用这些特征解决实际问题。
2.培养学生的分析问题和解决问题的能力,提高他们的数学思维水平。
3.培养学生合作交流的能力,提高他们的团队协作能力。
四. 教学重难点1.重点:掌握两个一次函数图象的交点、斜率等特征,并能够运用这些特征解决实际问题。
2.难点:如何引导学生运用一次函数的知识分析实际问题,并找出解决问题的方法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题情境,引导学生运用一次函数的知识进行分析;通过案例讲解,让学生了解两个一次函数图象的交点、斜率等特征;通过小组合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的案例和问题,以便在课堂上进行讲解和练习。
2.准备多媒体教学设备,以便进行图象展示和讲解。
3.准备练习题,以便在课堂上进行巩固和拓展。
七. 教学过程1.导入(5分钟)通过设置一个实际问题,引导学生运用一次函数的知识进行分析。
例如:某商店进行促销活动,商品的原价一次函数为y=2x+1,促销价一次函数为y=x+3。
问:当商品原价等于促销价时,商品的价格是多少?2.呈现(15分钟)通过多媒体展示两个一次函数图象,让学生观察并分析图象的交点、斜率等特征。
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用说课稿(新版北师大版)

八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用说课稿(新版北师大版)一. 教材分析本次说课的内容是北师大版八年级数学上册4.4一次函数的应用第3课时,这部分内容主要让学生学会利用两个一次函数图象解决实际问题。
教材通过生活实例引入两个一次函数图象的交点坐标,让学生理解交点坐标的意义,并学会如何求解交点坐标。
同时,教材还引导学生通过观察图象来判断两个函数的交点个数,以及如何利用交点坐标解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了一次函数图象的基本知识,包括一次函数的定义、图象的性质等。
但是,对于两个一次函数图象的交点坐标以及应用,可能还存在一定的困惑。
因此,在教学过程中,我将会重点引导学生理解和掌握交点坐标的意义,以及如何利用交点坐标解决实际问题。
三. 说教学目标1.知识与技能目标:让学生理解和掌握两个一次函数图象的交点坐标的意义,以及如何求解交点坐标;让学生学会通过观察图象来判断两个函数的交点个数,并能够利用交点坐标解决实际问题。
2.过程与方法目标:通过生活实例的引入,培养学生的观察能力和思维能力;通过小组合作探究,培养学生的合作意识和团队精神。
3.情感态度与价值观目标:让学生感受到数学与生活的紧密联系,激发学生学习数学的兴趣和热情。
四. 说教学重难点1.教学重点:让学生理解和掌握两个一次函数图象的交点坐标的意义,以及如何求解交点坐标;让学生学会通过观察图象来判断两个函数的交点个数,并能够利用交点坐标解决实际问题。
2.教学难点:如何引导学生理解和掌握交点坐标的意义,以及如何利用交点坐标解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作探究法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入新课:通过一个实际问题引入本节课的内容,让学生观察图象,引导学生思考两个函数的交点坐标有什么意义。
2.讲解新课:讲解两个一次函数图象的交点坐标的意义,以及如何求解交点坐标。
北师版八年级数学上册课件(BS) 第四章 一次函数 一次函数的应用 第3课时 两个一次函数图象的应用

(2)某出租车公司一次性改装了100辆出租车,正常营运多少天后共节省 燃料费40万元?
解:(2)由题意及图象可知每辆车改装前、后每天的燃料费分别为90元、 50元,所以该出租车公司一次性改装了100辆出租车,正常营运(400 000+ 100×4 000)÷[100×(90-50)]=200(天)后可节省燃料费40万元
(3)由(2)可得y2=7x+560,当y1=y2,即15x=7x+560时,解得x=70.所 以当每月的销售量为70件时,两种方案销售人员的月工资一样多
一、选择题(每小题6分,共6分) 6.如图①,甲、乙两个容器内都装了一定质量的水,现将甲容器中的 水匀速注入乙容器中,图②中的线段AB,CD分别表示两容器中的水的深 度h(cm)与注入时间t(min)之间的函数图象,下列结论错误的是( D ) A.注水前乙容器内水的高度是5 cm B.甲容器内的水4 min全部注入乙容器 C.注水2 min时,甲、乙两个容器中的水的深度相等 D.注水1 min时,甲容器中的水比乙容器中的水深5 cm
A.①②③ B.①② C.②③ D.③
2.(5分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车 同时出发,两车距甲地的距离y(km)与行驶时间x(h)之间的函数图象如图所 示,则下列说法中错误的是( D )
A.客车比出租车晚4 h到达目的地 B.客车的速度为60 km/h,出租车的速度为100 km/h C.两车出发后3.75 h相遇 D.两车相遇时客车距乙地还有225 km
北师版
第四章 一次函数
4 一次函数的应用
第3课时 两个一次函数图象的应用
1.(5分)如图是甲、乙两个探测气球所在位置的海拔y(m)关于上升时间 x(min)的函数图象,有下列结论:①当x=10时,两个探测气球位于同一高 度;②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高.其中 正确的结论有( A )
一次函数的图像的应用

一次函数图象的应用一、教材分析《一次函数图象的应用》是义务教育课程标准冀教2011课标版教科书八年级下册第21章第4节《一次函数应用》的第三课时。
我在函数的应用的教学中发现学生对图像的理解运用极为困难,因此安排了这节课,目的是让学生注重从函数图象中准确获取信息,提高学生识图能力,培养数形结合的意识,从而利用一次函数的图象解决实际问题,发展形象思维能力,提高数学的应用能力。
为后面学习其它函数图像解决问题奠定良好的基础.二、教学目标1. 进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;2. 在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;3.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识。
4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.教学重点:一次函数图象的应用教学难点:根据图象获取准确的信息,即良好的审题能力和读图能力以及处理和转化条件的能力。
三、教法学法在实际教学中我通过情境教学,使学生主动参与到教学过程当中,经历观察、分析、类比联想、自主探索、合作交流、启发引导、总结概括、拓展运用的教学过程,使学生在具体的情境中辨认、区分和应用,提高了学生运用所学知识解决实际问题的能力和创新能力,从而形成了探索性的教学过程。
四、教学过程:第一环节:联系实际,自然导入请同学们观察生活中函数图像的图片,让学生思考身边函数图像应用的实例,发现函数图像和我们的生活息息相关,从而引入课题.设计意图: 从学生熟悉的生活实例入手,可激起学生的学习热情,加强数学与生活的联系,让学生体会生活离不开数学,函数图像和生活息息相关.从而使学生利用自己的生活经验主动建构知识。
第二环节:回顾反思加深理解1,知识回顾1)若实数a,b满足ab<0,且a<b,则函数y=ax+b的图像可能是()2)已知一次函数y=kx-1,若y随x的增大而增大,则它的图像经过()A 第一、二、三象限B 第一、二、四象限C 第一、三、四象限D 第二、三、四象限2.归纳概括一次函数的图像和性质设计意图:通过简单问题的解决和一次函数知识的概括,加深学生对一次函数图像和性质的理解, 从而形成知识网络,使学生系统掌握一次函数的图象和性质,为后面灵活运用图像奠定基础.第三环节: 实践探索 合作交流1. 某学生早上起床太晚,为避免迟到,不得不跑步到学校,但由于平时不注意锻炼身体,结果跑了一段就累了,不得不走完余下的路程。
八年级数学上册一次函数图像应用题(带解析版)

2018 年一次函数中考专题参考答案与试题解析一.选择题(共5 小题)1.如图,是某复印店复印收费y(元)与复印面数(8 开纸)x(面)的函数图象,那么从图象中可看出,复印超过100 面的部分,每面收费()A.0.4 元B.0.45 元C.约0.47元D.0.5 元【分析】由图象可知,不超过100 面时,一面收50÷100=0.5元,超过100 面部分每面收费(70﹣50)÷(150﹣100)=0.4元;【解答】超过100 面部分每面收费(70﹣50)÷(150﹣100)=0.4元。
故选A.2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4 的解集为()A.x>3 B.x<3 C.x>2 D.x<2 【分析】写出直线y=kx(k≠0)在y=ax+4(a≠0)上方部分的x 的取值范围即可;【解答】由图可知,不等式kx>ax+4 的解集为x>2;故选C.3.如图,已知:函数y=3x+b 和y=ax﹣3 的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3 的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣2【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【解答】∵函数y=3x+b 和y=ax﹣3 的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3 的解集是x>﹣2,故选B.4.甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a 千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a 千米/时的速度继续行驶;乙车在甲车出发2 小时后匀速前往B地,比甲车早30 分钟到达.到达B 地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A 地.设甲、乙两车与A 地相距s (千米),甲车离开A 地的时间为t(小时),s 与t 之间的函数图象如图所示.下A.0 个B.1 个C.2 个D.3 个【分析】①由图象的数量关系,由速度=路程÷时间就可以直接求出结论;②先由图象条件求出行驶后面路程的时间,然后可求出维修用的时间;③由图象求出BC和EF的解析式,然后由其解析式构成二元一次方程组就可以求出t 的值;④当t=3 时,甲车行的路程为120km,乙车行的路程为:80×(3﹣2)=80km,两车相距的路程为:120﹣80=40km.【解答】①由函数图象,得a=120÷3=40 故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1 小时;故②正确,③如图:∵甲车维修的时间是1 小时,∴ B(4,120).∵乙在甲出发2 小时后匀速前往B地,比甲早30 分钟到达.∴E(5,240).∴乙行驶的速度为:240÷ 3=80,∴乙返回的时间为:240÷80=3,∴ F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得解得∴ y 1=80t ﹣200, y 2=﹣ 80t+640,当 y 1=y 2 时, 80t ﹣ 200=﹣ 80t+640,t=5.25.∴两车在途中第二次相遇时 t 的值为 5.25 小时,故弄③正确, ④ 当 t=3 时,甲车行的路程为: 120km ,乙车行的路程为: 80×(3﹣2)=80km , ∴两车相距的路程为: 120﹣80=40 千米,故④正确,故选: A .5.甲、乙两车从 A 地驶向 B 地,并以各自的速度匀速行驶,甲车比乙车早行驶出甲的速度,并求出 a 的值; 2)根据函数图象可得乙车行驶 3.5﹣ 2=1小时后的路程为 120km 进行计算; (3)先根据图形判断甲、 乙两车中先到达 B 地的是乙车,再把 y=260代入 y=40x ﹣20求得甲车到达 B 地的时间,再求出乙车行驶 260km 需要 260÷80=3.25h , 即可得到结论;( 4)根据甲、乙两车行驶的路程 y 与时间 x 之间的解析式,由解析式之间的关 系建立方程求出其解即可.【解答】(1)由题意,得 m=1.5﹣ 0.5=1.120÷(3.5﹣0.5)=40(km/h ),则 a=40,故( 1)正确;(2)120÷(3.5﹣2)=80km/h (千米 /小时),故( 2)正确; 2h ,并且甲车途中休息了 的函数图象.则下列结论: 比乙迟 h 到达 B 地;( 4)乙车行驶 正确的个数是( ) A .1 B . 2 0.5h ,如图是甲乙两车行驶的距离 ( 1) a=40, m=1;( 2)乙的速度是 小时或y ( km )与时间 x (h ) 80km/h ;(3)甲 小时,两车恰好相距 50km . D . 4 分析】(1)先由函数图象中的信息求出 m 的值,再根据 “路程÷时间 =速度 ”求(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得 解得: ∴y=40x ﹣20,根据图形得知:甲、乙两车中先到达 B 地的是乙车, 把 y=260 代入 y=40x ﹣20 得, x=7,∵乙车的行驶速度: 80km/h ,∴乙车的行驶 260km 需要260÷80=3.25h , ∴ 7﹣( 2+3.25)= h ,∴甲比乙迟 h 到达 B 地,故( 3)正确;(4)当 1.5<x ≤7 时, y=40x ﹣20.设乙车行驶的路程 y 与时间 x 之间的解析式为 y=k'x+b', 小时,两车恰好相距 50km ,故( 4)错误.故选( C ) .填空题(共 3 小题)6.如图,已知 A 1,A 2,A 3,⋯,A n 是 x 轴上的点,且OA 1=A 1A 2=A 2A 3=⋯ =A n A n +1=1, 分别过点 A 1,A 2,A 3,⋯,A n +1作 x 轴的垂线交一次函数的图象于点 B 1,B 2, 由题意得解 当 40x ﹣20+50=80x ﹣160 时,解得: x= . x= .2= ﹣2=或【分析】 由已知可以得到 A 1,A 2,A 3,0),⋯,又得作 x 轴的垂线交一⋯点的坐标分别为:(1,0),(2,0),(3, y= x 的图象于点 B 1,B 2,B 3,⋯的坐标分 由此可推出∴y=80x ﹣. 当 40x ﹣20﹣50=80x ﹣160 时,所以乙车行驶B3,⋯,B n+1,连接A1B2,B1A2,A2B3,B2A3,⋯,A n B n+1,B n A n+1 依次产生交点P1,P2,P3,⋯,P n,则P n 的坐标是(n+ ,).的坐标是 直线 A n B n +1 和直线 A n +1B n 的交点.在这里可以根据推出的四点求出两直线的方程,从而求出点 P n .解答】 由已知得 A 1, A 2,A 3, ⋯的坐标为:( 1, 0),(2,0),(3,0),⋯,),(2,1),(3, ),⋯.由此可推出 A n ,B n ,A n +1,B n +1 四点的坐标为,(n ,0),(n , ),(n+1,0),分析】 由于图象是表示的是时间与体温的关系,而在 10﹣ 14 时图象是一条线 段,根据已知条件可以求出这条线段的函数解析式, 然后利用解析式即可求出这 位病人中午 12 时的体温.解答】 ∵图象在 10﹣14 时图象是一条线段,∴设这条线段的函数解析式为 y=kx+b ,n ,0),(n , ),(n+1,0),(n+1, ).由函数图象和已知可知要求的 P n 又得作 x 轴的垂线交一次函数 的图象于点 B 1,B 2, B 3,⋯的坐标分别为1, n+1, ).所以得直线 A n B n +1和A n +1B n 的直线方程分别为: y ﹣0= x ﹣n )+0, y ﹣0= (x ﹣n ﹣1)+0,即,解得: ,, 7.如图是护士统计一位病人的体温变化图,这位病人中午 12 时的体温约为 38.15 ℃.(精确到 0.01℃ )而线段经过( 10,38.3)、( 14,38.0),∴b=39.05, 故答案为:)∴k=﹣,∴ y=﹣ x+39.05,当 x=12时, y=38.15,∴这位病人中午 12 时的体温约为 38.15℃. 8.“渝黔高速铁路 ”即将在 2017 年底通车,通车后,重庆到贵阳、广州等地的时 间将大大缩短. 9 月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行, 现两种列车同时从重庆出发,以各自速度匀速向 A 地行驶,乙列车到达 A 地后 停止,甲列车到达 A 地停留 20 分钟后,再按原路以另一速度匀速返回重庆,已 知两种列车分别距 A 地的路程 y (km )与时间 x (h )之间的函数图象如图所示. 当【分析】先设乙列车的速度为 xkm/h ,甲列车以 ykm/h 的速度向 A 地行驶,到达 A 地停留 20 分钟后,以 zkm/h 的速度返回重庆,依据题意列方程,求得未知数 的值,进而得到重庆到 A 地的路程,以及乙列车到达 A 地的时间,最后得出当 乙列车到达 A 地时,甲列车距离重庆的路程.【解答】设乙列车的速度为 xkm/h ,甲列车以 ykm/h 的速度向 A 地行驶,到达 A 地停留 20分钟后,以 zkm/h 的速度返回重庆, 则根据 3 小时后,乙列车距离 A 地的路程为 240,而甲列车到达 A 地,可得3x+240=3y ,①根据甲列车到达 A 地停留 20 分钟后,再返回重庆并与乙列车相遇的时刻为时,可得 x+(1﹣ ) z=240,②根据甲列车往返两地的路程相等,可得( 由①②③,可得 x=120,y=200,4小 )z=3y ,③z=180,∴重庆到A 地的路程为3×200=600(km),∴乙列车到达A 地的时间为600÷ 120=5(h),∴当乙列车到达 A 地时,甲列车距离重庆的路程为 600﹣(5﹣3﹣)×180=300(km),故答案为:300..解答题(共 10 小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费: 骑行时长在 2h 以内(含 2h )的部分,每 0.5h 计费 1 元(不足 0.5h 按 0.5h 计算); 骑行时长超出 2h 的部分,每小时计费 4元(不足 1h 按 1h 计算). 根据此收费标准,解决下列问题: ( 1)连续骑行 5h ,应付费多少元?( 2)若连续骑行 xh (x>2且x 为整数) 需付费 y 元,则 y 与x 的函数表达式为 ; (3)若某人连续骑行后付费 24 元,求其连续骑行时长的范围.【分析】(1)连续骑行 5h ,要分两个阶段计费:前两个小时,按每个小时 2 元 计算,后 3 个小时按每个小时计算,可得结论;(2)根据超过 2h 的计费方式可得: y 与 x 的函数表达式; ( 3)根据题意可知:里程超过 2 个小时,根据( 2)的表达式可得结果. 【解答】(1)当 x=5时,y=2×2+4×(5﹣2)=16,∴应付 16 元; (2)y=4(x ﹣ 2) +2×2=4x ﹣4;故答案为: y=4x ﹣4;(3)当 y=24,24=4x ﹣4, x=7,∴连续骑行时长的范围是: 6<x ≤7. 10.“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车 自驾出游.根据以上信息,解答下列问题:(1)设租车时间为 x 小时,租用甲公司的车所需费用为 y 1元,租用乙公司的车 所需费用为 y 2元,分别求出 y 1,y 2关于 x 的函数表达式; (2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据( 2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2 关于x 的函数表达式即可;(2)当y1=y2时,15x+80=30x,可得x的值;(3)当y1=y2 时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2 时,15x+80 >30x,分求得x 的取值范围即可得出方案.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴ y2=30x(x≥ 0);(2)当y1=y2时,15x+80=30x,解得x= ;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x= ;当y1>y2 时,15x+80>30x,解得x< ;当y1<y2 时,15x+80<30x,解得x> ;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出B、C三种上网的收费收费方式月使用费/ 元包时上网时间/ 小时超时费/(元/分钟)A 30 25 0.05B 50 50 0.05C 120 不限时(1)假设月上网时间为x 小时,分别直接写出方式A、B、C 三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤ x);(2)函数图象如图:(3)由图象可知,上网方式C 更合算。
2020-2021学年人教版八年级数学下册第19章一次函数应用之图像专题 (三)

2020-2021学年人教版八年级数学下册第19章一次函数应用之图像专题(三)1.小张骑车往返于甲、乙两地,距甲地的路程y(千米)与时间x(时)的函数图象如图所示.(1)小张在路上停留小时,他从乙地返回时骑车的速度为千米/时;(2)小王与小张同时出发,按相同路线匀速前往乙地,距甲地的路程y(千米)与时间x(时)的函数关系式为y=12x+10.请作出此函数图象,并利用图象回答:小王与小张在途中共相遇次;(3)请你计算第一次相遇的时间.2.某地长途汽车客运公司规定每位旅客可随身携带一定的行李,如果超出规定,那么需要购买行李票,行李票y(元)是行李质量x(kg)的一次函数,其图象如图.求:(1)y与x之间的函数关系式;(2)每位旅客最多可免费携带行李的千克数.3.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来后,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.4.如图表示甲骑摩托车和乙驾驶汽车沿相同的路线行驶90千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据图象填空:(1)摩托车的速度为千米/小时;汽车的速度为千米/小时;(2)汽车比摩托车早小时到达B地.(3)在汽车出发后几小时,汽车和摩托车相遇?说明理由.5.小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为千米/小时;点C的坐标为;(2)求线段AB对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?6.一水果贩子在批发市场按每千克1.8元批发了若干千克的西瓜进城出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的西瓜?(4)请问这个水果贩子一共赚了多少钱?7.秋高气爽,宜登高望远,张老师从小区大门出发,匀速步行前往南山,出发8分钟,他发现手机落在了小区大门,立即原速返回,张老师出发8分钟时,邻居老朱也匀速步行,从小区大门出发沿相同路线前往南山,张老师回到起点后用了4分钟才找到手机,之后一路小跑去追赶老朱,最终两人同时到达南山,开始了愉快的爬山之旅,两人之间的距离y(米)与张老师出发所用时间x(分)之间的关系如图所示,结合图象信息解答下列问题:(1)张老师最初出发的速度为米/分,a=,老朱步行的速度为米/分;(2)b=,c=,张老师回到起点,找到手机之后的速度为米/分;(3)小区大门与南山之间的距离为多少?8.从甲地到乙地,先是一段上坡路,然后是一段平路,小冲骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小冲骑车在上坡、平路、下坡时分别保持匀速前进,已知小冲骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小冲出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.(1)求小冲在平路上骑车的平均速度以及他在乙地的休息时间;(2)分别求线段AB、EF所对应的函数关系式;(3)从甲地到乙地经过丙地,如果小冲两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.9.某景区售票处规定:非节假日的票价打a折售票;节假日根据团队人数x(人)实行分段售票:若x≤10,则按原展价购买;若x>10,则其中10人按原票价购买,超过部分的按原那价打b折购买.某旅行社带团到该景区游览,设在非节假日的购票款为y1元,在节假日的购票款为y2元,y1、y2与x之间的函数图象如图所示.(1)观察图象可知:a=,b=;(2)当x>10时,求y2与x之间的函数表达式;(3)该旅行社在今年5月1日带甲团与5月10日(非节假日)带乙团到该景区游览,两团合计50人,共付门票款3120元,已知甲团人数超过10人,求甲团人数与乙团人数.10.李刚家去年养殖的“丰收一号”多宝鱼喜获丰收,上市20天全部售完,李刚对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,多宝鱼价格z(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示.(1)观察图象,直接写出日销售量的最大值;(2)求李刚家多宝鱼的日销售量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?11.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t(小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.12.周末,甲、乙两人从学校出发去公园游玩,甲骑自行车出发0.5小时后到达苏果超市,在超市里休息了一段时间,再以相同的速度前往公园.乙因为一些事情耽搁了一些时间,在甲出发小时后,乙驾驶电瓶车沿相同的路线前往公园,如图,是他们离学校的路程y (km)与行走的时间x(h)的函数图象.已知乙驾驶电瓶车的速度是甲骑自行车的2倍.(1)求甲的速度和在苏果超市休息的时间;(2)乙出发后多长时间追上甲?13.如图是一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分)的变化而变化的情况:(1)摩托车从出发到最后停止共经过了多少时间?离家最远的距离是多少?(2)摩托车在哪一段时间内速度最快?最快速度是多少?14.diaoyudao自古就是中国领土,中国政府已对钓鱼开展常态化巡逻.某人,为按计划准点到达指定海拔,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,求该巡逻艇原计划准点到的时间.15.甲、乙两地相距210千米,一辆货车将货物由甲地运至乙地,卸载后返回甲地.若货车距乙地的距离y(千米)与时间t(时)的关系如图所示,根据所提供的信息,回答下列问题:(1)货车在乙地卸货停留了多长时间?(2)货车往返速度,哪个快?返回速度是多少?16.A、B两地相距600千米,甲、乙两车同时从A地出发驶向B地,甲车到达B地后立即返回,它们各自离A地的距离y(千米)与行驶时间x(时)之间的函数关系图象如图所示.(1)求甲车行驶过程中y与x之间的函数关系式;(2)当它们行驶了7小时时,两车相遇,求乙车的速度.17.周末,小明和弟弟从家出发,步行去吉林省图书馆学习.出发2分钟后,小明发现弟弟的数学书忘记带了,弟弟继续按原速前往图书馆,小明按原路原速返回家取书,然后骑自行前往图书馆,恰好与弟弟同时到达图书馆.小明和弟弟各自距家的路程y(m)与小明步行的时间x(min)之间的函数图象如图所示.(1)求a的值.(2)求小明取回书后y与x的函数关系式.(3)直接写出小明取回书后与弟弟相距100m的时间.18.随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水不超过6吨时,求y与x的函数解析式;(2)该市人均月生活用水超过6吨时,求y与x的函数关系式;(3)若某个家庭有5人,六月份的生活用水费共75元,则该家庭这个月人均用了多少吨生活用水?19.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A的距离y(千米)与甲车行驶时间t(小时)之间的函数关系如图所示,根据图上信息回答.(1)A、B两城相距千米;乙车比甲车晚出发小时,却早到小时;(2)乙车出发后多少小时追上甲车?(3)多少小时甲、乙两车相距50千米时?20.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A 地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)图中点A表达的含义正确的是;(只填序号)①乙车出发时距离B地的路程.②甲车出发时距离A地的路程.③甲车出发时,乙车距离B地的距离.④乙车出发1小时后,距离B地的路程.(2)乙车的速度是千米/时,a=小时;甲车的速度是千米/时,t=小时.(3)在甲车到达C地之前,两车是否相遇?若相遇,求出在甲车出发后多久相遇?若没有相遇,说明理由.参考答案1.解:(1)由图象可知,小张在路上停留1小时,他从乙地返回时骑车的速度为:60÷(6﹣4)=30千米/时,故答案为:1,30;(2)如右图所示,图中虚线表示y=12x+10,由图象可知,小王与小张在途中相遇2次,故答案为:2;(3)设当2≤x≤4时,小张对应的函数解析式为y=kx+b,,得,∴当2≤x≤4时,小张对应的函数解析式为y=20x﹣20,∴,解得,,即小王与小张在途中第一次相遇的时间为小时.2.解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数关系式是y=x﹣6;(2)当y=0时,0=x﹣6,得x=30即每位旅客最多可免费携带行李30千克.3.解:(1)∵乌龟是一直跑的而兔子中间有休息的时刻,∴折线OABC表示赛跑过程中兔子的路程与时间的关系;由图象可知:赛跑的全过程为1500米;故答案为:兔子,1500;(2)结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米).(3)700÷30=(分钟),所以乌龟用了分钟追上了正在睡觉的兔子.(4)∵兔子跑了700米停下睡觉,用了2分钟,∴剩余800米,所用的时间为:800÷400=2(分钟),∴兔子睡觉用了:50.5﹣2﹣2=46.5(分钟).所以兔子中间停下睡觉用了46.5分钟.4.解:(1)摩托车的速度为:90÷5=18千米/小时,汽车的速度为:90÷(4﹣2)=45千米/小时,故答案为:18、45;(2)5﹣4=1,即汽车比摩托车早1小时到达B地,故答案为:1;(3)解:在汽车出发后小时,汽车和摩托车相遇,理由:设在汽车出发后x小时,汽车和摩托车相遇,45x=18(x+2)解得x=∴在汽车出发后小时,汽车和摩托车相遇.5.解:(1)由图可得,小帅的骑车速度是:(24﹣8)÷(2﹣1)=16千米/小时,点C的横坐标为:1﹣8÷16=0.5,∴点C的坐标为(0.5,0),故答案为:16千米/小时,(0.5,0);(2)设线段AB对应的函数表达式为y=kx+b(k≠0),∵A(0.5,8),B(2.5,24),∴,解得:,∴线段AB对应的函数表达式为y=8x+4(0.5≤x≤2.5);(3)当x=2时,y=8×2+4=20,∴此时小泽距离乙地的距离为:24﹣20=4(千米),答:当小帅到达乙地时,小泽距乙地还有4千米.6.解:(1)由图可得农民自带的零钱为50元,答:农民自带的零钱为50元;(2)(330﹣50)÷80=280÷80=3.5元,答:降价前他每千克西瓜出售的价格是3.5元;(3)(450﹣330)÷(3.5﹣0.5)=120÷3=40(千克),80+40=120千克,答:他一共批发了120千克的西瓜;(4)450﹣120×1.8﹣50=184元,答:这个水果贩子一共赚了184元钱.7.解:(1)由函数图象可知,张老师出发8分钟行走了480米的路程,∴张老师最初出发的速度为:480÷8=60(m/min),由函数图象知,张老师出发a分钟后,与邻居老朱相距800米,此时为张老师回到起点的时候,∴a=8×2=16(min),老朱的速度为:800÷8=100(m/min),故答案为:60;16;100;(2)根据题意和图象可知,b分钟时张老师找到了手机,∴b=a+4=16+4=20(min),∵c为张老师找到手机时,两相距的路程,∴c=100×(20﹣8)=1200(m),由函数图象知,端点为(b,c)即(20,1200)和(22.5,800)的线段是张老师找到手机后两人相距的距离与张老师出发的时间的一段函数图象,∴张老师找到手机后的速度为:=260(m/min),故答案为:20;1200;260;(3)根据题意知,张老师找到手机后一路小跑去追上老朱时,所跑步的路程全是小区到南山的距离.=1950(m).答:小区大门与南山之间的距离为1950m.8.解:(1)小冲骑车上坡的速度为:(6.5﹣4.5)÷0.2=10(km/h),平路上的速度为:10+5=15(km/h);下坡的速度为:15+5=20(km/h),平路上所用的时间为:2(4.5÷15)=0.6h,下坡所用的时间为:(6.5﹣4.5)÷20=0.1h所以小冲在乙地休息了:1﹣0.1﹣0.6﹣0.2=0.1(h);(2)由题意可知:上坡的速度为10km/h,下坡的速度为20km/h,所以线段AB所对应的函数关系式为:y=6.5﹣10x,即y AB=﹣10x+6.5(0≤x≤0.2).线段EF所对应的函数关系式为y EF=4.5+20(x﹣0.9).即y EF=20x﹣13.5(0.9≤x≤1);(3)由题意可知:小冲第一次经过丙地在AB段,第二次经过丙地在EF段,设小冲出发a小时第一次经过丙地,则小冲出发后(a+0.85)小时第二次经过丙地,6.5﹣10a=20(a+0.85)﹣13.5,解得:a=.×10=1(千米).答:丙地与甲地之间的距离为1千米.9.解:(1)门票定价为80元/人,那么10人应花费800元,而从图可知实际只花费480元,是打6折得到的价格,所以a=6;从图可知10人之外的另10人花费640元,而原价是800元,可以知道是打8折得到的价格,所以b=8,故答案为:6,8;(2)当x>10时,设y=kx+b.2∵图象过点(10,800),(20,1440),∴,解得,=64x+160 (x>10),∴y2(3)设甲团有m人,乙团有n人.由图象,得y=48x,1当m>10时,依题意,得,解得,答:甲团有35人,乙团有15人.10.解:(1)观察图象,发现当x=12时,y=120为最大值,∴日销售量的最大值为120千克.(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,当0≤x≤12时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=10x;当12<x≤20时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=﹣15x+300.综上可知:李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=.(3)设多宝鱼价格z与上市时间x的函数解析式为z=mx+n,当5≤x≤15时,有,解得:,∴此时多宝鱼价格z与上市时间x的函数解析式为y=﹣2x+42.当x=10时,y=10×10=100,z=﹣2×10+42=22,当天的销售金额为:100×22=2200(元);当x=12时,y=10×12=120,z=﹣2×12+42=18,当天的销售金额为:120×18=2160(元).∵2200>2160,∴第10天的销售金额多.11.解:(1)3×40=120,乙车所用时间:=6,2+6﹣3=5,答:A、B两市的距离是120千米,甲到B市后5小时乙到达B市;故答案为:120,5;(2)由题意得:A(10,120),B(13,0),设甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=kt+b,把A(10,120),B(13,0)代入得:,解得:,∴甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=﹣40t+520(10≤t≤13);(3)由题意得:C(8,10),120﹣(10﹣8)×20=80,∴D(10,80),设直线CD的解析式为:S=kt+b,把C(8,120)、D(10,80)代入得:,解得:,∴直线CD的解析式为:S=﹣20t+280,则:,﹣40t+520=﹣20t+280,t=12,12﹣10=2,答:甲车从B市往回返后再经过2小时两车相遇.12.解:(1)由图象得:甲骑车速度:10÷0.5=20(km/h);由函数图象得出,在苏果超市休息的时间是1﹣0.5=0.5h;(2)乙驾车速度:20×2=40(km/h)设直线OA的解析式为y=kx(k≠0),则10=0.5k,解得:k=20,故直线OA的解析式为:y=20x.∵甲走OA段与走BC段速度不变,∴OA∥BC.设直线BC解析式为y=20x+b,1=﹣10把点B(1,10)代入得b1∴y=20x﹣10,,把点D(,0),设直线DE解析式为y=40x+b2=﹣,代入得:b2∴y=40x﹣.∴,解得:x=.∴F点的横坐标为,﹣=,则乙出发小时追上甲.13.解:(1)摩托车从出发到最后停止共经过:100分钟;离家最远的距离是:40千米.(2)摩托车在20~50分钟内速度最快;最快速度是:30÷=60(千米/小时)14.解:由图象及题意,得故障前的速度为:80÷1=80海里/时,故障后的速度为:(180﹣80)÷1=100海里/时.设航行额全程有a海里,由题意,得=2+,解得:a=480,则原计划行驶的时间为:480÷80=6小时,解法二:设原计划行驶的时间为t小时,80t=80+100(t﹣2)解得:t=6,故计划准点到达的时刻为:7:00.15.解:(1)∵4.5﹣3.5=1(小时),∴货车在乙地卸货停留了1小时;(2)∵7.5﹣4.5=3<3.5,∴货车返回速度快,∵=70(千米/时),∴返回速度是70千米/时.16.解:(1)当0≤x≤6时,设甲车行驶过程中y与x之间的函数关系式为y=mx,把(6,600)代入y=mx,6m=600,解得m=100,∴y=100x;当6<x≤14时,设甲车行驶过程中y与x之间的函数关系式为y=kx+b,把(6,600)、(14,0)代入y=kx+b,得解得,∴y=﹣75x+1 050;即甲车行驶过程中y与x之间的函数关系式为:y=;(2)当x=7时,y=﹣75x+1 050解得,y=﹣75×7+1 050=525,525÷7=75(千米/时),即乙车的速度为75千米/时.17.解:(1)a=200÷2×8=800.(2)设小明取回书后y与x的函数关系式是y=kx+b.由题意,得解得(4分)∴小明取回书后y与x的函数关系式是y=200x﹣800.(3)由题意100x﹣(200x﹣800)=100,解得x=7∴7min后小明与弟弟相距100m.18.解:(1)该市人均月生活用水不超过6吨时,设y与x的函数解析式是y=kx,则9=6k,得k=1.5,即该市人均月生活用水不超过6吨时,y与x的函数解析式是y=1.5x;(2)该市人均月生活用水超过6吨时,设y与x的函数关系式是y=mx+n,则,解得,即该市人均月生活用水超过6吨时,y与x的函数关系式是y=3x﹣9;(3)由题意可得,人均月生活用水费为:75÷5=15,将y=15代入y=3x﹣9,得15=3x﹣9,解得,x=8,即该家庭这个月人均用了8吨生活用水.19.解:(1)由图可知,A、B两城相距300千米,乙车比甲车晚出发1小时,却早到1小时,故答案为:300,1,1;(2)设甲对应的函数解析式为:y=kx,300=5k解得,k=60,即甲对应的函数解析式为:y=60x,设乙对应的函数解析式为y=mx+n,解得,,即乙对应的函数解析式为y=100x﹣100,∴解得2.5﹣1=1.5,即乙车出发后1.5小时追上甲车;(3)由题意可得,当乙出发前甲、乙两车相距50千米,则50=60x,得x =,当乙出发后到乙到达终点的过程中,则60x﹣(100x﹣100)=±50,解得,x=1.25或x=3.75,当乙到达终点后甲、乙两车相距50千米,则300﹣50=60x,得x =,即小时、1.25小时、3.75小时、小时时,甲、乙两车相距50千米.20.解:(1)点A表达的含义正确的是甲车出发时,乙车距离B地的距离或乙车出发1小时后,距离B地的路程.故答案为③④.(2)乙车的速度是60千米/小时,a ==7小时,甲的速度==120千米/小时,t ==3小时.故答案为60,7,120,3.(3)相遇.设在甲车出发x小时后相遇.由题意(120+60)x=480﹣60解得x =,答:在甲车出发小时后相遇.21。
八年级数学一次函数的图象和性质

描点作图
将计算出的点在坐标轴上 标出,并使用平滑的曲线 连接这些点。
一次函数图象的特点
线性关系
一次函数图象是一条直线,函数 值随自变量的变化而均匀变化。
斜率
一次函数的斜率表示函数值随自 变量变化的速率,斜率k>0时, 函数值随自变量增大而增大;斜 率k<0时,函数值随自变量增大
而减小。
y轴上的截距
05 练习与巩固
基础练习题
2、已知一次函数$y = kx + b(k neq 0)$的图象经过第一、三、四 象限,则$k$的取值范围是( )
3、已知一次函数$y = kx + b(k neq 0)$的图象经过第一、三、四 象限,则$k$的取值范围是____.
1、已知函数$y = (2m + 1)x + m - 3$,若这个函数的图象不经过第 二象限,则$m$的取值范围是 ____.
一次函数的表示方法
一次函数可以用解析式表示为 $y=kx+b$,其中$k$是斜率,$b$是 截距。
也可以通过表格或图象来表示一次函 数的关系。
一次函数的基本性质
斜率
斜率$k$决定了函数的增减性,当$k>0$时,函数随$x$ 的增大而增大;当$k<0$时,函数随$x$的增大而减小。
单调性
一次函数的单调性由斜率决定,斜率$k>0$时,函数为增 函数;斜率$k<0$时,函数为减函数。
一次函数与坐标轴的关系
一次函数与x轴的交点
当y=0时,x的值即为与x轴的交点。
一次函数与坐标轴围成的三角形面积
可以通过截距和与x轴交点来计算三角形面积。
04 一次函数的应用
一次函数在实际问题中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
2
(450,1) (500,0)
0
100
200
300
400
500
x/千米
例1 某种摩托车的油箱最多可储油10升,加满油后,油箱中的 剩余油量y(升)与摩托车行驶路程x(千米)之间的关系如图所示:
y/升
10
8
6
解:观察图象:得 (1)当 y=0时, x=500,因此一箱汽油 可供摩托车行驶500千米. (2).x从100增加到200时, y从8减少 到6,减少了2,因此摩托车每行驶 100千米消耗2升汽油. (3).当y=1时,x=450,因此行驶了450 千米后,摩托车将自动报警.
800
600
(23,750) (40,400)
400
200
(60,0)
0 10 20 30 40 50
t/天
多角度理解
由于高温和连日无雨,某水库蓄水量V(万米3)和干旱时间t(天) 的关系如图:
还能用其它方法解答本题吗?
(1)设v=kt+1200
V/万米3
(2)将t=60,V=0代入 V=kt+1200中求的k= -20 V= -20 t+1200
(1,450)
③油箱中剩余油量小于1升时,摩托车 会自动报警,那多少千米后,摩托车 会自动报警?
x/千米
看图填空:
-2 ⑴当y=0时,x=______ y=1/2x+1 ⑵直线对应的函数表达式为_____________
议一议:
一元一次方程1/2x+1=0与一次函数y=1/2x+1有什么联系?
分析: y=1/2x+1
4
2
(450,1) (500,0)
0
100
200
300
400
500
x/千米
例 观察下列图象,你能设计适当的实际情景吗
若图象反映了摩托车油箱的剩余油 y/升 量y(升)和摩托车行驶路程x(千米) 之间 的关系. 小明骑摩托车从家地到A地,摩托车 油箱最多储油10升 仔细观察图象
①若家和A地之间相距650千米,则摩托 车能顺利到达吗? ②摩托车每行驶100千米耗油多少升?
(2)写出B点的坐标
B
-1 -2 -3 1 2 3
( 0, 1)
(3)直线对应的函数表达式是:
A
x
y =1/2x +1
一次函数图象可获得哪些信息: 1.由一次函数的图象可确定 k 和 b 的符号
2.由一次函数的图象可估计函数的变化趋势
3.可直接观察出x与y的对应值
4.由一次函数的图象与y轴的交点坐标可确定的 b值,从而由待定系数法确定一次函数的图象的 解析式。
干旱造成的灾情
由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而 减少.干旱持续时间 t( 天)与蓄水量V(万米3 ) 的关系如图所示, 回答下列问题: (1).干旱持续10天,蓄水量为多少? 3 1000 V/ 万米 连续干旱23天呢?
1200
(10,1000)
1000
分析:干旱10天求蓄水量
(3)再代入各组 t 或 V 的值对应的 求V 与 t 的值
t/天
例1 某种摩托车的油箱最多可储油10升,加满油后,油箱中的 剩余油量y(升)与摩托车行驶路程x(千米)之间的关系如图所示: 根据图象回答下列问题: y/升
10
8
6
(1).一箱汽油可供摩托车行驶多少千米? (2). 摩托车每行驶100千米消耗多少升? (3). 油箱中的剩余油量小于1升时将自 动报警.行驶多少千米后,摩托车 将自动报警?
100分钟后每分钟通话: 200 100 0.4元 / 分
150 110
归纳
如何解答实际情景函数图象的信息:
1、理解横纵坐标分别表示的的实际意义 2、分析已知(看已知的是自变量还是因 变量),通过做x轴或y轴做垂线,在图象 上找到对应的点,由点的横 纵坐标的值 读出要求的值 3、利用数形结合的思想: 将“数”转化为“形” 由“形”定“数”
某植物t天后的高度为ycm,图中的l 反映了y与t之间 的关系,根据图象回答下列问题:
(1)植物刚栽的时候多高?9cm
2)3天后该植物多高? 12cm
Y/cm
3)几天后该植物高度可达21cm 12天
l
24 21 18 15 12 9 6 3
(12,21)
(3,12)
2 4 6 8 10 12 14 t/天
⑵超过30千克后,每 千克需付多少元? 0 。 2元
30
试一试
某手机的电板剩余电量y毫安是使用天数x的一次函数 y/毫安 x和y关系如图 : 此种手机的电板最大带电量是多少?
1000毫安
x/天
通过这节课的学习,你有什么收获?
1 、知识方面:从一次函数的图象上上获取 相关的信息 2、数学思维:数形结合,函数与方程的思想 3、数学能力:识图能力,应用能力
第18章 函数及其图象
18.3 一次函数
生活中的图象
某股市变化情况
回顾练习
一次函数y=kx+b中, b>0,且y随x的增大而减小,则它的图 象大致为( D )
y
0 x
y
0 x2
3
y
0 x 0
y x
x3
A
B
C
D
练一练
y
3 2 1 -3 -2 -1 0
1、看图填空:
-2 (1)当y=0时, x=____
小明在电信局办理了某种电话话费套餐,该套餐要求按分钟计费 且无论通话多长时间都需要交纳一定的费用作为月租费,办理后某 月手机话费y元和通话时间x的关系图如下: 观察图象形状,有何特点,你知道该电话套餐的内容吗?
⑴该话费套餐的月租费是多少元?
月租费是50元。 ⑵每分钟通话需多少元?
110 50 0.6元 / 分 100分钟前每分钟通话: 100
图象入图所示,根倨图象回答下列问题:
(1)当y=0时,x值是多少? -3
(2)x为何值时,y ﹥ 0? X﹥-3
y
A
-3
o
x
试一试
某地长途汽车客运公司规定旅客可随身携带一定质量 的行李,如果超过规定,则需要购买行李票,行李票 费用y元与行李质量的关系如图: (1)旅客最多可免费携
带多少千克行李? 30千克
《探究在线》P32-P33
4、求一次函数的表达式
第二课时 全做
;钱塘娱乐 钱塘 钱塘娱乐 钱塘 ;
可貌相..dt.匕匕?????首?发"根汉无奈の笑了笑"不过你挑了十一些,只有壹个人品有问题,已经算是大奖了."毕竟这些女人,都是临时跟过来の狂蜂浪蝶,白狼马这回有这样の人品,也足见这个地方の女修士,还是很自重の.只有那个有两个甜甜酒窝の女人,真心是壹个万人斩,别起来天地都要 融化似の,其实伺候の男人不知道有多少了."也是."白狼马咧嘴笑了笑,然后说道"咱还是悠着点吧,现在差不多够了,有七八十人了,再找の话小红得说咱了.""造人还是没有成功?"根汉问白狼马.提到这个,白狼马有些郁闷"真是见了鬼了,这血脉传承这么强,这段时间起码试了四五十人了,她 们肚子还是没有半点反应.""慢慢来,不着急,总会找到合适の."根汉深有体会"这说明你血脉特别强,龙马血脉已经不能满.足你了,说不定你の血脉哪年变成了天龙血脉了.""呼呼,借大哥の吉言,壹定可以の,哈哈."天龙血脉,那可是真龙血脉之壹,乃是真正の仙脉之壹,这要是真の,那牛笔大 了.壹旁の韩立有些不解の说"大哥,小白,这血脉传承有这么难吗?有四五十个老婆,也生不出壹个小孩?""哼,你小子找死呀."白狼马哼了壹声.韩立赶紧讪讪の笑道"咱这不是不懂嘛,小白哥.""哼哼,越是强大の血脉越是难以传承,如至尊吧,你现在听说过有哪些至尊有后代の吗?其实少之又 少.""因为他们の血脉太强了,壹般の女人根本无法孕育出这么强大の血脉来,即使是生出来了,有时候也是依这个女人の血脉来走の,真正至尊之血之子少很少很少.""那肯定了,要是至尊都能有大把の后代,那这世没咱们这些人什么事了.全都是至尊血脉了,那太恐怖了."白狼马哼哼道,"本圣 现在这么多女人,还是生不出来壹个孩子,这只能说明本圣还有很大の潜力可挖呀."这货又开始得瑟了,根汉也懒得打击他,不过从另壹个侧面来想,确实也是这个道理.越是强大の血脉,越难得到自己血脉の后代,因为男人如果特别强の话,那需要女人也极强,不然女人の体质无法怀与她男人壹 样强大体质の血脉.所以像根汉和白狼马他们这样の,要繁育后代十分困难.根汉努力了这么多年,也只有与谭妙彤の那壹晚,可能是突破了壹些什么障碍之后,才得以怀孩子,生下小妙妙の.而像白狼马这样の,到现在壹个孩子也没有,不过他の情况与根汉又不壹样.因为他之前,基本只有烈焰马 小红壹个女人,也是近段时间才有了其它の几十个女人,现在还没耕耘多长时间呢,说不定过一些月有不少妹子の肚子有反应了.有时候并不是男人太坏了,需要找壹大堆の老婆,养壹堆の女人,其实也是迫不得已了算是,因为他们需要血脉の传承.而往往只有壹个女人,是无法办到の,尤其是血 脉越强の男人,更需要更多の女人,那样才有可能得到最强の血脉传承.像陈三六这样命好の男人,实在是太少了,还有懂豪那货,也是托了根汉の福,给他找到了几百个老婆,结果随便生着玩,现在这些年都不知道有起码壹两百个孩子了.人类の繁殖能力是很恐怖の,尤其是修行界当,若是真の要 生の话,其速度会十分の恐怖.有时候建立壹个强大の家族,只需要三代不到の时间,壹百年不到可以拥有数千人の规模了.像懂豪他现在有壹百多个孩子了,而且这些孩子很快要长大了,如果都二十几岁生婚生孩子の话,用不了几十年,他の直系孙子孙女外孙外孙女之