八年级数学上册小专题训练(十二) 整式的化简求值
初中数学专题:整式化简求值60题(含答案)
![初中数学专题:整式化简求值60题(含答案)](https://img.taocdn.com/s3/m/c27a64b927284b73f3425012.png)
整式化简求值:先化简再求值1.)3(2)2132()83(3232--+-+-a a a a a a ,其中4-=a 2.)45(2)45(332-+---+-x x x x ,其中2-=x 3.求)3123()31(22122y x y x x +-+--的值,其中2-=x 32=y4.22221313()43223a b a b abc a c a c abc ⎡⎤------⎢⎥⎣⎦其中1-=a 3-=b 1=c 5.化简求值:若a=﹣3,b=4,c=﹣17,求{}222278[(2)]a bc a cb bca ab a bc --+-的值6.先化简后求值:2233[22()]2x y xy xy x y xy ---+,其中x=3,y=﹣137.8.化简求代数式:22(25)2(35)a a a a ---+的值,其中a=﹣1.9.先化简,再求值:2222115()(3),,23a b ab ab a b a b --+==其中 10.求代数式的值:2212(34)3(4)3,3xy x xy x x y +-+=-=,其中11.12.先化简,再求值:2(3a ﹣1)﹣3(2﹣5a ),其中a=﹣2. 13.先化简,再求值:22212()[3()2]2xy x x xy y xy ----++,其中x=2,y=﹣1. 14.先化简,再求值:222(341)3(23)1x x x x x -+---,其中x=﹣5. 15.先化简,再求值:32x ﹣[7x ﹣(4x ﹣3)﹣22x ];其中x=2. 16.先化简,再求值:(﹣2x +5x+4)+(5x ﹣4+22x ),其中x=﹣2. 17.先化简,再求值:3(x ﹣1)﹣(x ﹣5),其中x=2. 18.先化简,再求值:3(2x+1)+2(3﹣x ),其中x=﹣1.19.先化简,再求值:(32a ﹣ab+7)﹣(5ab ﹣42a +7),其中a=2,b=13. 20.化简求值:2111(428)(1),422x x x x -+---=-其中 21.先化简,再求值:(1)(52a +2a+1)﹣4(3﹣8a+22a )+(32a ﹣a ),其中13a = 22.先化简再求值:222232(33)(53),35x x x x -+--+=-其中 23.先化简再求值:2(2x y+x 2y )﹣2(2x y ﹣x )﹣2x 2y ﹣2y 的值,其中x=﹣2,y=2.24.先化简,再求值.4xy ﹣[2(2x +xy ﹣22y )﹣3(2x ﹣2xy+y2)],其中11,22x y =-=25.先化简,再求值:22x +(﹣2x +3xy+22y )﹣( 2x ﹣xy+22y ),其中 x=12,y=3.26.先化简后求值:5(32x y ﹣x 2y )﹣(x 2y +32x y ),其中x=-12,y=2.27.先化简,再求值:22223()3x x x x ++-,其中x=-1228.(52x ﹣32y )﹣3(2x ﹣2y )﹣(﹣2y ),其中x=5,y=﹣3.29.先化简再求值:(22x ﹣5xy )﹣3(2x ﹣2y )+2x ﹣32y ,其中x=﹣3,13y = 30.先化简再求值:(﹣2x +5x )﹣(x ﹣3)﹣4x ,其中x=﹣131.先化简,再求值:23)2(3)(2222==-+--y x x y y x x ,,其中, 32.223(2)[322()]x xy x y xy y ---++,其中1,32x y =-=-。
专题 整式的化简求值(五大题型50题)(原卷版)
![专题 整式的化简求值(五大题型50题)(原卷版)](https://img.taocdn.com/s3/m/ef4154bbd05abe23482fb4daa58da0116d171f75.png)
(苏科版)七年级上册数学《第三章代数式》专题整式的化简求值(50题)1.先化简再求值:2x 2y−[x y 2+3(x 2y−13x y 2)],其中x =12,y =2.2.先化简,再求值:4x 2﹣2xy +y 2﹣(x 2﹣xy +y 2),其中x =﹣1,y =−12.3.(2022秋•秦淮区期末)先化简,再求值:7a 2b +(﹣4a 2b +5ab 2)﹣(2a 2b ﹣3ab 2),其中a =﹣1,b =2.4.(2022秋•邹城市校级期末)先化简,再求值:(2x 2﹣2y 2)﹣4(x 2y +xy 2)+4(x 2y 2+y 2),其中x =﹣1,y =2.5.(2023•青秀区校级开学)先化简,再求值:4x+2(3y2﹣2x)﹣3(2x﹣y2),其中x=2,y=﹣2.6.(2022秋•龙沙区期中)先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2022.7.(2022秋•南海区校级期末)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.8.(2022秋•梁子湖区期末)先化简,再求值:5x2−[2xy−3(13xy+2)+4x2],其中x=−2,y=12.9.先化简,再求值:2(ab −32a 2+a ﹣b 2)﹣3(a ﹣a 2+23ab ),其中a =5,b =﹣2.10.先化简,再求值:2(mn ﹣4m 2﹣1)﹣(3m 2﹣2mn ),其中m =1,n =﹣2.11.先化简再求值:5xy ﹣(4x 2+2y )﹣2(52xy +x 2),其中x =3,y =﹣2.12.(2022秋•绿园区期末)先化简,再求值:12m−(2m−23n 2)+(−32m +13n 2),其中m =−14,n =−12.13.(2022秋•万秀区月考)先化简,再求值2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b,其中a=3,b=﹣2.14.(2022秋•陕州区期中)先化简,再求值3x2y−2(x2y+14x y2)−2(x y2−xy),其中x=12,y=﹣2.15.(2022秋•沈北新区期中)化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.16.先化简,再求值.若m2+3mn=﹣5,则代数式5m2﹣[5m2﹣(2m2﹣mn)﹣7mn+7]的值.17.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.18.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.19.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.20.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.21.(2022秋•荔湾区期末)已知a2+b2=3,ab=﹣2,求代数式(7a2+3ab+3b2)﹣2(4a2+3ab+2b2)的值.22.(2022秋•平昌县期末)先化简,再求值.已知代数式2(3x2﹣x+2y﹣xy)﹣3(2x2﹣3x﹣y+xy),其中x+y=67,xy=﹣2.23.有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b =﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1= .(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.24.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.25.阅读理解:已知4a−52b=1,求代数式2(a﹣b)+3(2a﹣b)的值.解:因为4a−52b=1,所以原式=2a−2b+6a−3b=8a−5b=2(4a−52b)=2×1=2.仿照以上解题方法,完成下面的问题:(1)已知a﹣b=﹣3,求3(a﹣b)﹣a+b+1的值;(2)已知a2+2ab=2,ab﹣b2=1,求2a2+5ab﹣b2的值.26.(2022秋•祁阳县期末)图是湘教版七年级上册数学教材65页的部分内容.明明同学在做作业时采用的方法如下:由题意得3(a2+2a)+2=3×1+2=5,所以代数式3(a2+2a)+2的值为5.【方法运用】:(1)若代数x2﹣2x+3的值为5,求代数式3x2﹣6x﹣1的值;(2)当x=1时,代数式ax3+bx+5的值为8.当x=﹣1,求代数式ax3+bx﹣6的值;(3)若x2﹣2xy+y2=20,xy﹣y2=6,求代数式x2﹣3xy+2y2的值.27.(2022秋•惠东县期中)有这样一道题“如果式子5a+3b的值为﹣4,那么式子2(a+b)+4(2a+b)的值是多少?”爱动脑筋的佳佳同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,则原式=2(5a+3b)=2×(﹣4)=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照佳佳的解题方法,完成下面问题:(1)已知a2﹣2a=1,则2a2﹣4a+1= ;(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值;(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求3a2+4ab+4b2的值.28.(2022秋•西安期中)化简求值:−12(5xy−2x2+3y2)+3(−12xy+23x2+y26),其中x、y满足(x+1)2+|y﹣2|=0.29.(2022秋•公安县期中)先化简,再求值:4a2b﹣[﹣2ab2﹣2(ab﹣ab2)+a2b]﹣3ab,其中a=12,b=﹣4.30.(2022秋•海林市期末)先化简再求值:12a+2(a+3ab−13b2)−3(32a+2ab−13b2),其中a、b满足|a﹣2|+(b+3)2=0.31.(2022秋•万州区期末)化简求32a2b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.32.(2022秋•偃师市期末)已知:(x−2)2+|y +12|=0,求2(xy 2+x 2y )﹣[2xy 2﹣3(1﹣x 2y )]+2的值.33.(2022秋•沙坪坝区校级期中)先化简,再求值:2(x 2y−2x y 2)−[(−x 2y 2+4x 2y)−13(6x y 2−3x 2y 2)],其中x 是最大的负整数,y 是绝对值最小的正整数.34.(2022秋•越秀区期末)已知代数式M =(2a 2+ab ﹣4)﹣2(2ab +a 2+1).(1)化简M ;(2)若a ,b 满足等式(a ﹣2)2+|b +3|=0,求M 的值.35.(2022秋•和平区校级期中)先化简再求值:若(a +3)2+|b ﹣2|=0,求3ab 2﹣{2a 2b ﹣[5ab 2﹣(6ab 2﹣2a 2b )]}的值.36.(2022秋•江都区期末)已知代数式A =x 2+xy ﹣12,B =2x 2﹣2xy ﹣1.当x =﹣1,y =﹣2时,求2A ﹣B 的值.37.已知:A =x −12y +2,B =x ﹣y ﹣1.(1)化简A ﹣2B ;(2)若3y ﹣2x 的值为2,求A ﹣2B 的值.38.(2022秋•邹平市校级期末)先化简,再求值:A =5xy 2﹣xy ,B =x y 2−2(32x y 2−0.5xy).求A ﹣B ,其中x ,y 满足(x +1)2+|3﹣y |=0.39.(2022秋•大丰区期末)已知A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a .(1)求A ﹣3B .(2)求当a =2,b =﹣1时,A ﹣3B 的值.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B﹣2A的值.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.43.(2023春•莱芜区月考)已知A =6a 2+2ab +7,B =2a 2﹣3ab ﹣1.(1)计算:2A ﹣(A +3B );(2)当a ,b 互为倒数时,求2A ﹣(A +3B )的值.44.(2021秋•沂源县期末)已知多项式x 2+ax ﹣y +b 与bx 2﹣3x +6y ﹣3差的值与字母x 的取值无关,求代数式3(a 2﹣2ab ﹣b 2)﹣4(a 2+ab +b 2)的值.45.(2022秋•大竹县校级期末)已知代数式x 2+ax ﹣(2bx 2﹣3x +5y +1)﹣y +6的值与字母x 的取值无关,求13a 3−2b 2−14a 3+3b 2的值.46.(2022秋•利川市校级期末)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式5ab2﹣[a2b+2(a2b﹣3ab2)]的值.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式3a2b−[2a b2−4(ab−34a2b)]+2a b2的值.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.。
人教版八年级上册数学解答题专题训练50题-含答案
![人教版八年级上册数学解答题专题训练50题-含答案](https://img.taocdn.com/s3/m/c45c1e0aae45b307e87101f69e3143323968f531.png)
人教版八年级上册数学解答题专题训练50题含答案一、解答题1.化简: (1)2221211x x x x x x+-+--;(2)(221a a b a b --+)÷b b a -.2.甲、乙两地相距300km ,乘高铁列车从甲地到乙地比乘特快列车少用0.5h ,已知高铁列车的平均行驶速度是特快列车的1.5倍,求特快列车平均行驶的速度.经检验,x=200是原方程的解,且符合题意.答:特快列车平均行驶的速度为200km/h .【点睛】本题考查的知识点是分式方程的实际应用,读懂题意,找出题目中的等量关系式是解此题的关键.3.先化简,再求值:(x +3)(x ﹣3)﹣x (2x +3)+(x +2)2,其中x =﹣2. 【答案】5x -,-7【分析】直接利用单项式乘多项式,乘法公式化简,进而合并同类项,再把已知数据代入得出答案.【详解】解:()()()()233232x x x x x +--+++=22292344x x x x x ---+++=5x -当x =-2时,原式=-2-5=-7.【点睛】此题主要考查了整式的混合运算-化简求值,正确运用整式的混合运算法则是解题关键.4.如图,在ABC ∆中,AB AC =,DAC ∠是ABC ∆的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作DAC ∠的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接,AE CF ; (3)在(1)和(2)的条件下,若15BAE ∠=︒,求B ∠的度数.(3)AB AC=B ACB∴∠=∠AM∠平分DAC∠=∠B CAM∴∠=∠EF垂直平分AE CE∴=DAM∠+DAM∴∠B55∴∠=【点睛】本题是对平行四边形知识的考查,熟练掌握尺规作图和平行四边形知识是解决本题的关键5.先化简,再求值222112211mm m m m m⎛⎫--÷⎪-+--⎝⎭,其中m满足2260m m+-=.22m m +22m m ∴+∴原式=62【点睛】本题考查了分式的化简求值;掌握好分式的运算法则,注意到代数式、方程的结构特征是解决本题的关键.6.解下列方程:(1)153x x =+; (2)32122x x x =---; (3)2212141x x =--; (4)2231022x x x x-=+-; (5)131x x x x +=--; (6)33122x x x -+=--; (7)221566x x x x +=++; (8)31523162x x -=--.7.列方程解应用题今年1月下旬以来,新冠肺炎疫情在全国范围内迅速蔓延,而比疫情蔓延速度更快的是口罩恐慌.企业复工复产急需口罩,某大型国有企业向生产口罩的A、B两厂订购口罩,向A厂支付了1.32万元,向B厂支付了2.4万元,且在B厂订购的口罩数量是A长的2倍,B厂的口罩每只比A厂低0.2元.求A、B两厂生产的口罩单价分别是多少元?8.已知3a b +=,1ab =,求:(1)22a b +的值;(2)a b -的值.9.计算4xy 2•(﹣2x ﹣2y )2.10.计算(1)2(2)(2)a a a ⋅--- (2)()()344325321510205x y x y x y x y --÷-【答案】(1)26a -;(2)32324y xy -++【分析】(1)先计算单项式乘法,幂的乘方和积的乘方,再合并;(2)直接利用多项式除以单项式法则计算.【详解】解:(1)2(2)(2)a a a ⋅---=2224a a --=26a -;(2)()()344325321510205x y x y x y x y --÷-=32324y xy -++【点睛】本题考查了整式的混合运算,解题的关键是掌握运算法则和运算顺序. 11.如图,在∠ABC 中,AD 平分∠BAC ,点P 为线段AD 上的一个点,PE ∠AD 交BC 的延长线于点E .若∠B =35°,∠ACB =85°,求∠BAD 和∠E 的度数.12.如图,线段AD 、CE 相交于点B ,BC BD =,AB EB =,求证:ACD EDC ≌.【答案】证明见详解【分析】由BC=BD ,可得∠ADC=∠ECD ,再证明CE=DA .而CD 边公共,根据SAS 即可证明∠ACD∠∠EDC .【详解】证明:∠BC=BD , ∠∠ADC=∠ECD ,又AB=EB ,∠BC+EB=BD+AB ,即CE=DA .在∠ACD 与∠EDC 中DA CE ADC ECD CD DC ⎪∠⎪⎩∠⎧⎨=== ∠∠ACD∠∠EDC (SAS ).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.已知x+y=xy ,求代数式(222x x y x y x y ---)÷2222x xy x xy y --+的值. 【答案】0【分析】先把除法变成乘法,变形后整体代入,即可求出答案,需要用的公式是22x y -=(x-y )(x+y ),222x xy y -+=2x y -().【详解】原式=[﹣]•=[﹣]•=1﹣,把x+y=xy 代入得:原式=1﹣1=0.【点睛】灵活运用两个数的平方差和完全平方式.14.先化简23939x x x x --+-,再选择一个合适的x 代入求值.15.(1)计算:10211)(1)4-⎛⎫--+ ⎪⎝⎭ (2)化简:2(21)(44)a a a +-+16.(1)计算:(2)求的值: 【答案】(1)-1;(2)x=4或-2【详解】试题分析:(1)先将所给的各式求值,然后加减计算即可;(2)利用平方根的意义可求出x 的值.试题解析:(1)=-2-1+2=-1;(2)因为,2(3)9±=,所以13x -=±,所以13x =±,所以x=4或-2. 考点:实数的计算、平方根.17.解方程:(1)231x x =+ (2)31144x x x--=--18.已知:如图,点A 、B 、C 在同一直线上,AD∠CE ,AD=AC ,∠D=∠CAE.求证:DB=AE.【答案】证明见解析.【详解】试题分析:由平行的性质得到∠DAB=∠C ,从而由ASA 证明∠ABD∠∠CEA ,进而根据全等三角形边相等的性质得到DB=AE.试题解析:∠AD∠CE ,∠∠DAB=∠C,在∠ABD 和∠CEA 中,{D CAEAD AC DAB C∠=∠=∠=∠,∠∠ABD∠∠CEA(ASA).∠DB=AE.考点:1.平行的性质;2.全等三角形的判定和性质.19.如图,已知AO =DO ,∠OBC =∠OCB .求证:∠1=∠2.【答案】见解析.【详解】分析:(1)、根据∠OBC=∠OCB 得出OB=OC ,然后根据SAS 证明∠AOB 和∠DOC 全等,从而得出答案.详解:证明:∠∠OBC =∠OCB ,∠OB =OC .在∠AOB 和∠DOC 中,OA=OD ,∠AOB=∠DOC ,OB=OC ,∠∠AOB∠∠DOC (SAS), ∠∠1=∠2.点睛:本题主要考查的是三角形全等的判定与性质,属于基础题型.根据题意得出OB=OC 是解决这个问题的关键.20.如图是由边长相等的小正方形组成的网格,要求仅用无刻度的直尺在给定的网格中按步骤完成下列画图(画图过程用虚线表示,画图结果用实线表示).(1)在图1中,∠作出ΔABC 的高AH ;∠作出点B 关于AH 的对称点P ;(2)在图2中,∠过BC 上一点D 作DE ∠AB ,使四边形ABDE 为平行四边形;∠在平行四边形ABDE 中,作出∠BDE 的平分线DF . 【答案】(1)见解析;(2)见解析.【分析】(1)根据SAS 判定ADF BEC ,再根据相似三角形的对应角相等得到AFD BCE ∠=∠,结合等角的余角相等可得90B BCE B AFD ∠+∠=∠+∠=︒,继而得到AH BC ⊥,延长AH 至格点即可;∠点B 关于AH 的对称点即在AH 的右侧,取BH=HP 即可;(2)∠根据一组对边平行且相等的四边形是平行四边形,作出线段DE ,且DE =AB ,即可得到平行四边形ABDE ;∠以E 为圆心,DE 为半径作弧,交AE 边于点F ,可知DE =EF ,由等边对等角性质,得到∠=∠EFD EDF ,再由两直线平行,内错角相等性质可得EFD FDB ∠=∠,由此得到EDF FDB ∠=∠,即DF 是∠BDE 的平分线.【详解】解:(1)∠如图1所示,AH 即为所求;∠点P 即为所求的对称点;(2)∠如图1所示,DE 即为所求;∠DF 即为所求的角平分线;【点睛】本题考查尺规作图,涉及相似三角形的判定与性质、平行四边形的性质、角平分线的性质、等边对等角等知识,是重要考点,难度较易,掌握相关知识是解题关键.21.因式分解:(1)229x y -;(2)2()3()x a b b a ---;(3)322363x x y xy -+-. 【答案】(1)(3)(3)x y x y +-(2)()(23)a b x -+(3)23()x x y --【分析】(1)根据平方差公式进行因式分解;(2)提取公因式(a -b ),从而得出答案;(3)首先提取公因式-3x ,然后再利用完全平方公式进行因式分解.(1)原式=()()33x y x y +-;(2)原式=()()23x a b a b -+-=()()23a b x -+;(3)原式=()2232x x xy y --+=()23x x y --. 【点睛】本题考查了因式分解,熟知提公因式法和公式法是解题的关键.22.图,四边形ABCD 中,AD ∠BC ,∠A =90°,CE ∠BD ,垂足为E ,BE =DA .求证:AB =EC .【答案】证明见解析【分析】由“ASA ”可证∠ABD ∠∠ECB ,可得AB =CE .【详解】证明:∠AD ∠BC ,∠∠ADB =∠EBC .∠CE ∠BD ,∠∠CEB =∠A =90°,在∠ABD 和∠EBC 中,A BEC AD BEADB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABD ∠∠ECB (ASA ),∠AB =CE .【点睛】本题考查了全等三角形的判定和性质,灵活选择判定定理是解题的关键. 23.先化简,再求值:(1)(x +1)2﹣(x +2)(x ﹣3),其中x =3(2)已知2a 2+3a ﹣6=0,求代数式3a (2a +1)﹣(2a +1)(2a ﹣1)的值. 【答案】(1)3x +7,16;(2)2a 2+3a +1;7【分析】(1)先进行完全平方运算和多项式乘法,再合并同类项,最后代入求值,即可解答;(2)先将2a 2+3a ﹣6=0变形为2a 2+3a =6,再化简代数式,代入即可求解.【详解】解:(1)原式=(x 2+2x +1)﹣(x 2﹣x ﹣6)=x 2+2x+1﹣x 2+x +6=3x +7,当x =3时,原式=337⨯+= 9+7=16;(2)∠2a 2+3a ﹣6=0,即2a 2+3a =6,∠原式=6a 2+3a ﹣(4a 2﹣1)=6a 2+3a ﹣4a 2+1=2a 2+3a +1=6+1=7.【点睛】本题主要考查了整式的化简求值,熟练掌握整式的四则运算法则是解题的关键.24.如图,已知△ABC 和△ADE ,AB =AD ,∠BAD =∠CAE ,AC =AE ,AD 与BC 交于点P ,点C 在DE 上.求证:BC =DE .【答案】见解析【分析】先证∠BAC =∠DAE ,再证△ABC ∠∠ADE (ASA ),即可得出结论.【详解】∠BAD CAE ∠=∠,∠BAD DAC CAE DAC ∠+∠=∠+∠,即BAC DAE ∠=∠,在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∠()ABC ADE SAS △≌△,∠BC DE =.【点睛】本题考查了全等三角形的判定与性质,证明△ABC ∠∠ADE 是解题的关键. 25.如图,是一个有理数运算程序的流程图,请根据这个程序回答问题:当输入的x 为4时,求最后输出的结果y 是多少?26.已知228=0x x --,求()()241223x x x ---+的值.【答案】23【分析】原式利用完全平方公式及单项式乘以多项式法则计算,整理后将已知等式变形代入计算即可求出值.【详解】解:原式=22484243x x x x -+-++2247x x =-+()2227x x =-+,当228=0x x --,即228x x -=时,原式16723=+=.【点睛】本题考查了完全平方公式及单项式乘以多项式化简求值,整体代入是解题的关键.27.已知△ABC 是等边三角形,点D 是直线AB 上一点,延长CB 到点E ,使BE =AD ,连接DE ,DC ,(1)若点D 在线段AB 上,且AB =6,AD =2(如图∠),求证:DE =DC ;并求出此时CD 的长;(2)若点D 在线段AB 的延长线上,(如图∠),此时是否仍有DE =DC ?请证明你的结论;(3)在(2)的条件下,连接AE ,若23AB AD =,求CD :AE 的值.AB228.如图所示,小刚家门口的商店在装修,他发现工人正在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=7dm,r=1.5dm,他想知道剩余阴影部分的面积,你能利用所学过的因式分解的知识帮助小刚计算吗?请写出求解过程(结果保留π).【答案】40πdm 2.,见解析【分析】可利用大圆的面积减去四个小圆的面积列式计算可求解. 【详解】解:∠R =7dm ,r =1.5dm ,∠阴影部分的面积为:πR 2﹣4πr 2=π(R 2﹣4r 2)=π(R +2r )(R ﹣2r )=π(7+2×1.5)(7﹣2×1.5)=10×4π=40π(dm 2),故剩余阴影部分的面积为40πdm 2..【点睛】本题主要考查因式分解的应用,根据题意列算式是解题的关键. 29.计算:(1)()3231(2)22m n mn m ⎛⎫-⋅-÷ ⎪⎝⎭; (2)2(2)(3)(3)a b a b a b --+-.30.计算题:(1)(﹣1)23×(π﹣3)0﹣(﹣12) ﹣3; (2)a •a 2•a 3+(﹣2a 3)2﹣a 8÷a 2;(3)(x +4)2﹣(x +2)(x ﹣2);(4)(a +2b ﹣3c )(a ﹣2b +3c ).31.计算:(1)21(2021)|3|2π-⎛⎫-+---⎪⎝⎭(2)()3212816(4)x x x x-+÷-【点睛】此题考查了实数的混合运算和整式的混合运算,熟记零指数幂、负整数指数幂等运算法则是解题的关键.32.有一电脑程序:每按一次按键,屏幕的A 区就会自动加上2a ,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和-16,如图.如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由. 【答案】(1)2252a +;166a --;(2)24a 12a+9-;和不能为负数,理由见解析.【分析】(1)根据题意,每按一次按键,屏幕的A 区就会自动加上2a ,B 区就会自动减去3a ,可直接求出初始状态按2次后A ,B 两区显示的结果.(2)依据题意,分别求出初始状态下按4次后A ,B 两区显示的代数式,再求A ,B 两区显示的代数式的和,判断能否为负数即可.【详解】解:(1)A 区显示结果为:22225+a +a =25+2a ,B 区显示结果为:163a 3a=166a ﹣--﹣-;(2)初始状态按4次后A 显示为:2222225+a +a +a a 254a +=+B 显示为:163a 3a 3a 3a=1612a ﹣----﹣-∠A+B=225+4a +(-1612a)-=24a 12a+9-=2(2a 3)-∠2(2a 3)0≥-恒成立,∠和不能为负数.【点睛】本题考查了代数式运算,合并同类项,完全平方公式问题,解题关键在于理解题意,列出代数式进行正确运算,并根据完全平方公式判断正负.33.计算并验证:(1)()()232a b a b ++=_____________________;(2)请用图形证明上面等式. 【答案】(1)22672a ab b ++;(2)作图见详解.【分析】(1)利用多项式乘以多项式化简即可;(2)作一个边长为()2a b +和()32a b +的矩形即可.【详解】(1)解:232a b a b226432a ab ab b22672a ab b (2)如图示,作一个边长为()2a b +和()32a b +的矩形,则矩形内个矩形的面积如下图示,即有:232a b a b 22672a ab b【点睛】本题考查了多项式乘以多项式的计算与证明,能作出相应的图形,利用面积来证明是解题的关键.34.如图,在Rt∠ABC 中,∠ACB =90°,∠B =30°,AC =3,AD 是∠ABC 的角平分线,DE ∠AB 于点E ,连接CE .求CE 的长;【答案】3【分析】只要证明ACE △为特殊三角形,则CE 的长度可求,因为60BAC ∠=︒,猜测ACE △为等边三角形,只要AC AE =即可,而通过已知条件可知AED ACD ≅,所以AE AC =,则ACE △为等边三角形,CE 的长度可求.【详解】∠AD 平分∠BAC ,∠∠EAD =∠CAD . ∠∠ACB =90°,DE ∠AB ,∠∠ACD =∠AED .又∠AD =AD ,∠∠ACD ∠∠AED .∠AE =AC .∠∠ACB =90°,∠B =30°,∠∠BAC =60°.∠∠ACE 为等边三角形, ∠CE =AC =3.【点睛】本题主要考查等边三角形的性质及判定,全等三角形的性质及判定,能够证明是等边三角形是解题的关键.35.如图,已知点M 、N 和∠AOB ,用尺规作图作一点P ,使P 到点M 、N 的距离相等,且到∠AOB 两边的距离相等.(保留作图痕迹,不写作法)【答案】见解析【分析】利用角平分线的作法以及线段垂直平分线的作法进而求出其交点即可.【详解】解:(1)作∠AOB 的平分线,(2)作MN 的中垂线,两线相交于点P ,点P 即为所求【点睛】此题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题关键.36.如图,已知∠A=∠F,AB∠EF,BC=DE,请说明AD∠CF.【答案】见解析【分析】根据平行线的性质得到∠B=∠E,根据全等三角形的性质得到∠ADC=∠FCE,由平行线的判定定理即可得到结论.【详解】证明:∠BC=DE,∠BD=EC,∠AB∠EF,∠∠B=∠E,在∠ABD与∠FEC中,A FB EBD CE∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ABD∠∠FEC,∠∠ADC=∠FCE,∠AD∠FC.【点睛】此题主要考查全等三角形的判定及性质,熟练掌握全等三角形的判定和性质定理是解题的关键.37.求证:线段垂直平分线上的点到这条线段两个端点的距离相等.【答案】答案见解析【分析】根据题意得出三角形全等,再根据全等三角形的性质作出证明即可.【详解】解:如图,已知AD是BC的垂直平分线,∠AD∠BC,DB=CD∠在∠ADB和∠ADC中AD=ADADB=ADCBD=DC⎧⎪∠∠⎨⎪⎩∠∠ADB∠∠ADC(SAS)∠AB=AC故线段垂直平分线上的点到这条线段两个端点的距离相等.【点睛】本题主要考查了线段垂直平分线的性质,弄清楚此性质的来源是解题的关键. 38.我们学过三角形的相关知识,在“信息技术应用”——画图找规律的实践学习中,我们发现了几个基本事实:三角形的三条中线交于一点,三角形的三条角平分线交于一点,三角形的三条高所在的直线交于一点.请根据以上的基本事实,解决下面的问题.如图,钝角三角形ABC中,AD,BE分别为BC,CA边上的高.(1)请用无刻度直尺画出AB边上的高CF(保留作图痕迹,不写作法);(2)在(1)的条件下,若4AB=,2AC=,求高CF与BE的比是多少?【答案】(1)见解析(2):1:2CF BE=【分析】(1)延长DA交BE的延长线于点G,连接CG交BA延长线于F,即可得出分别是ABC 的边ABC S =12ABC S AC BE =⋅AB CF ⋅4AB =39.(1)先化简,再求值:,其中.(2)已知,,求的值. 【答案】(1)1;(2)32【详解】(1)先根据完全平方公式、平方差公式以及多项式乘多项式把括号展开,再合并同类项,最后把a 、b 的值代入即可求值;(2)把原式变为含有(a-b )、ab 的式子,然后代入求值.(1)(2x+3)(2x ﹣3)+(x ﹣2)2-3x (1﹣x )=4x 2﹣9+x 2-4x+4+3x ﹣3x 2=2x 2 – x-5,当x=2时,原式=1.(2)a 2+b 2=(a-b)2+2ab=(-4)2+2×8=32.40.某农场开挖一条长960米的渠道,开工后工作效率比原计划提高50%,结果提前4天完成任务.问原计划每天挖多少米渠道?41.如图,点A ,E ,F ,B 在直线l 上,AE BF =,//AC BD ,且AC BD =,求证:ACF BDE ≅△△.【答案】见解析【分析】先证明AF BE =,然后根据平行线的性质得到∠CAF=∠DBE ,用SAS 即可证明∠ACF∠∠BDE .【详解】证明:AE BF =,AE EF BF EF ∴+=+,即AF BE =;//AC BD ,CAF DBE ∴∠=∠在ACF △与BDE △中,AC BD CAF DBE AF BE =⎧⎪∠=∠⎨⎪=⎩ACF BDE ∴≅.【点睛】本题考查的是全等三角形的SAS 判定、平行线的性质,掌握SAS 判定是解题的关键.42.已知 3m a =,3n b =,分别求:(1)3m n +.(2)233m n +.(3)2333m n + 的值. 【答案】(1)ab (2)23a b(3)23a b +【分析】(1)根据同底数幂乘法的逆运算计算法则求解即可;(2)根据同底数幂乘法和幂的乘方的逆运算计算法则求解即可;(3)根据幂的乘方的逆运算计算法则求解即可.(1)解:∠3m a =,3n b =,∠=333m n n m ab +⋅=;(2)解:∠3m a =,3n b =,∠()()2322323233=33333m n m n n m a b a b +⋅=⋅=⋅=;(3)解:∠3m a =,3n b =,∠()()223233+3=333n m n m a b +=+.【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,熟知相关计算法则是解题的关键.43.计算:2136b a ab-.4412121)16(2--+45.计算:22353339m m m m +⎛⎫+÷ ⎪+--⎝⎭.46.先阅读理解下面的例题,再按要求解答下列问题.例题:求代数式248y y ++的最小值.解:22248444(2)4y y y y y ++=+++=++∠()220y +≥∠()2244y ++≥∠代数式248y y ++的最小值为4.(1)求代数式222x x --的最小值.(2)若269|1|0a a b -+++=,则b a =_________.(3)某居民小区要在一块一边靠墙(墙长15m )的空地上建一个长方形花园ABCD ,花园一边靠墙,另三边用总长为20m 的栅栏围成.如图,设()m AB x =,请问:当x 取何值时,花园的面积最大?最大面积是多少?由题意可得,花园的面积为:()()()2222022202102550x x x x x x x -=-+=--=--+, ∠()2250x --≤,∠当x =5时,花园的面积取得最大值,此时花园的面积是50,BC 的长是20−2×5=10<15,答:当x 取5时,花园的面积最大,最大面积是50m 2.【点睛】本题考查了完全平方公式的变形及应用,非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.47.计算: (2)(2)a b c a b c -+--.【答案】22244a ab b c -+-【详解】试题分析:利用平方差公式化简,再利用完全平方公式展开即可得到结果. 试题解析:()()22a b c a b c -+--=(2a-b )2-c 2=22244a ab b c -+-48.因式分解:(1)m 4-81;(2)22363x xy y -+- 【答案】(1)原式2(9)(3)(3)m m m =++-;(2)原式23()x y =--【详解】试题分析:试题分析:(1)用“平方差公式”连续分解两次即可;(2)先提“公因式”,再用“完全平方公式”分解即可.试题解析:(1)原式()()()()()22299933m m m m m =+-=++-; (2)原式()()222323x xy y x y =--+=--. 49.先阅读下列材料,再解答下列问题:材料:因式分解:()()221x y x y ++++.解:将“x y +”看成整体,设x y A +=,则,原式()22211A A A =++=+.再将“A ”还原,得原式()21x y =++.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:()()44a b a b ++-+;(2)求证:若n 为正整数,则式子()()()21231n n n n ++++的值一定是某一个整数的平方. 【答案】(1)()22a b +-(2)证明见解析【分析】(1)把a+b 看作一个整体,去括号后利用完全平方公式即可将原式因式分解;(2)将原式转化为()()223231n n n n ++++,进一步整理为2231n n ,根据n 为正整数得到2231n n 也为正整数,从而说明原式是整数的平方.(1)解:设A a b =+,则原式()()2244442A A A A A =-+=-+=-,所以()()()2442a b a b a b ++-+=+-;(2)证明:()()()()()()212313121n n n n n n n n ⎡⎤++++=++++⎣⎦ ()()223321n n n n =++++,设23B n n =+,原式()()()22222121131B B B B B n n =++=++=+=++. ∠n 为正整数,∠231n n ++也为正整数,∠式子()()()21231n n n n ++++的值一定是某一个整数的平方.【点睛】本题考查因式分解的应用,解题的关键是仔细读题,理解题意,掌握整体思想解决问题的方法.50.若x 满足()()944x x --=,求()()2249x x -+-的值. 解:设9x a -=,4x b -=,则()()944x x ab --==,()()945a b x x +=-+-=, ∠()()()22222942522413x x a b a b ab -+-=+=+-=-⨯=请仿照上面的方法求解下面问题:(1)若x 满足()()522x x --=,求()()2252x x -+-的值. (2)若x 满足()()631x x --=,求代数式92x -的值.(3)已知正方形ABCD 的边长为x ,E ,F 分别是AD 、DC 上的点,且2AE =,5CF =,长方形EMFD 的面积是48,分别以MF 、DF 作正方形,求阴影部分的面积.∠(x-2)•(x-5)=48,∠(x-2)-(x-5)=3,∠阴影部分的面积=FM2-DF2=(x-2)2-(x-5)2.设(x-2)=a,(x-5)=b,则(x-2)(x-5)=ab=48,a-b=(x-2)-(x-5)=2,∠a=8,b=6,a+b=14,∠(x-2)2-(x-5)2=a2-b2=(a+b)(a-b)=14×2=28.即阴影部分的面积是28.【点睛】本题考查了完全平方公式和几何图形面积,解决本题的关键是要应从整体和部分两方面来理解完全平方公式的几何意义.。
二次根式的化简求值题(分层练习)(提升练)-八年级数学上册基础知识专项突破讲与练(北师大版)
![二次根式的化简求值题(分层练习)(提升练)-八年级数学上册基础知识专项突破讲与练(北师大版)](https://img.taocdn.com/s3/m/ce5fe2dfb8d528ea81c758f5f61fb7360b4c2b3e.png)
专题2.25二次根式的化简求值50题(分层练习)(提升练)1.已知x =,y =,求下列各式的值:(1)22x y -.(2)22252x xy y -+.2.(1)先化简,再求值:)(x x x x ++-,其中x =(2)已知x y =,试求代数式22252x xy y -+的值.3.(1(2;(3)已知2x =,求代数式((272x x ++4.(1)已知x =y =,求22x xy y ++的值;(275.已知x =y =,求代数式223x xy y -+的值.6.在数学小组探究学习中,张兵与他的小组成员遇到这样一道题:已知a =2281a a -+的值.他们是这样解答的:2=-∴2a -=,∴()223a -=,即2443a a -+=,∴241a a -=-,∴()()222812412111a a a a -+=-+=⨯-+=-.请你根据张兵小组的解题方法和过程,解决以下问题:(1)a =,则2281a a -+=.(2)若a =43443a a a --+的值.7.已知a =,b =8.先化简,再求值:(()1x x x x -+-,其中2x =.9.已知a =,b =求:(1)22a b ab -的值;(2)22a ab b ++的值.10.先化简,再求值:(()22323a a a a --+,其中3a =.11.先化简下式,再求值:()()2237752x x x x -+----,其中1x =+.12.先化简,再求值:153y x ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中12x =,3y =.13,其中:3a =,2b =.14.已知.已知1,1a b ==.(1)代数式221a a -+的值为________;(2)求代数式22a b +值.15.已知a =,求代数式229a a -+的值.16.(1)已知1α=+,求代数式((241αα-+的值(2)已知4y =x y 的值.17.已知:x =y =,求22x xy y ++的平方根.18.已知a =,b =(1)22a b ab -(2)22a b +19.在数学课外学习活动中,嘉琪遇到一道题:已知a =,求2281a a -+的值.他是这样解答的:∵2a ==∴2a -=.∴()223a -=,即2443a a -+=,∴241a a -=-,∴()()222812412111a a a a -+=-+=⨯-+=-,请你根据嘉琪的解题过程,解决如下问题:(1)化简:=__________;=__________;(2)(3)若a =2481a a -+的值.20.已知1a =+,1b ,求22a b -和abb a+的值.21.某同学在解决问题:已知a =2362a a -+的值.他是这样分析与解的:1a ===+ ,1a ∴-=()212a ∴-=,2212a a -+=,221a a ∴-=,()223623223125a a a a ∴-+=-+=⨯+=,请你根据这位同学的分析过程,解决如下问题:(1)++ (2)若a =;①求2281a a --的值;②求3236216a a a --+的值.22.(1=,=;(2)已知x =((272x x ++(323.阅读材料:像))221⨯=()0a a =≥,……这种两个含二次根式的代数式相乘,积不含二次根式,我们称这两个代数式互为有理化因式.在进行二次根式运算时,利用有理化因式可以化去分母中的根号.数学课上,老师出了一道题“已知a =2361a a --的值.”聪明的小明同学根据上述材料,做了这样的解答:因为1a ===所以1a -=所以()212a -=,所以2212a a -+=所以221a a -=,所以2363a a -=,所以23612a a --=请你根据上述材料和小明的解答过程,解决如下问题:__________=______;2-的有理化因式是________=______;(2)若a =,求22123a a -++的值.24)0,0x y->>,其中1x =-,1y .25.先化简,再求值:(1a a a aa ⎛⎫++- ⎪⎝⎭,其中a =26.已知x =,y =(1)求222x xy y ++的值.(2)若x 的小数部分为a ,y 的整数部分为b ,求ax by +的平方根.27.已知非零实数a ,b 满足=28.先化简,再求值:()()()22282x y x y x y --++,其中1x =1y =.29.已知12x =,求()33420252022x x --.30.已知1,10,15a b c ==-=-31.已知:12x x +=,求221x x+的值.32.已知8a b +=-,12ab =,求33.(1)已知a 、b4b +,求a 、b 的值.(2)已知实数a 满足2021a a -,求22021a -的值.34.已知x =y =,求代数式22x y +的值.35.先化简,再求值:()()()22 2222a b a b a b b ⎡⎤++-⎣⎦+-2069b b ++=.36.已知x =y =,求代数式22205520x xy y ++的值.37.已知x =,y =.(1)求33x y xy +的值;(2)求y x x y +的值.38.若x ,y 为实数,且12y =39.已知x =y =.求:(1)x y +和xy 的值;(2)求22x xy y -+的值.40.已知x =y =,求下列各式的值:(1)22x y -(2)222x xy y ++.41.有这样一类题目:如果你能找到两个数m 、n ,使22m n a +=且mn =a ±将变成222m n mn +±,即变成2()m n ±(1)例如,∵222532+=++=++=,==______,请完成填空.(2)(3)利用上面的方法,设A =,B =,求A +B 的值.42.已知a =,b =,求b a a b+的值.43.先化简,再求值:⎛- ⎝,其中8x =,127y =.44.(12-+4x =.(2)已知x =y =,求22x xy y -+值.45.已知3y =+,若a b =a2+b 2+ab 的值.46.(1)已知x ,y ﹣2,求下列各式的值:①11x y +;②x 2﹣xy +y 2;(28=.47.已知x =1x 的值.48.已知=x x 的整数部分为a ,小数部分为b ,求2a b a b--+的值.49.(1)先化简,再求值:((26a a a a +---+,其中1a -.(2)已知2x =,2y =223x y xy+-50.已知a =b =(1)求22a ab b -+的值;(2)若a 的小数部分为m ,b 的小数部分为n ,求()()m n m n +-的值.参考答案1.(1);(2)42【分析】(1)先求解x y x y +-,再利用平方差公式进行因式分解,再直接代入计算即可;(2)先求解()2x y xy ,+再利用完全平方公式进行变形求值即可.(1)解:∵x =y ,∴x y +=,x y -=∴()()22x y x y x y -=+-=;(2)解:∵x =y ,∴x y +=,2xy ==-∴()22222529yx y y x x y x =+--+(()229242=-´-=.【点拨】本题考查的是二次根式的求值,二次根式的加减乘法的混合运算,掌握“利用平方差公式与完全平方公式进行变形求解代数式的值”是解本题的关键.2.(15-,1-(2)42【分析】(1)先计算整式的乘法,再合并同类项,然后把x =(2)先利用x 、y 的值计算出x y -=2xy =-,再利用完全平方公式得到222252(2)x xy y x y xy -+=--,然后利用整体代入的方法计算.(1)解:)(x x x x ++-225x x =-+-5=-,当x =原式56512=-=-=-(2)解:∵x =y ,∴x y -=,352xy =-=-,∴222252(2)x xy y x y xy-+=--(()222=⨯--42=.【点拨】本题主要考查了二次根式的混合运算,整式的混合运算,熟练掌握相关运算法则是解题的关键.利用整体代入的方法可简化计算.3.(1(2);(3)2【分析】(1)根据二次根式的乘除混合计算法则求解即可;(2)根据二次根式的混合计算法则求解即可;(3)直接把2x =((272x x ++++然后合并同类二次根式即可得到答案.解:(1)原式=(2)原式===(3)原式((27222=+-++-+()74343=+-+-+(7743=+-+-49481=-++2=【点拨】本题主要考查了二次根式的混合计算,二次根式的化简求值,二次根式的乘除混合计算,熟知相关计算法则是解题的关键.4.(1)11;(2)【分析】(1)先计算出x y xy +,值,再根据()222x xy y x y xy ++=+-,代入计算即可得到答案;(2x y ==,则2222727936x y x y a a +=+=-++=,,从而可以求出=33<解:(1) x =y =,x y ∴+==321xy ==-=,∴()222x xy y x y xy ++=+-(2111=-=;(2x y ==,则2222727936x y x y a a +=+=-++=,,∴()()222213xy x y x y =+-+=,∴()222223x y x y xy -=+-=,∴x y -==33<=【点拨】本题考查了运用完全平方公式的变形进行求值,注()222x xy y x y xy ++=+-以及整体思想的运用.5.3【分析】先将x 、y 的值分母有理化,再代入到原式2)x y xy --=(计算可得.解:1x == ,1y =,∴原式()2=--x y xy))21111=--41=-3=【点拨】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式分母有理化的能力.6.(1)1-;(2)4【分析】(1)仿照例题,可以求得所求式子的值;(2)仿照例题,将a 的值分母有理化,然后变形,即可求得所求式子的值.(1)解:2a ==+ ,2a ∴-()223a ∴-=,2443a a ∴-+=,241a a ∴-=-,()()22281241211211a a a a ∴+=+=⨯-+=---+=-,故答案为:1-;(2)解:2a =+ ,2a ∴-=,()225a ∴-=,2445a a +-∴=,241a a ∴-=,()43222244344314343134a a a a a a a a a a a ∴+=-+=⨯-++--=-=+=-,即43443a a a --+的值为4.【点拨】本题考查二次根式的化简求值、分母有理化,解答本题的关键是明确题意,利用类比的方法解答.7.【分析】先分母有理化求出a b 、的值,再利用完全平方公式将222a b ++变形为2()22a b ab +-+,然后代入求值即可.解:2a =,2b =,====.【点拨】本题主要考查了二次根式的化简求值和完全平方公式的应用,熟练掌握化简方法和完全平方公式的变形是解题的关键.8.222x x --,32-.【分析】先用二次根式的混合运算法则化简,然后将2x =代入计算即可.解:(()1x x x x -+-,=222x x x -+-,=222x x --,当x =时,原式=22222--()(),=()212422---),=32-.【点拨】本题主要考查了二次根式的混合运算、代数式求值等知识点,正确运用二次根式的混合运算法则化简原式是解答本题的关键.9.(1)-;(2)11【分析】(1)根据二次根式的乘法法则求出ab ,根据二次根式的减法法则求出a b -,根据提公因式法把原式变形,代入计算即可;(2)根据完全平方公式把原式变形,代入计算,得到答案.(1)解:a = ,b =321ab ∴==-=,a b -=-=-则22a b ab -()ab a b =-(1=⨯-=-;(2)22a ab b ++2223a ab b ab=-++()23a b ab=-+2(31=-+⨯83=+11=.【点拨】本题考查的是二次根式的化简求值,掌握二次根式的加减法法则、乘法法则是解题的关键.10.26a a +,7-【分析】直接利用平方差公式以及二次根式的乘法将原式变形,进而合并同类项,进而把已知代入求出答案.解:原式2243363a a a =--++26a a =+,把3a 代入,得,原式))2336=+2918=+-7=-.【点拨】此题主要考查了平方差公式,多项式乘单项式以及二次根式的化简求值,正确化简原式是解题关键.11.224x x --,3-【分析】先去括号,然后合并同类项化简,最后代值计算即可.解:()()2237752x x x x -+----2237752x x x x -+--++=224x x =--,当1x =+时,原式())2222415115253x x x =--=--=--=-=-.【点拨】本题主要考查了二次根式的化简求值,正确计算是解题的关键.12.【分析】先确定00,x y >>,再利用二次根式的性质化简,然后计算二次根式的加减法,最后将x ,y 的值代入计算即可得.解:由题意得:100y x x >>,,∴00,x y >>,则153y x ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2221153x y x x y ⎛⎛=⋅⋅-- ⎝⎝=-=当12x =,3y =时,原式6====【点拨】本题考查了二次根式的化简求值,熟练掌握运算法则是解题关键.13.a b -,1.【分析】利用二次根式的性质和平方差公式化简,然后代入求值即可.221·ab =-a b =-a b =-,当3a =,2b =时,原式32=-1=.【点拨】题目主要考查二次根式的化简求值及平方差公式,熟练掌握二次根式的运算法则是解题关键.14.(1)3;(2)8【分析】(1)将221a a -+变形为()21a -,再代入a 的值求解即可;(2)将22a b +变形为()22a b ab +-,再代入a ,b 的值利用平方差公式和完全平方公式求解即可.(1)解:∵1a +,∴())222211113a a a -+=-=+-=,故答案为:3;(2)解:22a b +2222a b ab ab =++-()22a b ab =+-,当1,1a b =+=时,22a b +()22a b ab=+-)))211211⎡⎤=+-⎣⎦()12231=-⨯-8=.【点拨】本题考查二次根式的化简求值,掌握平方差公式和完全平方公式是解决问题的关键.15.13【分析】先对a进行分母有理化求出1a =,再把所求式子变形为()218a -+,再把1a =整体代入求解即可.解:∵a =,∴)())24141411511a ⨯+⨯+⨯+===+--,∴229a a -+2218a a =-++()218a =-+)2118=-+28=+58=+13=.【点拨】本题主要考查了二次根式的化简求值,分母有理化,正确求出1a =+并把所求式子变形为()218a -+是解题的关键.16.(1)2;(2)16.【分析】(1)把4-)21,再代入数据利用平方差公式计算即可求解;(2)根据二次根式有意义的条件得到20x -≥,20x -≥,求得2x =,4y =,再代入数据计算即可求解.解:(1)∵1α=,∴((241αα-+))()221111=+-))21111⎡⎤=--⎣⎦()()23131=---42=-2=;(2)∵4y =++4y =+∴20x -≥,20x -≥,∴2x =,4y =,∴2416x y ==.【点拨】本题考查了二次根式有意义的条件,二次根式的化简求值,掌握平方差公式的结构特征是解题的关键.17.±【分析】先将x 、y 化简,然后即可得到x y xy +、的值,从而可以求得所求式子的值.解:∵25x ==+,25y==-∴(55105525241x y xy +=++-==+-=-=,,∴22x xy y ++222x xy y xy=++-()2x y xy =+-2101=-1001=-99=.∵99的平方根为±∴22x xy y ++的平方根为±【点拨】本题考查二次根式的化简求值,求一个数的平方根,解答本题的关键是明确二次根式化简求值的方法.18.(1)-;(2)14【分析】(1)先把a 、b进行分母有理化得到2a =-2b =+,进而求出a b -=-1ab =,再根据()22a b ab ab a b -=-进行代值求解即可;(2)根据()2222a b a b ab +=-+进行求解即可.(1)解:∵a =b =∴a=b =,∴2243a -==-2243b ==-∴22a b -=---(22431ab =+-=-=,∴22a b ab -()ab a b =-1=-=-(2)解:由(1)得a b -=-1ab=,∴()(22222212214a b ab a b =-+=-+=+=+.【点拨】本题主要考查了二次根式的化简求值,正确求出a b -=-1ab=是解题的关键.19.,1;(3)5【分析】(1)根据分母有理化的方法进行求解即可;(2)把各项进行分母有理化,从而可求解;(3)仿照所给的解答方式进行求解.(1)解:==;2⨯=(21=++1;(3)解:∵1a ==,∴1a -=∴()212a -=,即2212a a -+=,∴()224814211442148145a a a a -+=-++-=⨯+-=+-=.【点拨】本题主要考查二次根式的化简求值,分母有理化,解答的关键是对相应的运算法则的掌握.20.4【分析】将a ,b 的值分别代入要求的式子中,然后按照二次根式运算的法则计算即可.解:22221)1)44a b -=-=++=2222842a b a b b a ab ++=====.【点拨】本题考查了二次根式的混合运算,熟记二次根式的混合运算法则是解题的关键.注意做这类计算题时,一定要细心.21.1;(2)①3-;②0;【分析】(1)根据例题可得:对每个式子的分子和分母,同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类二次根式即可求解;(2)①将a =化简,再得到241a a -=-,再整体代入化简后的式子计算即可;②根据241a a -=-,将所求式子变形,再整体代入计算即可.(1+ 1=1=;(2)解:① 2a ==-2a ∴-=()223a ∴-=,2443a a -+=241a a ∴-=-,∴()()222812412113a a a a --=--=⨯--=-,②由①知241a a -=-,∴3236216a a a --+()()()2224246436a a a a a a a a a =-+-+-++()()()1216136a a a =⨯-+⨯-+⨯-++2636a a a =---++0=.【点拨】本题考查了二次根式的化简求值,解题的关键是明确题意,利用平方差和完全平方公式解答.22.(1)2,2;(2)2+(3)>【分析】(1)根据二次根式的分母有理化可进行求解;(2)直接把x 的值代入求解即可;(3=解:(12142222-==-2;(2)∵x =,∴22x==∴((272x x ++((72=+⨯+⨯2=(3=;故答案为>.【点拨】本题主要考查二次根式的运算及分母有理化,熟练掌握二次根式的运算及分母有理化是解题的关键.23.2或2;2;(2)7【分析】(1)根据有理化因式的定义,进行求解即可;(2)根据题干给出的解题方法,进行求解即可.(1)解:∵321 =-=,=∵))()22341,22431=-=--=-=,22+或2,22=-=;2+或2;2;(2)解:∵(232332a+==+∴3a-=∴()237a-=,∴2697a a+=-,∴262a a-=-,∴22124aa-+=,∴221237a a-++=.【点拨】本题考查分母有理化.理解并掌握有理化因式的定义,是解题的关键.24.4【分析】利用二次根式的性质将原式化简,然后由平方差公式得出4xy=,代入求解即可.==,∵1x =-,1y =+,∴1)4xy ==,∴原式4==.【点拨】题目主要考查二次根式的化简及求代数式的值,平方差公式,熟练掌握运算法则是解题关键.25.223a -,3【分析】根据二次根式的混合运算法则,平方差公式和单项式乘多项式法则计算即可化简,再将a =代入化简后的式子计算即可.解:(1a a a a a ⎛⎫++- ⎪⎝⎭2221a a =-+-223a =-.当a =22232(33a =-=⨯-=.【点拨】本题考查二次根式的化简求值,涉及二次根式的混合运算,平方差公式和单项式乘多项式.熟练掌握各运算法则是解题关键.26.(1)20;(2)1±.【分析】(1)先分母有理化求出x 、y 的值,再求出x y +和xy 的值,最后根据完全平方公式进行变形,代入求出即可;(2)先求出x 、y 的范围,再求出a 、b 的值,最后代入求出即可.(1)解:12 2x ⨯==,2y =-,))22x y +=+-=,∴()(2222220x xy y x y ++=+==;(2)解;∵23,∴4<25+<,0<21-<,∵x 的小数部分为a ,y 的整数部分为b ,∴=a 24+-=2-,0y =,∴))2220541ax by +=+⨯=-=,∴ax by +的平方根是1=±.【点拨】本题考查了完全平方公式、分母有理化、估算无理数的大小、平方根等知识点,能求出x y +和xy 的值是解(1)的关键,能估算出x 、y 的范围是解(2)的关键.27.3【分析】利用因式分解将已知化为0=,得出a b =,然后代入所求代数式即可得解.解: 非零实数a ,b 满足=,由题意可知0,0a b >>,220∴+=,∴=0,0a b >> ,0∴,=,a b ∴=,2332a a a a a a++=+-62aa =3=.【点拨】此题考查了二次根式的化简求值,熟练掌握二次根式的性质、因式分解以及分式的性质是解答此题的关键.28.18xy -,18-【分析】根据完全平方差公式、多项式乘以多项式运算法则先运算,再根据整式加减运算法则,去括号、合并同类项即可得到化简结果,最后代值利用平方差公式求解即可得到结果.解:()()()22282x y x y x y --++()()22222448282x xy y x xy xy y =-+-+++22228828102x xy y x xy y =-+---()()()22228881022x x xy xy y y =-+--+-18xy =-,当1x =1y =时,原式)1811=-⨯2181⎡⎤=-⨯-⎢⎥⎣⎦()1821=-⨯-18=-.【点拨】本题考查整式化简求值,涉及完全平方差公式、多项式乘以多项式、整式加减运算、去括号法则、合并同类项、平方差公式及二次根式运算,熟练掌握相关运算法则及公式是解决问题的关键.29.1-.【分析】根据x =12x -=()22121442022x x x -=-+=,2442021x x -=,将原式化为()()3322444420212022x x x x x ⎡⎤-+---⎣⎦,再整体代入即可求解.解:∵12x =,∴112122x -=-⨯∴()22121442022x x x -=-+=,∴2442021x x -=,∴原式()()3322444420212022x x x x x ⎡⎤=-+---⎣⎦()32021202120212022x x =+--()31=-1=-.【点拨】本题主要考查二次根式的化简,能正确根据二次根式的运算法则进行计算是解题关键.30.【分析】把已知数据代入代数式,根据二次根式的性质化简即可.解:∵1,10,15a b c ==-=-,===【点拨】本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.31.5+【分析】根据2221112x x x x x x ⎛⎫+=+-⋅ ⎪⎝⎭进行计算求解即可.解:∵12x x +=,∴221x x +2112x x x x ⎛⎫=+-⋅ ⎪⎝⎭(222=+-432=+-5=+【点拨】本题主要考查了二次根式的化简求值,完全平方公式的变形求值,正确根据完全平方公式得到2221112x x x x x x ⎛⎫+=+-⋅ ⎪⎝⎭是解题的关键.32【分析】根据题意可判断a 和b 都是负数,然后二次根式的乘、除法公式和合并同类二次根式法则化简并求值即可.解:8a b +=-Q ,12ab =,∴a 和b 均为负数,()222240a b a b ab +=+-====b b a a-+-=22=22a b-+====3-=【点拨】此题考查的是二次根式的化简和完全平方公式的变形;掌握二次根式的乘、除法公式和合并同类二次根式法则是解决此题的关键.33.(1)5a =,4b =-;(2)2022【分析】(1)根据二次根式有意义的条件先求出a 的值,进而求出b 的值即可;(2)根据二次根式有意义的条件得到2022a ≥,2021=,两边平方即可得到答案.解:(14b +要有意义,∴501020a a -≥⎧⎨-≥⎩,∴5a =,4b =+,∴4b =-;(2)∵2021a a -要有意义,∴20220a -≥,∴2022a ≥,∴2021a a -=,2021=,∴220222021a -=,∴220212022-=a 【点拨】本题主要考查了二次根式有意义的条件,化简绝对值,代数式求值,熟知二次根式有意义的条件是被开方数大于等于0是解题的关键.34.24【分析】先计算出x y +=2xy =-,,再利用完全平方公式变形得到()2222x y x y xy +=+-,然后利用整体代入的方法计算.解:∵x =y =,∴x y +=++=2xy =+=-,∴()(()222222220424x y x y xy +=+-=-⨯-=+=.【点拨】本题主要考查二次根式的化简求值,代数式求值,解题的关键是熟练运用完全平方公式化简二次根式.35+【分析】先根据整式的混合运算法则将所求整式化简,再根据算术平方根和偶次幂的非负性求出a 、b ,代入即可作答.解:()()()22+ 2+2+22a b a b a b b --⎡⎤⎣⎦()()22222442322a ab b a ab b b⎡⎤=+++-⎣⎦--()22222442322a ab b a ab b b =+++---()23a a b =+23b a a =+=+,2069b b ++=,()203b +=,0≥,()203b +≥,0=,()203b +=,∴20a -=,30b +=,∴=2a ,3b =-,将=2a ,3b =-3+中,原式()3332=+=+⨯-=【点拨】本题考查了二次根式的加减乘除混合运算,其中涉及到了算术平方根的非负性和完全平方公式等,解决本题的关键是牢记整式的混合运算法则.36.2015【分析】直接利用分母有理化将原式化简,再将多项式变形,进而代入得出答案.解:∵x 25===-,y 25===+22205520x xy y ∴++2220402015x xy y xy=+++()2220215x xy y xy=+++()22015x y xy=++((22055155252=⨯-++⨯-+()22010152524=⨯+⨯-2010015=⨯+200015=+2015=.【点拨】本题主要考查了分母有理化,正确化简各数是解题关键.37.(1)10;(2)10【分析】(1)先求出xy 及x +y 的值,再将33x y xy +因式分解,最后再整体代入求值;(2)先将y x x y+通分,再通过完全平方公式变形,最后代入求值.解:(1)x y ==1,xy ∴=⨯+=x y +==()33222()212110x y xy xy x y xy x y xy⎡⎤⎡⎤∴+=+=+-=⨯-⨯=⎣⎦⎣⎦(2)y x x y +22y x xy+=2()2x y xy xy+-=2211-⨯=10=【点拨】本题考查与二次根式相关的代数式求值问题,解题的关键是整体思想的应用.38.【分析】先根据二次根式有意义的条件求出x 的值,进而求出y 的值,然后代值计算即可.解:∵12y =要有意义,∴140410x x -≥⎧⎨-≥⎩,∴1144x ≤≤即14x =,∴1122y ==,∴122x y y x==,,==【点拨】本题主要考查了二次根式有意义的条件,二次根式的求值,正确求出x 、y 的值是解题的关键.39.(1)1;(2)9【分析】(1)根据二次根式的加法法则即可求出x y +,根据二次根式的乘法法则即可求出xy ;(2)先根据完全平方公式变成()2223x xy y x y xy =+--+,再代入求出答案即可.(1)解:∵x =y =,∴x y ==++321xy ⨯==-=.∴x y +的值为xy 的值为1.(2)∵x y +=1xy =,22x xy y -+()23x y xy=+-(231=-⨯123=-9=.∴22x xy y -+的值为9.【点拨】本题考查二次根式的化简求值,完全平方公式,平方差公式.能正确根据二次根式的运算法则进行计算是解题的关键.40.(1);(2)12【分析】(1)先计算出x y +和x y -,再利用乘法公式得到()()22x y x y x y -=+-;(2)利用乘法公式得到222)2(x xy y x y =+++,然后利用整体代入的方法计算.(1)解:x =Q y =,x y ∴+=,x y -=()()22x y x y x y -=+-=(2)由(1)知x y +=∴22222()12x xy y x y ++=+==.【点拨】本题考查了二次根式的运算,完全平方公式、平方差公式等知识点.题目难度不大,注意整体代入思想的运用.41.1-;(3)2+【分析】(1(0)0(0)(0)a aa aa a>⎧⎪===⎨⎪-<⎩,即可得出相应结果.(2)根据(1)中“222532+=++=++=”,将代数式转化为完全平方公式的结构形式,再根据二次根式的性质化简求值,即可得出结果.(3)根据题意,首先把A式和B式分别转化为完全平方公式的结构形式,再根据二次根式的性质把A 式和B式的结果分别算出,最后把A式和B式再代入A+B中,求出A+B的值.解:(1)∵222 5232+=++=++==(2)∵)22 43111 -=+-=+-=-1-.(3)∵222 6422(2A=+++++⨯+∴2 A=+∵2212132B+-⨯⨯===∴B=====∴把A式和B式的值代入A+B中,得:222A B+=+=【点拨】本题考查二次根式的化简求值问题,完全平方公式.解本题的关键在熟练掌握二次根式的性(0)0(0)(0)a aa aa a>⎧⎪===⎨⎪-<⎩和熟练运用完全平方公式()2222a b a ab b±=±+.42.18【分析】先将条件变形为:2a=,2b=,然后将结论变形22a bab+,最后将化简后的条件代入变形后的式子就可以求出其值.解:∵a =,b =,∴2a +,2b -,∴ab =1,+=a b∴b a a b +()(22222218a b a b ab ab ++==-=-=.【点拨】本题主要考查了二次根式的分母有理化,完全平方公式的运用,正确求出2a =,2b =是解答本题的关键.43.2+3+.【分析】先根据二次根式的运算法则,在根据分式的运算法则计算即可,先化简,再代入8x =,127y =即可.解:原式2=-2=+,当8x =、127y =时,原式3=329=+⨯3=.【点拨】本题考查了二次根式及分式的运算法则,熟练掌握并应用二次根式及分式的运算法则是解答本题的关键.44.(1)(2)11【分析】(1)根据二次根式的性质化简,然后代入即可求出答案.(2)先由x 与y 的值计算出x ﹣y 和xy 的值,再代入原式=x 2﹣2xy +y 2+xy =(x ﹣y )2+xy 计算可得.解:(1)原式==,当4x =时,原式6=(2)∵x =y =,∴x y -==231xy ==-=-,原式=x 2﹣2xy +y 2+xy=(x ﹣y )2+xy=(2﹣1=12﹣1=11.【点拨】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式、平方差公式.45.3x +y ,15【分析】根据题意求出x 与y 的值,然后根据完全平方公式以及平方差公式进行化简,然后将x 与y 代入原式即可求出答案.解:∵3y =+有意义∴40x -≥且40x -≥∴x =4,∴y =3,∵a b =()222222a b ab a b ab ab a b ab++=++-=+-∴()2222a b ab a b ab ++=+-=+-(()2x y =--3x y=+把x =4,y =3代入上式中原式34315=⨯+=【点拨】本题主要考查了二次根式有意义的条件,二次根式的化简求解,完全平方公式和平方差公式,解题的关键在于能够熟练掌握相关知识进行求解.46.(1)①3;②19;(2)±【分析】(1)①根据x +2,y −2,可以得到xy 、x +y 的值,然后即可求得所求式子的值;②将所求式子变形,然后根据x2,y −2,可以得到xy 、x +y 的值,从而可以求得所求式子的值;(2)根据完全平方公式和换元法可以求得所求式子的值.解:(1)①11x y +=x yy x +,∵x 2,y ,∴x +y =,xy =3,当x +y =,xy =3时,原式=3;②x 2−xy +y 2=(x +y )2−3xy ,∵x 2,y ,∴x +y =,xy =3,当x +y ,xy =3时,原式=()2−3×3=19;(2x y ,则39−a 2=x 2,5+a 2=y 2,∴x 2+y 2=44,8,∴(x +y )2=64,∴x 2+2xy +y 2=64,∴2xy =64−(x 2+y 2)=64−44=20,∴(x −y )2=x 2−2xy +y 2=44−20=24,∴x −y =±,±故答案为:±【点拨】本题考查二次根式的化简求值、分式的加减法、平方差公式,解答本题的关键是明确它们各自的计算方法.47.32-【分析】先把=x x =再化简2154x x x --+得111x x ---,最后代入求值即可.解:x =+∵12<<∴34<<∴4x <1x1x=(4)1(4)(1)x x x x--=---111x x =---将x =代入上式得:原式=13(222-==-=【点拨】本题考查了二次根式的混合计算,熟练掌握运算法则是解答此题的关键.48.7-2=+12<得到3a =,1b =,将a 、b 代入即可计算即可.2=,12<<,∴3a =,1b =,∴(2312227a b a b -----===-+【点拨】本题考查二次根式的化简及计算,同时也考查了学生的估算能力,夹逼法是估算时常用的一种方法.49.(1)(a a ;5-(2)11【分析】(1)利用乘法公式化简,在代入求值计算即可;(2)把x ,y 代入代数式求解即可;解:(1)原式(222266a a a a a =--+=+=+,当1a -时,原式11=+,5=-.(2)由已知可得:1x y xy -==,原式=222x xy y xy -+-,()2=--x y xy,(21=-,121=-,11=.【点拨】本题主要考查了二次根式的化简计算,利用乘法公式化简是解题的关键.50.(1)13;(2)3-【分析】(1)利用二次根式的加法运算和乘法运算求得a b +和ab ,对所求式子利用完全平方公式变形,进而整体代入求出即可;(2)首先利用分母有理化法则求出a ,b的值,根据12<,可得m ,n 的值,进而代入求值即可.解:(1)22114442a b+-++====,1ab =,22a ab b -+()23a b ab=+-243=-13=;(2)2a ==,2b ==+∵12<<,21-<-,∴22221-<<-,21222+<<+,即021<,324<+∴2的整数部分是0,小数部分是2,即2m =2+31,即1n =,∴()()m n m n +-()()2121=3=-【点拨】本题主要考查了二次根式的化简求值,估算无理数的大小,根据12<<,得出m ,n 的值是解题关键,注意要分母有理化.。
专题12.2整式的乘除法【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]
![专题12.2整式的乘除法【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]](https://img.taocdn.com/s3/m/b1929684d05abe23482fb4daa58da0116c171f3f.png)
专题12.2整式的乘除法【十大题型】【华东师大版】【题型1由整式乘除法求代数式的值】【题型2由整式乘除法求字母的值】【题型3利用整式乘除法解决不含某项问题】【题型4利用整式乘除法解决与某个字母取值无关的问题】【题型5利用整式乘除法解决污染问题】【题型6利用整式乘除法解决误看问题】【题型7整式乘除法的应用】【题型8整式乘除法中的规律问题】【题型9整式乘除法中的新定义问题】【题型10 整式乘除法中的几何图形问题】知识点:整式的乘法、除法1.单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(1)只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏.(2)单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用.(3)单项式乘单项式的结果仍然是单项式.【注意】(1)积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值.(2)相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算.2.单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.用式子表示:m(a+b+c)=ma+mb+mc(m,a,b,c都是单项式).【注意】(1)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.(2)计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号.(3)对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果.3.多项式与多项式相乘(1)法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(2)多项式与多项式相乘时,要按一定的顺序进行.例如(m+n)(a+b+c),可先用第一个多项式中的每一项与第二个多项式相乘,得m(a+b+c)与n(a+b+c),再用单项式乘多项式的法则展开,即(m+n)(a+b+c)=m(a+b+c)+n(a+b+c)=ma+mb+mc+na+nb+nc.【注意】(1)运用多项式乘法法则时,必须做到不重不漏.(2)多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.4.单项式除以单项式单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式.【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.【注意】可利用单项式相乘的方法来验证结果的正确性.5.多项式除以单项式多式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.【注意】(1)多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.(2)多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项.(3)多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.【题型1 由整式乘除法求代数式的值】【例1】(23-24九年级上·安徽铜陵·期中)1.已知210a a +-=,则代数式()()()222a a a a +-++值为 .【变式1-1】(23-24八年级·福建泉州·期中)2.若3a b -=,4ab =-,则()()22a b -+值为 .【变式1-2】(23-24八年级·山东聊城·期中)3.如果()()5612a a -+=,那么2228a a --+的值为 .【变式1-3】(23-24八年级·福建·期中)4.已知2310x x --=,则代数式3102019x x -+值为 .【题型2 由整式乘除法求字母的值】【例2】(23-24八年级·安徽合肥·期中)5.已知(x +a )(x +b )=2x +mx +12,m 、a 、b 都是整数,那么m 的可能值的个数为( )A .4B .5C .6D .8【变式2-1】(23-24八年级·江苏扬州·期中)6.若()()2133x x x mx +-=+-,则m 值是 .【变式2-2】(23-24八年级·浙江杭州·期中)7.不论x 为何值,()()()2222222x x a x ax x a x a x a ++=+++=+++,226()()x x a x kx ++=++,则k = .【变式2-3】(23-24八年级·浙江温州·期中)8.关于x 的整式21A x =+,它的各项系数之和为∶213+=(常数项系数为常数项本身).已知B 是关于x 的整式,最高次项次数为2,系数为1.若(3),B x C C ×+=是一个只含两项的多项式,则B 各项系数之和的最大值为 .【题型3 利用整式乘除法解决不含某项问题】【例3】(23-24八年级·山东聊城·期末)9.已知多项式236M x ax =-+,3N x =+,且MN A =,当多项式A 中不含x 的2次项时,a 的值为( )A .1-B .13-C .0D .1【变式3-1】(23-24八年级·河南商丘·期末)10.已知关于x 的多项式ax b -与232x x ++的乘积的展开式中不含x 的二次项,且一次项系数为5-,则a 的值为( )A .13-B .13C .-3D .3【变式3-2】(23-24八年级·全国·专题练习)11.小万和小鹿正在做一道老师留下的关于多项式乘法的习题:2(32)()x x x a +--.(1)小万在做题时不小心将x a -中的x 写成了2x ,结果展开后的式子中不含x 的二次项,求a 的值;(2)小鹿在做题时将232+-x x 中的一个数字看错成了k ,结果展开后的式子中不含x 的一次项,则k 的值可能是多少?【变式3-3】(16-17八年级·四川成都·期末)12.已知(x 2+mx +1)(x 2﹣2x +n )的展开式中不含x 2和x 3项.(1)分别求m 、n 的值;(2)化简求值:(m +2n +1)(m +2n ﹣1)+(2m 2n ﹣4mn 2+m 3)÷(﹣m )【题型4 利用整式乘除法解决与某个字母取值无关的问题】【例4】(23-24八年级·湖南常德·期中)13.知识回顾:七年级学习代数式求值时,遇到过这样一类题“代数式6351ax y x y -++-- 的值与x 的取值无关,求a 的值”,通常的解题方法是:把x y 、看作字母,a 看作系数合并同类项,因为代数式的值与x 的取值无关,所以含x 项的系数为0,即原式()365a x y =+-+,所以30a +=,则3a =-.理解应用:(1)若关于x 的多项式()22335m x m x ---的值与x 的取值无关,求m 值;(2)已知()()()213153A x x x y =+--+,2324B x xy -=+,且26A B -的值与x 的取值无关,求y 的值.【变式4-1】(23-24八年级·陕西咸阳·阶段练习)14.已知23A x x a =+-,B x =-,3235C x x =++,若A B C ×+的值与x 的取值无关,当4x =-时,A 的值为( )A .0B .4C .4-D .2【变式4-2】(23-24八年级·四川成都·期中)15.若代数式()()()223236x x m x x ++-+的值与x 的取值无关,则常数m = .【变式4-3】(23-24八年级·浙江金华·期末)16.若代数式()()()2253334x kx xy k x y x ----的值与y 无关,则常数k 的值为( )A .2B .―2C .4-D .4【题型5 利用整式乘除法解决污染问题】【例5】(23-24八年级·贵州遵义·期末)17.小明作业本发下来时,不小心被同学沾了墨水:()()4322222246643x y x y x y x y xy y -+¸-=-+-■,你帮小明还原一下被墨水污染的地方应该是( )A .3218x y -B .3218x y C .322x y -D .3212x y 【变式5-1】(23-24八年级·湖北十堰·期末)18.右侧练习本上书写的是一个正确的因式分解.但其中部分代数式被墨水污染看不清了.(1)求被墨水污染的代数式;(2)若被污染的代数式的值不小于4,求x 的取值范围.【变式5-2】(23-24八年级·全国·课后作业)19.小明在做练习册上的一道多项式除以单项式的习题时,一不小心,一滴墨水污染了这道习题,只看见了被除式中第一项是338x y -及中间的“¸”,污染后习题形式如下:33(8x y -)¸,小明翻看了书后的答案是“22436x y xy x -+”,你能够复原这个算式吗?请你试一试.【变式5-3】(23-24八年级·上海奉贤·期中)20.小红准备完成题目:计算(x 2x +2)(x 2﹣x ).她发现第一个因式的一次项系数被墨水遮挡住了.(1)她把被遮住的一次项系数猜成3,请你完成计算:(x 2+3x +2)(x 2﹣x );(2)老师说:“你猜错了,这个题目的正确答案是不含三次项的.”请通过计算说明原题中被遮住的一次项系数是多少?【题型6 利用整式乘除法解决误看问题】【例6】(23-24八年级·山东菏泽·期中)21.某同学在计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,那么正确的计算结果是( )A .432484x x x -+-B .432484x x x +-C .43244x x x -+-D .432484x x x --【变式6-1】(23-24八年级·江西萍乡·期中)22.小颖在计算一个整式乘以3ac 时,误看成了减去3ac ,得到的答案是12333--bc ac ab ,该题正确的计算结果应是多少?【变式6-2】(23-24八年级·江西九江·阶段练习)23.已知A B 、均为整式,()()221222A xy xy x y =+--+,小马在计算A B ¸时,误把“¸”抄成了“-”,这样他计算的正确结果为22x y -.(1)将整式A 化为最简形式.(2)求整式B .【变式6-3】(23-24八年级·河南南阳·阶段练习)24.甲、乙二人共同计算一道整式乘法:()()23x a x b ++,由于甲抄错为()()23x a x b -+,得到的结果为261110x x +-;而乙抄错为()()2x a x b ++,得到的结果为22910x x -+.(1)你能否知道式子中的a ,b 的值各是多少?(2)请你计算出这道整式乘法的正确答案.【题型7 整式乘除法的应用】【例7】(23-24八年级·浙江杭州·阶段练习)25.有总长为l 的篱笆,利用它和一面墙围成长方形园子,园子的宽度为a .(1)如图1,①园子的面积为 (用关于l ,a 的代数式表示).②当10030l a ==,时,求园子的面积.(2)如图2,若在园子的长边上开了长度为1的门,则园子的面积相比图一 (填增大或减小),并求此时园子的面积(写出解题过程,最终结果用关于l ,a 的代数式表示).【变式7-1】(23-24八年级·重庆·期末)26.某农场种植了蔬菜和水果,现在还有两片空地,农场计划在这两片空地上种植水果黄瓜、白黄瓜和青黄瓜.已知不同品种的黄瓜亩产量不同,其中白黄瓜的亩产量是青黄瓜的12,如果在空地种植白黄瓜、青黄瓜和水果黄瓜的面积之比为2:3:4,则水果黄瓜的产量是白黄瓜与青黄瓜产量之和的2倍;如果在空地上种植白黄瓜、青黄瓜和水果黄瓜的面积之比为5:4:3,则白黄瓜、青黄瓜和水果黄瓜的总产量之比为 .【变式7-2】(23-24八年级·黑龙江哈尔滨·期中)27.一家住房的结构如图所示,房子的主人打算把卧室铺上地板,卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果这种地砖的价格为a 元/平方米,地板的价格(10)a -元/平方米,那么购买地板和地砖至少共需要多少元?【变式7-3】(23-24八年级·全国·专题练习)28.某玩具加工厂要制造如图所示的两种形状的玩具配件,其中,配件①是由大、小两个长方体构成的,大长方体的长、宽、高分别为:52a 、2a 、32a ,小长方体的长、宽、高分别为:2a 、a 、2a ;配件②是一个正方体,其棱长为a(1)生产配件①与配件②分别需要多长体积的原材料(不计损耗)?(2)若两个配件①与一个配件②可以用于加工一个玩具,每个玩具在市场销售后可获利30元,则1000a 3体积的这种原材料可使该厂最多获利多少元?【题型8 整式乘除法中的规律问题】【例8】(23-24八年级·四川成都·期中)29.观察:下列等式()()2111x x x -+=-,()()23111x x x x -++=-,()()324111x x x x x -+++=-…据此规律,当()()65432110x x x x x x x -++++++=时,代数式20242x -的值为 .【变式8-1】(23-24八年级·广东揭阳·期中)30.在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年11月份的日历,我们任意用一个22´的方框框出4个数,将其中4个位置上的数交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规则,结果为 .(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.【变式8-2】(23-24八年级·福建宁德·期末)31.“九章兴趣小组”开展研究性学习,对两位数乘法的速算技巧进行研究.小明发现“十位相同,个位互补”的两个两位数相乘有速算技巧.例如:()24261002346´=´´+´,结果为624;()42481004528´=´´+´,结果为2016;小红发现“十位互补,个位为5”的两个两位数相乘也有速算技巧.例如:()456510046525´=´´++,结果为2925;()357510037525´=´´++,结果为2625;(1)请你按照小明发现的技巧,写出计算6367´的速算过程;(2)请你用含有字母的等式表示小明所发现的速算规律,并验证其正确性;(3)小颖发现:小红的速算技巧可以推广到“十位互补,个位相同”的两个两位数相乘.请你直接用含有字母的等式表示该规律.友情提示:如果两个正整数和为10,则称这两个数互补.友情提示:如果两个正整数和为10,则称这两个数互补.【变式8-3】(23-24八年级·福建宁德·期中)32.下图揭示了()n a b +(n 为非负整数)的展开式的项数及各项系数的有关规律.请观察并解决问题:今天是星期五,再过7天也是星期五,那么再过451天是星期 .……1()a b a b+=+ (222)()2a b a ab b +=++……()3322333a b a a b ab b +=+++……()4a b +=【题型9 整式乘除法中的新定义问题】【例9】(23-24八年级·陕西榆林·期末)33.【问题背景】现定义一种新运算“⊙”对任意有理数m ,n ,规定:()m n mn m n =-e .例如:()1212122=´´-=-e .【问题推广】(1)先化简,再求值:()()a b a b +-e ,其中12a =,1b =-;【拓展提升】(2)若()2p q q p x y x y x y x y =-e e ,求p ,q 的值【变式9-1】(23-24八年级·浙江宁波·期中)34.定义a bad bc c d =-,如131423224=´-´=-.已知21112x A nx x +=-,1111x x B x x +-=-+(n 为常数)(1)若4B =,求x 的值;(2)若A 中的n 满足12222n +´=时,且2A B =+,求3843x x -+的值.【变式9-2】(23-24八年级·湖南株洲·期末)35.定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi + (a 、b 为实数)的数叫做复数,其中a 叫做这个复数的实部,b 叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似.例如:()()()()253251372i i i i -++=++-+=+;()()()()()()2121212212213i i i i i i i ii i+´-=´+´-+´+´-=+-+-=+--=+根据以上信息,完成下列问题:(1)计算:3i , 4i ;(2)计算:()()134i i +´-;(3)计算:23452023i i i i i i ++++++L 【变式9-3】(23-24八年级·内蒙古乌兰察布·期末)36.定义:()L A 是多项式A 化简后的项数,例如多项式223A x x =+-,则()3L A =,一个多项式A 乘多项式B 化简得到多项式C (即C A B =´),如果()()()1L A L C L A ££+.则称B 是A 的“郡园多项式”如果()()L A L C =,则称B 是A 的“郡园志勤多项式”.(1)若2A x =-,3B x =+,则B 是不是A 的“郡园多项式”?请判断并说明理由;(2)若2A x =-,24B x ax =++是关于x 的多项式,且B 是A 的“郡园志勤多项式”,则a =_____;(3)若23A x x m =-+,2B x x m =++是关于x 的多项式,且B 是A 的“郡园志勤多项式”,求m 的值.【题型10 整式乘除法中的几何图形问题】【例10】(23-24八年级·辽宁辽阳·期中)37.教科书第一章《整式的乘除》中,我们学习了整式的几种乘除运算,学会了研究运算的方法.现定义了一种新运算“Ä”,对于任意有理数a ,b ,c ,d ,规定()(),,a b c d ad bc Ä=-,等号右边是通常的减法和乘法运算.例如:()()1,32,414232Ä=´-´=-.请解答下列问题:(1)填空:()()2,34,5-Ä=______;(2)若()()221,15,2x nx x +-Ä-的代数式中不含x 的一次项时,求n 的值;(3)求()()31,22,3x x x x +-Ä+-的值,其中2410x x -+=;(4)如图1,小长方形长为a ,宽为b ,用5张图1中的小长方形按照图2方式不重叠地放在大长方形ABCD 内,其中5AB =,大长方形中未被覆盖的两个部分(图中阴影部分),设左下角长方形的面积为1S ,右上角长方形的面积为2S .当122320S S -=,求()()2,63,36a b b b a b +-Ä--的值.【变式10-1】(23-24八年级·浙江温州·期中)38.小陈用五块布料制作靠垫面子,其中四周的四块由长方形布料裁成四块得到,正中的一块正方形布料从另一块布料裁得,靠垫面子和布料尺寸简图,如图所示∶(1)用含a ,b 的代数式表示图中阴影部分小正方形的面积.(2)当224592a b +=,48ab =时,求阴影部分面积.【变式10-2】(23-24八年级·广东佛山·期中)39.如图,长为(cm)y ,宽为(cm)x 的大长方形被分割为7小块,除阴影A ,B 外其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm .(1)小长方形的较长边为 cm (用代数式表示);(2)阴影A 的一条较短边和阴影B 的一条较短边之和为(24)x y -+cm ,是 的(填正确/错误);阴影A 和阴影B 的周长值之和与x (填有关/无关),与y (填有关/无关);(3)设阴影A 和阴影B 的面积之和为S 2cm ,是否存在x 使得S 为定值,若存在请求出x 的值和该定值,若不存在请说明理由.【变式10-3】(23-24八年级·上海青浦·期中)40.如图所示,有4张宽为a ,长为b 的小长方形纸片,不重叠的放在矩形ABCD 内,未被覆盖的部分为空白区域①和空白区域②. 2EF GH =(1)用含a、b的代数式表示:AD=______________;AB=______________.(2)用含a、b的代数式表示区域①、区域②的面积;(3)当a=12,92b=时,求区域①、区域②的面积的差.1.2-【分析】由已知得21a a +=,然后对所求式子展开后进行变形,再整体代入计算即可.【详解】解:∵210a a +-=,∴21a a +=,∴()()()()22222242242142a a a a a a a a a +-++=-++=+-=´-=-,故答案为:2-.【点睛】本题考查了整式的混合运算,代数式求值,熟练掌握相关运算法则是解题的关键.2.―2【分析】本题主要考查代数式的值及多项式乘以多项式,熟练掌握各个运算是解题的关键;因此此题先把所求整式进行展开,然后再代值求解即可.【详解】解:∵3a b -=,4ab =-,∴()()22a b -+()24ab a b =+--464=-+-2=-;故答案为:―2.3.28-【分析】本题主要考查了多项式乘以多项式,代数式求值,先根据多项式乘以多项式的计算法则求出218a a --=-,再根据()--+=--+2222828a a a a 进行求解即可.【详解】解:∵()()5612a a -+=,∴2306512a a a -+-=,∴218a a --=-,∴()--+=--+=-´+=-2222828182828a a a a ,故答案为:28-.4.2022【分析】由x 2−3x−1=0,变形x 2=3x+1,利用此等式进行降次,化简整体代入计算即可.【详解】由x 2−3x−1=0,变形x 2=3x+1,x 2-3x=1,x3−10x+2019,=x(3x+1)-10x+2019,=3x2-9x+2019,=3(x2-3x)+2019,=3+2019,=2022.故答案为:2022.【点睛】本题考查代数式的值,关键是把条件等式变形会降次,会整体代入求值.5.C【分析】根据多项式乘多项式的乘法法则,求得a+b=m,ab=12,再进行分类讨论,从而解决此题.【详解】解:(x+a)(x+b)=2x+bx+ax+ab=2x+(a+b)x+ab.∵(x+a)(x+b)=2x+mx+12,∴a+b=m,ab=12.∵m、a、b都是整数,∴当a=1时,则b=12,此时m=a+b=1+12=13;当a=-1时,则b=-12,此时m=a+b=-1-12=-13;当a=2时,则b=6,此时m=a+b=2+6=8;当a=-2时,则b=-6,此时m=a+b=-2-6=-8;当a=3时,则b=4,此时m=a+b=3+4=7;当a=-3时,则b=-4,此时m=a+b=-3-4=-7;当a=12时,则b=1,此时m=a+b=12+1=13;当a=-12时,则b=-1,此时m=a+b=-12-1=-13;当a=6时,则b=2,此时m=a+b=6+2=8;当a=-6时,则b=-2,此时m=a+b=-6-2=-8;当a=4时,则b=3,此时m=a+b=4+3=7;当a=-4时,则b=-3,此时m=a+b=-4-3=-7.综上:m=±13或±8或±7,共6个.故选:C.【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则、分类讨论的思想是解决本题的关键.6.2-【分析】本题主要考查了多项式乘以多项式,正确计算出22323x x x mx -=+--是解题的关键.根据多项式乘以多项式的计算法则把等式左边去括号得到m 的值即可得到答案.【详解】解:∵()()2133x x x mx +-=+-,∴22333x x x x mx +--=+-,∴22323x x x mx -=+--,∴2m =-.故答案为:2-.7.5【分析】根据多项式乘以多项式的法则展开,求出a 的值以及a 与k 的关系,然后可得答案.本题考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.【详解】∵2222222()()()x x a x ax x a x a x a ++=+++=+++,又∵226()()x x a x kx ++=++,∴22226()x a x a x kx +++=++,2a k \+=,26a =,3a \=,325k \=+=.故答案为:5.8.7【分析】本题考查整式的定义,多项式乘多项式,解二元一次方程.根据题意对整式B 的表述,可设2(x ax b a B =++、b 为待求的常数),计算(3)B x ×+,整理后得到关于x 的三次四项式.由于条件说乘积是只有两项,故有两项的系数为0,需分3种情况讨论计算,列得关于a 、b 的方程组,据此求解即可.【详解】解:B Q 是关于x 的整式,最高次项次数为2,二次项系数为1,\设2b B x ax =++,a 、b 为常数,(3)B x \+2()(3)x ax b x =+++322333x ax bx x ax b=+++++32(3)(3)3x a x a b x b =+++++,Q 乘积是一个只含有两项的多项式,①3030a a b +=ìí+=î,解得:39a b =-ìí=î,239B x x \=-+,各项系数之和为1397-+=;②3030a b +=ìí=î,解得:30a b =-ìí=î,23x B x \=-,各项系数之和为132-=-;③3030a b b +=ìí=î,解得:00a b =ìí=î,2x B \=.各项系数之和为1;∵712>>-;则B 各项系数之和的最大值为7.故答案为:7.9.D【分析】本题考查的是整式的乘法—多项式乘多项式,正确进行多项式的乘法是解答此题的关键.根据题意列出整式相乘的式子,再计算多项式乘多项式,最后进行合并同类项,令二次项的系数等于0即可.【详解】解:∵()()2=363MN x ax x -++322=36+3918x ax x x ax -+-+()()32336918x a x a x =+-+-+∴()()32336918A MN x a x a x ==+-+-+∵多项式A 中不含x 的2次项时,∴330a -=∴1a =故选D .10.C【分析】本题考查多项式乘以多项式,解二元一次方程组,解题的关键是明确不含x 的二次项,则二次项的系数为0.根据多项式乘以多项式法则进行运算,再将计算结果中,利用二次项系数为零与一次项的系数为5-的要求建立方程组,即可求解.【详解】解:()()232ax b x x -++;3223232ax ax ax bx bx b =++---;()()323322ax a b x a b x b =+-+--;∵多项式ax b -与232x x ++的乘积的展开式中不含二次项,且一次项系数为5-;∴3025a b a b -=ìí-=-î;解得:31a b =-ìí=-î,∴3a =-;故选:C .11.(1)2a =-(2)1k =或6-【分析】本题主要考查多项式乘以多项式,熟练掌握多项式乘以多项式计算法则是解题的关键.(1)根据多项式乘以多项式计算法则将对应算式展开并合并同类项,令二次系数为0,即可求出答案,(2)根据多项式乘以多项式计算法则将对应算式展开并合并同类项,令一次系数为0,即可求出答案.【详解】(1)解:()()2232x x x a +--42323322x ax x ax x a =-+--+4323(2)32x x a x ax a =+-+-+Q 展开后的式子中不含x 的二次项,20a \+=,解得2a =-;(2)解:①若将232+-x x 中的3看成k ,2(2)(2)x kx x +-+3222224x x kx kx x =+++--32(2)(22)4x k x k x =+++--,Q 展开后的式子中不含x 的一次项,220k \-=,1k \=.②若将232+-x x 中的2-看成k ,2(3)(2)x x k x +++3222362x x x x kx k =+++++325(6)2x x k x k =++++,Q 展开后的式子中不含x 的一次项,60k \+=,解得6k =-.③若指数2看作k ,当0k =时,原式(132)(2)x x =+-+2352x x =+-不符合题意;④若指数2看作k ,当1k =时,原式(32)(2)x x x =+-+2464x x =+-,不符合题意;1k =或6-.12.(1)m 的值为2,n 的值为3(2)2mn +8n 2﹣1;83【分析】(1)先将题目中的式子化简,然后根据()()2212x mx x x n ++-+的展开式中不含2x 和3x 项,可以求得m 、n 的值;(2)先化简题目中的式子,然后将m 、n 的值代入化简后的式子即可解答本题.【详解】解:(1)()()2212x mx x x n ++-+=4x ﹣23x +n 2x +m 3x ﹣2m 2x +mnx +2x ﹣2x +n=4x +(﹣2+m )3x +(n ﹣2m +1)2x +(mn ﹣2)x +n∵()()2212x mx x x n ++-+的展开式中不含2x 和3x 项,∴20210m n m +=ìí+=î﹣﹣,解得23m n =ìí=î,即m 的值为2,n 的值为3;(2)(m +2n +1)(m +2n ﹣1)+(22m n ﹣4m 2n +3m )÷(﹣m )=[(m +2n )+1][(m +2n )﹣1]﹣2mn +42n ﹣2m =2m 2n +()﹣1﹣2mn +42n ﹣2m =2m +4mn +42n ﹣1﹣2mn +42n ﹣2m =2mn +82n ﹣1当m =2,n =3时,原式=2×2×3+8×23﹣1=83.【点睛】本题考查整式的混合运算—化简求值,熟练掌握整式混合运算法则是解题的关键.13.(1)35m =(2)23y =【分析】(1)先去括号,然后合并同类项,结合多项式的值与x 的取值无关,即可求出答案;(2)先把A 进行化简,然后计算26A B -,结合多项式的值与x 的取值无关,即可求出答案.【详解】(1)解:223(35)m x m x ---22335m x m mx=--+2(53)23m x m m =-+-,Q 其值与x 的取值无关,530m \-=, 解得:35m =, 即:当35m =时,多项式223(35)m x m x ---的值与x 的取值无关;(2)解:(21)(31)(53)A x x x y =+--+Q ,2324B x xy -=+,2262[(21)(31)(53)]6(24)3A B x x x y x xy \-=+---+-+222(623153)121824x x x x xy x xy =-+----+-2212826121824x x xy x xy =----+-12826xy x =--4(32)26x y =--;26A B -Q 的值与x 无关,320y \-=,即23y =.【点睛】本题考查了整式的加减乘混合运算,准确熟练地进行计算是解题的关键.14.B【分析】此题主要考查了整式的混合运算无关型题目,代数式求值,首先根据多项式乘多项式的方法,求出A B ×的值是多少,然后用它加上C ,求出A B C ×+的值是多少,最后根据A B C ×+的值与x 的取值无关,可得x 的系数是0,据此求出a 的值,最后代入求值即可.【详解】解:23A x x a =+-Q ,B x =-,3235C x x =++,A B C\×+()()()232335x x a x x x =+--+++3232335x x ax x x =--++++5ax =+,A B C ×+Q 的值与x 的取值无关,2233A x x a x x \=+-=+,当4x =-时,()()24344A =-+´-=,故选:B .15.3【分析】此题考查整式的混合运算,先运算多项式乘以多项式和单项式乘以多项式,然后合并,进而根据与x 的取值无关得到260m -=,解方程即可.【详解】解:()()()()222232366262612262x x m x x x mx x m x x m x m ++-+=+++--=-+,∵代数式的值与x 的取值无关,∴260m -=,解得3m =,故答案为:3.16.A【分析】本题考查整式的四则混合运算,先将题目中的式子化简,然后根据此代数式的值与y 的取值无关,可知关于y 的项的系数为0,从而可以求得k 的值.【详解】解:()()()2253334x kx xy k x y x ----2222225334912kx x y kx y kx x y x =--++-222239612kx y kx x y x =-++-()22236912k x y kx x =-++-∵关于y 的代数式:()()()2253334x kx xy k x y x ----的值与y 无关,∴360k -+=,解得2k =,即当2k =时,代数式的值与y 的取值无关.故选:A.17.B【分析】利用多项式乘单项式的运算法则计算即可求解.【详解】解: ( −4x 2y 2+3xy −y ) • (−6x 2y )=24x 4y 3−18x 3y 2+6x 2y 2,∴■=18x 3y 2.【点睛】本题主要考查的是整式的除法和乘法,掌握法则是解题的关键.18.(1)24x --;(2)4x £-.【分析】(1)根据题意,被墨水污染的代数式=()2()(252236)x x x x ++---,再结合整式的乘法法则及加减法则解题,注意运算顺序;(2)由(1)中结果列一元一次不等式,解一元一次不等式即可解题.【详解】解:(1)由已知可得,()2()(252236)x x x x ++---2224510236x x x x x =-+---+=24x -- ;(2)由已知可得,244x -³-28x ³-解得4x £-.【点睛】本题考查整式的混合运算、解一元一次不等式等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.复原后的算式为()()3322286122x y x y x y xy -+-¸-【分析】先根据被除式的首项和商式的首项可求得除式,然后根据除式乘商式等于被除式求解即可.【详解】解:338x y -Q 对应的结果为:224x y ,\除式为:3322842x y x y xy -¸=-,根据题意得:()()223322243628612x y xy x xy x y x y x y -+×-=-+-,\复原后的算式为()()3322286122x y x y x y xy -+-¸-.【点睛】本题主要考查的是整式的除法和乘法,掌握运算法则是解题的关键.20.(1)43222x x x x +--;(2)1【分析】(1)根据多项式的乘法进行计算即可;(2)设一次项系数为a ,计算()()222x ax x x ++-,根据其结果不含三次项,则结果的三次项系数为0,据此即可求得a 的值,即原题中被遮住的一次项系数.【详解】解:(1)(x 2+3x +2)(x 2﹣x )433223322x x x x x x=-+-+-43222x x x x=+--(2)设一次项系数为a ,()()222x ax x x ++-4332222x x ax ax x x=-+-+-()()432122x a x a x x=+-+--Q 答案是不含三次项的10a \-=1a \=【点睛】本题考查了多项式的乘法运算,正确的计算是解题的关键.21.A【分析】设这个多项式为M ,根据题意可得221M x x =-+-,最后利用单项式乘以多项式的运算法则即可解答.本题考查了整式的加减运算法则,单项式乘以多项式的运算法则,掌握单项式乘以多项式的运算法则是解题的关键.【详解】解:设这个多项式为M ,∵计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,∴224321M x x x +=+-,∴222321421M x x x x x =+--=-+-,∴正确的结果为()()22432214484x x x x x x -+-=-+-,故选A .22.222-abc a bc【分析】本题主要考查了整式乘法运算,根据一个整数减去3ac ,得到的答案是12333--bc ac ab ,得出这个整式为123333bc ac ab ac --+,然后用3ac 乘这个整式得出结果即可.【详解】解:根据题意得:1233333æö--+ç÷èøac bc ac ab ac12333æö=-ç÷èøac bc ab 222=-abc a bc .故该题正确的计算结果应是222-abc a bc .23.(1)22x y xy --;(2)B xy =-.【分析】(1)根据整式混合运算的运算顺序和运算法则进行化简即可;(2)根据题意可得22A y B x -=-,根据整式混合运算顺序和运算法则进行计算即可;本题主要考查了整式的混合运算,解题的关键是熟练掌握整式的混合运算顺序和运算法则.【详解】(1)()()221222A xy xy x y =+--+,22222222x y xy xy x y =-+--+,22x y xy =--;(2)由题意,得22A yB x -=-由(1)知22A x y xy =--,∴2222x y xy B x y ---=-,∴B xy =-.24.(1)5a =-,2b =-(2)261910x x -+【分析】(1)按照甲、乙两人抄的错误的式子进行计算,得到2311b a -=①,29b a +=-②,解关于①②的方程组即可求出a 、b 的值;(2)把a 、b 的值代入原式求出整式乘法的正确结果.【详解】(1)根据题意可知,甲抄错为()()23x a x b -+,得到的结果为261110x x +-,那么()()()222362361110x a x b x b a x ab x x -+=+--=+-,可得2311b a -=①乙抄错为()()2x a x b ++,得到的结果为22910x x -+,可知()()()222222910x a x b x b a x ab x x ++=+++=-+可得29b a +=-②,解关于①②的方程组,可得5a =-,2b =-;(2)正确的式子:()()22041253265106191x x x x x x x --=+-=+--【点睛】本题主要是考查多项式的乘法以及二元一次方程组,掌握多项式乘多项式运算法则是正确解决问题的关键.25.(1)①()2a l a -;②1200(2)增大;22al a a-+【分析】本题考查了列代数式及代数式求值,正确列出代数式是解题的关键.(1)①先用l 和a 的代数式表示出园子的长,再表示出园子的面积;②把100l =,30a =代入①中的代数式进行计算即可;(2)由园子的宽不变,长增加了,即可判断出园子的面积增大了,表示出园子的长,即可求出园子的面积.【详解】(1)解:①Q 总长为l ,宽为a ,\园子的长为:()2l a -,\园子的面积为:()2a l a -;故答案为:()2a l a -;②当100l =,30a =时,()222a l a al a -=-230100230=´-´30002900=-´30001800=-1200=;(2)解:Q 园子的宽不变,长增加了,。
八年级上册化简求值题及答案20道
![八年级上册化简求值题及答案20道](https://img.taocdn.com/s3/m/14dc164aa55177232f60ddccda38376bae1fe04b.png)
1.(聊城市茌平区教育和体育局教研室期末)若245a a +=,则代数式2(2)(1)(1)a a a a +-+-的值为( )A .1B .2C .4D .6【答案】D【解析】解:2(2)(1)(1)a a a a +-+- 22241a a a =+-+241,a a =++245a a +=,∴ 上式51 6.=+=故选D .2.(湖南涟源·初一期末)计算()()2323a b a b -+的正确结果是( )A .2249a b +B .2249a b -C .224129a ab b ++D .224129a ab b -+【答案】B【解析】()()2323a b a b -+ 2249a b =-.故选:B .3.(绍兴市文澜中学期中)若2210m n -=,且4m n -=,则m n +=_____【答案】2.5【解析】∵2210m n -=, 4m n -=,∴m n +=(22m n -)÷(m n -)= 2.54.(河南洛宁·月考)计算:(4(4⨯-=__________.【答案】9【解析】根据平方差公式可得(4(4+⨯=2241679-=-=,故答案为9. 5.(山东中区·初一期末)若5a b +=,3a b -=,则22a b -=_____.【答案】15【解析】解:∵5a b +=,3a b -=,∴22a b -()()a b a b =+-53=⨯15=故答案为156.(吉林延边·初二期末)计算:=____________.【答案】4【解析】解:+22=- 4=,故答案为:4.7.(上海市静安区实验中学初一课时练习)224488ab a b a b a b a b 【答案】1616a b【解析】解:原式=22224488(-)()()()a b a b a b a b +++=444488(-)()()a b a b a b ++=8888(-)()a b a b +=1616-a b . 8. 12(2a+2b )(a-b )=____________.解:12(2a+2b )(a-b )=(a+b )(a-b ) 9. 12b (a+b )×2+12ab×2+(a ﹣b )2 =____________ 解、12b (a+b )×2+12ab×2+(a ﹣b )2 =ab+b 2+ab+a 2﹣2ab+b 2=a 2+2b 2,10.a 2+b 2﹣12(a+b )•b ﹣12a 2 =12a 2+12b 2﹣12ab =12(a+b )2﹣32ab 11.若x 满足(x -4) (x -9)=6,求(x -4)2+(x -9)2的值.解:设x -4=a ,x -9=b ,则(x -4)(x -9)=ab =6,a -b =(x -4)-(x -9)=5,∴(x -4)2+(x -9)2=a 2+b 2=(a -b )2+2ab =52+2×6=37 请仿照上面的方法求解下面问题:(1)若x 满足(x -2)(x -5)=10,求(x -2)2 + (x -5)2的值(2)已知正方形ABCD 的边长为x ,E ,F 分别是AD 、DC 上的点,且AE =1,CF =3,长方形EMFD 的面积是15,分别以MF 、DF 作正方形,求阴影部分的面积.【答案】(1)29 ;(2)16【解析】(1)设2x a -=,5x b -=,则()()2510x x ab =--=,()()253a b x x -==--- ∴()()2225 x x +-- 22a b =+()2=2a b ab -+ 23210=+⨯29=(2)根据题意可知正方形ABCD 的边长为x ,∵EMFD 是长方形,∴MF =ED ,∴ 1MF ED AD AE x -==-=, 3DF CD CF x =-=-,设1x a -=,3x b -=,则S 长方形EMFD =15ab =,()()132a b x x -=---=,()()22464a b a b ab +=-+=,得8a b +=∵S 阴影部分=MF 2-DF 2,即S 阴影部分=()()()()2222138216x x a b a b a b -⨯--=-=+-==故阴影部分的面积是16.12.(浙江衢州·初一期中)(阅读材料)我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x 的正方形,乙种纸片是边长为y 的正方形,丙种纸片是长为y ,宽为x 的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.(理解应用)(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式.(拓展升华)(2)利用(1)中的等式解决下列问题.①已知2210a b +=,6a b +=,求ab 的值;②已知(2021)(2019)2020c c --=-,求22(2021)(2019)c c -+-的值.【答案】(1)222()2x y x y xy +=+-;(2)①13;②4044.【解析】(1)222()2x y x y xy +=+-.(2)①由题意得:()222()2a b a b ab +-+=,把2210a b +=,6a b +=代入上式得:2610132ab -==. ②由题意得:22(2021)(2019)c c -+-2(20212019)2(2021)(2019)c c c c =-+-+--2222020=+⨯4044=.13.若(x-2y)2 =(x+2y)2+M,则M= ( )A .4xyB .- 4xyC .8xyD .-8xy 【答案】D【解析】∵(x-2y)2 =(x+2y)2+M∴M=(x-2y)2 -(x+2y)2=x 2-4xy+4y 2-x 2-4xy-4y 2=-8xy 故选D.14.(四川巴州·期末)若29x mx ++是完全平方式,则m 的值应为( )A .3B .6C .3±D .6±【答案】D【解析】∵()223=239x x x ±±⨯+=x 2+mx+9,∴m=±6, 故选:D .15.(南阳市第三中学月考)如果整式29x mx ++恰好是一个整式的平方,那么m 的值是() A .±3B .±4.5C .±6D .9 【答案】C【解析】∵整式x 2+mx+9恰好是一个整式的平方,∴mx=±2•x•3,解得:m=±6, 故选C .16.(广东高州·期中)已知4x 2+mx +36是完全平方式,则m 的值为_____________【答案】24±【解析】∵(2x±6)2=4x 2±24x+36, ∴mx=±24x , 即m=±24, 故答案为:24±.17.(山东长清·期中)若x 2﹣mx +9是个完全平方式,则m 的值是__.【答案】±6 【解析】完全平方公式:()2222a ab b a b ±+=±∴()2293x mx x -+=±∴6m =±故答案为:6±18.(达州市通川区第八中学期中)已知2214()x x ++∆是完全平方式,则△=_______. 【答案】±7 【解析】解:∵2214()x x ++∆是一个完全平方式,∴△=142±=±7. 故填:±7. 19.(福建宁化·期末)已知有理数x ,y 满足12x y +=,3xy =-. (1)求(1)(1)x y ++的值;(2)求22x y+的值.【答案】(1)32-;(2)164.【解析】解:(1)(x+1)(y+1)=xy+(x+y)+1=1 312-++=32 -;(2)x2+y2=(x+y)2-2xy=16 4+=164.20.已知|x+y+5|+(xy﹣6)2=0,则x2+y2的值等于()A.1 B.13 C.17 D.25 【答案】B【解析】解:∵|x+y+5|+(xy﹣6)2=0,∴x+y+5=0,xy﹣6=0,∴x+y=﹣5,xy=6,∴x2+y2=(x+y)2﹣2xy=25﹣12=13.故选:B.。
华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷(附答案)
![华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷(附答案)](https://img.taocdn.com/s3/m/ca904a723868011ca300a6c30c2259010202f3b0.png)
华东师大版八年级数学上册《第十二章整式的乘除》单元测试卷(附答案)一、选择题1.下列运算正确的是( )A. a2⋅a3=a6B. (−a2)3=−a5C. a10÷a9=a(a≠0)D. (−bc)4÷(−bc)2=−b2c22.下列等式从左到右的变形,属于因式分解的是( )A. a(x−y)=ax−ayB. x3−x=x(x+1)(x−1)C. (x+1)(x+3)=x2+4x+3D. x2+2x+1=x(x+2)+13.(−3)100×(−13)101等于( )A. −1B. 1C. −13D. 134.将9.52变形正确的是( )A. 9.52=92+0.52B. 9.52=(10+0.5)(10−0.5)C. 9.52=102−2×10×0.5+0.52D. 9.52=92+9×0.5+0.525.若(a+b)2=7,(a−b)2=3则a2+b2−3ab的值为( )A. 0B. 2C. 3D. 46.一个三角形的面积为(x3y)2,它的一条边长为(2xy)2,那么这条边上的高为( )A. 12x4 B. 14x4 C. 12x4y D. 12x27.若(x−3)(2x+1)=2x2+ax−3,则a的值为( )A. −7B. −5C. 5D. 78.一个正整数若能表示为两个正整数的平方差,则称这个正整数为“创新数”,例如27=62−32,63= 82−12故27,63都是“创新数”,下列各数中,不是“创新数”的是( )A. 31B. 41C. 16D. 549.已知正方形的面积是(16−8x+x2)cm2(x>4cm),则正方形的周长是( )A. (4−x)cmB. (x−4)cmC. (16−4x)cmD. (4x−16)cm10.已知4m=a,8n=b其中m,n为正整数,则22m+6n=( )A. ab2B. a+b2C. a2b3D. a2+b3二、填空题11.分解因式:x4−4x2=______.12.若2a−3b=−1,则代数式4a2−6ab+3b的值为________.13.若x+y=2,x−y=1则代数式(x+1)2−y2的值为____.14.计算:20182−2019×2017=______.15.已知a+1a =3,则a2+1a2=________.16.已知a+1a =√ 10,则a−1a的值为_________;17.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)10的展开式中第三项的系数为______.三、解答题18.规定a∗b=2a×2b,求:(1)求2∗3;(2)若2∗(x+1)=16,求x的值.19.先化简,再求值:(a+b)(a−b)−(a−b)2+2b2,其中a=−3,b=12.20.(1)已知a m=5,a n=12求a2m−3n的值;(2)已知9m×27n=81,求(−2)2m+3n的值.21.如果a∗b=c,则a c=b,例如:2∗8=3则,23=8.(1)根据上述规定,若3∗27=x,求x的值;(2)记3∗5=a,3∗6=b,3∗2=c求32a+b−c的值.22.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a、b的代数式分别表示S1、S2;(2)若a+b=10,ab=23求S1+S2的值;(3)当S1+S2=29时,求出图3中阴影部分的面积S3.答案和解析1.【答案】C【解析】【分析】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.根据同底数幂的乘法、除法、幂的乘方与积的乘方进行计算即可.【解答】解:A.a2⋅a3=a5故A错误;B.(−a2)3=−a6故B错误;C.a10÷a9=a(a≠0)故C正确;D.(−bc)4÷(−bc)2=b2c2故D错误;故选C.2.【答案】B【解析】解:因式分解是指将一个多项式化为几个整式的乘积故选:B.根据因式分解的定义即可判断.本题考查因式分解的定义,解题的关键是正确理解因式分解的定义,本题属于基础题型.3.【答案】C【解析】【分析】本题考查了积的乘方公式,正确进行公式的变形是关键.逆用积的乘方公式即可求解.【解答】解:原式=[(−3)×(−13)]100×(−13)=−13.故选C.4.【答案】C【解析】【分析】本题考查的是完全平方公式,完全平方公式:(a±b)2=a2±2ab+b2.可巧记为:“首平方,末平方,首末两倍中间放”.根据完全平方公式进行计算,判断即可.【解答】解:9.52=(10−0.5)2=102−2×10×0.5+0.52故选:C.5.【答案】B【解析】【分析】此题考查的是完全平方公式的应用以及代数式的求值.先根据完全平方公式将已知条件中的等式展开,再联立方程组,利用加减消元即可求出整体ab的值和a2+b2的值.然后把得到的数值代入a2+b2−3ab计算即可.【解答】解:∵(a+b)2=7∴a2+2ab+b2=7①∵(a−b)2=3∴a2−2ab+b2=3②①+②,得:2a2+2b2=10∴a2+b2=5;①−②得4ab=4∴ab=1a2+b2−3ab=5−3=2故选B.6.【答案】A【解析】【分析】本题考查整式的运算,解题的关键是数量运用整式的运算法则,本题属于基础题型.根据整式的运算法则即可求出答案.【解答】解:设这条边上的高为ℎ×ℎ×(2xy)2=x6y2由三角形的面积公式可知:12x4,故选A.∴ℎ=127.【答案】B【解析】【分析】本题考查了多项式乘以多项式,熟练掌握整式乘法的相关运算法则是解题的关键.将题中所给等式左边利用多项式乘多项式的运算法则进行计算,再与等式右边比较即可得出答案.【解答】解:(x−3)(2x+1)=2x2+x−6x−3=2x2−5x−3∵(x−3)(2x+1)=2x2+ax−3∴a=−5.故选:B.8.【答案】D【解析】【分析】本题考查了平方差公式在新定义类计算中的简单应用,正确将所给的数字拆成平方差的形式是解题的关键.根据数字的特点,分别将31、41和16写成两个正整数的平方差的形式,而54不能写成两个正整数的平方差的形式,则问题得解.【解答】解:因为31=(16+15)×(16−15)=162−15241=(21+20)×(21−20)=212−20216=(5+3)×(5−3)=52−3254不能表示成两个正整数的平方差.所以31、41和16是“创新数”,而54不是“创新数”.故选D.9.【答案】D【解析】解:∵16−8x+x2=(4−x)2,x>4cm∴正方形的边长为(x−4)cm∴正方形的周长为:4(x−4)=4x−16(cm)故选:D.首先利用完全平方公式进行因式分解,即可得到正方形的边长,进而可计算出正方形的周长.此题主要考查了因式分解法的应用,关键是利用完全平方公式进行因式分解,从而得到正方形的边长.10.【答案】A【解析】【分析】本题考查的是幂的乘方与积的乘方,同底数幂的乘法有关知识.将已知等式代入22m+6n=22m×26n=(22)m⋅(23)2n=4m⋅82n=4m⋅(8n)2可得.【解答】解:∵4m=a,8n=b∴22m+6n=22m×26n=(22)m⋅(23)2n=4m⋅82n=4m⋅(8n)2=ab2故选A.11.【答案】x2(x+2)(x−2)【解析】解:x4−4x2=x2(x2−4)=x2(x+2)(x−2);故答案为x2(x+2)(x−2);先提取公因式再利用平方差公式进行分解,即x4−4x2=x2(x2−4)=x2(x+2)(x−2);本题考查因式分解;熟练运用提取公因式法和平方差公式进行因式分解是解题的关键.12.【答案】1【解析】【分析】本题综合考查了因式分解中提取公因式法的应用,分组法和整体代入求值法和相反数等相关知识点,重点掌握提取公因式法.由已知字母a、b的系数为2、−3,代数式中前二项的系数分别为4、−6,提取此二项的公因式2a后,代入求值变形得−2a+3b,与已知条件互为相反数,可求出代数式的值为1.【解答】解:∵2a−3b=−1∴4a2−6ab+3b=2a(2a−3b)+3b=2a×(−1)+3b=−2a+3b=−(2a−3b)=−(−1)=1.故答案为1.13.【答案】6【解析】【分析】此题主要考查了公式法分解因式,正确将原式变形是解题关键.直接利用平方差公式将原式变形进而得出答案.【解答】解:∵x+y=2,x−y=1∴(x+1)2−y2=(x+1−y)(x+1+y)=2×3=6.故答案为6.14.【答案】1【解析】解:原式=20182−(2018+1)×(2018−1)=20182−20182+1=1故答案是:1.原式变形后,利用平方差公式计算即可求出值.此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.15.【答案】7【解析】【分析】本题主要考查了代数式求值及完全平方公式,熟记完全平方公式的几个变形是解决本题的关键.将已知等式的两边完全平方后求得a2+1a2的值即可.【解答】解:∵a+1a=3∴(a+1a )2=9,即a2+2+1a2=9∴a2+1a2=7.故答案是7.16.【答案】±√ 6【解析】【分析】本题主要考查了完全平方公式的应用,把a+1a =√ 10的两边平方得出a2+1a2的值,再进一步配方得出(a−1 a )2的值,从而得到a−1a的值.【解答】解:∵a+1a=√ 10∴(a+1a)2=(√ 10)2=10∴a2+1a2+2=10∴a2+1a2=8∴a2+1a2−2=8−2=6即(a−1a)2=6∴a−1a的值为±√ 6.故答案为±√ 6.17.【答案】45【解析】【解析】[分析]:根据“杨辉三角”确定出所求展开式第三项的系数即可。
八年级数学上册 小专题(十二) 整式的化简及求值
![八年级数学上册 小专题(十二) 整式的化简及求值](https://img.taocdn.com/s3/m/38aeb23b227916888486d79f.png)
小专题(十二) 整式的化简及求值类型1 整式的化简1.计算:(1)(-2a 2)·(3ab 2-5ab 3)+8a 3b 2;解:原式=-6a 3b 2+10a 3b 3+8a 3b 2=2a 3b 2+10a 3b 3.(2)(3x -1)(2x +1);解:原式=6x 2+3x -2x -1=6x 2+x -1.(3)(2x +5y)(3x -2y)-2x(x -3y);解:原式=6x 2+11xy -10y 2-2x 2+6xy =4x 2+17xy -10y 2.(4)(x -1)(x 2+x +1).解:原式=x 3+x 2+x -x 2-x -1=x 3-1.2.计算:(1)21x 2y 4÷3x 2y 3;解:原式=(21÷3)·x 2-2·y 4-3=7y. (2)(8x 3y 3z)÷(-2xy 2);解:原式=[8÷(-2)]·(x 3÷x)·(y 3÷y 2)·z =-4x 2yz.(3)a 2n +2b 3c ÷2a n b 2; 解:原式=(1÷2)·(a 2n +2÷a n )·(b 3÷b 2)·c =12a n +2bc. (4)-9x 6÷13x 2÷(-x 2). 解:原式=[-9÷13÷(-1)]·(x 6÷x 2÷x 2)=27x 2. 3.计算:(1)(-2a 2b 3)·(-ab)2÷4a 3b 5;解:原式=(-2a 2b 3)·(a 2b 2)÷4a 3b 5=(-2a 4b 5)÷4a 3b 5=-12a. (2)(-5a 2b 4c 2)2÷(-ab 2c)3.解:原式=25a 4b 8c 4÷(-a 3b 6c 3)=-25ab 2c.4.计算:(1)[x(x 2y 2-xy)-y(x 2-x 3y)]÷x 2y ;解:原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷x 2y=(2x 3y 2-2x 2y)÷x 2y=2xy -2.(2)(23a 4b 7-19a 2b 6)÷(-16ab 3)2.解:原式=(23a 4b 7-19a 2b 6)÷136a 2b 6=23a 4b 7÷136a 2b 6-19a 2b 6÷136a 2b 6=24a 2b -4.5.计算:(1)(-76a 3b)·65abc ;解:原式=-75a 3+1b 1+1c=-75a 4b 2c.(2)(-x)5÷(-x)-2÷(-x)3;解:原式=(-x)5-(-2)-3=(-x)4=x 4.(3)6mn 2·(2-13mn 4)+(-12mn 3)2;解:原式=12mn 2-2m 2n 6+14m 2n 6=12mn 2-74m 2n 6.(4)5x(x 2+2x +1)-(2x +3)(x -5).解:原式=5x 3+10x 2+5x -(2x 2-7x -15)=5x 3+10x 2+5x -2x 2+7x +15=5x 3+8x 2+12x +15.类型2 利用直接代入进行化简求值6.先化简,再求值:(1)(-12ab 2)·(14a 2b 4)-(-a 3b 2)·(-b 2)2,其中a =-14,b =4; 解:原式=-18a 3b 6-(-a 3b 2)·b 4=-18a 3b 6+a 3b 6=78a 3b 6. 当a =-14,b =4时,原式=78×(-14)3×46=-56. (2)(a +b)(a -2b)-(a +2b)(a -b),其中a =-2,b =23; 解:原式=a 2-ab -2b 2-(a 2+ab -2b 2)=a 2-ab -2b 2-a 2-ab +2b 2=-2ab.当a =-2,b =23时,原式=(-2)×(-2)×23=83. (3)(-13xy)2[xy(2x -y)-2x(xy -y 2)],其中x =-32,y =-2; 解:原式=19x 2y 2(2x 2y -xy 2-2x 2y +2xy 2)=19x 2y 2·xy 2=19x 3y 4. 当x =-32,y =-2时,原式=19×(-32)3×(-2)4=-6. (4)(2a +3b)(3a -2b)-5a(b +1)-6a 2,其中a =-12,b =2. 解:原式=6a 2+5ab -6b 2-5ab -5a -6a 2=-6b 2-5a ,当a =-12,b =2时,原式=-6×22-5×(-12)=-24+52=-2112. 类型3 利用条件间接代入进行化简求值7.已知|2a +3b -7|+(a -9b +7)2=0,试求(14a 2-12ab +b 2)(12a +b)的值. 解:由题意知⎩⎨⎧2a +3b -7=0,a -9b +7=0,解得⎩⎪⎨⎪⎧a =2,b =1. 原式=18a 3+b 3=18×23+13=2. 类型4 利用整体代入进行化简求值8.(随州中考)先化简,再求值:(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12. 解:原式=4-a 2+a 2-5ab +3a 5b 3÷a 4b 2=4-2ab.当ab =-12时,原式=4+2×12=5. 9.若x 2+4x -4=0,求3(x -2)2-6(x +1)(x -1)的值.解:原式=3x 2-12x +12-6x 2+6=-3x 2-12x +18=-3(x 2+4x)+18. ∵x 2+4x -4=0,∴x 2+4x =4.∴原式=-3×4+18=6.。
初二数学整式试题答案及解析
![初二数学整式试题答案及解析](https://img.taocdn.com/s3/m/afc737fac9d376eeaeaad1f34693daef5ef713ab.png)
初二数学整式试题答案及解析1.小明做了一道因式分解题:x2y﹣2xy2+y2=y(x2﹣2xy+y2)=y(x﹣y)2,他用到的分解因式的方法是_________(写出两个)【答案】提公因式法,运用公式法.【解析】x2y﹣2xy2+y2=y(x2﹣2xy+y2)=y(x﹣y)2,他用到的分解因式的方法是提公因式法,运用公式法.故答案是提公因式法,运用公式法.【考点】因式分解-运用公式法;因式分解-提公因式法.2.分解因式.【答案】.【解析】把作为一整体应用完全平方公式分解后再应用平方差公式分解即可.试题解析:.【考点】1.应用公式法因式分解;2.整体思想的应用.3.下面是某同学在一次测验中的计算摘录,其中正确的个数有( )①3x3·(-2x2)=-6x5;②4a3b÷(-2a2b)=-2a;③(a3)2=a5;④(-a)3÷(-a)=-a2.A.1个B.2个C.3个D.4个【答案】B.【解析】根据单项式乘单项式的法则,单项式除单项式的法则,幂的乘方的性质,同底数幂的除法的性质,对各选项计算后利用排除法求解.①3x3•(﹣2x2)=﹣6x5,正确;②4a3b÷(﹣2a2b)=﹣2a,正确;③应为(a3)2=a6,错误;④应为(﹣a)3÷(﹣a)=(﹣a)2=a2,错误.所以①②两项正确.故选B.【考点】1.单项式乘单项式,2.幂的乘方与积的乘方,3.底数幂的除法,4.整式的除法.4.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是 .【答案】x2+2.【解析】根据被除式减余式,可得商式与除式的积,根据积除以商式,可得除式.x3+2x2﹣1﹣(﹣1)=x3+2x,(x3+2x)÷x=x2+2.故答案是x2+2.【考点】整式的除法.5.下列运算正确的是()A.x4·x3=x12B.(x3)4=x7C.x4÷x3=x(x≠0)D.x4+x4=x8【答案】C.【解析】幂的加减乘除运算:1.同底数幂相乘,底数不变,指数相加;2.幂的乘方公式:(a m)n=a mn;3.幂的积的乘方公式:(ab)n=a n b n;4.幂的加减运算,是同类项的才能合并;由题, x4·x3 =x7,A选项错误, (x3)4=x7,B选项错误,C选项正确, x4+x4=2x4,D选项不正确,故选C.【考点】幂的加减乘除运算.6. 因式分解 【答案】. 【解析】通过分析可知原式还因子,故可设 =取两组特殊值代入求出,即可得到答案. 试题解析:注意到 当时,原式等于0,故原式含有因子,又原式是关于的轮换对称式,故原式还含因子,又原式为的五次式,故可设=, 令得,令得 解得 所以=. 【考点】因式分解.7. (1)如图1,以的边、为边分别向外作正方形和正方形,连结,试判断与面积之间的关系,并说明理由;(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形大理石和黑色的三角形大理石铺成.已知中间的所有正方形的面积之和是平方米,内圈的所有三角形的面积之和是平方米,这条小路一共占地多少平方米?【答案】(1)相等;(2)(a+2b )平方米.【解析】(1)过点C 作CM ⊥AB 于M ,过点G 作GN ⊥EA 交EA 延长线于N ,得出△ABC 与△AEG 的两条高,由正方形的特殊性证明△ACM ≌△AGN ,是判断△ABC 与△AEG 面积之间的关系的关键;(2)同(1)道理知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和,求出这条小路一共占地多少平方米.试题解析:(1)△ABC 与△AEG 面积相等.理由:过点C 作CM ⊥AB 于M ,过点G 作GN ⊥EA 交EA 延长线于N ,则∠AMC=∠ANG=90°,∵四边形ABDE 和四边形ACFG 都是正方形, ∴∠BAE=∠CAG=90°,AB=AE ,AC=AG , ∵∠BAE+∠CAG+∠BAC+∠EAG=360°, ∴∠BAC+∠EAG=180°, ∵∠EAG+∠GAN=180°, ∴∠BAC=∠GAN , ∴△ACM ≌△AGN , ∴CM=GN ,∵S △ABC =AB•CM ,S △AEG =AE•GN ,∴S △ABC =S △AEG ;(2)由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和.∴这条小路的面积为(a+2b)平方米.【考点】1.正方形的性质;2.全等三角形的面积和性质;3.三角形的面积公式.8.多项式能用完全平方式分解因式,则m的值为( ).【答案】m=±10【解析】完全平方式应具备的条件有:两数乘积二倍项和两数平方和的项,由此确定出确定出mab=±2·a·5b=±10ab.所以m=±10.故填±10.【考点】完全平方式.9. a3·a2b= .【答案】a5b【解析】由题, a3·a2b =a5b.同底数幂相乘,底数不变,指数相加,由题, a3·a2b =a5b.【考点】整式的乘法.10.下列从左边到右边的变形,是因式分解的是().A.B.C.D.【答案】C.【解析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.、是多项式乘法,不是因式分解,错误;、是多项式乘法,不是因式分解,错误;、是因式分解,正确;、右边不是积的形式,错误.【考点】因式分解的定义.11.下列运算中,正确的是().A.B.C.D.【答案】B.【解析】根据同底数幂的乘法,合并同类项,积的乘方,以及完全平方公式的意义,对各选项计算后利用排除法求解.、而不等于,故本选项错误;、正确;、而不等于,故本选项错误;、而不等于,故本选项错误.因此本题选B.【考点】(1)同底数幂的乘法;(2)合并同类项;(3)积的乘方;(4)完全平方公式.12.若一多项式除以2x2﹣3,得到的商式为7x﹣4,则此多项式为______________.【答案】.【解析】根据被除式=商×除式可知该多项式=,去括号整理即得.试题解析:=.【考点】多项式乘以多项式.13.下列各题的计算,正确的是()A.B.C.D.【答案】D.【解析】 A.,本选项错误;B.,本选项错误;C.,本选项错误;D.,本选项正确,故选D【考点】1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法;4.同底数幂的除法.14.在数学课的学习中,我们已经接触了很多代数恒等式,知道可以用图形的面积来解释这些代数恒等式.如图①可以解释恒等式;(1)如图②可以解释恒等式= .(2)如图③是由4个长为,宽为的长方形纸片围成的正方形,①用面积关系写出一个代数恒等式:.②若长方形纸片的面积为3,且长比宽长3,求长方形的周长(其中a.b都是正数,结果可保留根号).【答案】(1);(2)①或或;②.【解析】(1)根据图形面积可以得出公式;(2)①根据面积关系可以得出公式或或;②再利用长方形纸片的面积为3,长比宽长3,得出a,b关系求出即可.试题解析:(1);(2)①或或;②由①得:,依题意得,,,因为.都是正数,所以,所以,长方形周长为:.【考点】1.完全平方公式的几何背景;2.完全平方式.15.计算:÷·【答案】【解析】先根据乘方法则化简,再根据分式的基本性质约分即可.原式.【考点】幂的运算点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.16.下面是某同学对多项式(x2—4x+2)(x2—4x+6)+4进行分解因式的过程。
人教版2022年八年级上册《整式的化简求值》专项训练卷(含答案)
![人教版2022年八年级上册《整式的化简求值》专项训练卷(含答案)](https://img.taocdn.com/s3/m/29d31b4726d3240c844769eae009581b6bd9bd98.png)
人教版2022年八年级上册《整式的化简求值》专项训练卷一.选择题1.如果m2﹣2m﹣4=0,那么代数式(m+3)(m﹣3)+(m﹣2)2的值为()A.﹣3B.﹣1C.1D.32.若a2+2a﹣2=0,则(a+1)2的值为()A.3B.﹣1C.1D.无法计算3.若x、y均为正整数,且(x+y)(x﹣y)=12,则2(x+y)﹣3x+3y+1的值为()A.22B.7C.0D.﹣134.对于五个整式,A:2x2;B:x+1;C:﹣2x;D:y2;E:2x﹣y,有以下几个结论:①若y为正整数,则多项式B⋅C+A+D+E的值一定是正数;②存在实数x,y,使得A+D+2E的值为﹣2;③若关于x的多项式M=3(A﹣B)+m•B•C(m为常数)不含x的一次项,则该多项式M的值一定大于﹣3.上述结论中,正确的个数是()A.0B.1C.2D.3二.填空题5.已知x2﹣x=2022,则代数式(x+1)(x﹣1)+x(x﹣2)=.6.若a﹣b=1,ab=﹣2,则(a﹣2)(b+2)=.7.若ab=2,则a(a2b3﹣ab2﹣b)=.8.当a=2,b=﹣时,(a+b)2+b(a﹣b)﹣4ab=.三.解答题(共10小题)9.先化简.再求值:(x﹣1)2+x(4﹣x)﹣3,其中.10.先化简,再求值:(x+5)(x﹣5)﹣(x﹣2)2+(x+2)(x﹣1),其中x=﹣2.11.先化简,再求值:(2m﹣n)2﹣(m+2n)(m﹣2n),其中m=﹣1,n=﹣2.12.先化简,再求值:(2a+3b)2+(a﹣3b)(4a+3b)﹣8a2,其中a+b=6,a2+b2=2813.先化简,再求值:[(a+3)2﹣(3+a)(3﹣a)+a(2a﹣2)]÷(2a),其中.14.先化简,再求值:(2m+3)•(2m﹣3)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m满足m2+m﹣3=0.15.先化简,再求值:(1)(a﹣3)2﹣3(2a+1)(2a﹣1)﹣4a(a﹣2),其中a=﹣2;(2)(4x2y﹣2xy2)÷(2y)﹣(2x+y)(x﹣y),其中(x+1)2+|y+2|=0.16.先化简,再求值.(1)[(2x+y)(2x﹣y)﹣(2x﹣3y)2]÷(2y),其中x=2,y=1;(2)(3a5b3+a4b2)÷(﹣a2b)2﹣(2+a)(2﹣a)﹣(a﹣b)2,其中a=﹣,b=2.17.先化简,再求值:2(a+2)2﹣(a+1)(a﹣1),其中a=﹣1.下表是小明的解法,请按要求解答下列问题:小明的解法如下:原式=2(a2++)﹣=2a2+4a+8﹣a2﹣1=……(1)小明的解答过程里在标出①②③的几处中,出现错误的在第和处(填序号);(2)请你写出此题的正确化简过程,并求出当a=﹣1时,代数式的值.18.已知多项式A=(x+2)2+x(1﹣x)﹣9.(1)化简多项式A时,小明的结果与其他同学的不同,请你检查以下小明同学的解题过程.在标出①②③④的几项中出现错误的是;并写出正确的解答过程;(2)小亮说:“只要给出x2﹣2x+1的合理的值,即可求出多项式A的值.”若给出x2﹣2x+1的值为4,请你求出此时A的值.参考答案一.选择题1.【解答】解:∵m2﹣2m﹣4=0,∴m2﹣2m=4,原式=m2﹣9+m2﹣4m+4=2m2﹣4m﹣5=2(m2﹣2m)﹣5=8﹣5=3.故选:D.2.【解答】解:∵a2+2a﹣2=0,∴a2+2a=2,∴(a+1)2=a2+2a+1=2+1=3.故选:A.3.【解答】解:因为x、y均为正整数,且(x+y)(x﹣y)=12,所以x+y=6,x﹣y=2,则2(x+y)﹣3x+3y+1=2(x+y)﹣3(x﹣y)+1=12﹣6+1=7.故选:B.4.【解答】解:①:B⋅C+A+D+E=﹣2x(x+1)+2x2+y2+2x﹣y =y2﹣y,当y=1时,B⋅C+A+D+E=0.故①是错误的;②:当A+D+2E=﹣2,即2x2+y2+2(2x﹣y)=﹣2,∴2(x+1)2+(y﹣1)2=1,当x=﹣1时,y=0或者y=2.所以②是正确的.③:∵M=3(A﹣B)+m•B•C=(6﹣2m)x2+(﹣3﹣2m)x﹣3不含x的一次项,∴﹣3﹣2m=0,∴m=﹣1.5,∴M=9x2﹣3≥﹣3,∴③是错误的;故选:B.二.填空题5.【解答】解:(x+1)(x﹣1)+x(x﹣2)=x2﹣1+x2﹣2x=2x2﹣2x﹣1,当x2﹣x=2022时,原式=2(x2﹣x)﹣1=2×2022﹣1=4044﹣1=4043,故答案为:4043.6.【解答】解:∵a﹣b=1,ab=﹣2,∴原式=ab+2(a﹣b)﹣4=﹣2+2﹣4=﹣4,故答案为:﹣47.【解答】解:a(a2b3﹣ab2﹣b)=a3b3﹣a2b2﹣ab,而ab=2,∴原式=8﹣4﹣2=2.故答案为:2.8.【解答】解:(a+b)2+b(a﹣b)﹣4ab=a2+2ab+b2+ab﹣b2﹣4ab=a2﹣ab,当a=2,b=﹣时,原式=4+1=5,故答案为:5.三.解答题(共10小题)9.【解答】解:(x﹣1)2+x(4﹣x)﹣3=x2﹣2x+1+4x﹣x2﹣3=2x﹣2,当时,原式=.10.【解答】解:(x+5)(x﹣5)﹣(x﹣2)2+(x+2)(x﹣1)=(x2﹣25)﹣(x2﹣4x+4)+(x2﹣x+2x﹣2)=x2﹣25﹣x2+4x﹣4+x2﹣x+2x﹣2=x2+5x﹣31,当x=﹣2时,原式=(﹣2)2+5×(﹣2)﹣31=4﹣10﹣31=﹣37.11.【解答】解:(2m﹣n)2﹣(m+2n)(m﹣2n)=4m2﹣4mn+n2﹣m2+4n2=3m2﹣4mn+5n2,当m=﹣1,n=﹣2时,原式=3×(﹣1)2﹣4×(﹣1)×(﹣2)+5×(﹣2)2=3×1﹣8+5×4=3﹣8+20=15.12.【解答】解:(2a+3b)2+(a﹣3b)(4a+3b)﹣8a2=4a2+12ab+9b2+4a2+3ab﹣12ab﹣9b2﹣8a2=3ab,∵a+b=6,a2+b2=(a+b)2﹣2ab=28,∴62﹣2ab=28,∴ab=4,当ab=4时,原式=3×4=12.13.【解答】解:[(a+3)2﹣(3+a)(3﹣a)+a(2a﹣2)]÷(2a)=(a2+6a+9﹣9+a2+2a2﹣2a)÷(2a)=(4a2+4a)÷(2a)=2a+2,当时,原式=2×(﹣)+2=﹣1+2=1.14.【解答】解:(2m+3)•(2m﹣3)﹣(m﹣1)2+(2m)3÷(﹣8m)=4m2﹣9﹣(m2﹣2m+1)+8m3÷(﹣8m)=4m2﹣9﹣m2+2m﹣1﹣m2=2m2+2m﹣10,∵m满足m2+m﹣3=0,∴m2+m=3,当m2+m=3时,原式=2×3﹣10=6﹣10=﹣4.15.【解答】解:(1)(a﹣3)2﹣3(2a+1)(2a﹣1)﹣4a(a﹣2)=a2﹣6a+9﹣3(4a2﹣1)﹣(4a2﹣8a)=a2﹣6a+9﹣12a2+3﹣4a2+8a=﹣15a2+2a+12,当a=﹣2时,原式=﹣15×(﹣2)2+2×(﹣2)+12=﹣60﹣4+12=﹣52;(2)(4x2y﹣2xy2)÷(2y)﹣(2x+y)(x﹣y)=2x2﹣xy﹣(2x2﹣xy﹣y2)=2x2﹣xy﹣2x2+xy+y2=y2,∵(x+1)2+|y+2|=0,(x+1)2⩾0,|y+2|⩾0,∴(x+1)2=0,|y+2|=0,∴x=﹣1,y=﹣2,当x=﹣1,y=﹣2时,原式=(﹣2)2=4.16.【解答】解:(1)[(2x+y)(2x﹣y)﹣(2x﹣3y)2]÷(2y)=(4x2﹣y2﹣4x2+12xy﹣9y2)÷(2y)=(12xy﹣10y2)÷(2y)=6x﹣5y,当x=2,y=1时,原式=6×2﹣5×1=12﹣5=7.(2)(3a5b3+a4b2)÷(﹣a2b)2﹣(2+a)(2﹣a)﹣(a﹣b)2,=(3a5b3+a4b2)÷(a4b2)﹣4+a2﹣a2+2ab﹣b2=3ab+1﹣4+a2﹣a2+2ab﹣b2=5ab﹣3﹣b2,当a=﹣,b=2时,原式=5×(﹣)×2﹣3﹣22=﹣1﹣3﹣4=﹣8.17.【解答】解:(1)小明的解答过程里在标出①②③的几处中,出现错误的在第①和③处,故答案为:①,③;(2)2(a+2)2﹣(a+1)(a﹣1)=2(a2+4a+4)﹣(a2﹣1)=2a2+8a+8﹣a2+1=a2+8a+9,当a=﹣1时,原式=(﹣1)2+8×(﹣1)+9=1﹣8+9=2.18.【解答】解:(1)在标出①②③④的几项中出现错误的是①;正确解答过程:A=(x+2)2+x(1﹣x)﹣9=x2+4x+4+x﹣x2﹣9=5x﹣5;故答案为:①;(2)因为x2﹣2x+1=4,即:(x﹣1)2=4,所以x﹣1=±2,则A=5x﹣5=5(x﹣1)=±10,∴此时A的值为±10。
人教版2022-2023学年八年级数学上册阶段性复习精选精练《整式的乘法与因式分解》基础卷含答案解析
![人教版2022-2023学年八年级数学上册阶段性复习精选精练《整式的乘法与因式分解》基础卷含答案解析](https://img.taocdn.com/s3/m/5b04a60dbc64783e0912a21614791711cc79799b.png)
第14章 整式的乘法与因式分解(基础篇)一、单选题(本大题共10小题,每小题3分,共30分)1.计算()32a 的结果是( )A .6a B .5a C .8a D .9a 2.下列计算正确是( )A .236()a a =B .224a a a +=C .()()326a a a ⋅=D .33a a -=3.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解4.长方形的面积是296a ab -,一边长是3a ,则它的另一边长是( )A .32a b +B .32a b -C .23a b -D .23a b+5.若(x +2)(x ﹣1)=x 2+mx +n ,则m +n =( )A .1B .-2C .-1D .26.设(5a +3b )2=(5a -3b )2+A ,则A 等于( )A .60abB .30abC .15abD .12ab7.已知x +1x=6,则x 2+21x =( )A .38B .36C .34D .328.已知a ,b ,c 是△ABC 的三边长,且满足a 2+2b 2+c 2-2b (a +c )=0,则此三角形是( )A .等腰三角形B .等边三角形C .直角三角形D .不能确定9.设M =(x ﹣3)(x ﹣7),N =(x ﹣2)(x ﹣8),则M 与N 的关系为( )A .M <NB .M >NC .M =ND .不能确定10.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长 为3,则另一边长是( )A .m +3B .m +6C .2m +3D .2m +6二、填空题(本大题共8小题,每小题4分,共32分)11.分解因式:2ab a -=______.12.计算432x x ⋅的结果等于__________.13.已知代数式2x y -的值是1,则代数式241x y -+-的值是_______.14.若2(3)()x x m x x n ++=-+对x 恒成立,则n =______.15.若关于x 的二次三项式21x ax 4++是完全平方式,则a 的值是_______.16.已知(x+y )2=25,(x ﹣y )2=9,则xy=___.17.分解因式:2x 3﹣6x 2+4x =__________.18.2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a ,较长直角边为b .如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为____.三、解答题(本大题共6小题,共58分)19.(8分)计算(1)9991000(0.125)8⨯; (2)2(4)(4)(1)a a a +---20.(8分)因式分解:(1) 228m -; (2) 3223242m n m n mn -+.21.(10分)求值:(1)已知40x y +-=,求22x y ⋅的值;(2)化简求值:()()()22121214x x x x ⎡⎤-++-÷⎣⎦,其中2x =-.22.(10分)已知(x 2+mx +1)(x 2﹣2x +n )的展开式中不含x 2和x 3项.(1) 分别求m ,n 的值;(2) 先化简再求值:2n 2+(2m +n )(m ﹣n )﹣(m ﹣n )223.(10分)回答下列问题:(1)方法学习:把二次三项式265x x ++因式分解,可按照如下方法:265x x ++2=694x x ++-2(3)4x =+-(32)(32)x x =+++-(5)(1)x x =+-应用上述方法,把二次三项式2412x x --的因式分解.(2)拓展应用:由上述因式分解过程可知,2265(3)4x x x ++=+-2(3)0x +≥ ∴当30x +=时即3x =-时265x x ++取最小值4-参照上述分析过程回答:对二次三项式226x x -+,当x 的值为 时,此二次三项式取最小值,这个最小值是 .24.(12分)如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出2()a b +、2()a b -、ab 之间的等量关系是________;(2)根据(1)中的结论,若95,4x y x y ⋅+==,则x y -=________;(3)拓展应用:若22(2019)(2020)7m m -+-=,求(2019)m -(2020)m -的值.参考答案1.A【分析】根据幂的乘方法则进行计算即可.解:()23236a a a ⨯==,故选:A .【点拨】本题考查幂的乘方,计算法则为:幂的乘方,底数不变,指数相乘.2.A【分析】根据幂的乘方,整式的加减法法则,单项式乘单项式的法则,逐一进行判断即可.解:A 、236()a a =,选项正确,符合题意;B 、2222a a a +=,选项错误,不符合题意;C 、()()2326a a a =,选项错误,不符合题意;D 、32a a a -=,选项错误,不符合题意;故选A .【点拨】本题考查幂的乘方,合并同类项以及单项式乘单项式.熟练掌握相关运算法则是解题的关键.3.C【分析】根据因式分解的定义进行判断即可;解:①左边多项式,右边整式乘积形式,属于因式分解;②左边整式乘积,右边多项式,属于整式乘法;故答案选C .【点拨】本题主要考查了因式分解的定义理解,准确理解因式分解的定义是解题的关键.4.B【分析】直接利用整式的除法运算法则计算得出答案.解:∵长方形的面积是296a ab -,一边长是3a ,∴它的另一边长是:2(96)3a ab a-÷29363a a ab a=÷-÷32a b =-.故选:B .【点拨】此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.5.C【分析】依据多项式乘以多项式的法则,进行计算,再进行比较即可得到答案.解:(x +2)(x -1)=2x +x ﹣2 =2x +mx +n ,m =1,n =﹣2,所以m +n =1﹣2=﹣1.故选C6.A【分析】根据完全平方公式的展开法则,将等号两边去掉括号,即可得出A .解:∵(5a +3b )2=(5a -3b )2+A∴25a 2+30ab +9b 2=25a 2-30ab +9b 2+A∴A =60ab故选:A【点拨】本题考查了完全平方公式的应用,(a ±b )2=a 2±2ab +b 2,两数和(差)的平方,等于它们的平方和加上(减去)它们的的积的2倍.7.C【分析】把x +1x=6两边平方,利用完全平方公式化简,即可求出所求.解:把x +1x =6两边平方得:(x +1x)2=x 2+21x +2=36,则x 2+21x =34,故选C .【点拨】本题考查了分式的混合运算以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.8.B【分析】运用因式分解,首先将所给的代数式恒等变形;借助非负数的性质得到a =b =c ,即可解决问题.解:∵a 2+2b 2+c 2﹣2b (a +c )=0,∴(a ﹣b )2+(b ﹣c )2=0;∵(a ﹣b )2≥0,(b ﹣c )2≥0,∴a ﹣b =0,b ﹣c =0,∴a =b =c ,∴△ABC 为等边三角形.故选B .【点拨】本题考查了因式分解及其应用问题.解题的关键是牢固掌握因式分解的方法,灵活运用因式分解来分析、判断、推理活解答.9.B【分析】由于M =(x -3)(x -7)=x 2-10x +21,N =(x -2)(x -8)=x 2-10x +16,可以通过比较M 与N 的差得出结果.解:∵M =(x -3)(x -7)=x 2-10x +21,N =(x -2)(x -8)=x 2-10x +16,M -N =(x 2-10x +21)-(x 2-10x +16)=5,∴M >N .故选B .【点拨】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项,掌握多项式乘以多项式的法则是解题的关键.10.C【分析】由于边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.解:设拼成的矩形一边长为x ,则依题意得:(m +3)2-m 2=3x ,解得,x =(6m +9)÷3=2m +3,故选:C .11.a (b +1)(b ﹣1)解:原式=2(1)a b =a (b +1)(b ﹣1),故答案为a (b +1)(b ﹣1).12.72x 解:分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x 4+3=2x 7.故答案为2x 7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.13.-3【分析】把(x-2y )看作一个整体并代入代数式进行计算即可得解.解:∵x-2y=1,∴-2x+4y-1=-2(x-2y )-1=-2×1-1=-3.故答案为-3..【点拨】本题考查了代数式求值,整体思想的利用是解题的关键.14.4.解:∵()()23x x m x x n ++=-+,∴()2233x x m x n x n ++=+-- ,故31n -=,解得:n=4.故答案为4.15.±1【分析】利用完全平方公式的结构特征判断即可求出a 的值.解:这里首末两项是x 和12这两个数的平方,那么中间一项为加上或减去x 和12积的2倍,故a =±1,故答案为:±1.16.4【分析】根据完全平方公式的运算即可.解:∵()225x y +=,()29x y -=∵()2x y ++()2x y -=4xy =16,∴xy =4.【点拨】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用.17.2x (x ﹣1)(x ﹣2).解:分析:首先提取公因式2x ,再利用十字相乘法分解因式得出答案.详解:2x 3﹣6x 2+4x=2x (x 2﹣3x+2)=2x (x ﹣1)(x ﹣2).故答案为2x (x ﹣1)(x ﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.18.27【分析】根据题意得出a 2+b 2=15,(b-a )2=3,图2中大正方形的面积为:(a+b )2,然后利用完全平方公式的变形求出(a+b )2即可.解:由题意可得在图1中:a 2+b 2=15,(b-a )2=3,图2中大正方形的面积为:(a+b )2,∵(b-a )2=3a 2-2ab+b 2=3,∴15-2ab=32ab=12,∴(a+b )2=a 2+2ab+b 2=15+12=27,故答案为:27.【点拨】本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.19.(1)8(2)217a -.【分析】(1)利用积的乘方的逆运算可计算出结果.(2)运用平方差公式和平方差公式展开,然后再合并同类项.解:(1)()()9999999999919000(0=0.12588=0.12588=)8.1258⨯⨯⨯⨯⨯.(2)222(4)(4)(1)=1621217+----+---=a a a a a a a 【点拨】本题主要考查了整式乘法公式的应用,主要是对公式逆应用的考查.20.(1)()()222m m -+(2)()22mn m n -【分析】(1)先提公因式2,再利用平方差公式分解因式即可;(2)先提公因式2mn ,再利用完全平方公式分解因式即可.(1)解:228m -()224m =-()()222m m =-+;(2)解:3223242m n m n mn -+()2222mn m mn n =-+()22mn m n =-.【点拨】本题考查因式分解,熟记平方差公式和完全平方公式,掌握因式分解的方法步骤并正确求解是解答的关键.21.(1)16;(2)2x-1;-5.【分析】(1)根据等式的基本性质可得4x y +=,然后根据同底数幂的乘法法则变形,并利用整体代入法求值即可;(2)根据完全平方公式和平方差公式计算,然后利用多项式除以单项式法则计算,最后代入求值即可.解:(1)∵40x y +-=∴4x y +=∴22x y⋅=2x y+=42=16;(2)()()()22121214x x x x ⎡⎤-++-÷⎣⎦=22441414x x x x⎡⎤-++-÷⎣⎦=()2844x x x-÷=2x-1,将2x =-代入,原式=2×(-2)-1=-5.【点拨】此题考查的是整式的混合运算,掌握同底数幂的乘法法则、完全平方公式、平方差公式和多项式除以单项式法则是解题关键.22.(1)m =2,n =3;(2)m 2+mn , 10.【分析】(1)先根据多项式乘以多项式法则展开,再合并同类项,最后求出解(2)先算乘法,再合并同类项,最后代入求解解:(1)(x 2+mx +1)(x 2﹣2x +n )=x 4﹣2x 3+nx 2+mx 3﹣2mx 2+mnx +x 2﹣2x +n=x 4+(﹣2+m )x 3+(n ﹣2m +1)x 2+(mn ﹣2)x +n ,∵(x 2+mx +1)(x 2﹣2x +n )的展开式中不含x 2和x 3项,∴﹣2+m =0,n ﹣2m +1=0,解得:m =2,n =3;(2)2n 2+(2m +n )(m ﹣n )﹣(m ﹣n )2=2n 2+2m 2﹣2mn +mn ﹣n 2﹣m 2+2mn ﹣n 2=m 2+mn ,当m =2,n =3时,原式=4+6=10.【点拨】此题考查了合并同类项,多项式乘多项式,解题关键是合并同类项23.(1)(2)(6)x x +-;(2)1;5【分析】(1)根据题目所给方法进行因式分解即可;(2)先对二次三项式进行因式分解,然后利用题中所给方法进行求解即可.解:(1)2412x x --24416x x =-+-()2216x =--()()2424x x =---+()()62x x =-+;(2)由()222615x x x -+=-+可得:∵()210x-≥,∴当10x-=时,即x=1,226x x-+取最小值5;故答案为1,5.【点拨】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.24.(1)(a+b)2-(a-b)2=4ab;(2)±4;(3)-3【分析】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,根据图1的面积和图2中白色部分的面积相等可得答案;(2)根据(1)中的结论,可知(x+y)2-(x-y)2=4xy,将x+y=5,x•y94=代入计算即可得出答案;(3)将等式(2019-m)+(m-2020)=-1两边平方,再根据已知条件及完全平方公式变形可得答案.解:(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,∵图1的面积和图2中白色部分的面积相等,∴(a+b)2-(a-b)2=4ab,故答案为:(a+b)2-(a-b)2=4ab;(2)根据(1)中的结论,可知(x+y)2-(x-y)2=4xy,∵x+y=5,x•y=94,∴52-(x-y)2=4×94,∴(x-y)2=16∴x-y=±4,故答案为:±4;(3)∵(2019-m)+(m-2020)=-1,∴[(2019-m)+(m-2020)]2=1,∴(2019-m)2+2(2019-m)(m-2020)+(m-2020)2=1,∵(2019-m)2+(m-2020)2=7,∴2(2019-m)(m-2020)=1-7=-6;∴(2019-m)(m-2020)=-3.【点拨】本题考查了完全平方公式的几何背景,熟练运用完全平方公式并数形结合是解题的关键。
14.2.2第3课时 整式的化简与求值-人教版八年级数学上册作业课件
![14.2.2第3课时 整式的化简与求值-人教版八年级数学上册作业课件](https://img.taocdn.com/s3/m/5f1b44f3bed5b9f3f90f1cf1.png)
(3)(3m-n)(-3m-n); 解:原式=n2-9m2. (4)(x-1)(x2+x+1); 解:原式=x3+x2+x-x2-x-1 =x3-1. (5)(2x+5y)(3x-2y)-2x(x-3y); 解:原式=6x2+11xy-10y2-2x2+6xy =4x2+17xy-10y2.
第十四章 整式的乘法与因式分解
延伸:设中间的一个奇数为 n,则最大的奇数为 n+2,最小的奇 数为 n-2,
(n+2)2-(n-2)2=n2+4n+4-n2+4n-4=8n. ∵n 是整数, ∴任意三个连续的奇数中,最大数与最小数的平方差是 8 的倍数.
第十四章 整式的乘法与因式分解
第十四章 整式的乘法与因式分解
第十四章 整式的乘法与因式分解
第十四章 整式的乘法与因式分解
第十四章 整式的乘法与因式分解
第十四章 整式的乘法与因式分解
第十四章 整式的乘法与因式分解
(7)(3x-2y)2(3x+2y)2. 解:原式=[(3x-2y)(3x+2y)]2 =(9x2-4y2)2 =81x4-72x2y2+16y4.
(3)(-2a2b)2·(3ab2-5a2b)÷(-ab)3; 解:原式=4a4b2·(3ab2-5a2b)÷(-a3b3) =(12a5b4-20a6b3)÷(-a3b3) =-12a2b+20a3. (4)(6x4-8x3)÷(-2x2)-(3x+2)(1-x). 解:原式=-3x2+4x-3x+3x2-2+2x =3x-2.
整延式的伸乘法:与任因式意分解三个连续的奇数中,最大数与最小数的平方差是
整式的乘法与因式分解
8
的
第十四章 整式的乘法与因式分解
第十倍四章数整,式的请乘法说与明因式理分解由.
2019-2020学年八年级数学上册《整式》计算题练习100道 新人教版
![2019-2020学年八年级数学上册《整式》计算题练习100道 新人教版](https://img.taocdn.com/s3/m/c239d02a0740be1e650e9a64.png)
2019-2020学年八年级数学上册《整式》计算题练习100道 新人教版2、332()()a a a --??3、2323()()a a a -?4、 223()x 轾--犏臌5、3231()4x y z -6、32()()()x y x y y x ---7、53143()()n n a aa a --?-?8、2333211()()23xy x y -+10、(-0.25)11×22211、263373()()(2)x x x -12、433111()()()a a a ?-13、232(2)(2)n ?-14、33612(0.25)0.1252(2)-创?15、3312()()n x y xy+--16、5524226()()()()()x x x x x x -----17、232323(3)()x y x y ---18、32322()()(3)a b a b 轾---犏臌19、32008200910010010.25(4)8()2轾犏?--犏臌20、122()()m m m a aa +--21、3233633(4)(3)2(2)x x x x x -+---22、234342343()()()x y x y x y 轾---犏臌23、4354832263()2()5()x y xy x y x y x y -+24、已知 27927813n n n 鬃=,求n 的值25、已知23,24n m ==,求2312m n ++值26、已知36,92m n ==,求2413m n -+值27、(3x+10)(x+2)28、(4y -1)(y -5)29、(2x -521)()252y x y +30、()()()x y z y z x z x y ---+-21、232(4)122()43b a ab a a b b 轾犏----+犏臌32、若m 为正整数,且x 2m =3,求:(3x 3m )2-13(x 2)2m 的值33、532()()a a a -??34、21512525n m m -赘35、2(x -8)(x -5)-(2x -1)(x+2)36、2322(43)3(46)m m m m m m +--+-37、()04331113()()()333----+-?-38、若3918()n m x y y x y =,求: 值222223(2)mn m m n mn 轾---犏臌40、(35)(106)x y y x --41、20092008(2)(2)-+-42、3373(2)(2)x y x y 轾-?-犏臌43、22232(3)42(32)x x x x x 轾---犏臌44、化简求值:其中14,22x y =-= 2(2)()(2)2(3)()x y x y x y x y x y -+-----45、2(1)x y --46、(32)(23)x y y x --48、30131241()()()()3352----?+-?49、23021771()()(1.92)()(3)993----?---?50、化简求值:其中214x y =- 32431(1)2()22(1)2xy x x y x y x y x 轾犏---??犏臌51、22222()()()a b a b a b -++52、22()()4a b a b ab 轾+--?犏臌53、222()()()a b a b ab -+?54、2222()()()()x y x y x y y x +-----+-55、22(23)(23)(23)(23)a b a b a b a b --+-++56、化简求值:其中1x =-(21)(1)2(3)(4)x x x x +----57、(32)(32)m n m n -+58、(3)(3)a b b a -++59、4422()()()x y xy x y -??60、33()()a b a b a b 轾+--?犏臌61、1212()()m n m n ab a b -+-++-62、化简求值:其中1,13x y == 222()()3()()4x x y y x x y y x y 轾轾-+----+犏犏臌臌63、(26)(3)y y +-64、(0.5)(0.5)xy xy -+--65、3(2)(1)2(5)(3)x x x x -+---66、22222(3)(3)(9)x y x y x y +-+67、2222111()()(2)222y x y x x y 轾犏-++?犏臌68、42(1)(1)(1)(1)x x x x +--++69、已知()211x x +-=,求x 的值。
整式的混合运算与化简求值大题专练(60题-八年级数学上学期复习备考高分秘籍【人教版】(原卷版)
![整式的混合运算与化简求值大题专练(60题-八年级数学上学期复习备考高分秘籍【人教版】(原卷版)](https://img.taocdn.com/s3/m/b08b3ef21b37f111f18583d049649b6649d70963.png)
2023-2024学年八年级数学上学期复习备考高分秘籍【人教版】专题2.12整式的混合运算与化简求值大题专练(60题)班级:_____________ 姓名:_____________ 得分:_____________一.解答题(共60小题)1.(2023秋•晋安区校级期中)化简求值:(3a +b )(2a +b )﹣(a ﹣b )(2a ﹣b ),其中a =﹣3,b =2.2.(2023秋•南昌期中)(1)化简:(3x ﹣2)(2x +3)﹣(x ﹣1)2.(2)先化简,后求值:(2x +1)2﹣x (x ﹣1)+(x +2)(x ﹣2),其中4x 2+5x ﹣1=0.3.(2023秋•思明区校级期中)先化简再求值:(3a +2)(a ﹣1)﹣4a (a +1),其中a =−12.4.(2023秋•璧山区校级期中)先化简再求值:[(3a +2b )(3a ﹣2b )+(3a ﹣b )2﹣b (2a ﹣3b )]÷2a ,其中a 、b 满足|a ﹣1|+b 2﹣6b +9=0.5.(2023秋•铁西区期中)先化简,再求值:32x 2y −[x 2y −3(2xy −x 2y)−xy],其中(x ﹣1)2+|y +2|=0. 6.(2023秋•青秀区校级期中)先化简,再求值:(2a +b )2﹣2a (2a ﹣b ),其中a =﹣3,b =﹣1.7.(2023秋•南海区期中)(1)解方程:4(x ﹣2)2=36;(2)若a 是关于x 的一元二次方程x 2=3x +4的根,求代数式(a +4)(a ﹣4)﹣3(a ﹣1)的值.8.(2023秋•南岗区校级期中)先化简,再求值:(x +1)(x ﹣1)+(2x ﹣1)2﹣2x (2x ﹣1),其中x =13.9.(2023秋•思明区校级期中)化简求值:(﹣8x 3y 2+12x 2y ﹣4x 2)÷(﹣2x 2),其中x =12,y =﹣1.10.(2023秋•南开区期中)按要求计算:(1)(−16a 4b 3−12a 3b 2+14a 2b )÷(−12a 2b );(2)(x ﹣1)(x +5)﹣2x (x ﹣2);(3)先化简,再求值:(3x ﹣y )2﹣(3x +2y )(3x ﹣2y ),其中x =12,y =13.11.(2022秋•安溪县期末)先化简,再求值:[(x ﹣2y )2+(x +2y )(x ﹣2y )]÷2x ,其中x =2,y =﹣3.12.(2023春•甘孜州期末)先化简,再求值:(a 2b ﹣2ab ﹣b 2)÷b ﹣(a +b )(a ﹣b ),其中a =0.5,b =﹣1.13.(2022秋•坪山区校级期末)先化简再求值:[(3a +b )2﹣(b +3a )(3a ﹣b )﹣6b 2]÷2b ,其中a =−13,b =﹣2.14.(2023春•北海期末)先化简,再求值:(2x +3y )2﹣(2x +y )(2x ﹣y ),其中x =−12.y =1.15.(2023春•攸县期末)先化简,再求值:(x﹣3)2+(x+3)(x﹣3)+2x(2﹣x),其中x=1 2.16.(2023春•盱眙县期末)先化简,再求值:(2x+1)2﹣(2x+1)(2x﹣1),其中x=﹣2.17.(2023春•渭滨区期末)先化简,再求值:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),其中x=1 9.18.(2021秋•开福区校级期末)先化简,再求值:(m﹣n)(m+n)+(m+n)2﹣2m2.其中m=2,n=1.19.(2023春•延庆区期末)先化简,再求值:(x+1)2+(x+1)(2x﹣1),其中x=﹣2.20.(2022秋•宁强县期末)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.21.(2023春•怀化期末)先化简,再求值:(3x+2y)(3x﹣2y)﹣(x﹣y)2,其中x=1,y=1 2.22.(2021春•株洲期末)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=13,y=−12.23.(2023春•吴兴区校级期末)先化简,再求值:(x+3y)(x﹣3y)+(6x2y﹣2y3)÷2y,其中x=12,y=−1.24.(2022秋•乌鲁木齐期末)先化简,再求值:(x﹣1)2﹣(x﹣2)(x+2)+3x(3﹣x),其中x=﹣2.25.(2022秋•二道区校级期末)先化简,再求值:(a+1)2﹣(a+3)(a﹣3),其中a=5 2.26.(2022秋•商水县期末)先化简,再求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x =3,y=﹣1.27.(2022秋•新抚区期末)先化简,再求值:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y,其中x=2,y=1.28.(2023春•三明期末)先化简,再求值:[(2x﹣y)2﹣y(2x+y)]÷2x,其中x=2,y=﹣1.29.(2023春•惠来县校级期末)先化简,再求值:[(x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷(2x),其中x=2,y=1.30.(2023春•白银区校级期末)先化简,再求值:(2x﹣1)(2x+1)﹣(x﹣2)2,其中x=1.31.(2022秋•汝阳县期末)化简求值:[4(x2+y)(x2﹣y)﹣(2x2﹣y)2]÷y,其中x=12,y=3.32.(2023春•新城区校级期末)先化简,再求值:(2x+y)(2x﹣y)﹣(8x3y﹣2xy3﹣x2y2)÷2xy,其中x =﹣1,y=2.33.(2023春•东港市期末)先化简,再求值:[(x+y)(3x﹣y)+y2]÷(﹣x),其中x=4,y=−1 4.34.(2023春•河口区期末)先化简,再求值.(1)[(2x+y)(2x﹣y)﹣(2x﹣3y)2]÷(2y),其中x=2,y=1;(2)(3a5b3+a4b2)÷(﹣a2b)2﹣(2+a)(2﹣a)﹣(a﹣b)2,其中a=−15,b=2.35.(2022秋•南关区校级期末)先化简,再求值:4xy+(2x﹣y)(2x+y)﹣(2x+y)2,其中x=2022,y=−√2.36.(2023春•吴江区期末)先化简再求值 (2a +3b )(3b ﹣2a )﹣(a ﹣3b )2,其中|a ﹣1|+(b +2)2=0.37.(2023春•清远期末)先化简,再求值:(2a ﹣b )2+(3a +b )(3a ﹣b )﹣5a (a ﹣b ),其中a =2,b =﹣3.38.(2023春•舞钢市期末)运用整式乘法公式先化简,再求值:(a ﹣3b )2﹣(2b ﹣a )(a +2b ),其中,a =1,b =﹣1.39.(2023春•南山区期末)先化简,再求值;x (x +2y )﹣(x +1)2+2x ,其中x =115,y =−15.40.(2023春•余江区期末)先化简,再求值:[(x +2y )2﹣(x +y )(3x ﹣y )﹣5y 2]÷2x ,其中x =﹣2,y =12.41.(2023春•连州市期末)先化简,再求值:(x +y )2﹣(x +y )(x ﹣y )﹣2y 2,其中x =﹣2,y =﹣1.42.(2022秋•嵩县期末)数学老师给学生出了一道题:当x =2021,y =2022时,求[2x •(x 2y ﹣xy 2)+xy (2xy ﹣x 2)]÷x 2y 的值.题目出完后,小明说:“老师给出的条件y =2022是多余的.”小亮说:“不是多余的.”你同意谁的说法?为什么?请给出推理过程.43.(2023春•新田县期末)先化简,再求值:(2x ﹣y )2﹣(x ﹣2y )(x +2y )+(3x +y )(y ﹣x ),其中x =12,y =﹣1.44.(2023春•抚州期末)先化简,再求值:[(a ﹣2b )2+(a +2b )(a ﹣2b )]÷2a ,其中a ,b 满足:|a ﹣2|+(b +3)2=0.45.(2022秋•松原期末)先化简,再求值:(a +2b )(3a ﹣b )﹣3a (a +b ),其中a =14,b =﹣2.46.(2022秋•泉州期末)先化简,再求值:[(2x ﹣y )2﹣(3x +y )(3x ﹣y )+5x 2]÷(﹣2y ),其中x =−12,y =1.47.(2022秋•南关区校级期末)先化简,再求值:(a +2)(a ﹣1)﹣a (a ﹣3),其中a =1.48.(2022秋•武昌区校级期末)计算与化简:(1)计算:12ab(23ab 2−2ab); (2)先化简后求值:(2x ﹣y )2﹣(x +2y )(x ﹣6y ),其中x =1.5,y =﹣2.49.(2022秋•南阳期末)先化简,再求值:[(2x ﹣y )(x +2y )﹣(x +y )2+3y 2]÷x ,其中x =1,y =−13.50.(2023春•高新区校级期末)先化简,再求值:(x +y )(x ﹣y )﹣2x (x ﹣3y )+(x ﹣y )2,其中x =13,y =﹣3.51.(2022秋•丰泽区校级期末)先化简,再求值:(2x ﹣3)2+(x +4)(x ﹣4)+5x (2﹣x ),其中x =−12.52.(2022秋•黔江区期末)先化简,再求值:(1)[(3x +2y )(3x ﹣2y )﹣(x +2y )(5x ﹣2y )]÷(4x ),其中x =100,y =25.(2)若x 满足x 2﹣2x −12=0,求代数式(2x ﹣1)2﹣x (x +4)+(x ﹣2)(x +2)的值.53.(2022秋•内乡县期末)化简或计算:(1)计算:20222﹣2023×2021;(2)先化简,再求值:(3x 4﹣2x 3)÷(﹣x )﹣(x ﹣x 2)•3x ,其中x =−12.54.(2023春•茌平区期末)杨老师在黑板上布置了一道题,小白和小红展开了下面的讨论:已知y =﹣1时,求代数式:(x +2y )(x ﹣2y )﹣(x +3y )2+6xy 的值.这道题与x 无关,是可以解的.只知道y 的值,没有告诉x 的值,求不出答案.根据上述情景,你认为谁说得对?为什么?并求出代数式的值.55.(2023春•天元区校级期末)先化简,再求值:(2x ﹣3)2+(x +4)(x ﹣4)+5x (2﹣x ),其中x =﹣1.56.(2023春•乳山市期末)先化简,再求值:(m +n )(m ﹣n )﹣(m +2n )2﹣(m ﹣2n )2,其中m =﹣2,n =13.57.(2023春•栾城区校级期末)先化简,再求值:(x +4y )(x ﹣4y )+(x ﹣4y )2﹣(4x 2﹣xy ),其中x =﹣2,y =12.58.(2023春•金凤区校级期末)先化简,再求值:[(a ﹣2b )2﹣(a ﹣2b )(a +2b )+4b 2]÷(﹣2b ),其中a =1,b =﹣2.59.(2023春•冷水滩区校级期末)先化简,再求值:(x +1)(x ﹣1)﹣(x +3)2+2x (x ﹣1),其中x 2﹣4x ﹣2=0.60.(2023春•大竹县校级期末)先化简,再求值:2(x +y )(x ﹣y )+(x +y )2﹣(6x 3﹣4x 2y ﹣2xy 2)÷2x ,其中x =1,y =﹣2.。
初中数学整式的混合运算—化简求值(含答案)
![初中数学整式的混合运算—化简求值(含答案)](https://img.taocdn.com/s3/m/f521ebbdcf84b9d529ea7a2a.png)
初中数学整式的混合运算—化简求值(含答案)1.求值:x2(x﹣1)﹣x(x2+x﹣1),其中x=.考点:整式的混合运算—化简求值。
分析:先去括号,然后合并同类项,在将x的值代入即可得出答案.解答:解:原式=x3﹣x2﹣x3﹣x2+x=﹣2x2+x,将x=代入得:原式=0.故答案为:0.点评:本题考查了整式的混合运算化简求值,是比较热点的一类题目,但难度不大,要注意细心运算.2.先化简,再求值:(1)a(a﹣1)﹣(a﹣1)(a+1),其中.(2)[(2a+b)2+(2a+b)(b﹣2a)﹣6ab]÷2b,且|a+1|+=0.考点:整式的混合运算—化简求值;非负数的性质:偶次方;非负数的性质:算术平方根。
专题:计算题。
分析:(1)先将代数式化简,然后将a的值代入计算;(2)先将代数式化简,然后将a、b的值代入计算.解答:解:(1)a(a﹣1)﹣(a﹣1)(a+1)=a2﹣a﹣a2+1=1﹣a将代入上式中计算得,原式=a+1=+1+1=+2(2)[(2a+b)2+(2a+b)(b﹣2a)﹣6ab]÷2b=(4a2+4ab+b2﹣4a2+2ab﹣2ab+b2﹣6ab)÷2b=(2b2﹣2ab)÷2b=2b(b﹣a)÷2b=b﹣a由|a+1|+=0可得,a+1=0,b﹣3=0,解得,a=﹣1,b=3,将他们代入(b﹣a)中计算得,b﹣a=3﹣(﹣1)=4点评:这两题主要题考查的是整式的混合运算,主要考查了公式法、单项式与多项式相乘以及合并同类项的知识点.3.化简求值:(a+1)2+a(a﹣2),其中.考点:整式的混合运算—化简求值。
专题:计算题。
分析:先按照完全平方公式、单项式乘以多项式的法则展开,再合并,最后把a的值代入计算即可.解答:解:原式=a2+2a+1+a2﹣2a=2a2+1,当a=时,原式=2×()2+1=6+1=7.点评:本题考查了整式的化简求值,解题的关键是公式的使用、合并同类项.4.,其中x+y=3.考点:整式的混合运算—化简求值。
专题8 整式的化简求值专项训练(拔高题50道)(举一反三)(浙教版)(解析版)
![专题8 整式的化简求值专项训练(拔高题50道)(举一反三)(浙教版)(解析版)](https://img.taocdn.com/s3/m/bb88ed2e240c844768eaeeee.png)
专题4.8 整式的化简求值专项训练(拔高题50道)参考答案与试题解析一.解答题(共50小题)1.(2020秋•北碚区校级期末)先化简,再求值:若多项式x 2﹣2mx +3与13n x 2+2x ﹣1的差与x 的取值无关,求多项式4mn ﹣[3m ﹣2m 2﹣6(12m −23mn +16n 2)]的值.【分析】直接利用合并同类项法则计算,再把已知数据代入得出答案.【解答】解:∵多项式x 2﹣2mx +3与13n x 2+2x ﹣1的差与x 的取值无关,∴x 2﹣2mx +3﹣(13n x 2+2x ﹣1)=x 2﹣2mx +3−13n x 2﹣2x +1=(1−13n )x 2+(﹣2﹣2m )x +4,∴1−13n =0,﹣2﹣2m =0,解得:n =3,m =﹣1,4mn ﹣[3m ﹣2m 2﹣6(12m −23mn +16n 2)]=4mn ﹣3m +2m 2+6(12m −23mn +16n 2)=4mn ﹣3m +2m 2+3m ﹣4mn +n 2=2m 2+n 2,当n =3,m =﹣1时,原式=2×(﹣1)2+32=2+9=11.2.(2020秋•高邮市期末)有这样一道题:“求(2x 3﹣3x 2y ﹣2xy 2)﹣(x 3﹣2xy 2+y 3)+(﹣x 3+3x 2y ﹣y 3)的值,其中x =12021,y =﹣1”.小明同学把“x =12021”错抄成了“x =−12021”,但他的计算结果竟然正确,请你说明原因,并计算出正确结果.【分析】原式去括号合并得到最简结果,即可作出判断.【解答】解:原式=2x 3﹣3x 2y ﹣2xy 2﹣x 3+2xy 2﹣y 3﹣x 3+3x 2y ﹣y 3=﹣2y 3,∴此题的结果与x 的取值无关.y =﹣1时,原式=﹣2×(﹣1)3=2.3.(2020秋•铜梁区校级期末)有一道数学题:“求(x2+2y2)+3(x2+y2)﹣4x2,其中x=1 3,y=2.”粗心的小李在做此题时,把“x=13”错抄成了“x=3”,但他的计算结果却是正确的,请你通过计算说明为什么?【分析】原式去括号合并得到最简结果与x无关,可得出x的取值对结果没有影响.【解答】解:∵原式=x2+2y2+3x2+3y2﹣4x2=5y2,∴原式化简后为5y2,跟x的取值没有关系.因此不会影响计算结果.4.(2020秋•恩施市期末)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x 的取值无关,求代数式5ab2﹣[a2b+2(a2b﹣3ab2)]的值.【分析】原式去括号合并后,根据结果与x取值无关求出a与b的值,所求式子去括号合并后代入计算即可求出值.【解答】解:原式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,由结果与x取值无关,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=5ab2﹣a2b﹣2a2b+6ab2=11ab2﹣3a2b=﹣33﹣27=﹣60.5.(2020秋•永年区期末)已知:关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项.求代数式3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)的值.【分析】根据已知条件得出2a+1+4=0,﹣b=0,求出a、b的值,再去括号,合并同类项,最后代入求出即可.【解答】解:∵关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项,∴2a+1+4=0,﹣b=0,∴a=﹣2.5,b=0,∴3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)=3a2﹣6b2﹣6﹣2a2+4b2+6=a2﹣2b2=(﹣2.5)2﹣2×02=6.25.6.(2020秋•宛城区校级月考)课堂上李老师把要化简求值的整式(7a2﹣6a2b+3a2b)﹣3(﹣a2﹣2a2b+a2b)﹣(10a2﹣3)写完后,让王红同学任意给出一组a、b的值,老师自己说答案,当王红说完:“a=38,b=﹣32”后,李老师不假思索,立刻就说出答案是3.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”.你相信吗?请你说明其中的道理.【分析】原式去括号合并得到最简结果为常数,故与a,b取值无关.【解答】解:相信,理由为:原式=7a2﹣6a2b+3a2b+3a2+6a2b﹣3a2b﹣10a2+3=3,结果与a,b取值无关.7.(2020秋•青羊区校级月考)已知关于x,y的式子(2x2+mx﹣y+3)﹣(3x﹣2y+1﹣nx2)的值与字母x的取值无关,求式子(m+2n)﹣(2m﹣n)的值.【分析】根据整式的加减运算顺序化简整式,根据多项式的值与字母x的取值无关,可得2+n=0,m﹣3=0,解得n=﹣2,m=3,然后化简(m+2n)﹣(2m﹣n)=3n﹣m,代入n=﹣2,m=3,可得结果.【解答】解:原式=2x2+mx﹣y+3﹣3x+2y﹣1+nx2=(2+n)x2+(m﹣3)x+y+2,因为多项式的值与字母x的取值无关,所以2+n=0,m﹣3=0,解得n=﹣2,m=3,所以(m+2n)﹣(2m﹣n)=m+2n﹣2m+n=3n﹣m,代入n=﹣2,m=3,可得3×(﹣2)﹣3=﹣9,所以式子(m+2n)﹣(2m﹣n)的值为﹣9.8.(2020秋•海珠区校级期中)已知:A=3x2+mx−13y+4,B=6x﹣3y+1﹣3nx2,当x≠0且y≠0时,若3A−13B的值等于一个常数,求m,n的值,及这个常数.【分析】将A=3x2+mx−13y+4,B=6x﹣3y+1﹣3nx2,代入3A−13B,再利用去括号、合并同类项化简后,令x、y的系数为0即可求出答案.【解答】解:∵A=3x2+mx−13y+4,B=6x﹣3y+1﹣3nx2,∴3A−13B=3(3x2+mx−13y+4)−13(6x﹣3y+1﹣3nx2)=9x2+3mx﹣y+12﹣2x+y−13+nx2=(9+n)x2+(3m﹣2)x+35 3,又∵3A−13B的值等于一个常数,∴9+n=0且3m﹣2=0,∴m=23,n=﹣9,答:m=23,n=﹣9时,3A−13B的值是一个常数,这个常数是353.9.(2020秋•富县校级期中)已知:A =2x 2+6x ﹣3,B =1﹣3x ﹣x 2,C =4x 2﹣5x ﹣1,当x =−32时,求代数式A ﹣3B +2C 的值.【分析】首先去括号,然后再合并同类项,化简后,再代入x 的值可得答案.【解答】解:A ﹣3B +2C=(2x 2+6x ﹣3)﹣3(1﹣3x ﹣x 2)+2(4x 2﹣5x ﹣1)=2x 2+6x ﹣3﹣3+9x +3x 2+8x 2﹣10x ﹣2=13x 2+5x ﹣8,当x =−32时,原式=13×94−5×32−8=554.10.(2020秋•未央区校级期中)有这样一道题,当a =1,b =﹣1时,求多项式:3a 3b 3−12a 2b +b ﹣(4a 3b 3−14a 2b ﹣b 2)﹣2b 2+3+(a 3b 3+14a 2b )的值”,马小虎做题时把a =1错抄成a =﹣1,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.【分析】先把多项式去括号合并同类项,根据合并后的结果分析a =1错抄成a =﹣1,做出的结果却都一样.【解答】解:原式=3a 3b 3−12a 2b +b ﹣4a 3b 3+14a 2b +b 2﹣2b 2+3+a 3b 3+14a 2b=﹣b 2+b +3.因为多项式合并后的结果里不含有a 的项,故计算结果只与b 有关,与a 无关, 所以a =1或a =﹣1计算的结果都一样.11.(2020秋•成都期末)已知A =a ﹣2ab +b 2,B =a +2ab +b 2.(1)求14(B ﹣A )的值;(2)若3A ﹣2B 的值与a 的取值无关,求b 的值.【分析】(1)将A =a ﹣2ab +b 2,B =a +2ab +b 2代入14(B ﹣A )化简即可;(2)将A =a ﹣2ab +b 2,B =a +2ab +b 2代入3A ﹣2B 化简,提出关于a 的一次项系数,令其为零,即可求出b .【解答】解:(1)∵A =a ﹣2ab +b 2,B =a +2ab +b 2∴14(B −A)=14×(a +2ab +b 2﹣a +2ab ﹣b 2)=14×4ab =ab ;(2)∵A =a ﹣2ab +b 2,B =a +2ab +b 2∴3A ﹣2B =3(a ﹣2ab +b 2)﹣2(a +2ab +b 2)=3a ﹣6ab +3b 2﹣2a ﹣4ab ﹣2b 2=a ﹣10ab +b 2=(1﹣10b )a +b 2,∵3A ﹣2B 的值与a 的取值无关∴1﹣10b =0,即b =110.12.(2020秋•夏津县期末)已知A =3x 2+3y 2﹣5xy ,B =2xy ﹣3y 2+4x 2.(1)化简:2B ﹣A ;(2)已知﹣a x ﹣2b 2与13ab y 是同类项,求2B ﹣A 的值.【分析】(1)将A 、B 表示的多项式代入2B ﹣A ,再去括号、合并同类项即可;(2)先根据同类项的定义求出x 、y 的值,再代入化简后的代数式列出算式,进一步计算即可.【解答】解:(1)2B ﹣A =2(2xy ﹣3y 2+4x 2)﹣(3x 2+3y 2﹣5xy )=4xy ﹣6y 2+8x 2﹣3x 2﹣3y 2+5xy=5x 2+9xy ﹣9y 2;(2)∵﹣a x ﹣2b 2与13ab y的同类项,∴x ﹣2=1,y =2,解得:x =3,y =2,当x =3,y =2时,原式=5×32+9×3×2﹣9×22=5×9+54﹣9×4=45+54﹣36=63.13.(2020秋•北碚区期末)已知代数式A =2x 2+3xy ﹣2x ﹣1,B =﹣x 2+xy ﹣1.(1)当x =y =﹣1时,求2A +4B 的值;(2)若2A +4B 的值与x 的取值无关,求y 的值.【分析】(1)先把代数式A 、B 代入2A +4B ,然后去括号,合并同类项,最后将x =y =﹣1代入化简后的式子即可;(2)将y 看为系数,将10xy ﹣4x 写成(10y ﹣4)x .由于代数式的值与x 无关,说明式子(10y ﹣4)x 中系数10y ﹣4等于0,从而求出y 的值.【解答】解:(1)2A +4B=2(2x 2+3xy ﹣2x ﹣1)+4(﹣x 2+xy ﹣1)=4x 2+6xy ﹣4x ﹣2﹣4x 2+4xy ﹣4=10xy﹣4x﹣6;当x=y=﹣1时,原式=10×(﹣1)×(﹣1)﹣4×(﹣1)﹣6=10+4﹣6=8;(2)2A+4B=10xy﹣4x﹣6=(10y﹣4)x﹣6,∵2A+4B的值与x的值无关,∴10y﹣4=0,解得,y=0.4.14.(2020秋•淅川县期末)已知M=4x2+10x+2y2,N=2x2﹣2y+y2,求:(1)M﹣2N;(2)当5x+2y=2时,求M﹣2N的值.【分析】(1)把M与N代入M﹣2N中,去括号合并即可得到结果;(2)把(1)中的结果化简,将已知等式代入计算即可求出值.【解答】解:(1)∵M=4x2+10x+2y2,N=2x2﹣2y+y2,∴M﹣2N=(4x2+10x+2y2)﹣2(2x2﹣2y+y2)=4x2+10x+2y2﹣4x2+4y﹣2y2=10x+4y;(2)∵5x+2y=2,∴M﹣2N=10x+4y=2(5x+2y)=4.15.(2020秋•南关区校级期末)已知:A=x−12y+2,B=x﹣y﹣1.(1)化简A﹣2B;(2)若3y﹣2x的值为2,求A﹣2B的值.【分析】(1)把A、B表示的代数式代入A﹣2B中,计算求值即可;(2)利用等式的性质,变形已知,整体代入(1)的结果中求值即可.【解答】解:∵A=x−12y+2,B=x﹣y﹣1,∴A﹣2B=x−12y+2﹣2(x﹣y﹣1)=x−12y+2﹣2x+2y+2=﹣x+32y+4;(2)当3y﹣2x=2时,即﹣x+32y=1.A﹣2B=﹣x+32y+4=1+4=5.16.(2020秋•青山湖区月考)已知:A =2ab ﹣a ,B =﹣ab +2a +b .(1)计算:5A ﹣2B ;(2)若5A ﹣2B 的值与字母b 的取值无关,求a 的值.【分析】(1)先将A 和B 代入,然后去括号,合并同类项进行化简;(2)根据结果与b 的取值无关,则含b 的项的系数和为0,从而列出方程求解.【解答】解:(1)原式=5(2ab ﹣a )﹣2(﹣ab +2a +b )=10ab ﹣5a +2ab ﹣4a ﹣2b=12ab ﹣9a ﹣2b ,(2)∵5A ﹣2B 的值与字母b 的取值无关,∴12a ﹣2=0,解得:a =16,即a 的值为16.17.(2020秋•义马市期中)已知A =x 2+3xy ﹣12,B =2x 2﹣xy +y .(1)当x =y =﹣2时,求2A ﹣B 的值;(2)若2A ﹣B 的值与y 的取值无关,求x 的值.【分析】(1)把A 、B 表示的代数式代入2A ﹣B 中,化简后再代入x 、y 表示的数求值;(2)根据2A ﹣B 的值与y 无关,得到关于x 的方程,求解即可.【解答】解:(1)2A ﹣B=2(x 2+3xy ﹣12)﹣(2x 2﹣xy +y )=2x 2+6xy ﹣24﹣2x 2+xy ﹣y=7xy ﹣y ﹣24.当x =y =﹣2时,原式=7×(﹣2)×(﹣2)﹣(﹣2)﹣24=28+2﹣24=6.(2)由(1)知,2A ﹣B =7xy ﹣y ﹣24=(7x ﹣1)y ﹣24,若2A ﹣B 的值与y 的取值无关,则7x ﹣1=0,∴x =17.18.(2020秋•萧山区月考)已知A =ax 2﹣3x +by ﹣1,B =3﹣y ﹣x +23x 2,且无论x ,y 为何值时,A ﹣3B 的值始终不变.(1)分别求a、b的值;(2)求b a的值.【分析】(1)直接把已知A,B的值代入,进而去括号合并同类项,结合无论x,y为何值时,A﹣3B的值始终不变,得出含有x,y的系数为0,进而得出答案;(2)直接利用a,b的值代入求出答案.【解答】解:(1)A−3B=ax2−3x+by−1−3(3−y−x+23x2)=ax2﹣3x+by﹣1﹣9+3y+3x﹣2x2=(a﹣2)x2+(b+3)y﹣10,∵A﹣3B的值始终不变,∴a﹣2=0,b+3=0,∴a=2,b=﹣3;(2)b a=(﹣3)2=9.19.(2020秋•江汉区月考)先化简再求值,A=2x2−12x+3,B=x2+mx+12.(1)当m=﹣1,求5(A﹣B)﹣3(﹣2B+A);(2)若A﹣2B的值与x无关,求m2﹣[﹣2m2﹣(2m+6)﹣3m].【分析】(1)先把m=﹣1代入B=x2+mx+12得B=x2﹣x+12,再将A=2x2−12x+3,B=x2﹣x+12代入求5(A﹣B)﹣3(﹣2B+A),再利用去括号、合并同类项化简即可;(2)根据A﹣2B的值与x无关,确定出m的值,代入m2﹣[﹣2m2﹣(2m+6)﹣3m]化简即可.【解答】解:(1)当m=﹣1,B=x2+mx+12=x2﹣x+12,∵A=2x2−12x+3,B=x2﹣x+12,∴A﹣B=2x2−12x+3﹣(x2﹣x+12)=2x2−12x+3﹣x2+x−12=x2+12x+52,﹣2B+A=﹣2(x2﹣x+12)+(2x2−12x+3)=﹣2x2+2x﹣1+2x2−12x+3=32x+2,∴5(A﹣B)﹣3(﹣2B+A)=5(x2+12x+52)﹣3(32x+2)=5x2+52x+252−92x﹣6=5x2﹣2x+13 2;(2)A﹣2B=2x2−12x+3﹣2(x2+mx+12)=2x2−12x+3﹣2x2﹣2mx﹣1=(−12−2m)x+2,结果与x取值无关,得到−12−2m=0,解得:m=−1 4.∴m2﹣[﹣2m2﹣(2m+6)﹣3m]=m2﹣[﹣2m2﹣2m﹣6﹣3m]=m2+2m2+2m+6+3m=3m2+5m+6=3×(−14)2+5×(−14)+6=316−54+6=7916.20.(2021秋•株洲期末)已知:A=x2+3y2﹣2xy,B=2xy+2x2+y2.(1)求3A﹣B;(2)若x=1,y=−12.求(4A+2B)﹣(A+3B)的值.【分析】(1)把A与B代入3A﹣B中,去括号合并即可得到最简结果;(2)原式去括号合并后,把(1)的结果代入,并将x与y的值代入计算即可求出值.【解答】解:(1)∵A=x2+3y2﹣2xy,B=2xy+2x2+y2,∴3A﹣B=3(x2+3y2﹣2xy)﹣(2xy+2x2+y2)=3x2+9y2﹣6xy﹣2xy﹣2x2﹣y2=x2+8y2﹣8xy;(2)∵A=x2+3y2﹣2xy,B=2xy+2x2+y2,∴(4A+2B)﹣(A+3B)=4A+2B﹣A﹣3B=3A﹣B=x2+8y2﹣8xy,当x=1,y=−12时,原式=1+8×14−8×1×(−12)=1+2+4=7.21.(2020秋•广州期中)已知M=2x2+ax﹣5y+b,N=bx2−32x−52y﹣3,其中a,b为常数.(1)求整式M﹣2N;(2)若整式M﹣2N的值与x的取值无关,求(a+2M)﹣(2b+4N)的值.【分析】(1)将M和N代入整式M﹣2N,进行整式的加减运算即可;(2)结合(1)的结果,根据整式M﹣2N的值与x的取值无关,可得a和b的值,进而可求(a+2M)﹣(2b+4N)的值.【解答】解:(1)∵M=2x2+ax﹣5y+b,N=bx2−32x−52y﹣3,∴M﹣2N=2x2+ax﹣5y+b﹣2(bx2−32x−52y﹣3)=2x2+ax﹣5y+b﹣2bx2+3x+5y+6=2x2+ax+b﹣2bx2+3x+6;(2)由(1)知:M﹣2N=2x2+ax+b﹣2bx2+3x+6=(2﹣2b)x2+(a+3)x+b+6∵整式M﹣2N的值与x的取值无关,∴2﹣2b=0,a+3=0,解得b=1,a=﹣3,∴(a+2M)﹣(2b+4N)=(﹣3+2M)﹣(2+4N)=﹣3+2M﹣2﹣4N=﹣5+2(M﹣2N)=﹣5+2(b+6)=﹣5+2b+12=2b+7当b=1时,原式=2×1+7=9.22.(2020秋•江城区期中)已知多项式A=2x2+mx−12y+3,B=3x﹣2y+1﹣nx2.(1)已知A﹣B的值与字母x的取值无关,求字母m、n的值?(2)在(1)的条件下,求2A+3B的值?【分析】(1)将A=2x2+mx−12y+3,B=3x﹣2y+1﹣nx2,代入A﹣B,去括号、合并同类项后,再令含有x的项的系数完好;(2)计算2A+3B的值,再化简求值.【解答】解:(1)A﹣B=(2x2+mx−12y+3)﹣(3x﹣2y+1﹣nx2)=2x2+mx−12y+3﹣3x+2y﹣1+nx2=(2+n)x2+(m﹣3)x+32y+2,∵A﹣B的值与字母x的取值无关,∴2+n=0,m﹣3=0,∴n=﹣2,m=3,答:字母m、n的值为3,﹣2;(2)2A+3B=2(2x2+3x−12y+3)+3(3x﹣2y+1+2x2)=4x2+6x﹣y+6+9x﹣6y+3+6x2=10x2+15x﹣7y+9,答:2A+3B的值为10x2+15x﹣7y+9.23.(2020秋•庐江县期中)数学课上,张老师出示了这样一道题目:“当a=12,b=﹣2时,求多项式7a3+3a2b+3a3+6a3b﹣3a2b﹣10a3﹣6a3b﹣1的值”解完这道题后,小阳同学指出:“a=12,b=﹣2是多余的条件”.师生讨论后,一致认为小阳说法是正确的.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目:“无论x,y取任何值,多项式2x2+ax﹣5y+b﹣2(bx2−32x−52y﹣3)的值都不变,求系数a,b的值”.请你解决这个问题.【分析】(1)对多项式7a3+3a2b+3a3+6a3b﹣3a2b﹣10a3﹣6a3b﹣1合并同类项,结果为常数,则问题得解;(2)对多项式2x2+ax﹣5y+b﹣2(bx2−32x−52y﹣3)去括号,合并同类项,再由无论x,y取任何值,多项式2x2+ax﹣5y+b﹣2(bx2−32x−52y﹣3)的值都不变,可得关于a和b的方程,求解即可.【解答】解:(1)7a3+3a2b+3a3+6a3b﹣3a2b﹣10a3﹣6a3b﹣1=(7+3﹣10)a3+(3﹣3)a2b+(6﹣6)a3b﹣1=﹣1,∴该多项式的值为常数,与a和b的取值无关,小阳说法是正确的;(2)2x2+ax﹣5y+b﹣2(bx2−32x−52y﹣3)=2x2+ax﹣5y+b﹣2bx2+3x+5y+6=(2﹣2b)x2+(a+3)x+(b+6),∵无论x,y取任何值,多项式2x2+ax﹣5y+b﹣2(bx2−32x−52y﹣3)的值都不变,∴2﹣2b=0,a+3=0,∴a=﹣3,b=1.24.(2020秋•双流区校级期中)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.【分析】(1)先去括号,再合并同类项,然后根据代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关得出关于a和b的方程,计算即可.(2)先将4A+[(2A﹣B)﹣3(A+B)]去括号,合并同类项,再将A=4a2﹣ab+4b2,B =3a2﹣ab+3b2代入化简,然后将a与b的值代入计算即可.【解答】解:(1)2x2−12bx2﹣y+6=(2−12b)x2﹣y+6,ax+17x﹣5y﹣1=(a+17)x﹣5y﹣1,∵关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,∴2−12b=0,a+17=0,∴a=﹣17,b=4.(2)4A+[(2A﹣B)﹣3(A+B)]=4A+2A﹣B﹣3A﹣3B=3A﹣4B,∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴3A﹣4B=3(4a2﹣ab+4b2)﹣4(3a2﹣ab+3b2)=12a2﹣3ab+12b2﹣12a2+4ab﹣12b2=ab,由(1)知a=﹣17,b=4,∴原式=(﹣17)×4=﹣68.25.(2020秋•温县期中)已知代数式A=x2+12xy﹣2y2,B=32x2﹣xy﹣y2,C=﹣x2+8xy﹣3y2.(1)求2(A﹣B)−12C.(2)当x=2.y=﹣1时,求出2(A﹣B)−12C的值.【分析】(1)将A=x2+12xy﹣2y2,B=32x2﹣xy﹣y2,C=﹣x2+8xy﹣3y2.代入2(A﹣B)−12C,再去括号、合并同类项即可化简得出结果;(2)直接代入(1)的结果进行计算即可.【解答】解:(1)2(A﹣B)−1 2C=2[(x2+12xy﹣2y2)﹣(32x2﹣xy﹣y2)]−12(﹣x2+8xy﹣3y2)=2(x2+12xy﹣2y2−32x2+xy+y2)+12x2﹣4xy+32y2=2x2+xy﹣4y2﹣3x2+2xy+2y2+12x2﹣4xy+32y2=−12x2﹣xy−12y2;(2)将x=2,y=﹣1代入−12x2﹣xy−12y2得,=−12×4﹣2×(﹣1)−12×1=﹣2+2−1 2=−12.26.(2020秋•解放区校级期中)已知:A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1.(1)求﹣A﹣2B的值;(2)若﹣A﹣2B的值与x的值无关,求y的值.【分析】(1)将A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1代入﹣A﹣2B,再去括号、合并同类项即可;(2)将(1)中所得的﹣A﹣2B中含x的项合并,由题意可得关于y的方程,求解即可.【解答】解:(1)∵A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1,∴﹣A﹣2B=﹣(2x2+3xy﹣2x﹣1)﹣2(﹣x2+xy﹣1)=﹣2x2﹣3xy+2x+1+2x2﹣2xy+2=﹣5xy+2x+3;(2)﹣A﹣2B=﹣5xy+2x+3=(2﹣5y)x+3,∵﹣A﹣2B的值与x的值无关,∴2﹣5y=0,∴y=2 5.27.(2020秋•丰城市校级期中)(1)已知,A=2x2+3xy﹣2x﹣1,B=﹣x2﹣xy+1,若3A+6B 的值与x的取值无关,求y的值.(2)定义新运算“@”与“⊕”:a@b=a+b2,a⊕b=a−b2.若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A和B的大小.【分析】(1)把A=2x2+3xy﹣2x﹣1,B=﹣x2﹣xy+1,代入3A+6B计算后,使x的系数为0即可;(2)根据新定义的运算进行计算即可.【解答】解:(1)∵A=2x2+3xy﹣2x﹣1,B=﹣x2﹣xy+1,∴3A+6B=3(2x2+3xy﹣2x﹣1)+6(﹣x2﹣xy+1)=6x 2+9xy ﹣6x ﹣3﹣6x 2﹣6xy +6=3xy ﹣6x +3=(3y ﹣6)x +3,∵与x 的取值无关,∴3y ﹣6=0,即y =2;(2)A =3b @(﹣a )+a ⊕(2﹣3b )=3b−a 2+a−2+3b 2=3b ﹣1,B =a @(﹣3b )+(﹣a )⊕(﹣2﹣9b )=a−3b 2+−a+2+9b 2=3b +1,∵3b ﹣1<3b +1,∴A <B .28.(2020秋•江汉区期中)已知:A =2a 2+3ab ﹣2a ﹣1,B =a 2+ab ﹣1.(1)计算4A ﹣(3A +2B );(2)若a =1和a =0时(1)中式子的值相等,求12b ﹣2(b −13b 2)+(−32b +13b 2)的值.【分析】(1)先化简4A ﹣(3A +2B ),再代入A 和B 即可进行化简;(2)根据题意可得b 的值,再化简原式后代入b 的值即可.【解答】解:(1)∵4A ﹣(3A +2B )=4A ﹣3A ﹣2B=A ﹣2B=2a 2+3ab ﹣2a ﹣1﹣2(a 2+ab ﹣1)=2a 2+3ab ﹣2a ﹣1﹣2a 2﹣2ab +2=ab ﹣2a +1;(2)∵a =1和a =0时(1)中式子的值相等,∴b ﹣2=0,解得b =2,∴原式=12b ﹣2b +23b 2−32b +13b 2=﹣3b +b 2,当b =2时,原式=﹣6+4=﹣2.29.(2020秋•沙坪坝区校级期中)若A =2x 2+xy +3y 2,B =x 2﹣xy +2y 2.(1)若(1+x )2与|2x ﹣y +2|为相反数,求2A ﹣3(2B ﹣A )的值;(2)若x 2+y 2=4,xy =﹣2,求A ﹣B 的值.【分析】(1)根据互为相反数的两个数为0可得x 和y 的值,然后代入A 和B ,再进行化简即可得结果;(2)先利用整式加减求出A﹣B,再整体代入x2+y2=4,xy=﹣2,即可求出A﹣B的值.【解答】解:(1)∵(1+x)2与|2x﹣y+2|为相反数,∴(1+x)2+|2x﹣y+2|=0,∴1+x=0,2x﹣y+2=0,解得x=﹣1,y=0,∴A=2x2+xy+3y2=2,B=x2﹣xy+2y2=1,∴2A﹣3(2B﹣A)=2A﹣6B+3A=5A﹣6B=10﹣6=4;(2)∵A﹣B=2x2+xy+3y2﹣(x2﹣xy+2y2)=2x2+xy+3y2﹣x2+xy﹣2y2=x2+2xy+y2,∵x2+y2=4,xy=﹣2,∴x2+2xy+y2=4﹣4=0.∴A﹣B的值为0.30.(2020秋•滨海新区期中)已知A=2x2+3xy﹣2x﹣1,B=﹣x2+12xy+23.(1)当x=﹣1,y=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与x的取值无关,求y的值.【分析】(1)利用整体思想将原式化简,然后代入值即可;(2)结合(1)中的化简结果,根据式子的值与x的取值无关,即可求y的值.【解答】解:(1)4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B,∵A=2x2+3xy−2x−1,B=−x2+12xy+23∴A+2B=2x2+3xy−2x−1+2(−x2+12xy+23)=2x2+3xy−2x−1−2x2+xy+43 =4xy−2x+13,当x=﹣1,y=﹣2时,原式=101 3;(2)∵4xy−2x+13=2x(2y−1)+13,又∵式子的值与x的取值无关,∴2y −1=0#/DEL/#y =12#/DEL/#.31.(2020秋•二七区校级期中)已知A =a 2+2ab +b 2,B =a 2﹣2ab +b 2.(1)当a =1,b =﹣2时,求14(B ﹣A )的值;(2)如果2A ﹣3B +C =0,那么C 的表达式是什么?【分析】(1)将A =a 2+2ab +b 2,B =a 2﹣2ab +b 2.代入14(B ﹣A ),再去括号、合并同类项化简后,再代入求值;(2)将A =a 2+2ab +b 2,B =a 2﹣2ab +b 2.代入2A ﹣3B +C =0,可求出C .【解答】解:(1)当a =1,b =﹣2时,14(B ﹣A )=14[(a 2﹣2ab +b 2)﹣(a 2+2ab +b 2)]=14[a 2﹣2ab +b 2﹣a 2﹣2ab ﹣b 2]=﹣ab=﹣1×(﹣2)=2;(2)∵2A ﹣3B +C =0,∴C =3B ﹣2A =3(a 2﹣2ab +b 2)﹣2(a 2+2ab +b 2)=3a 2﹣6ab +3b 2﹣2a 2﹣4ab ﹣2b 2=a 2﹣10ab +b 2,答:C 的表达式是=a 2﹣10ab +b 2.32.(2020秋•潮南区期中)已知多项式A =4x 2+my ﹣12与多项式B =nx 2﹣2y +1.(1)当m =1,n =5时,计算A +B 的值;(2)如果A 与2B 的差中不含x 和y ,求mn 的值.【分析】(1)把m =1,n =5代入A =4x 2+my ﹣12和B =nx 2﹣2y +1,再计算A +B 的值;(2)求出A ﹣2B ,再令含有x 、y 的项的系数为0即可.【解答】解:(1)把m =1,n =5代入A =4x 2+my ﹣12和B =nx 2﹣2y +1,得A =4x 2+y ﹣12和B =5x 2﹣2y +1,∴A +B =4x 2+y ﹣12+(5x 2﹣2y +1)=4x 2+y ﹣12+5x 2﹣2y +1=9x 2﹣y ﹣11;(2)A ﹣2B =4x 2+my ﹣12﹣2(nx 2﹣2y +1)=4x 2+my ﹣12﹣2nx 2+4y ﹣2=(4﹣2n )x 2+(m +4)y ﹣14,∵A 与2B 的差中不含x 和y ,∴4﹣2n=0,且m+4=0,∴m=﹣4,n=2,∴mn=﹣8.33.(2020秋•高邮市期中)已知A=x2﹣2xy,B=y2+3xy.(1)若A﹣2B+C=0,试求C;(2)在(1)的条件下若A=5,求2A+4B﹣2C的值.【分析】(1)将A=x2﹣2xy,B=y2+3xy代入A﹣2B+C=0,变形得出C即可;(2)由A﹣2B+C=0得出C=2B﹣A,将此式代入2A+4B﹣2C化简,最后将A=5代入计算即可.【解答】解:(1)∵A=x2﹣2xy,B=y2+3xy,A﹣2B+C=0,∴x2﹣2xy﹣2(y2+3xy)+C=0,∴C=2(y2+3xy)﹣(x2﹣2xy)=2y2+6xy﹣x2+2xy=2y2+8xy﹣x2;(2)∵A﹣2B+C=0,∴C=2B﹣A,∴2A+4B﹣2C=2A+4B﹣2(2B﹣A)=2A+4B﹣4B+2A=4A,∵A=5,∴原式=4×5=20.34.(2020秋•洪山区期中)已知A=2x2+4xy﹣2x﹣3,B=﹣x2+xy+2.(1)求3A﹣2(A+2B)的值;(2)当x取任意数,B+12A的值都是一个定值时,求313A+613B﹣27y3的值.【分析】(1)根据整式的运算法则即可求出答案;(2)根据题意可求出y的值,从而可求出B+12A=0.5,代入原式即可求出答案.【解答】解:(1)3A﹣2(A+2B)=3A﹣2A﹣4B=A﹣4B=(2x2+4xy﹣2x﹣3)﹣4(﹣x2+xy+2)=2x2+4xy﹣2x﹣3+4x2﹣4xy﹣8=6x2﹣2x﹣11;(2)B +12A =(﹣x 2+xy +2)+12(2x 2+4xy ﹣2x ﹣3)=﹣x 2+xy +2+x 2+2xy ﹣x ﹣1.5=3xy ﹣x +0.5=(3y ﹣1)x +0.5.∵当x 取任意数,B +12A 的值都是一个定值,∴3y ﹣1=0∴y =13,∴B +12A =0.5,∴313A +613B ﹣27y 3=613(B +12A )﹣27y 3=613×0.5﹣27×(13)3=313−1=−1013.35.(2020秋•平阴县期中)张老师让同学们计算“当a =0.25,b =﹣0.37时,求代数式(13+2a 2b +b 3)﹣2(a 2b −13)﹣b 3的值”.解完这道题后,小明同学说“a =0.25,b =﹣0.37是多余的条件”.师生讨论后一致认为这种说法是正确的,老师和同学们对小明敢于提出自己的见解投去了赞赏的目光.(1)请你说明小明正确的理由.(2)受此启发,老师又出示了一道题目:无论x 、y 取何值,多项式﹣3x 2y +mx +nx 2y ﹣x +3的值都不变.则m = 1 ,n = 3 .【分析】(1)原式合并同类项得到结果,即可作出判断;(2)原式合并同类项后,根据结果与x 、y 的取值无关,确定出m 与n 的值即可.【解答】解:(1)原式=13+2a 2b +b 3﹣2a 2b +23−b 3=1,原式的值为常数,与a 、b 取值无关,故小明说法正确;(2)原式=(﹣3+n )x 2y +(m ﹣1)x +3,由多项式的值与x 、y 的取值无关,得到﹣3+n =0,m ﹣1=0,解得:m =1,n =3;故答案为:1;3.36.(2020秋•锦江区校级期中)(1)如图:化简|b ﹣a |+|a +c |﹣|a +b +c |.(2)已知:ax 2+2xy ﹣y ﹣3x 2+bxy +x 是关于x ,y 的多项式,如果该多项式不含二次项,求代数式3ab 2﹣{2a 2b +[4ab 2−13(6a 2b ﹣9a 2)]}﹣(−14a 2b ﹣3a 2)的值.【分析】(1)根据数轴上各数的位置,确定b ﹣a 、a +c 、a +b +c 的正负,再根据绝对值的意义,去掉绝对值后合并;(2)利用整式的加减法则,先把两个多项式化简,根据第一个多项式的结果不含x 、y的二次项,确定a、b的值,再代入第二个化简后的代数式求值即可.【解答】解:(1)由数轴知:c<b<0<a,|b|>|a|,|c|>|a|,∴b﹣a<0,a+c<0,a+b+c<0.∴|b﹣a|+|a+c|﹣|a+b+c|=a﹣b﹣(a+c)+(a+b+c)=a﹣b﹣a﹣c+a+b+c=a;(2)ax2+2xy﹣y﹣3x2+bxy+x=(a﹣3)x2+(b+2)xy+x﹣y,由于该多项式不含二次项,∴a﹣3=0,b+2=0.即a=3,b=﹣2.3ab2﹣{2a2b+[4ab2−13(6a2b﹣9a2)]}﹣(−14a2b﹣3a2)=3ab2﹣[2a2b+(4ab2﹣2a2b+3a2)]+14a2b+3a2=3ab2﹣(2a2b+4ab2﹣2a2b+3a2)+14a2b+3a2=3ab2﹣2a2b﹣4ab2+2a2b﹣3a2+14a2b+3a2=﹣ab2+14a2b,当a=3,b=﹣2时,原式=﹣3×(﹣2)2+14×32×(﹣2)=﹣12−9 2=−332.37.(2020秋•武侯区校级期中)已知关于x、y的代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y ﹣1)的值与字母x的取值无关.(1)求a和b值.(2)设A=a2﹣2ab﹣b2,B=3a2﹣ab﹣b2,求3[2A﹣(A﹣B)]﹣4B的值.【分析】(1)由代数式的值与x取值无关,求出a与b的值即可;(2)将原式化简得3A﹣B.将A=a2﹣2ab﹣b2,B=3a2﹣ab﹣b2代入,可得关于a,b 的代数式,再将a=﹣3,b=1代入求值即可.【解答】解:(1)原式=(2x3+ax﹣y+6)﹣(2bx3﹣3x+5y﹣1)=2x3+ax﹣y+6﹣2bx3+3x﹣5y+1=(2﹣2b)x3+(a+3)x﹣6y+7,∵代数式的值与x取值无关,∴2﹣2b=0,a+3=0,解得:a=﹣3,b=1;(2)3[2A﹣(A﹣B)]﹣4B=3[2A﹣A+B]﹣4B=3(A+B)﹣4B=3A+3B﹣4B=3A﹣B.将A,B代入上式,∴原式=3(a2﹣2ab﹣b2)﹣(3a2﹣ab﹣b2)=3a2﹣6ab﹣3b2﹣3a2+ab+b2=﹣5ab﹣2b2.将a=﹣3,b=1代入上式,原式=﹣5×(﹣3)×1﹣2×12=15﹣2=13.38.(2021秋•卧龙区期末)数学课上,老师出示了这样一道题目:“当a=12,b=﹣2时,求多项式7a3+3a2b+3a3+6a3b﹣3a2b﹣10a3﹣6a3b﹣1的值”解完这道题后,张恒同学指出:“a=12,b=﹣2是多余的条件”.师生讨论后,一直认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目:“无论x取任何值,多项式﹣3x2+mx+nx2﹣x+3的值都不变,求系数m、n的值”.请你解决这个问题.【分析】(1)原式合并同类项得到结果,即可作出判断;(2)原式合并同类项后,根据结果与x的取值无关,确定出m与n的值即可.【解答】解:(1)原式=(7+3﹣10)a3+(3﹣3)a2b+(6﹣6)a3b﹣1=﹣1,原式的值为常数,与a与b取值无关,故张恒说法正确;(2)原式=(﹣3+n)x2+(m﹣1)x+3,由多项式的值与x的取值无关,得到﹣3+n=0,m﹣1=0,解得:m=1,n=3.39.(2020秋•张店区期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),“整体思想”是中学教学课题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣5(a﹣b)2+7(a﹣b)2的结果是5(a﹣b)2.(2)已知x2﹣2y=1,求3x2﹣6y﹣5的值.(3)拓展探索:已知a﹣2b=2,2b﹣c=﹣5,c﹣d=9,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)根据题目所给运算法则进行计算即可得出答案;(2)把3x2﹣6y﹣5化为3(x2﹣2y)﹣5,根据已知即可得出答案;(3)把(a﹣c)+(2b﹣d)﹣(2b﹣c)化为a﹣2b)+(c﹣d)+(2b﹣c),根据已知即可得出答案.【解答】解:(1)3(a﹣b)2﹣5(a﹣b)2+7(a﹣b)2=(3﹣5+7)(a﹣b)2=5(a ﹣b)2.故答案为:5(a﹣b)2;(2)3x2﹣6y﹣5=3(x2﹣2y)﹣5,把x2﹣2y=1代入上式,原式=3×1﹣5=﹣2;(3)(a﹣c)+(2b﹣d)﹣(2b﹣c)=a﹣c+2b﹣d﹣2b+c=(a﹣2b)+(c﹣d)+(2b﹣c),把a﹣2b=2,2b﹣c=﹣5,c﹣d=9代入上式,原式=2+9﹣5=6.40.(2020秋•天河区期末)已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简2A﹣3B;(2)当x+y=67,xy=﹣1,求2A﹣3B的值;(3)若2A﹣3B的值与y的取值无关,求2A﹣3B的值.【分析】(1)将A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy代入2A﹣3B,化简即可;(2)将x+y=67,xy=﹣1代入(1)中化简所得的式子,计算即可;(3)将(1)中化简所得的式子中含y的部分合并同类项,再根据2A﹣3B的值与y的取值无关,可得y的系数为0,从而解得x的值,再将x的值代入计算即可.【解答】解:(1)∵A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy,∴2A﹣3B=2(3x2﹣x+2y﹣4xy)﹣3(2x2﹣3x﹣y+xy)=6x2﹣2x+4y﹣8xy﹣6x2+9x+3y﹣3xy=7x+7y﹣11xy;(2)当x+y=67,xy=﹣1时,2A﹣3B=7x+7y﹣11xy =7(x+y)﹣11xy=7×67−11×(﹣1)=6+11=17;(3)∵2A﹣3B=7x+7y﹣11xy=7x+(7﹣11x)y,∴若2A﹣3B的值与y的取值无关,则7﹣11x=0,∴x=7 11,∴2A﹣3B=7×711+0=4911.41.(2020秋•讷河市期末)已知代数式A=2x2+3xy+2y,B=x2﹣xy+x.(1)求A﹣2B;(2)当x=﹣1,y=3时,求A﹣2B的值;(3)若A﹣2B的值与x的取值无关,求y的值.【分析】(1)直接利用整式的加减运算法则计算得出答案;(2)直接把x,y的值代入得出答案;(3)直接利用已知得出5y=2,即可得出答案.【解答】解:(1)∵A=2x2+3xy+2y,B=x2﹣xy+x,∴A﹣2B=(2x2+3xy+2y)﹣2(x2﹣xy+x)=2x2+3xy+2y﹣2x2+2xy﹣2x=5xy﹣2x+2y;(2)当x=﹣1,y=3时,原式=5xy﹣2x+2y=5×(﹣1)×3﹣2×(﹣1)+2×3=﹣15+2+6=﹣7;(3)∵A﹣2B的值与x的取值无关,∴5xy﹣2x=0,∴5y=2,解得:y=2 5.42.(2020秋•路北区期末)已知含字母a,b的代数式是:3[a2+2(b2+ab﹣2)]﹣3(a2+2b2)﹣4(ab﹣a﹣1)(1)化简代数式;(2)小红取a,b互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0,那么小红所取的字母b的值等于多少?(3)聪明的小刚从化简的代数式中发现,只要字母b取一个固定的数,无论字母a取何数,代数式的值恒为一个不变的数,那么小刚所取的字母b的值是多少呢?【分析】(1)原式去括号合并即可得到结果;(2)由a与b互为倒数得到ab=1,代入(1)结果中计算求出b的值即可;(3)根据(1)的结果确定出b的值即可.【解答】解:(1)原式=3a2+6b2+6ab﹣12﹣3a2﹣6b2﹣4ab+4a+4=2ab+4a﹣8;(2)∵a,b互为倒数,∴ab=1,∴2+4a﹣8=0,解得:a=1.5,∴b=2 3;(3)由(1)得:原式=2ab+4a﹣8=(2b+4)a﹣8,由结果与a的值无关,得到2b+4=0,解得:b=﹣2.43.(2020•路北区三模)已知A=x2﹣mx+2,B=nx2+2x﹣1.(1)求2A﹣B,并将结果整理成关于x的整式;(2)若2A﹣B的结果与x无关,求m、n的值;(3)在(2)基础上,求﹣3(m2n﹣2mn2)﹣[m2n+2(mn2﹣2m2n)﹣5mn2]的值.【分析】(1)去括号,合并同类项即可得;(2)根据2A﹣B的结果与x无关,得二次项、一次项系数为0;(3)去括号,合并同类项,再把m、n的值代入即可【解答】解:(1)∵A=x2﹣mx+2,B=nx2+2x﹣1,∴2A﹣B=2(x2﹣mx+2)﹣(nx2+2x﹣1)=2x2﹣2mx+4﹣nx2﹣2x+1=(2﹣n)x2+(﹣2m﹣2)x+5,(2)∵2A﹣B的结果与x无关,∴2﹣n=0,﹣2m﹣2=0,解得,m=﹣1,n=2,(3)原式=﹣3m2n+6mn2﹣m2n﹣2mn2+4m2n+5mn2=9mn2,∵m=﹣1,n=2,∴原式=9×(﹣1)×22=﹣36.44.(2020秋•偃师市月考)我们知道,4x﹣2x+x=(4﹣2+1)x=3x.类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.(1)若把(a﹣b)2看成一个整体,则合并4(a﹣b)2﹣8(a﹣b)2+3(a﹣b)2的结果是﹣(a﹣b)2.(2)已知x2﹣2y=4,求8y﹣4x2+3的值.(3)已知a﹣2b=4,2b﹣c=﹣7,c﹣d=11,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)根据整体思想进行同类项合并即可求出答案.(2)将原式化为﹣4(x2﹣2y)+3,然后将x2﹣2y=4代入原式即可求出答案.(3)根据去括号法则以及添括号法则进行化简,然后将a﹣2b、2b﹣c、c﹣d的值代入原式即可求出答案.【解答】解:(1)原式=(4﹣8+3)(a﹣b)2=﹣(a﹣b)2.故答案为:﹣(a﹣b)2.(2)原式=﹣4(x2﹣2y)+3=﹣4×4+3=﹣16+3=﹣13.(3)原式=a﹣c+2b﹣d﹣2b+c=(a﹣2b)+(2b﹣c)+(c﹣d)=4﹣7+11=11﹣3=8.45.(2020秋•船山区校级月考)一个多项式的次数为m,项数为n,我们称这个多项式为m次多项式或者m次n项式,例如:5x3y2﹣2x2y+3xy为五次三项式,2x2﹣2y2+3xy+2x 为二次四项式.(1)﹣3xy+2x2y2﹣4x3y3+3为六次四项式.(2)若关于x、y的多项式A=ax2﹣3xy+2x,B=bxy﹣4x2+2y,已知2A﹣3B中不含二次项,求a+b的值.(3)已知关于x的二次多项式,a(x3﹣x2+3x)+b(2x2+x)+x3﹣5在x=2时,值是﹣17,求当x=﹣2时,该多项式的值.【分析】(1)利用题干中的规定即可确定多项式的次数及项数;(2)计算2A﹣3B,合并同类项后,令二次项系数等于0即可求得结论;(3)利用多项式为关于x的二次多项式,可得a+1=0;将x=2时,多项式的值是﹣17代入可求得b的值,将求得的a,b的值代入多项式,整理后将x=﹣2代入即可求得结论.【解答】解:(1)∵﹣3xy+2x2y2﹣4x3y3+3的次数为6,项数为4,∴﹣3xy+2x2y2﹣4x3y3+3是六次四项式.故答案为:六;四;(2)∵A=ax2﹣3xy+2x,B=bxy﹣4x2+2y,∴2A﹣3B=2(ax2﹣3xy+2x)﹣3(bxy﹣4x2+2y)=2ax2﹣6xy+4x﹣3bxy+12x2﹣6y=(2a+12)x2+(﹣6﹣3b)xy+4x﹣6y,∵2A﹣3B中不含二次项,∴2a+12=0,﹣6﹣3b=0.解得:a=﹣6,b=﹣2.∴a+b=﹣8.(3)∵a(x3﹣x2+3x)+b(2x2+x)+x3﹣5=(a+1)x3+(﹣a+2b)x2+(3a+b)x﹣5,又∵a(x3﹣x2+3x)+b(2x2+x)+x3﹣5是关于x的二次多项式,∴a+1=0.∴a=﹣1,∴原多项式为(2b+1)x2+(b﹣3)x﹣5.∵当x=2时,多项式的值是﹣17,∴(2b+1)×4+(b﹣3)×2﹣5=﹣17.∴b=﹣1.∴原多项式为﹣x2﹣4x﹣5,当x=﹣2时,﹣x2﹣4x﹣5=﹣4+8﹣5=﹣1.∴当x=﹣2时,该多项式的值为﹣1.46.(2020秋•海州区校级期中)有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b成一个整体,把式子5a+3b=﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2+a=1,则2a2+2a+2020=2022.(2)已知a﹣b=﹣3,求5(a﹣b)﹣7a+7b+11的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+92ab+3b2的值.【分析】(1)利用整体代入的思想代入计算即可;(2)首先把代数式进行变形,然后再代入计算即可;(3)首先把代数式进行变形,然后再代入计算即可.【解答】解:(1)∵a2+a=1,∴原式=2(a2+a)+2020=2+2020=2022,故答案为:2022;(2)∵a﹣b=﹣3,∴原式=5(a﹣b)﹣7(a﹣b)+11=﹣2(a﹣b)+11=﹣2×(﹣3)+11=17;(3)∵a2+2ab=﹣5,ab﹣2b2=﹣3,∴原式=3a2+6ab−32ab+3b2=3(a2+2ab)−32(ab﹣2b2)=3×(﹣5)−32×(﹣3)=−212.47.(2020秋•海珠区校级期中)已知A=3x2+y2﹣2xy,B=xy﹣y2+2x2,求:(1)2A﹣3B;(2)若|2x﹣3|=1,y2=16,|x﹣y|=y﹣x,求2A﹣3B的值.(3)若x=4,y=﹣8时,代数式ax3+12by+5=18,那么x=﹣128,y=﹣1时,求代数式3ax﹣24by3+10的值.【分析】(1)将A=3x2+y2﹣2xy,B=xy﹣y2+2x2,代入2A﹣3B,再利用去括号、合并同类项化简即可;(2)求出x、y的值代入(1)化简后代数式计算即可;(3)将x=4,y=﹣8代入代数式ax3+12by+5=18可得64a﹣4b=13,再把x=﹣128,y=﹣1代入3ax﹣24by3+10即可得出答案.【解答】解:(1)∵A=3x2+y2﹣2xy,B=xy﹣y2+2x2,∴2A﹣3B=2(3x2+y2﹣2xy)﹣3(xy﹣y2+2x2)=6x2+2y2﹣4xy﹣3xy+3y2﹣6x2=5y2﹣7xy;(2)∵|2x﹣3|=1,y2=16,∴x1=1,x2=2,y=±4,又∵|x﹣y|=y﹣x,即x≤y,∴x=1,y=4或x=2,y=4,当x=1,y=4时,2A﹣3B=5y2﹣7xy=80﹣28=52,当x=2,y=4时,2A﹣3B=5y2﹣7xy=80﹣56=24,∴2A﹣3B的值为52或24.(3)将x=4,y=﹣8代入代数式ax3+12by+5=18可得,64a﹣4b+5=18,即,64a﹣4b=13,把x=﹣128,y=﹣1代入3ax﹣24by3+10可得,﹣3×128a+24b+10=﹣6(64a﹣4b)+10=﹣6×13+10=﹣68.48.(2020秋•宁明县期中)在某次作业中有这样的一道题:“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”小明是这样来解的:原式=2a+2b+8a+4b=10a+6b,把式子5a+3b=﹣4两边同乘以2,得10a+6b=﹣8,仿照小明的解题方法,完成下面的问题:(1)如果a2+a=0,则a2+a+2020=2020;(2)已知a﹣b=﹣2,求3(a﹣b)﹣5a+5b+6的值;(3)已知a2+2ab=3,ab﹣b2=﹣4,求a2+32ab+12b2的值,【分析】(1)利用整体代入的思想代入计算即可;(2)首先把代数式进行变形,然后再代入计算即可;(3)首先把代数式进行变形,然后再代入计算即可.【解答】解:(1)∵a2+a=0,∴原式=0+2020=2020,故答案为:2020;(2)∵a﹣b=﹣2,∴原式=3(a﹣b)﹣5(a﹣b)+6=﹣2(a﹣b)+6=﹣2×(﹣2)+6=10;(3)∵a2+2ab=3,ab﹣b2=﹣4,∴原式=a2+2ab−12ab+12b2=(a2+2ab)−12(ab﹣b2)=3−12×(﹣4)=5.49.(2020秋•温江区校级期中)已知代数式2x2+ax﹣y+6−12bx2﹣4x﹣5y﹣1的值与字母x的取值无关.(1)求出a、b的值.(2)若A=2a2﹣ab+2b2,B=a2﹣ab+b2,求(2A﹣B)﹣3(A﹣B)的值.(3)若P=4x2y﹣5x2y b﹣(m﹣5)x a y3与Q=﹣5x n y4+6xy﹣3x﹣7的次数相同,且最高项的系数也相同,求5m﹣2n的值.【分析】(1)先去括号,再合并同类项,然后根据代数式2x2+ax﹣y+6−12bx2﹣4x﹣5y﹣1的值与字母x的取值无关得出关于a和b的方程,求解即可.(2)将(2A﹣B)﹣3(A﹣B)化简,再将A与B所表示的多项式代入计算,最后再将a和b的值代入计算即可.(3)先将a与b的值代入计算,再分两种情况:当P中﹣5x2y4为最高次项时;当P中﹣(m﹣5)x4y3为最高次项时,分别得出m与n的值,最后分别代入5m﹣2n计算即可.【解答】解:(1)∵2x2+ax﹣y+6−12bx2﹣4x﹣5y﹣1=(2x2−12bx2)+(a﹣4)x+(﹣y﹣5y)+(6﹣1)=(2−12b)x2+(a﹣4)x﹣6y+5,∵代数式2x2+ax﹣y+6−12bx2﹣4x﹣5y﹣1的值与字母x的取值无关,∴2−12b=0,a﹣4=0,∴a=4,b=4.(2)∵A=2a2﹣ab+2b2,B=a2﹣ab+b2,∴(2A﹣B)﹣3(A﹣B)=2A﹣B﹣3A+3B=﹣A+2B=﹣2a2+ab﹣2b2+2a2﹣2ab+2b2,=﹣ab∵a =4,b =4,∴原式=﹣ab =﹣4×4=﹣16. (3)∵a =4,b =4,∴P =4x 2y ﹣5x 2y 4﹣(m ﹣5)x 4y 3,∵P 与Q 的次数相同,且最高项的系数也相同,∴当P 中﹣5x 2y 4为最高次项时,﹣(m ﹣5)=0,2+4=n +4, ∴m =5,n =2;当P 中﹣(m ﹣5)x 4y 3为最高次项时,﹣(m ﹣5)=﹣5,4+3=n +4, ∴m =10,n =3.∴当m =5,n =2时,5m ﹣2n =5×5﹣2×2=25﹣4=21; 当m =10,n =3时,5m ﹣2n =5×10﹣2×3=50﹣6=44. ∴5m ﹣2n 的值为21或44.50.(2021秋•东城区期末)一般情况下,对于数a 和b ,a2+b 4≠a+b 2+4(“≠”不等号),但是对于某些特殊的数a 和b ,a 2+b 4=a+b 2+4.我们把这些特殊的数a 和b ,称为“理想数对”,记作<a ,b >.例如当a =1,b =﹣4时,有12+−44=1+(−4)2+4,那么<1,﹣4>就是“理想数对”.(1)<3,﹣12>,<﹣2,4>可以称为“理想数对”的是 <3,﹣12> ; (2)如果<2,x >是“理想数对”,那么x = ﹣8 ;(3)若<m ,n >是“理想数对”,求3[(9n −4m)−8(n −76m)]−4m −12的值. 【分析】(1)根据题目中的新定义验证<3,﹣12>,<﹣2,4>哪个符合公式a2+b 4=a+b 2+4即可;(2)按照题意<2,x >是“理想数对”,则a =2,b =x ,满足公式a2+b 4=a+b 2+4,代入求x ;(3)根据题意,m ,n 满足m 2+n 4=m+n 2+4,得出n =﹣4m ,然后化简代数式并把n =﹣4m 代入求值即可. 【解答】解:(1)对于数对〈3,﹣12〉,有32+−124=3−122+4=−32,因此〈3,﹣12〉是“理想数对”;对于数对<﹣2,4>,−22+44=0,−2+42+4=13,0≠13,所以<﹣2,4>不是理想数对;故答案为<3,﹣12>. (2)因为<2,x >是“理想数对”, 所以22+x 4=2+x 2+4,解得x =﹣8故答案为﹣8.(3)由题意,〈m ,n 〉是“理想数对”,所以m 2+n 4=m+n 2+4,即n =﹣4m3[(9n −4m)−8(n −76m)]−4m −12 =3[9n ﹣4m ﹣8n +283m ]﹣4m ﹣12 =3n +12m ﹣12将n =﹣4m 代入,原式=﹣12 答:代数式的值是﹣12。
小专项(十二) 整式的化简及求值
![小专项(十二) 整式的化简及求值](https://img.taocdn.com/s3/m/19b9724014791711cd791704.png)
小专项(十二) 整式的化简及求值类型1整式旳化简1、计算:(1)(-2a 2)·(3ab 2-5ab 3)+8a 3b 2;解:原式=-6a 3b 2+10a 3b 3+8a 3b 2=2a 3b 2+10a 3b 3.(2)(3x -1)(2x +1);解:原式=6x 2+3x -2x -1=6x 2+x -1.(3)(2x +5y)(3x -2y)-2x(x -3y);解:原式=6x 2+11xy -10y 2-2x 2+6xy =4x 2+17xy -10y 2.(4)(x -1)(x 2+x +1)、解:原式=x 3+x 2+x -x 2-x -1=x 3-1.2、计算:(1)21x 2y 4÷3x 2y 3;解:原式=(21÷3)·x 2-2·y 4-3=7y.(2)(8x 3y 3z)÷(-2xy 2);解:原式=[8÷(-2)]·(x 3÷x)·(y 3÷y 2)·z =-4x 2yz.(3)a 2n +2b 3c ÷2a n b 2;解:原式=(1÷2)·(a 2n +2÷a n )·(b 3÷b 2)·c =12a n +2bc. (4)-9x 6÷13x 2÷(-x 2)、 解:原式=[-9÷13÷(-1)]·(x 6÷x 2÷x 2)=27x 2. 3、计算:(1)(-2a 2b 3)·(-ab)2÷4a 3b 5;解:原式=(-2a 2b 3)·(a 2b 2)÷4a 3b 5=(-2a 4b 5)÷4a 3b 5=-12a. (2)(-5a 2b 4c 2)2÷(-ab 2c)3.解:原式=25a 4b 8c 4÷(-a 3b 6c 3)=-25ab 2c.4、计算:(1)[x(x 2y 2-xy)-y(x 2-x 3y)]÷x 2y ;解:原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷x 2y=(2x 3y 2-2x 2y)÷x 2y=2xy -2.(2)(23a 4b 7-19a 2b 6)÷(-16ab 3)2. 解:原式=(23a 4b 7-19a 2b 6)÷136a 2b 6 =23a 4b 7÷136a 2b 6-19a 2b 6÷136a 2b 6=24a 2b -4.5、计算:(1)(-76a 3b)·65abc ; 解:原式=-75a 3+1b 1+1c =-75a 4b 2c. (2)(-x)5÷(-x)-2÷(-x)3;解:原式=(-x)5-(-2)-3=(-x)4=x 4.(3)6mn 2·(2-13mn 4)+(-12mn 3)2; 解:原式=12mn 2-2m 2n 6+14m 2n 6 =12mn 2-74m 2n 6. (4)5x(x 2+2x +1)-(2x +3)(x -5)、解:原式=5x 3+10x 2+5x -(2x 2-7x -15)=5x 3+10x 2+5x -2x 2+7x +15=5x 3+8x 2+12x +15.类型2利用直截了当代入进行化简求值6、先化简,再求值:(1)(-12ab 2)·(14a 2b 4)-(-a 3b 2)·(-b 2)2,其中a =-14,b =4; 解:原式=-18a 3b 6-(-a 3b 2)·b 4=-18a 3b 6+a 3b 6=78a 3b 6. 当a =-14,b =4时,原式=78×(-14)3×46=-56. (2)(a +b)(a -2b)-(a +2b)(a -b),其中a =-2,b =23; 解:原式=a 2-ab -2b 2-(a 2+ab -2b 2)=a 2-ab -2b 2-a 2-ab +2b 2=-2ab.当a =-2,b =23时,原式=(-2)×(-2)×23=83. (3)(-13xy)2[xy(2x -y)-2x(xy -y 2)],其中x =-32,y =-2; 解:原式=19x 2y 2(2x 2y -xy 2-2x 2y +2xy 2)=19x 2y 2·xy 2=19x 3y 4. 当x =-32,y =-2时,原式=19×(-32)3×(-2)4=-6. (4)(2a +3b)(3a -2b)-5a(b +1)-6a 2,其中a =-12,b =2. 解:原式=6a 2+5ab -6b 2-5ab -5a -6a 2=-6b 2-5a ,当a =-12,b =2时,原式=-6×22-5×(-12)=-24+52=-2112. 类型3利用条件间接代入进行化简求值7、|2a +3b -7|+(a -9b +7)2=0,试求(14a 2-12ab +b 2)(12a +b)旳值、 解:由题意知⎩⎪⎨⎪⎧2a +3b -7=0,a -9b +7=0,解得⎩⎪⎨⎪⎧a =2,b =1. 原式=18a 3+b 3=18×23+13=2. 类型4利用整体代入进行化简求值8、(随州中考)先化简,再求值:(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12. 解:原式=4-a 2+a 2-5ab +3a 5b 3÷a 4b 2=4-2ab.当ab =-12时,原式=4+2×12=5. 9、假设x 2+4x -4=0,求3(x -2)2-6(x +1)(x -1)旳值、解:原式=3x 2-12x +12-6x 2+6=-3x 2-12x +18=-3(x 2+4x)+18.∵x 2+4x -4=0,∴x 2+4x =4.∴原式=-3×4+18=6.。
初中八年级数学上册整式混合运算及化简求值(30题无答案)
![初中八年级数学上册整式混合运算及化简求值(30题无答案)](https://img.taocdn.com/s3/m/8a5868af6429647d27284b73f242336c1eb93028.png)
初中八年级数学上册整式混合运算及化简求值(30题)一.解答题(共30小题)1.(2022秋•思明区校级期中)计算:(1)(a+3b )(2a ﹣b );(2)(6x 4﹣8x 3)÷(﹣2x 2);(3)(a −5)2+12a(2a +6);(4)(y+3)(y ﹣3)﹣(y ﹣2)(y ﹣5).2.(2022秋•浦东新区期中)计算.(1)a •a 4•(﹣a 2)3;(2)3a (2a 2﹣4a+3)﹣2a 2(3a ﹣4);(3)(32a+4b ﹣c )(32a ﹣4b+c );(4)(x ﹣y )2﹣x (3x ﹣2y )+(x+y )(x ﹣y ).3.(2022秋•东城区校级期中)计算:(1)a 3•a+(﹣a 2)3÷a 2;(2)[(m+n )(m ﹣n )+(﹣n )2]÷2m .4.(2022秋•西城区校级期中)(1)a 2•(﹣a 4)3÷(a 3)2;(2)(−32ab 2)3; (3)3xy 2•(−43x 2y );(4)(﹣4a )•(5a 2﹣6a+1).5.(2022秋•西城区校级期中)计算:(1)3a (5a ﹣2b );(2)(12a 3﹣6a 2+3a )÷3a ;(3)(y+2)(y ﹣2)﹣(y ﹣1)(y+5).6.(2022秋•西城区校级期中)计算:(1)(2x )3(﹣5xy 2);(2)(x ﹣8y )(x ﹣y );(3)(12a 3﹣6a 2+3a )÷3a ;(4)(x+2y ﹣3)(x ﹣2y+3);(5)(3x ﹣5)2﹣(2x+7)2.7.(2022秋•西城区校级期中)计算:(1)4x 2y •(﹣xy 3)2;(2)(﹣4x 2)(3x+y );(3)(m+2n )(3n ﹣m );(4)(12m 3﹣6m 2+3m )÷3m ;(5)(x+y ﹣3)(x ﹣y+3);(6)(a+b ﹣c )2.8.(2022秋•旌阳区校级月考)计算:(1)8a 6÷2a 2﹣4a 3•3a ﹣(4a 2)2;(2)[(a+2b )2﹣(a+2b )(a ﹣b )]÷3b ;(3)20222﹣2021×2023;(4)20222﹣4044×2021+20212.9.(2022春•武侯区校级月考)化简.(1)(x 2)3•x 3﹣(﹣x )2•x 9÷x 2;(2)(m ﹣n )(m+n )﹣m (m ﹣n );(3)(3a+2b )2﹣(2a ﹣3b )2;(4)[(2x+y )2﹣(3x ﹣y )(3x+y )﹣2y 2]÷(−12x ).10.(2022春•新城区校级月考)计算:(1)9.7×10.3(利用乘法公式简便计算)(2)﹣12021+(2022﹣π)0+(12)﹣3(3)(﹣3a 2b )3﹣(4a 3)2•(﹣b )3+5a 6b 3(4)(﹣2xy 2)3•(﹣x 2yz )÷(12x 3y 5)11.(2022秋•南安市期中)化简求值:[(x ﹣y )2﹣(x ﹣2y )(x+2y )]÷y ,其中x =3,y =﹣1.12.(2022秋•五华区校级期中)先化简,再求值:[(a ﹣2b )2+(a ﹣2b )(a+2b )+2a (2a ﹣b )]÷2a ,其中,a =﹣1,b =﹣4.13.(2022秋•思明区校级期中)化简求值:(4﹣x )(2x+1)+3x (x ﹣3),其中x =﹣1.14.(2022秋•永春县期中)先化简,再求值:(2+3x )(2﹣3x )+9x (x ﹣1),其中x =13.15.(2022秋•望城区期中)先化简,再求值:(2x+1)(3x ﹣2)﹣(x ﹣1)(2x ﹣3)﹣(2x )2,其中x =1.16.(2022秋•西城区校级期中)先化简,再求值:(1)(x+y )2+(x+2y )(x ﹣y )﹣2x 3y+xy ,其中x =1,y =2.(2)已知a 2﹣2ab+b 2=0,求代数式a (4a ﹣b )﹣(2a ﹣b )(2a+b )的值.17.(2022秋•福田区校级期中)先化简,再求值:[(2a+b )2﹣(b+2a )(2a ﹣b )﹣2ab]÷(2b ),其中a =2,b =1.18.(2022秋•闵行区校级期中)先化简,再求值:[(ab+1)(ab ﹣2)﹣2a 2b 2+2]÷(−12ab ),其中,a =32,b =−43. 19.(2022秋•东坡区校级期中)(1)计算:20132﹣2014×2012;(2)先化简,再求值:(3x+2)(3x ﹣2)﹣5x (x ﹣1)﹣(2x ﹣1)2,其中x =−13. 20.(2022秋•淅川县期中)先化简,再求值.(x ﹣y )2+(3x ﹣y )(x+y )﹣(x ﹣2y )(x+2y ),其中x ,y 满足(x+3)2+|y ﹣2|=0.21.(2022秋•朝阳区校级期中)先化简,再求值:[(m ﹣2n )2+(m ﹣2n )(m+2n )﹣2m (2m ﹣n )]÷2m ,其中,m =﹣1,n =−√3.22.(2022秋•南安市校级期中)对于任何数,我们规定:|a b c d |=ad ﹣bc .例如:|1234|=1×4﹣2×3=4﹣6=﹣2.(1)按照这个规定,请你化简:|−5284|; (2)按照这个规定,当a 2﹣4a+2=0时,求|a +23a −1a −3|的值. 23.(2022秋•商水县月考)知识再现:我们知道幂的运算法则有4条,分别是①a m •a n =a m+n ,②(a m )n =a m ,③(ab )n =a n b n ,④a m ÷a n =a m ﹣n ,反过来,这4条运算法则可以写成:①a m+n =a m •a n ,②a mn =(a m )n =(a n )m ,③a n b n =(ab )n ,④a m ﹣n =a m ÷a n .问题解决:已知a=(﹣11)2022×0.752022,且b满足等式(27b)2=312.3(1)求a,b的值;(2)化简代数式(x﹣y)(x2+xy+y2),并求当x=a,y=b时,该代数式的值.(3)对于任意两个实数m,n,我们规定|m n|=m﹣mn+2n,例如|−1|=−1﹣(﹣1)×3+2×3=8,根据3这个新运算规则,化简|p2|×|−12q|,并求当p=﹣2a,q=b﹣1时的值.24.(2022秋•浦东新区校级月考)阅读理解:一位同学将代数式x2﹣2x+5变形为(x2﹣2x+1)+4,得到(x﹣1)2+4后分析发现(x﹣1)2≥0,那么当x=1时,此代数式有最小值是4.请同学们思考以下问题:(1)已知代数式x2+2x﹣1,此代数式有最值(填“大”或“小”),且值为.(2)已知代数式﹣x2+4x+9,此代数式有最值(填“大”或“小”),且值为.(3)通过阅读材料分析代数式2x2+6x﹣1的最值情况.写出详细过程及结论.(4)已知代数式ax2+bx+c(其中a、b、c为常数,且a≠0),探究此代数式的最值情况,如果有,请直接写出答案,如果没有,请说明理由.25.(2022•南京模拟)(1)先化简,再求值:(x+y)(x﹣y)+(x﹣y)2﹣(x2﹣3xy),其中x=;2,y=12(2)已知:a2﹣b2=15,a+b=3.求(a+2b)2+a(2b﹣a)﹣4ab的值.26.(2019春•新华区校级期中)(1)先化简,再求值:2b2+(a+b)(a﹣2b)﹣(a﹣b)2,其中a=﹣3,b=1.2(2)已知ab=﹣3,a+b=2.求下列各式的值:①a2+b2;②a3b+2a2b2+ab3;③a﹣b.27.(2022春•安乡县期中)把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:a2+6a+8解:原式=a2+6a+8+1﹣1=a2+6a+9﹣1=(a+3)2﹣12=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2).②M=a2﹣2a﹣1,利用配方法求M的最小值.解:a2﹣2a﹣1=a2﹣2a+1﹣2=(a﹣1)2﹣2∵(a﹣1)2≥0∴当a=1时,M有最小值﹣2.请根据上述材料解决下列问题:(1)用配方法因式分解:x2+2x﹣3.(2)若M=x2﹣4x+1,求M的最小值.(3)若a2+b2﹣2a﹣8b+17=0,求a+b的值.28.(2022•南京模拟)对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2.使它与x2+2ax的和成为一个完全平方式.再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添一适当项,使式中出现完全平方式,再减去这个项.使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式x2﹣2x﹣8;(2)若a+b=5,ab=3.求(a﹣b)2的值;(3)已知x是任意实数,试比较x2﹣6x+10与﹣x2+2x﹣3大小,并说明理由.29.(2022秋•朝阳区校级期中)探究与应用我们学习过(x﹣1)(x+1)=x2﹣1,那么(x﹣1)(x6+x5+x4+x3+x2+x+1)计算结果呢?完成下面的探究:(1)(x﹣1)(x2+x+1)=;(2)(x﹣1)(x3+x2+x+1)=;……(3)(x﹣1)(x6+x5+x4+x3+x2+x+1)=;应用:计算2+22+23+24+ (22022)30.(2022秋•农安县期中)你能求(x﹣1)(x2022+x2021+x2020+⋯+x2+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手,先分别计算下列各式的值.①(x﹣1)(x+1)=x2﹣1②(x﹣1)(x2+x+1)=x3﹣1③(x﹣1)(x3+x2+x+1)=x4﹣1……(1)由此我们可以得到:(x﹣1)(x2022+x2021+x2020+⋯+x2+x+1)=.(2)请你利用上面的结论,再完成下面的计算:(﹣2)99+(﹣2)98+(﹣2)97+⋯+(﹣2)+1.。
人教版八年级数学上册第十四章专题训练(含答案)
![人教版八年级数学上册第十四章专题训练(含答案)](https://img.taocdn.com/s3/m/6fc34ca608a1284ac8504370.png)
人教版八年级数学上册第十四章专题训练专题一幂的运算性质的应用类型1 直接利用幂的运算性质进行计算1.计算:(1) ____________.(2) ____________.(3) __________.(4) __________.(5) __________.(6) _________.(7) __________.(8) _________.(9) __________.__________.2.计算:类型2 逆用幂的运算性质3.已知.求:的值的值的值4.计算:5.已知(,b都是正整数),用含m,n或p的式子表示下列各式:.专题二整式的化简与求值类型1 整式的化简1.计算:2.计算:类型2 整式的化简求值3.先化简,再求值:(3),其中满足专题三完全平方公式的变形教材母题:(教材P112习题T7)已知,求的值.【变式1】若,则=()A.2B.1C.-2D.-1【变式2】已知实数满足,则=()A.1B.-C.D.【变式3】已知,则_________.【变式4】阅读下列材料并解答后面的问题:利用完全平方公式,通过配方可对进行适当的变形,如或. (1)若,则的值为_________.(2)已知,求的值.针对训练1.已知都是正数,,则()A.-3B.3C. 3D.92.已知.(1)求的值. (2)若,求的值.3.已知,求的值.4.(1)请同学们观察用硬纸片拼成的图形(如图),根据图形的面积关系,写出一个代数恒等式:(2)根据(1)题中的等量关系,解决如下问题:①若m+n=8,mn=12,求m-n的值:②已知,请利用上述等式求mn.参考答案专题一 1.2.解:(1)原式=2)原式=(3)原式=(4)原式=(5)原式=3.4.解:原式=-85.解:..专题二1. 解:(1)原式=(2)原式=(3)原式.2. 解:(1)原式=(2)原式=(3)原式=(4)原式=.3.解:(1)原式=.当时,原式=24. (2)原式=-2,当时,原式=.(3)原式=6,当时,原式=-6.(4)原式=,原式=-30.专题三 教材母题解:即【变式1】B. 【变式2】C 【变式3】25 【变式4】解:(1).针对训练 1. B 2. 解:(1)..3.解:.4.解:(2)①m-n=4或-4.②mn= 1.。