醛和酮核磁共振谱
有机化学课后习题答案12第十二章醛和酮核磁共振谱(第5轮)答案
1. 2-丁烯醛
CH3CH=CHCHO
2,4-戊二酮
4-氯-4-甲基-2-戊烯醛
14. CH3COCH2CH2OH 15. (CH3)2 CHCH2CHO
4-羟基-2-丁醇
4-甲基丁醛
2. 二苯甲酮
C O
3. 2,2-二甲基环戊酮
O
C
CH3
CH3
4. 3-(间羟基苯基)丙醛
5. 甲醛苯腙
6. 丙酮缩氨脲
)。
A.糠醛
B.甲醛
C.乙醛
D.苯甲醛
9. 醛.酮与锌汞齐(Zn-Hg)和浓盐酸一起加热,羰基即被( C )。
A.氧化为羧基 B.转变成卤代醇 C.还原为亚甲基 D.还原为醇羟基
10. C6H5COCH2CH2C6H5 的系统命名法名称应该是:(B )
A.1,3-二苯基-3-丙酮
B.1,3-二苯基-1-丙酮
8.
CHCHO
CH3
2-环己基丙醛
9.
O CH3
CH3 C CHCH2CHO
3-甲基-4-氧代戊醛
10. CH3CHCH2COCH2CH3
CH2CH3
11. CH3COCH2COCH3
Cl
12.
(CH3)2CCH CHCHO
5-甲基-3-庚酮
13.
CH3 CH3C N OH
丙酮肟
二.写出下列化合物结构式
R CH R' OH
R CH2 R'
NH2NH2 , NaOH (HOCH2CH2)2O
R
CH2
R'
还原能力较强,还能还原碳碳不饱和键。 还原能力较弱,仅能将羰基还原成羟基。 还原能力比四氢硼钠稍强,能还原羧基。 Clemmensen 还原法 黄鸣龙还原法
醛和酮核磁共振谱
第九章
醛和酮
醛和酮分子中都含有羰基官能团,它们都
是羰基化合物。
羰基: >C=O
醛——羰基碳原子上至少连有一个氢原子
醛基: H>C=O 或 –CHO
酮——羰基碳原子上同时连有两个烃基
R = R’ 单酮
酮基: >C=O
R≠R’ 混酮
醛酮的分类:
烃基不同:脂肪族、脂环族、芳香族醛酮 饱和醛酮、不饱和醛酮
控 制 条 件
不饱和醇不饱和醛酮: 特殊氧化剂:丙酮—异丙醇铝(或叔丁醇铝) 三氧化铬—吡啶
脱氢:
2、烃的氧化 烯烃氧化:
工 业 制 法
芳环侧链氧化:
CH2CH3 MnO2
H2SO4 , H2O
COCH3
控制反应条件
3、炔烃水合 乙炔 乙醛 其它炔 酮
4、傅列德尔-克拉夫茨酰基化反应 ——是制备芳酮的常用方法
制备醛: (盖特曼-科赫反应)
5、同碳二卤化物水解
6、羰基合成
烯烃 + CO + H2
催化剂:金属羰基化合物
增
加
一
个
碳
的
反
应
7、羧酸及其衍生物还原
9.3 醛、酮的物理性质
1. 状态
甲醛:气体; C2~C12:液体;>C12:固体 (甲醛41%水溶液——福尔马林)
2. 沸点
CH3CH2CH2CH3 CH3CH2CHO CH3COCH3 CH3CH2CH2OH
教学计划
醛和酮
羧酸和取代羧酸 羧酸衍生物
有机含氧化合物
Β-二羰基化合物
硝基化合物和胺 重氮化合物和偶氮化合物
有机含氮化合物
杂环化合物
碳水化合物
常见的核磁共振氢谱(化学位移)
常见的核磁共振氢谱(化学位移)1. 烷烃 (Alkanes)烷烃中的氢原子通常出现在0.81.3 ppm 的区域。
具体位置取决于烷烃的分支程度和相邻基团的影响。
例如,甲基(CH3)通常在0.9 ppm 左右,而乙基(CH2)则在1.21.4 ppm。
2. 烯烃 (Alkenes)烯烃中的氢原子由于双键的存在,其化学位移通常在 5.06.5 ppm。
双键的位置和相邻基团也会影响具体的化学位移值。
例如,乙烯基(CH=CH2)的氢原子通常在5.05.5 ppm。
3. 芳香烃 (Arenes)芳香烃中的氢原子由于芳香环的存在,其化学位移通常在7.08.5 ppm。
苯环上的氢原子根据其取代基的位置和类型,化学位移会有所不同。
例如,苯环上的甲基(CH3)通常在2.2 ppm 左右,而苯环上的氢原子则在7.27.6 ppm。
4. 醇 (Alcohols)醇中的氢原子由于羟基(OH)的存在,其化学位移通常在1.05.0 ppm。
具体位置取决于羟基与相邻基团的影响。
例如,伯醇(CH2OH)的氢原子通常在3.54.5 ppm,而仲醇(CHOH)则在4.04.5 ppm。
5. 醚 (Ethers)醚中的氢原子由于氧原子的影响,其化学位移通常在 3.04.5 ppm。
具体位置取决于醚键与相邻基团的影响。
例如,甲基醚(OCH3)的氢原子通常在3.23.5 ppm,而乙基醚(OCH2CH3)则在3.54.0 ppm。
6. 酮 (Ketones)ppm。
具体位置取决于羰基与相邻基团的影响。
例如,甲基酮(COCH3)的氢原子通常在2.02.2 ppm,而乙基酮(COCH2CH3)则在2.22.5 ppm。
7. 醛 (Aldehydes)醛中的氢原子由于羰基(C=O)的存在,其化学位移通常在9.010.0 ppm。
具体位置取决于羰基与相邻基团的影响。
例如,甲醛(CHO)的氢原子通常在9.510.0 ppm,而乙醛(CH2CHO)则在9.510.0 ppm。
《有机化学》(徐寿昌)第12章 醛和酮 核磁共振谱
N
Pyridine
NH+-O
O Cr Cl
O
Pyridinium chlorochromate
O HO Cr OH
O
Chromic acid 8
醛酮的制备-炔烃的水合
9
醛酮的制备-酰基化反应
10
醛酮的制备-臭氧化反应
11
醛酮的物理性质-沸点
醛酮的羰基具有平面结构,分子容易相互接近。
73
反-3-苯基丁烯醛的核磁共振谱-复杂图谱
醛和酮
O
C
羰基(Carbonyl group)
O
O
RCH
醛(Aldehyde)
R C R'
酮(Ketone)
1
羰基的结构
C
O
2
乙醛的结构参数
3
羰基的极性
O – C +
O
C
H
H
= 2.27D
O
C
H3C
CH3
= 2.85D
4
醛酮的命名
O CH3 C H
乙醛 Ethanal(Acetaldehyde)
59
化学位移的计算
用四甲基硅烷(Tetramethylsilane, TMS, (CH3)4Si) 做标准物,其它质子的化学位移是两者之间的相 对差值。为了消除工作频率不同的仪器使相同的 质子有不同的吸收,化学位移定义为:
TMS 106 ppm 0
: 待测质子的化学位移 : 待测质子的共振频率 TMS:TMS中质子的共振频率 0 : 仪器的工作频率
70
丙酸异丙酯的核磁共振谱
singlet:单 峰 quartet:四重峰
doublet:二重峰 quintet:五重峰
核磁氢谱中常见的官能团化学位移
在核磁氢谱中,不同官能团的化学位移常常具有一定的特征性。
以下是一些常见的官能团化学位移值:
1. 烷基(烷烃):通常位于0-3 ppm范围内,如甲基(CH3)的化学位移约为0.9 ppm。
2. 烯烃:通常位于4.5-6.5 ppm范围内,如乙烯(CH2=CH2)的化学位移约为5.5 ppm。
3. 脂肪醇:通常位于0.5-5 ppm范围内,如乙醇(CH3CH2OH)的化学位移约为3.6 ppm。
4. 醛:通常位于9-10 ppm范围内,如乙醛(CH3CHO)的化学位移约为9.7 ppm。
5. 酮:通常位于2-3 ppm范围内,如丙酮(CH3COCH3)的化学位移约为2.2 ppm。
6. 羧酸:通常位于10-12 ppm范围内,如乙酸(CH3COOH)的化学位移约为11.5 ppm。
7. 酰胺:通常位于7-8 ppm范围内,如乙酰胺(CH3CONH2)的化学位移约为8.3 ppm。
这些化学位移值只是一般范围,实际数值可能会受到环境条件和分子结构的影响而有所变化。
在实际应用中,可以通过比对参考谱图或数据库中的数据来确定特定官能团的化学位移。
醛和酮核磁共振PPT(完整版)
4、特征质子的化学位移值
-C-H (烷) ≡C-H (炔) =C-H (烯) =C-H (芳)
0.9~√ 1.5
2~3 5~6 6~8
质受子纯环度境、浓δ(p度p、m)
CH温3度-等H 影响较0.大9 。
X--OC-C-HHH(3羟-)I 21.~2~.25.45
-ON-CHCH-(3胺-H)Br O=CC-HCH3-(醛CH)l
2391.~~432~√~..17215.074
HRCOOOOC-H3HC--(酸FH) 120~4~.321.62
三、 1HNMR可测各种氢的比例——峰面积的计算
化学环境相同的质子——等价质子 等价质子——在相同位移处有吸收 1HNMR在给出吸 吸收峰的面积——与质子数成正比 收峰的同时,自动
画出阶梯曲线,以
7重峰
自旋裂分。
练习1:下列物质中质子在
如果相邻C上,有n个等价的 1HNMR中呈现几重峰?
质子,则信号裂分为(n+1) 个峰。
CH2Cl-CHCl2 d t
如果相邻C上,分别有n1 、 n2个不等价质子,则信号裂 分为(n1+1) (n2+1)个峰。
CH3CHBr2 CH3-CCl3 CH3-CH3
4、外磁场和吸收频率是 什么关系?
Ehh2E2hHH002h核Hγ 常0—数
——产生共振吸收的条件
1H H0=, ν= H0=,ν=60MHz
√ H0固定,改变ν ——扫频
ν固定,改变H0——扫场
H0=,ν=100MHz
ν仪 =60MHz,100MHz…
二、 1HNMR可测有几种氢——化学位移 1、化学位移是怎样产生的? 核外电子云的影响 由于化学环境不同,造成的核磁共振信号的位置变化。
第十二章 醛和酮 核磁共振谱 答案
第十二章 醛和酮、核磁共振谱习题A一.用系统命名法命名下列化合物二.写出下列化合物结构式1. 2-丁烯醛2. 二苯甲酮3. 2,2-二甲基环戊酮COCH 3CH 3CH 3CH=CHCHOC O4. 3-(间羟基苯基)丙醛5. 甲醛苯腙6. 丙酮缩氨脲1.CHO OCH 32.COCH 3OH3.CHOOH对甲氧基苯甲醛 间羟基苯甲酮领羟基苯甲醛4.OO Cl5.O 2NBrCHO6. COCH 32-氯-1,4-己二酮3-溴-4-硝基苯甲醛苯甲酮7.CH 2OHC O H OH CH 2OH HO H8.CHCHO CH 39. CH 3CO CHCH 2CHO CH 3(3R,4S)-1,3,4,5-四羟基-2-戊酮2-环己基丙醛 3-甲基-4-氧代戊醛10.CH 3CHCH 2COCH 2CH 3CH 2CH 311. CH 3COCH 2COCH 312.Cl CHCHO (CH 3)2CCH5-甲基-3-庚酮2,4-戊二酮 4-氯-4-甲基-2-戊烯醛13. CH 3CN CH 3OH14. CH 3COCH 2CH 2OH 15. (CH 3)2 CHCH 2CHO丙酮肟 4-羟基-2-丁醇 4-甲基丁醛CH2CH2CHOOH H2C=NNH CH3CH3C=N NH CONH27. 苄基丙酮8. α-溴代丙醛9. 对甲氧基苯甲醛CH2CH2CH2CH3CO CH3CH CHOBrCHOOCH310. 邻羟基苯甲醛11. 1,3-环已二酮12. 1,1,1-三氯-3-戊酮CHO OH OOO ClClCl三.写出苯甲醛与下列试剂反应的主要产物:1. CH3CHO/稀NaOH,△2. 浓NaOH3. 浓OH, HCHO4. NH2OH5. HOCH2CH2OH /干燥HCl6. KMnO4/H+,△7. Fehling试剂8. Tollens试剂9. NaBH4/H3O+10. HNO3/H2SO411. ①HCN,②H2O/H+12. ①C2H5MgBr/干醚,②H2O/H+1. CH=CHCHO2. COO-,CH2OH3.CH2OH,HCOO-4. CH=NOH5.OO6.COOH7. 不反应8.COONH4,Ag9.CH2OH10.CHONO211.CHOCN12. CHCH2CH3OH四.选择合适的氧化剂或还原剂,完成下列反应五.完成下列反应式1.2CH 2COCH 3CH 2COONa+ CHBr 32. CHO240%NaOH+COOH CH 2OH3.CH 3CHCHCHONaBH 42CH 3CHCHCH 2OH4.CHO CH 2OHHO HHCN OH-HHOCN CH 2OHHOH H NC OH CH 2OH HOH5.O +HCl干( )2C 2H 5OH OC 2H 5OC 2H 56. C 6H 5CH CHCHO 1)C 2H 5MgBr 2) H 3O +C 6H 5CH=C(OH)C 2H 57.O4H 3COHH 3C1.CO CH 2CH 32CH 2CH 3CHCH 2CH 3OHZn-Hg,HCl ;H 2,Ni2.O[ ]OHOHH 2,Ni ;NaBH 4,H 3O +3.CHO[ ]COOHAg(NH 3)2+, H 3O +4. CH 3CHCH 2CH 2OH[ ]HOOCCH 2CH 2COOHCO CH 3NaOH, Br 2;H 3O +8.C 6H 5CH CH C OCH(CH 3)21)C H MgBr 2) H 3O +C 6H 5CH CH C OHCH(CH 3)2C 2H 59.CH 3C OCH 2CH 3H 2NCONHNH 2C 2H 5C=NNHCONH 2CH 310.Zn-Hg/浓HClCH 2COCH 3CH 2CH 2CH 311.CHO+COOH CH 2OH12. CH 3COCH 2CH 3I 2+CHI 3CH 3CH 2COONa13.H 2C COCH 3H 2CCHCH 3OH14.CHO(1)LiAlD 4(2)H 2OCDHOH15.COCH 3OCH 3HOCH 2CH 2OHOCH 3OO CH 316.CHO+CH 3CHO-CH=CHCHO17.CH 3CH 2C OCH 2CH 3+NO 2H 2NNH NO 2CH 3CH 2C H 3CH 2CNO 2NNHNO 2六.选择题1-5 DBCAA 6-10 BCCBA 11-15 C,D,AB,A,A 16-20 DDBDD 21-23 BCC七.用化学方法区分下列化合物 (1)丙酮与苯乙酮OO白色无现象(2)己醛与2-己酮 己醛己酮Ag(NH 3)2+无现象(3)苯甲醇与苯甲醛苯甲醛苯甲醇32+无现象(4)乙醛与丙醛乙醛丙醛无现象I +NaOHCHI 3(5)乙酸与丙醛乙酸丙醛无现象32CO(6)戊醛与2,2-二甲基丙醛CHO37. 环己烯.环己酮.环己醇加溴水褪色为环己烯,再加钠,有气体产生为环己醇,剩下的是环己酮 8. 2–己醇.3–己醇.环己酮先加氢氧化钠和碘,有白色沉淀的是2–己醇;再加2,4-二硝基苯肼,有沉淀的是环己酮 八.机理题1. 写出苯甲醛与乙醛在碱性条件下反应的产物和机理-CHCH 2CHOOH2CHOCH 3CHOCH=CHCHO2. 写出丙酮与氢氰酸加成反应式并写出其机理。
第十二章 醛和酮 核磁共振谱 答案
第十二章 醛和酮、核磁共振谱习题A一.用系统命名法命名下列化合物二.写出下列化合物结构式1. 2-丁烯醛2. 二苯甲酮3. 2,2-二甲基环戊酮COCH 3CH 3CH 3CH=CHCHOC O4. 3-(间羟基苯基)丙醛5. 甲醛苯腙6. 丙酮缩氨脲1.CHO OCH 32.COCH 3OH3.CHOOH对甲氧基苯甲醛 间羟基苯甲酮领羟基苯甲醛4.OO Cl5.O 2NBrCHO6. COCH 32-氯-1,4-己二酮3-溴-4-硝基苯甲醛苯甲酮7.CH 2OHC O H OH CH 2OH HO H8.CHCHO CH 39. CH 3CO CHCH 2CHO CH 3(3R,4S)-1,3,4,5-四羟基-2-戊酮2-环己基丙醛 3-甲基-4-氧代戊醛10.CH 3CHCH 2COCH 2CH 3CH 2CH 311. CH 3COCH 2COCH 312.Cl CHCHO (CH 3)2CCH5-甲基-3-庚酮2,4-戊二酮 4-氯-4-甲基-2-戊烯醛13. CH 3CN CH 3OH14. CH 3COCH 2CH 2OH 15. (CH 3)2 CHCH 2CHO丙酮肟 4-羟基-2-丁醇 4-甲基丁醛CH2CH2CHOOH H2C=NNH CH3CH3C=N NH CONH27. 苄基丙酮8. α-溴代丙醛9. 对甲氧基苯甲醛CH2CH2CH2CH3CO CH3CH CHOBrCHOOCH310. 邻羟基苯甲醛11. 1,3-环已二酮12. 1,1,1-三氯-3-戊酮CHO OH OOO ClClCl三.写出苯甲醛与下列试剂反应的主要产物:1. CH3CHO/稀NaOH,△2. 浓NaOH3. 浓OH, HCHO4. NH2OH5. HOCH2CH2OH /干燥HCl6. KMnO4/H+,△7. Fehling试剂8. Tollens试剂9. NaBH4/H3O+10. HNO3/H2SO411. ①HCN,②H2O/H+12. ①C2H5MgBr/干醚,②H2O/H+1. CH=CHCHO2. COO-,CH2OH3.CH2OH,HCOO-4. CH=NOH5.OO6.COOH7. 不反应8.COONH4,Ag9.CH2OH10.CHONO211.CHOCN12. CHCH2CH3OH四.选择合适的氧化剂或还原剂,完成下列反应五.完成下列反应式1.2CH 2COCH 3CH 2COONa+ CHBr 32. CHO240%NaOH+COOH CH 2OH3.CH 3CHCHCHONaBH 42CH 3CHCHCH 2OH4.CHO CH 2OHHO HHCN OH-HHOCN CH 2OHHOH H NC OH CH 2OH HOH5.O +HCl干( )2C 2H 5OH OC 2H 5OC 2H 56. C 6H 5CH CHCHO 1)C 2H 5MgBr 2) H 3O +C 6H 5CH=C(OH)C 2H 57.O4H 3COHH 3C1.CO CH 2CH 32CH 2CH 3CHCH 2CH 3OHZn-Hg,HCl ;H 2,Ni2.O[ ]OHOHH 2,Ni ;NaBH 4,H 3O +3.CHO[ ]COOHAg(NH 3)2+, H 3O +4. CH 3CHCH 2CH 2OH[ ]HOOCCH 2CH 2COOHCO CH 3NaOH, Br 2;H 3O +8.C 6H 5CH CH C OCH(CH 3)21)C H MgBr 2) H 3O +C 6H 5CH CH C OHCH(CH 3)2C 2H 59.CH 3C OCH 2CH 3H 2NCONHNH 2C 2H 5C=NNHCONH 2CH 310.Zn-Hg/浓HClCH 2COCH 3CH 2CH 2CH 311.CHO+COOH CH 2OH12. CH 3COCH 2CH 3I 2+CHI 3CH 3CH 2COONa13.H 2C COCH 3H 2CCHCH 3OH14.CHO(1)LiAlD 4(2)H 2OCDHOH15.COCH 3OCH 3HOCH 2CH 2OHOCH 3OO CH 316.CHO+CH 3CHO-CH=CHCHO17.CH 3CH 2C OCH 2CH 3+NO 2H 2NNH NO 2CH 3CH 2C H 3CH 2CNO 2NNHNO 2六.选择题1-5 DBCAA 6-10 BCCBA 11-15 C,D,AB,A,A 16-20 DDBDD 21-23 BCC七.用化学方法区分下列化合物 (1)丙酮与苯乙酮OO白色无现象(2)己醛与2-己酮 己醛己酮Ag(NH 3)2+无现象(3)苯甲醇与苯甲醛苯甲醛苯甲醇32+无现象(4)乙醛与丙醛乙醛丙醛无现象I +NaOHCHI 3(5)乙酸与丙醛乙酸丙醛无现象32CO(6)戊醛与2,2-二甲基丙醛CHO37. 环己烯.环己酮.环己醇加溴水褪色为环己烯,再加钠,有气体产生为环己醇,剩下的是环己酮 8. 2–己醇.3–己醇.环己酮先加氢氧化钠和碘,有白色沉淀的是2–己醇;再加2,4-二硝基苯肼,有沉淀的是环己酮 八.机理题1. 写出苯甲醛与乙醛在碱性条件下反应的产物和机理-CHCH 2CHOOH2CHOCH 3CHOCH=CHCHO2. 写出丙酮与氢氰酸加成反应式并写出其机理。
第十二章醛和酮核磁共振谱答案解析
第十二章 醛和酮、核磁共振谱习题A一.用系统命名法命名下列化合物二.写出下列化合物结构式1. 2-丁烯醛2. 二苯甲酮3. 2,2-二甲基环戊酮COCH 3CH 3CH 3CH=CHCHOC O4. 3-(间羟基苯基)丙醛5. 甲醛苯腙6. 丙酮缩氨脲1.CHO OCH 32.COCH 3OH3.CHOOH对甲氧基苯甲醛 间羟基苯甲酮领羟基苯甲醛4.OO Cl5.O 2NBrCHO6. COCH 32-氯-1,4-己二酮3-溴-4-硝基苯甲醛苯甲酮7. CH 2OHC OH OHCH 2OH HO H8.CHCHO CH 39. CH 3CO CHCH 2CHO CH 3(3R,4S)-1,3,4,5-四羟基-2-戊酮2-环己基丙醛 3-甲基-4-氧代戊醛10.CH 3CHCH 2COCH 2CH 3CH 2CH 311. CH 3COCH 2COCH 3 12.Cl CHCHO (CH 3)2CCH5-甲基-3-庚酮2,4-戊二酮4-氯-4-甲基-2-戊烯醛13. CH 3CN CH 3OH14. CH 3COCH 2CH 2OH 15. (CH 3)2 CHCH 2CHO丙酮肟 4-羟基-2-丁醇 4-甲基丁醛CH2CH2CHOOH H2C=NNH CH3CH3C=N NH CONH27. 苄基丙酮 8. α-溴代丙醛 9. 对甲氧基苯甲醛CH2CH2CH2CH3CO CH3CH CHOBrCHOOCH310. 邻羟基苯甲醛 11. 1,3-环已二酮 12. 1,1,1-三氯-3-戊酮CHO OH OOO ClClCl三.写出苯甲醛与下列试剂反应的主要产物:1. CH3CHO/稀NaOH,△2. 浓NaOH3. 浓OH, HCHO4. NH2OH5. HOCH2CH2OH /干燥HCl6. KMnO4/H+,△7. Fehling试剂 8. Tollens试剂 9. NaBH4/H3O+10. HNO3/H2SO4 11. ①HCN,②H2O/H+ 12. ①C2H5MgBr/干醚,②H2O/H+1. CH=CHCHO2. COO-,CH2OH3.CH2OH,HCOO-4. CH=NOH5.OO6.COOH7. 不反应8.COONH4,Ag9.CH2OH10.CHONO211.CHOCN12. CHCH2CH3OH四.选择合适的氧化剂或还原剂,完成下列反应五.完成下列反应式1.Br 2CH 2COCH 3CH 2COONa+ CHBr 32. CHO240%NaOH+COOH CH 2OH3. CH 3CHCHCHONaBH 42CH 3CHCHCH 2OH4.CHOCH 2OHHO HHCN OH-HHOCN CH 2OHHOH H NC OH CH 2OH HOH5.O +HCl干( )2C 2H 5OH OC 2H 5OC 2H 56. C 6H 5CH CHCHO 1)C 2H 5MgBr 2) H 3O +C 6H 5CH=C(OH)C 2H 57. O4H 3COHH 3C1.CO CH 2CH 32CH 2CH 3CHCH 2CH 3OHZn-Hg,HCl ;H 2,Ni2.O[ ]OHOHH 2,Ni ;NaBH 4,H 3O +3.CHO[ ]COOHAg(NH 3)2+, H 3O +4. CH 3CHCH 2CH 2OH[ ]HOOCCH 2CH 2COOHCO CH 3NaOH, Br 2;H 3O +8.C 6H 5CH CH C OCH(CH 3)21)C H MgBr 2) H 3O +C 6H 5CH CH C OHCH(CH 3)2C 2H 59.CH 3C OCH 2CH 3H 2NCONHNH 2C 2H 5C=NNHCONH 2CH 310.Zn-Hg/浓HClCH 2COCH 3CH 2CH 2CH 311.CHO+COOH CH 2OH12. CH 3COCH 2CH 3I 2+CHI 3CH 3CH 2COONa13. H 2C COCH 3H 2CCHCH 3OH14.CHO(1)LiAlD 4(2)H 2OCDHOH15.COCH 3OCH 3HOCH 2CH 2OHOCH 3OO CH 316.CHO+CH 3CHO-CH=CHCHO17. CH 3CH 2C OCH 2CH 3+NO 2H 2NNH NO 2CH 3CH 2C H 3CH 2CNO 2NNHNO 2六.选择题1-5 DBCAA 6-10 BCCBA 11-15 C,D,AB,A,A 16-20 DDBDD 21-23 BCC七.用化学方法区分下列化合物 (1)丙酮与苯乙酮OO白色无现象(2)己醛与2-己酮 己醛己酮Ag(NH 3)2+无现象(3)苯甲醇与苯甲醛苯甲醛苯甲醇32+无现象(4)乙醛与丙醛乙醛丙醛无现象I +NaOHCHI3(5)乙酸与丙醛乙酸丙醛无现象32CO(6)戊醛与2,2-二甲基丙醛CHO37. 环己烯.环己酮.环己醇加溴水褪色为环己烯,再加钠,有气体产生为环己醇,剩下的是环己酮 8. 2–己醇.3–己醇.环己酮先加氢氧化钠和碘,有白色沉淀的是2–己醇;再加2,4-二硝基苯肼,有沉淀的是环己酮 八.机理题 1.写出苯甲醛与乙醛在碱性条件下反应的产物和机理-CHCH 2CHOOH2CHOCH 3CHOCH=CHCHO2.写出丙酮与氢氰酸加成反应式并写出其机理。
用哪些方法可以鉴别醛和酮
用哪些方法可以鉴别醛和酮鉴别醛和酮的方法有以下几种:1. 针对化合物的物理性质进行鉴别:(1)沸点测定:由于醛和酮分子中含有羰基,其沸点较醇和酚相对较高,通过测定化合物的沸点可以初步鉴别是醛还是酮。
一般来说,醛的沸点要比同分子量的酮的沸点更低。
(2)溶解性测定:醛和酮可溶于不同的溶剂中,在一般有机溶剂中酮的溶解性要好于醛。
通过观察化合物在不同溶剂中的溶解情况可以初步鉴别是醛还是酮。
2. 化学试剂进行鉴别:(1)用碘酰胺:碘酰胺(I2/NH3)在醛和酮的存在下产生氨胺。
当有醛存在时,产生的氨会与醛反应生成颜色较深的产品,而酮则不会发生颜色变化。
通过观察反应产物形成的颜色变化可以鉴别是醛还是酮。
(2)用Fehling试剂:Fehling试剂由成人气器A和Fehling溶液B混合后形成,其中Fehling试剂A含有铜离子,可以和醛发生氧化反应生成酸,而与酮没有反应。
通过观察反应管中是否出现红色沉淀可以鉴别是醛还是酮。
(3)用Tollen试剂:Tollen试剂是由氨水和无水AgNO3溶液混合而成,它可以被醛氧化成相应的酸,并同时将无机银离子还原成金属银沉淀。
而酮则不发生反应。
通过观察反应管中是否出现银镜可以鉴别是醛还是酮。
3. 使用红外光谱(IR)进行鉴别:红外光谱是一种常用的检测有机化合物功能团的方法。
在红外光谱中,醛和酮通过C=O红外吸收峰的位置和强度可以进行鉴别。
醛的C=O伸缩振动在1700-1750 cm-1的区域,吸收峰较酮强;而酮的C=O伸缩振动在1700-1725 cm-1的区域,吸收峰较醛弱。
通过比较红外光谱中C=O伸缩振动的位置和强度可以鉴别是醛还是酮。
4. 使用核磁共振波谱(NMR)进行鉴别:核磁共振波谱是一种常用的分析有机化合物结构的方法。
在1H NMR谱和13C NMR谱中,醛和酮的碳和氢的化学位移可以用来进行鉴别。
醛的碳和氢的化学位移一般在较低的范围内,而酮的则较高。
通过观察和对比不同化合物在核磁共振谱中的化学位移可以鉴别是醛还是酮。
醛和酮亲核加成反应
NaHSO3
+
CH3 CH3
C=O
+
CH3 CH3
OH C
SO3Na
+
NaCN
HCN
CH3 C OH
CH3
CN
练习题9.3 下列化合物中,哪些可 以与亚硫酸氢钠发生反应?如果
发生反应,哪一个最快? (1)苯乙酮 (2)二苯酮 (3)环己酮 (4)丙醛
(三)与格氏试剂的加成
HCHO
R CHO O
反应要在无水条件下进行,一般
采用无水条件下通入HCl气体来 催化反应。
半缩醛 hemiacetal
CH3CH2OH, H+
醛酮的结构与反应性
亲核加成
氢化还原
O
CC
H
-活泼H的反应 (1)烯醇化 (2) -卤代(卤仿反应) (3)醇醛缩合反应
H
醛的氧化
C=C–C=O
(1)碳碳双键的亲电加成 (2)碳氧双键的亲核加成 (3),-不饱和醛酮的共轭加成 (4)还原
醛和酮、核磁共振谱
醛和酮、核磁共振谱的研究前景
醛和酮的研究前景
未来,醛和酮有望在药物合成、材料科学等领域发挥更 大的作用。
随着绿色化学的发展,研究者们正致力于开发更环保、 更高效的醛和酮的合成方法。同时,随着计算化学的进 步,对醛和酮的反应机理的认识将更加深入。
核磁共振谱的研究前景
随着仪器的不断改进和技术的不断创新,核磁共振谱的 应用范围将进一步扩大。例如,利用超高场强核磁共振 谱可以获得更高的分辨率和更准确的化学位移。
未来,核磁共振谱有望与其他谱学技术(如红外光谱、 拉曼光谱等)结合使用,为化学、生物学、医学等领域 的研究提供更全面的结构信息。
感谢观看
THANKS
反应。
酮的化学反应
还原反应
酮可以通过加氢还原成醇。
水解反应
在酸性或碱性条件下,酮可以发生水解生成 酯。
氧化反应
酮在某些条件下可被氧化生成酸。
酯化反应
在酸性条件下,酮可以与羧酸发生酯化反应 生成酯。
醛和酮的相互转化
氧化反应
在一定条件下,醛可以被氧化成酮, 而酮也可以被进一步氧化成羧酸。
还原反应
在一定条件下,酮可以被还原成醛。
核磁共振谱是一种强大的结构分析工具,广泛应用于有 机化合物、无机化合物、高分子材料等的结构表征。
醛和酮是重要的有机化合物,在化学反应中扮演着重要 的角色。目前,研究者们正在不断探索醛和酮的新合成 方法、反应机理以及其在有机合成中的实际应用。
核磁共振谱的研究现状
目前,核磁共振谱技术已经取得了很大的进展,包括高 分辨率谱、异核谱、动态核极化谱等。这些技术的发展 为研究复杂分子结构和反应机理提供了更深入的认识。
02
醛和酮的化学反应
醛的化学反应
乙醛和甲基酮
苯甲酰氯
二苯甲酮
• 该反应也是一个芳环上的亲电取代反应:
傅-克酰基化反应历程:
加酸处理得酮
• 芳烃与直链卤烷发生烷基化反应,往往得到重排产 物,但酰基化反应没有重排现象:
• 酰基是间位定位基,甲基,甲氧基为邻对位取代基。 • 在 AlCl3-Cu2Cl2催化剂下,芳烃与 CO、HCl 作用可在 环上引入一个甲酰基的产物,叫 伽特曼-科赫反应 。
-
• CN-离子为强的亲核试剂,它与羰基的加成反应历程:
注意:由于氰化氢剧毒,易挥发。通常由氰化钠和无 机酸与醛(酮)溶液反应。pH值约为8有利于反应。
• 羟基腈是一类很有用的有机合成中间体。氰基-CN能 水解成羧基,能还原成氨基。 例如: 有机玻璃 —聚-甲基丙烯酸甲酯的单体的合成:
丙酮氰醇 (78%)
-甲基丙烯酸甲酯(90%)
• 第二步包含:水解、酯化和脱水等反应。
伽特曼-科赫反应
氯甲基化反应
(2)与亚硫酸氢钠加成 • 醛和脂肪族甲基酮(或七元环以下的环酮P285)与 之反应,生成 -羟基磺酸钠
在酸碱下可逆反应,分离提纯
• -羟基磺酸钠易溶于水,不溶于饱和亚硫酸氢钠。将 醛酮与过量的饱和亚硫酸氢钠水溶液混合在一起,醛和 甲基酮很快会有结晶析出。可以此来鉴别醛酮。
易受亲核试剂进攻, 发生亲核加成
sp2
羰基π电子云示意图 甲醛的结构
偶极矩 2.27D
偶极矩 2.85D
(2)醛酮的命名 (1) 脂肪族醛酮命名 : 以含有羰基的最长碳链为主链 , 支链作为取代基,主链中碳原子的编号从靠近羰基 的一端开始(酮需要标明位次):
• 也可用希腊字母表示靠近羰基的碳原子,其次为、 、…...
例如:
羰基 碳谱
羰基碳谱
羰基碳谱(Carbonyl Carbon Spectrum)是一种核磁共振(NMR)技术,专门用于检测和分析有机化合物中的羰基碳原子(如酮、醛、羧酸等中的碳氧双键)。
这种谱图技术能够提供有关羰基碳原子周围环境的详细信息,如它们与哪些原子相连、这些原子的类型以及它们之间的连接方式等。
在羰基碳谱中,化学位移(chemical shift)是一个重要的参数,它反映了羰基碳原子所处的电子环境。
不同的化学环境会导致羰基碳原子的核磁共振信号出现在不同的频率上,这些频率可以被测量并转化为化学位移值。
通过与已知化合物的化学位移值进行比较,可以确定未知化合物中羰基碳原子的化学环境。
羰基碳谱在有机化学、生物化学和药物化学等领域中有广泛的应用。
例如,它可以用于鉴定未知化合物的结构、研究化学反应机理、分析生物大分子(如蛋白质)与配体之间的相互作用等。
请注意,羰基碳谱是一种高级的核磁共振技术,通常需要专业的仪器和操作人员才能进行。
同时,由于羰基碳原子在有机化合物中的含量通常较低,因此在进行羰基碳谱分析时可能需要使用高灵敏度的检测器和特殊的样品制备技术。
第12章 醛和酮 核磁共振谱
H3C C CH2Br
OH+
+ Br
H3C C CH2Br
O
+ HBr
H3C C CH2Br
40
醛酮-氢的卤代反应-碱催化
41
醛酮-氢的卤代反应-卤仿的生成
OH R CH CH3
可以氧化成甲基酮的醇 也可以发生卤仿反应
42
醛酮的化学性质-氧化
和普通强氧化剂的作用 和费林试剂(Fehling’s reagent)的作用 和托伦斯试剂(Tollens’ reagent)的作用
pKa=-8
OH+ CH
OH+ CH3 C CH3
pKa=-7.2
OH+ C CH3
pKa=-7.1
pKa=-6.2
32
碱对酮-烯醇式转化的催化作用
–H2O
-OH- 33
醛酮-氢的酸性
O
O
CH3 C H
pKa= 17
CH3 C CH3
pKa= 19
O
O
CH3 C CH2 C CH3
pKa= 9
34
O CH3CH CHCCH2CH3
4-己烯-3-酮
6
醛酮的命名
OO CH3C CH2C H
3-氧代丁醛
O
3-环己烯-1-酮
OO CH3CH2 C C CH3
2,3-戊二酮(-戊二酮)
O
O
CH3 C CH2 C CH3
2,4-戊二酮(-戊二酮)
7
醛酮的制备-醇的氧化和脱氢
(香茅醇)
N
Pyridine
http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_index.cgi?lang=eng
第十二章 醛和酮习题答案
第十二章 醛和酮 核磁共振谱习题答案12-1(1)3-甲基戊醛 (2)2-甲基-3-戊酮 (3)环戊基甲基酮(4)3-甲氧基苯甲醛 (5)3,7-二甲基-6-辛烯醛 (6)α-溴代苯乙酮 (7)1-戊烯-3-酮 (8)丙醛缩二乙醇 (9)环己酮肟 (10)2,4-戊二酮 (11)丙酮-2,4-二硝基苯腙 12-2CH 3CH=CHCHOCO(1)(2)OOHCH 2CH 2CHO(3)(4)H 2C=NNH CH 32OH 3C (5)(6)CH 2CH 23BrOCH 3(7)(8)CHOOH(9)(10)CH 2CH 2CH 2O OO12-3CH3CH2CH2CH2CHO 戊醛 CH3CH(CH3)CH2CHO 3-甲基丁醛CH3CH2CH(CH3)CHO 2-甲基丁醛 (CH3)3CCHO 2,2-二甲基丙醛 CH3CH2COCH2CH3 3-戊酮 CH3CH2CH2COCH3 2-戊酮 (CH3)2CHCOCH3 3-甲基-2-丁酮 12-4CHCH 2CH 3OH(1)(2)CH 3CH 2CH 2OHSO 3Na(3)(4)CH 3CH 2CH 2OH CH 3CH 2CHOHOH(5)(6)CH 3CH 2CHCN CH 3CH 2CHCHCHOOH3CH 3(7)(8)CH 3CH 2CH 3CH 2CH 2OHBr(9)(10)CH 3CH 2CHOOCH 3CHCHO(12)CH 3CH 2COOH CH 3CH 2CH=NOH CH 3CH 2CH=N NH(13)(11)12-5+(2)CH=CHCHOCH 3(1)CH 2OHCH 3COONaCH 3+(4)CH 3(3)CH 2OHCH 3COOHHOOCHCOONaCOOH(5)12-6O+(2)NO 2(1)CCH 3COOHCCl3(4)CHCH 3(3)OHCCH 3OMgBrOH ;CCH312-7(1)CH3COCH2CH3能发生碘仿反应,也能和饱和NaHSO3水溶液加成。
双键的核磁共振氢谱峰位置
双键的核磁共振氢谱峰位置
双键的核磁共振氢谱峰位置取决于双键所在化合物的结构和它周围的功能团。
一般来说,双键会导致氢原子的化学位移增加,峰位置向高场位移。
在一些典型的双键化合物中,峰位置可以有以下特点:
1. 烯烃:烯烃分子中的双键导致氢原子的化学位移增加,使氢谱峰位置出现在较高场(较低化学位移)处。
2. 醛和酮:醛和酮中的双键导致氢原子的化学位移增加,使氢谱峰位置出现在较高场(较低化学位移)处。
醛中的醛基氢原子通常会显示一个较高场的峰,而酮中的酮基氢原子通常会显示两个中场峰。
3. 酯和酰胺:酯和酰胺中的双键会导致氢原子的化学位移增加,使氢谱峰位置出现在较高场(较低化学位移)处。
酯中的羟基氢原子通常会显示一个较高场的峰,酰胺中的氨基氢原子通常会显示一个较高场的峰。
需要注意的是,这只是一般规律,实际情况可能受到其他因素的影响,如相邻取代基的效应、环境效应等。
因此,具体化合物的氢谱峰位置需要通过实验来确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.4.1羰基的加成反应 ——亲核加成反应
碳氧双键与碳碳双键的比较: >C=C<
相同处 不同处
>C=O
都是含一个键一个键,易加成
电子云偏向O,有极性 碳正离子活性大 易与缺电子的 亲电试剂作用 易与富电子的 亲核试剂作用
亲电加成
亲核加成
亲核加成反应——由亲核试剂进攻而引起的加成反应
醛基做取代基时,可用词头“甲酰基”或“氧 代”表示;酮基做取代基时,可用词头“氧代” 表示。例如:
2-氧代环己基甲醛
9.2 醛、酮的制法
1、醇的氧化和脱氢 2、烃的氧化 3、炔烃水合 4、傅列德尔-克拉夫茨酰基化反应 5、同碳二卤化物水解 6、羰基合成 7、羧酸及其衍生物还原
1、醇的氧化和脱氢
5. 核磁共振谱 醛基质子的化学位移在9~10范围; 与碳基相连的烷基,其-C上质子的化学位移在 2.0~2.7之间
9.4 醛、酮的化学性质
羰基缺电子碳有较高的反应活性;羰基的吸电子作 用的影响(-I,-C),使与其相连的-C上的氢被活化。所 以醛酮的化学性质主要是碳基的反应和-C上氢的反应 .
(干)HCl
OH CH3CH2CH2CH OCH2CH3
OCH2CH3 OCH2CH3
丁醛缩二乙醇
或:1,1-二乙氧基丁烷
缩酮
CH3 CH3 C O + 2CH3CH2OH H+ CH3 CH3 C OCH2CH3 OCH2CH3 + H2O
(不断除水)
缩醛对碱、氧化剂很稳定,但酸性条件下水解:
应用: (1)用于保护羰基 例:合成: CH2=CH-CHO
亲核加成反应历程:
决定反应速度
sp2
sp3
比较——亲电加成反应
X–
决定反应速度
影响亲核加成反应因素:
电子因素:凡是增加羰基碳原子的正性有利于亲核加成 空间因素:空间障碍大不利于亲核加成 故:醛比酮易于反应
反应易难顺序:
试比较下列化合物发生亲核加成反应的活性大小:
O2N A CHO CH3 B CHO C CHO
9.4.1 加成反应 ——羰基的亲核加成反应历程 (1)与氰化氢加成 (2)与亚硫酸氢鈉加成 (3)与醇加成 (4)与格利雅试剂加成 (5)与氨的 衍生物反应
9.4.2 -氢原子的反应 (1) -氢原子的活泼性(酸性) —— 酮–烯醇互变异构 (2)羟醛缩合反应 (3)卤化反应和卤仿反应 9.4.3 氧化和还原 (1)氧化反应 (2)还原反应 (3)Cannizzaro反应
A> C >B
(1)与氢氰酸的加成
(剧毒)
(-氰醇)
碱对反应有促进作用,酸对反应有抑制作用
反应历程:
决定反应速度
应用:——增加一个碳的反应
C O + HCN
C
OH CN
H2O H+orOH-
C
OH COOH
制备-羟基酸
有机玻璃的单体
—CN作为亲核试剂,负电荷在碳原子上,与之相似的 是炔基负离子也可与醛、酮发生亲核加成.用于制备炔 醇,且反应不可逆:
增链反应
(2)与亚硫酸氢鈉加成
饱和(40%)
白色结晶
鉴别
反应历程:
适用范围:醛、脂肪族甲基酮、少于八个碳的环酮
可逆性:
分离
间接法制备-羟基腈:
(3)与醇加成
不稳定
(无水)
稳 定
(无水)
反应历程:酸催化:
质子化
半缩醛
缩醛
举例:
CH3CH2CH2CHO + CH3CH2OH CH3CH2OH H+ CH3CH2CH2CH
CH2=CH-CHO + 2CH3CH2OH
KMnO4 冷 CH2 CH CH OH OH OC2H5 OC2H5
H+
CH2 OH
CHCHO OH
CH2=CH CH
H+ H2O
OC2H5 OC2H5
CH2 OH
CHCHO OH
例:
(2)用于合成纤维——维尼纶
聚乙烯醇
聚乙烯醇缩甲醛
应用生成缩醛的反应,使聚乙烯醇部分缩醛化, 以提高产品的耐水性。
含羰基的数目不同:一元醛酮、
二元醛酮
酮——单酮、混酮
9.1 醛、酮的结构和命名
一、结构
键 键
羰基碳氧双键具有极性
二、命名
系统命名法
主链:“最长”原则 编号:“最近”原则 醛基总是第一位,其位次可省
可用希腊字母表示主链碳原子的位置:
芳香族、脂环族:
羰基在环内
羰基在环外
二元酮:
酮的衍生物命名法:
氧化: 伯醇醛 仲醇酮
控 制 条 件
不饱和醇不饱和醛酮: 特殊氧化剂:丙酮—异丙醇铝(烃氧化:
工 业 制 法
芳环侧链氧化:
CH2CH3 MnO2 H2SO4 , H2O
COCH3
控制反应条件
3、炔烃水合 乙炔 乙醛 其它炔 酮
4、傅列德尔-克拉夫茨酰基化反应
有机化学(2)
教学计划
醛和酮
羧酸和取代羧酸 羧酸衍生物 Β-二羰基化合物 硝基化合物和胺 有机含氮化合物
有机含氧化合物
重氮化合物和偶氮化合物
杂环化合物 碳水化合物 蛋白质 核酸
考试与成绩评定方式:
学期总成绩包括平时成绩和期末考试成绩两部分组成:
期末成绩占70% :闭卷
平时成绩占30%。
平时成绩包括:期中考试、课堂练习、课后作业、考勤 情况、课堂提问等
第九章
醛和酮
醛和酮分子中都含有羰基官能团,它们都 是羰基化合物。 羰基: >C=O
醛——羰基碳原子上至少连有一个氢原子
H
醛基: >C=O
或 –CHO
酮——羰基碳原子上同时连有两个烃基
R = R’ 单酮
R≠R’ 混酮
酮基: >C=O
醛酮的分类:
烃基不同:脂肪族、脂环族、芳香族醛酮
饱和醛酮、不饱和醛酮
——是制备芳酮的常用方法
制备醛: (盖特曼-科赫反应)
5、同碳二卤化物水解
6、羰基合成
烯烃 + CO + H2
催化剂:金属羰基化合物 增 加 一 个 碳 的 反 应
7、羧酸及其衍生物还原
9.3 醛、酮的物理性质
1. 状态
甲醛:气体; C2~C12:液体;>C12:固体
(甲醛41%水溶液——福尔马林)
2. 沸点
CH3CH2CH2CH3 CH3CH2CHO CH3COCH3 CH3CH2CH2OH bpoC -0.5 49 56 97
沸点:醇 >
醛酮 > 烃
静电引力
氢键
C数 , 沸点差距
3.溶解度
低级醛酮在水中溶解度较大 ——羰基的氧可以作为氢键的受体 C数 溶解度 醛酮都溶于有机溶剂 4.红外光谱 特征峰: 羰基C=O: 1680~1750cm-1伸缩振动(强) 醛基C–H: 2720cm-1伸缩振动(尖)