【优质文档】五年级奥数逻辑推理(二)计算逻辑
五年级逻辑推理2
∵第一名的队输给第二名,∴因此第一名比赛最好成绩是3胜1负,最多6分
∴第一名:6分,第二名:5分
∵①+②+③+④+⑤=20 ∴③+④+⑤=9 ∵平均分=9÷3=3分 ∴3<③<5分 ∴③=4分 ∴④+⑤=5 ∵平均分=5÷2=2.5分 ∴④=3分
本题:假设法 假设A得优, 则根据题意:B、C、D均是优,四人优,错误,所以A不是优 假设B得优, 则根据题意:C、D均是优,三人优,错误,所以B不是优
∴ C、D得优
21、一天,老师让小马虎把甲、乙、丙、丁、戊的作业本带回去,他见到五人后就一
人给了一本,结果全发错了,现在知道:
(1)甲拿的不是乙的,也不是丁的 (2)乙拿的不是丙的,也不是丁的
11、甲、乙、丙、丁四人进行象棋比赛,并决出一、二、三、四名。已知: (1)甲比乙的名次靠前 (2)丙、丁爱在一起踢足球 (3)第一、三名在这次比赛时才认识 (4)第二名不会骑自行车,也不爱踢足球 (5)乙、丁每天一起骑自行车上班
第二名不会骑自行车,也不爱踢足球
丙、丁爱在一起踢足球
第二名不是丙丁乙,∴第二名是甲
兄妹不能搭伴
李强和小英搭伴
李强妹妹是小丽
李强和小红搭伴
第二盘:李强和小红对刘刚和马辉的妹妹 人无分身术,马辉的妹妹不是小红
马辉妹妹是小英 刘刚妹妹是小红
13、某校五年级三个班举行乒乓球混合双打表演,每个班男女生各出一名, 男生是甲、乙、丙,女生是A、B、C,规定,同班的男女生不能配对,已 知: 第一盘:甲和A对丙和B 第二盘:丙和C对甲和乙的同班女生 问:甲的同班女生是谁?
Z先生认识所有的人 B女士的丈夫和A女士也是初次见面 x先生的夫人和C女士的丈夫是初次见面 x先生的夫人和C女士的丈夫是初次见面
苏教版小学五年级奥数— 逻辑推理图文百度文库
苏教版小学五年级奥数—逻辑推理图文百度文库一、拓展提优试题1.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是419.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.2.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.3.如图,从A到B,有条不同的路线.(不能重复经过同一个点)4.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块块.5.已知一个五位回文数等于45与一个四位回文数的乘积(即=45×),那么这个五位回文数最大的可能值是59895.6.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.7.(8分)有四个人甲、乙、丙、丁,乙欠甲1元,丙欠乙2元,丁欠丙3元,甲欠丁4元.要想把他们之间的欠款结清,只因要甲拿出元.8.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.9.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.10.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.11.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.12.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.13.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.14.如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a﹣b×c的值是.15.(7分)对于a、b,定义运算“@”为:a@b=(a+5)×b,若x@1.3=11.05,则x=.【参考答案】一、拓展提优试题1.解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.2.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③通过等量代换,解决问题.解:设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③由①+②得:2a+2b+2c=29+43=72即a+b+c=36即第三个靶的得分为36分.答:他在第三个箭靶上得了36分故答案为:36.3.解:如图,因为,从A到B有5条直连线路,每条直连线路均有5种不同的路线可以到达B点,所以,共有不同线路:5×5=25(条),答:从A到B,有25条不同的路线,故答案为:25.4.解:正方体的棱长应是5,4,3的最小公倍数,5,4,3的最小公倍数是60;所以,至少需要这种长方体木块:(60×60×60)÷(5×4×3),=216000÷60,=3600(块);答:至少需要这种长方体木3600块.故答案为:3600.5.解:根据分析,得知,=45=5×9既能被5整除,又能被9整除,故a的最大值为5,b=9,45被59□95整除,则□=8,五位数最大为59895故答案为:598956.解:假设全打中,乙得了:(208﹣64)÷2=72(分),乙脱靶:(20×10﹣72)÷(20+12),=128÷32,=4(发);打中:10﹣4=6(发);答:乙打中6发.故答案为:6.7.解:根据分析,从甲开始,乙欠甲1元,故甲应得1元,甲欠丁4元,故甲应还4元;清算时,甲还应拿出4﹣1=3元,此时甲的账就结清了;再看看丁的账,丁得到甲的4元后,还给丙3元,即可结清;再看看丙的账,丙得到丁的3元后,还给乙2元,丙的账也清了;再看看乙的账,乙得到丙的2元后,还给甲1元,乙的账也结清;综上,甲只须先拿出4元还给丁,后得到乙的1元,故而甲总共只须拿出3元.故答案是:3.8.解:最大的三位偶数是998,要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A最小是326.故答案为:326.9.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.10.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12011.解:3n是5的倍数,3n的个数一定是0或5又因为大于0的自然数n是3的倍数,所以3n最小是453n=45n=15所以n最小取15时,n是3的倍数,3n是5的倍数.答:n的最小值是15.故答案为:15.12.解:原式=++++=++++=×(﹣+﹣+…+﹣)=×()=5+24=29故答案为:2913.解:根据分析,如图所示,将图进行分割成面积相等的三角形,阴影部分由18个小三角形组成,而空白部分有6个小三角形,故阴影部分面积是空白部分面积的18÷6=3倍.故答案是:3.14.解:依题意可知:3a+2与17是对立面,3a+2=17,所以a=5;7b﹣4与10是对立面,7b﹣4=10,所以b=2;a+3b﹣2c与11的对立面,5+3×2﹣2c=11,所以c=0;所以a﹣b×c=5故答案为:515.解:由定义可知:x@1.3=11.05,(x+5)1.3=11.05,x+5=8.5,x=8.5﹣5=3.5故答案为:3.5。
一起学奥数-逻辑推理(2)假设法(五年级)
例4、有8名小朋友,他们每个人头上都袋着一顶红帽子或一顶蓝帽子。如果一 名小朋友看到另外3名或3名以上的朋友戴着红帽子,他就拿一个红气球,否则 就拿一个蓝气球。结果这些小朋友中既有拿红气球的,也有拿蓝气球的,那么 一共有多少名小朋友戴红帽子?
【分析】根据题目意思,我们需要去判断有多少小朋友戴了红帽子。那么,我们就假设戴着红帽子 的小朋友数量。根据看到3名或3名以上的小朋友戴着红帽子,就拿一个红气球,则可假设戴红帽子 的小朋友为2或2名以下,4或4名以上,3名。 假设戴红帽子的小朋友为2和2名以下,则不可能有人能够看到三个及以上小朋友戴着红帽子,所以 不可能有小朋友拿红气球,假设错误; 假设戴红帽子的小朋友为4及4名以上,则即使戴着红帽子的小朋友也能看到3顶以上的红帽子,所 以不可能有小朋友戴蓝帽子,因此假设错误; 假设戴红帽子的小朋友为3名,则戴着红帽子的小朋友只能看到2顶红帽子,会拿蓝气球;
由表格排斥关系可知,乙带了红帽子,根据条件(3)则没穿蓝衣服,所以穿的是红衣服 接着,可以发现,剩下的黄帽子给丙戴,根据条件(4),丙还穿红衣服,与乙穿了红衣 服矛盾。所以假设不成立。 所以,甲戴的是黄帽子。同时,根据条件(4)知道,甲还穿了红衣服 由表格可以看出,甲乙都没有穿黄衣服,所以是丙穿了黄衣服。 甲丙都有衣服穿了,只剩下乙和蓝衣服,所以乙穿了蓝衣服。 根据条件(3),乙没戴红帽子,所以红帽子是丙戴的,乙戴的是蓝帽子
而戴着蓝帽子的小朋友恰能看到3顶红帽子,所以会拿红气球。这样这些例5、有一次智力大奖赛,最后一关是要闯“胜、负”门的关。有两座门,一座是生命门,一 座是死亡门。小强过五关斩六将已战胜数位高手,仅剩他一人胜出,过最后一关。他只要能 通过两座门中的生命门,他将最后胜出获大奖,如果过不了生命门,那将会前功尽弃。最后 一关是这样的:两扇门前都站着一名士兵,这两位士兵都知道哪个门是生命门,哪个门是死 亡门,然而他们中的一个人总说假话,另一个总说实话。然而小强并不知这两个士兵哪位说 真话,哪位说假话。他在选择这两个门通过前只能问这两个士兵中的某一个人一个问题,以 便决定他通过哪个门(这两扇门上没有任何标记,外形完全相同)。 请问,小强问一个什么样的问题就能确保选择了生命门从而确保大奖呢?
小学奥数五年级上第13讲《逻辑推理二》教学课件
巩固提升
作业1:甲、乙、丙3人,一个总说谎,一个从不说谎,一个有时说谎,已知牧师从不说谎,骗子总说谎,赌徒有时说谎;有一次谈到他们的职业,甲说:“我不是牧师.”乙说:“我不是骗子.”丙说:“我不是赌徒.”总说谎的人是谁?答案:乙
mathematics
巩固提升
作业2:在一次猜谜晚会上,甲、乙、丙3人分别猜中1、2、3条谜语,甲说:“我猜中2条,”乙说:“我猜中的最多,”丙说:“我猜中的不是偶数条.”已知他们3人只有1人说谎,他是谁? 答案:乙
第一张
第二张
第三张
甲
力
努
习
乙
力
学
习
丙
学
努
力
mathematics
巩固提升
作业5:姐妹俩得了一种怪病:姐姐上午很老实,一到下午就说假话;妹妹正好相反,上午说假话,下午说真话;一天家里来了位客人,分不清一胖一瘦两位小孩儿谁是姐姐谁是妹妹,就问:“你们俩谁是姐姐?”没想到胖瘦两位小孩儿都说自己是姐姐,他又问:“现在几点了?”胖小孩儿说:“快到中午了,”瘦小孩儿说:“中午已经过了,”姐姐是胖小孩儿还是瘦小孩儿?答案:胖小孩儿
练习1:懒懒和笨笨是两只小猪,一只说真话,一只说假话,而且它们一只是黑色的,一只是白色的;懒懒说:“说谎的是白色的”,笨笨说:“说谎的不是白色的”,请问懒懒和笨笨谁是白色的? 答案:笨笨
mathematics
例题讲解
mathematics
例题讲解
例题2:艾趣、艾吕和艾游三姐妹参加了去英国的旅行团,回国后,三人向朋友们分享去英国的经历:艾趣:“我们去了爱丁堡,没去湖泊区,但参观了北威尔士.”艾吕:“我们去了爱丁堡,也去了湖泊区,但没有参观北威尔士.“艾游:“我们没有去爱丁堡,但是去了北威尔士.“已知每个人都说了一句谎话,那么她们三人到底去了哪些景区?分析:如果要用假设法,先根据谁的话来作假设会更简单一些?答案:爱丁堡,湖泊区,北威尔士
一起学奥数逻辑推理计算逻辑五年级
例3、 10个好朋友彼此住得很远,没有电话,只能靠写信互通消息。现在这10个人 每人都知道一条好消息,这10条消息彼此不同,为使这10个人都知道所有的好消息, 只能通过相互写信通报,请问至少要让邮递员传送几封信?
【分析】首先要弄清楚,邮递员传递信件是单向的信息传递。要实现每人都知道这10条消息,需要分两 步: 一、把消息汇总;二、把消息传达出去。 设定取件后,送至另一个人处为完成一封信的传送。使邮递员传送信件的次数最少,则邮递员应该与每 个人碰面的次数尽量的少。 只碰面一次是否可行? 肯定不行。因为需要经过两个动作,才能实现消息的汇总,和消息的传达。 所以,至少每个人需要碰面两次。那么,又有一个问题,汇总消息的人是否需要也让邮递员传送一封 信呢?显然,是不需要的。 所以,传送9封信就可以把消息都汇总。同样道理,汇总信的人,只要向另外9个人写一封信,就可以做 到,每个人都知道消息。即,邮递员至少需要传送9+9=18封信
请大家思考,是否可以用数学模型来解答这个问题呢?可以建立怎样的数学模型。
可以用拓扑结构来构建数学模型
例4、甲、乙、丙、丁四个同学进行象棋比赛,每两个都比赛一场,规 定胜者得2分,平局各得1分,输者得0分,结果甲得第一,乙、丙并列 第二,丁最后一名,那么乙得了多少分?
【分析】根据比赛规则,我们可以知道,每个同学需要与另三个同学比赛一场,全赢得6分,因为甲是 第一,所以最好的结果是甲全赢得6分,丁最后一名,最差全输得0分。得分表如下图:
1)你崇拜太阳神吗? 2)你崇拜月亮神吗? 3)你崇拜地球神吗? 总是说假话的人回答这3个问题时,会回答2个“是”,而总是说真话 的人只会回答1个“是”。对第一个问题,有806人回答是,对第二个问 题,有1004人回答是,对第三个问题,有1204人回答是。那么,他们中 有多少人说的是真话?
小五奥数-逻辑推理2
在逻辑推理过程中,需要进行数字(或数)的计算来完成的逻辑问题,如数字问题,体育比赛的得分,场次,名次问题,在考试中的得分等等问题,我们称这类问题为计算逻辑.【例1】在一座办公大楼里,有30名办事员.某天上班有一名办事员没有和其他办事员见面.请问这一天在大楼里办公的人最多能遇到几位同事?随堂练习1某次集会共到了68人,每人头上都戴了一顶帽子,颜色分红、蓝两种,任意两个到会的人中至少有一个人戴红帽子.问戴红帽子的人数比戴蓝帽子的人数多了多少个人?【例2】伟大的物理学家爱因斯坦A年B月14日生于德国乌尔姆(UIM),父母都是犹太人,他是相对论的创立者,诺贝尔物理奖获得者.C年4月D日逝世于美国,享年E岁.请将下列给出的一组数正确的填入A、B、C、D、E中.(1) 1955 (2) 3 (3) 1879 (4) 76 (5) 18随堂练习2A年B月16日在德意志的波恩附近,一间破旧的阁楼上诞生了以后影响百年的音乐奇才—贝多芬.他以非凡的英雄气概,与残酷的命运抗争,以无与伦比的意志和才华写出了无数欢乐的、悲壮的、田园诗一般温馨的不朽乐章.在一个雷雨交加的夜晚,他圆睁双目注视着闪电,孤独的离开了人世.一个陌生人替他合上了眼睛,时年C年3月D日,贝【例5】羊村小学四年级进行一次数学测验,测验共有15道题,如果小喜喜、小沸沸、小美美、小懒懒答对的题目数分别是11道、12道、13道、14道,那么他们四人都答对的题目最少有___道.【例6】在一个海岛上居住着2014人,其中一些人总是说假话,其余的人总说真话,岛上的每一位居民都崇拜太阳神、月亮神和地球神这三个神中的一个,一位外来的采访者向岛上的每一位居民提了3个问题:(1)你崇拜太阳神吗?(2)你崇拜月亮神吗?(3)你崇拜地球神吗?总是说假话的人回答这3个问题时会回答2个“是”,而总是说真话的人只会回答一个“是”.对第一个问题,有806人回答:“是”;对第二个问题,有1004人回答:“是”;对第三个问题,有1204人回答:“是”.那么,他们中有___人说的是真话.随堂练习4四支排球队进行单循环比赛,即每两队都要赛一场,且只赛一场.如果一场比赛的比分是3:0或3:1,则胜队得3分,负队得0分;如果比分是3:2,则胜队得2分,负队得1分.比赛的结果各队得分恰好是4个连续的自然数,则第一名的得分是___分.课后作业1.有9张纸牌,分别为1至9.A、B、C、D四人取牌,每人取两张.现已知A取两张牌之和是10;B取两张牌之差是1;C取两张牌之积是24;D取两张牌之商是3.剩下的一张牌是几?。
五年级奥数:逻辑推理(二) 计算逻辑
逻辑推理(二)计算逻辑在逻辑推理过程中,需要进行数字(或数)的计算来完成的逻辑问题,如数字问题,体育比赛的得分、场数、名次问题,在考试中的得分等等问题,我们称这类问题为计算逻辑.例1在一座办公大楼里,有30名办事员.某天上班有一名办事员没有和其他办事员见面.请问这一天在大楼里办公的人最多能遇到几位同事?随堂练习1某次集会共到了68人,每人头上都戴了一顶帽子,颜色分红、蓝两种,任意两个到会的人中至少有一个人戴红帽子.问戴红帽子的人数比戴蓝帽子的人数多了多少个人?例2如图,六张四位数的纸片互相纵横交错叠在一起.其中有且只有一个数是完全平方数.这个数是多少?例3伟大的物理学家爱因斯坦A年B月14日生于德国乌尔姆(UIM),父母都是犹太人,他是相对论的创立者,诺贝尔物理奖获得者.C年4月D日逝世于美国,享年E岁.请将下列给出的一组数正确的填入A、B、C、D、E中.(1)1955 (2)3 (3)1879 (4)76 (5)18随堂练习2 A年B月16日在德意志的波恩附近,一件破旧的阁楼上诞生了以后影响百年的音乐奇才——贝多芬.他以非凡的英雄气概,与残酷的命运抗争,以无与伦比的意志和才华写出了无数欢乐的、悲壮的、田园诗一般温馨的不朽乐章.在一个雷雨交加的夜晚,他圆睁双目注视着闪电,孤独地离开了人世.一个陌生人替他合上了眼睛,时年C年3月D日,贝多芬享年E岁.请将下列给出的一组数正确的填入A、B、C、D、E中.(1)26 (2)57 (3)1827 (4)12 (5)1770例4 10个好朋友彼此住得很远,没有电话,只能靠写信互通消息.现在这10个人每人都知道一条好消息,这10条好消息彼此不同,为使这10个人都知道所以的好消息,只能通过相互写信通报.请问至少要让邮递员传送几封信?例5甲、乙、丙、丁四个同学进行象棋比赛,每两个都比赛一场,规定胜者得2分,平局各得1分,输者得0分.结果甲得第一,乙、丙并列第二,丁最后一名,那么乙得分.随堂练习3五个选手进行象棋比赛,每两个人之间都要赛一盘.规定胜一盘得2分,平一盘各得1分,输一盘不得分.已知比赛后,其中4位选手共得16分,则第5位选手得了分.例6 A、B、C、D、E五对夫妇聚会,见面时相互握手问候.A先生好奇地私下向每个人(包括他太太)刚才握手的次数,得到的回答使他惊奇.9个人中竟然没有两个人握手次数相同的.A太太握手次数是多少?(一对夫妇之间不握手)随堂练习4四所小学,每所小学有两只足球队.这八支足球队进行友谊比赛.规定本校两支球队不进行比赛,不同学校的任意两队之间比赛一场.比赛进行到某一阶段后(还没有赛完).A校第一队队长发现,其他七支球队已赛过的场数互不相同.问这时A校第二队赛了几场?练习题1.有9张纸牌,分别为1至9.A、B、C、D四人取牌,每人取两张.现已知A取两张牌之和是10;B取两张牌之差是1;C取两张牌之积是24;D取两张牌之商是3.剩下的一张牌是几?2.四名棋手每两名选手都要比赛一局,规则规定胜一局得2分,平一局得1分,负一局得0分.比赛结果,没有人全胜,并且各人的总分都不相同.那么至多可以有多少个平局?3.甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别为8、7和17分.甲得了一个第一名,已知各个比赛项目分数相同,且第一名得分不低于二、三名得分的和.那么,比赛共有几个项目,甲每项得分分别是几分?4.三人打乒乓球,每场两人,输者退下换成另一人.这样继续下去.在甲打了9场,乙打了6场时,丙最多打了______场.5.在一个庆典晚会上,男女嘉宾共69人.出现了一个非常有趣的情况:每位女士认识的男士的人数各不相同,而且组成连续的自然数,最少的认识16位男士,最多的只有两位男士不认识.这次晚会上共有女嘉宾______人.6.一些士兵排成一列横队,第一次从左到右1至4报数,第二次从右至左1至6报数,两次都报3的恰有5名,这列士兵最多有______名.7.共有四人进行跳远、百米、铅球、跳高四项比赛.规定每个单项第一名记5分,第二名记3分,第三名记2分,第四名记1分,每个单项比赛中四人得分互不相同.总分第一名得17分,其中跳高得分低于其他项的得分;总分第三名得11分,其中跳高得分高于其他项的得分.问总分第二名的铅球得分是多少?8.在一次射击练习中,甲、乙、丙三位战士各打了四发子弹,全部中靶.其命中情况如下:(1)每人四发子弹所命中的环数各不相同;(2)每人四发子弹所命中的总环数均为17环;(3)乙有两发命中的环数分别与甲命中的环数一样;(4)甲与丙只有一发环数相同;(5)每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几环?9.12个队参加一次足球比赛,每两个队都要比赛一场,每场比赛中,胜队得3分,负队得0分,平局各得1分.比赛完毕后,获第三名和第四名的两个队得分最多可以相差______分.10.有A、B、C、D四支足球队进行单循环比赛,共要比赛______场.规定:胜一场得2分,平一场得1分,负一场得0分.全部比赛结束后,A、B两队的总分并列第一名,C队第二名,D队第三名,C队最多得______分.11.一种游戏,每一局胜则得6分,平则得5分,负则得零分,比赛足够多局,但无论比赛多少局,不能得到的分数共有多少个?。
20XX最新小学五年级奥数— 逻辑推理图文百度文库
20XX最新小学五年级奥数—逻辑推理图文百度文库一、拓展提优试题1.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是.2.如图,甲、乙两人按箭头方向从A点同时出发,沿正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E 点第一次相遇,则三角形ADE的面积比三角形BCE的面积大1000平方米.3.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.4.用0、1、2、3、4这五个数字可以组成个不同的三位数.5.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是.6.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.7.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.8.如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边=平方米.形EFGH9.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.10.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.11.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.12.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.13.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.14.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.15.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.【参考答案】一、拓展提优试题1.解:一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8,(1)当N=x8,则九个约数分别是:1,x,x2,x3,x4,x5,x6,x7,x8,其中有3个约数A、B、C且满足A×A=B×C,不可能.(2)当N=x2y2,则九个约数分别是:1,x,y,x2,xy,y2,x2y,xy2,x2y2,其中有3个约数A、B、C且满足A×A=B×C,①A=x,B=1,C=x2,则x+1+x2=79,无解.②A=xy,B=1,C=x2y2,则xy+1+x2y2=79,无解.③A=xy,B=x,C=xy2,则xy+x+xy2=79,无解.④A=xy,B=x2,C=y2,则xy+x2+y2=79,解得:,则N=32×72=441.⑤A=x2y,B=x2y2,C=x2,则x2y+x2y2+x2=79,无解.故答案为441.2.解:由于甲的速度是乙的速度的1.5倍所以两人速度比为:1.5:1=3:2,所以两人在E点相遇时,甲行了:(100×4)×=240(米);乙行了:400﹣240=160(米);则EC=240﹣100×2=40(米),DE=160﹣100=60(米);三角形ADE的面积比三角形BCE的面积大:60×100÷2﹣40×100÷2=3000﹣2000,=1000(平方米).故答案为:1000.3.解:依题意可知:当第一次过后,小张剩余194只铅笔,小李剩余19只钢笔.当第二次过后,小张剩余188只铅笔,小李剩余18只钢笔.当第三次过后,小张剩余182只铅笔,小李剩余17只钢笔.当第四次过后,小张剩余176只铅笔,小李剩余16只钢笔.正好是11倍.故答案为:四4.解:4×4×3,=16×3,=48(种);答:这五个数字可以组成 48个不同的三位数.故答案为:48.5.解:根据分析,在2000~2020之间排除掉奇数,剩下的偶数还可以排除掉不能被3整除的偶数,最后只剩下:2004、2010、2016,再将三个数分别分解质因数得:2004=2×2×3×167;2010=2×3×5×67;2016=2×2×2×2×2×3×3×7, 显然2014和2010的质因数在1~9中不到7个,不符合题意,排除,符合题意的只有2016,此时2016的因数分别是:2、3、4、6、7、8、9.故答案是:2016.6.解:共有6只小猫咪,每发6条鱼重复出现,而278÷6=46…2,余数是2,则最后一个领到鱼干的小猫咪是B .故答案为:B .7.解:最大的三位偶数是998,要满足A 最小且A <B <C <D <E ,则E 最大是998,D 最大是996,C 最大是994,B 最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A 最小是326.故答案为:326.8.解:根据分析,如下图所示:长方形S 长方形ABCD =S 长方形XYZR +△AEF +△EFR +△FBG +△FGX +△HCG +△HGY +△DHE +△HEZ=S 长方形XYZR +2×(a +b +c +d )⇒60=4+2×(a +b +c +d )⇒a +b +c +d =28四边形S 四边形EFGH =△EFR +△FGX +△HGY +△HEZ +S 长方形XYZR=a +b +c +d +S 长方形XYZR=28+4=32(平方米).故答案是:32.9.解:首先根据奇偶位数和相等一定是11的倍数.因数一共的个数是3+39=42(个),将42分解成3个数字相乘42=2×3×7.=a ×b 2×c 6.如果是11×52×26=17600(不是四位数不满足条件).再看一下如果这个数字最小是=11×32×26=6336.=3663=11×37×32.因数的个数共2×2×3=12(个).故答案为:12个.10.解:依题意可知:要满足是六合数.分为是3的倍数和不是3的倍数.如果不是3的倍数那么一定是1,2,4,8,5,7的倍数,那么他们的最小公倍数为:8×5×7=280.那么280的倍数大于2000的最小的数字是2240. 如果是3的倍数.同时满足是1,2,3,6的倍数.再满足2个数字即可. 大于2000的最小是2004(1,2,3,4,6倍数)不符合题意;2010是(1,2,3,5,6倍数)不符合题意;2016是(1,2,3,4,6,7,8,9倍数)满足题意.2016<2240;故答案为:201611.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12012.解:原式=++++ =++++=×(﹣+﹣+…+﹣) =×()=5+24=29故答案为:2913.解:根据分析,如图所示,将图进行分割成面积相等的三角形,阴影部分由18个小三角形组成,而空白部分有6个小三角形,故阴影部分面积是空白部分面积的18÷6=3倍.故答案是:3.14.解:设既带水壶又带水果的为x人,则参加春游的同学共有2x人,由题意可得:80+70﹣x+6=2x156﹣x=2x3x=156x=52则2x=2×52=104答:则参加春游的同学共有104人.故答案为:104.15.解:220﹣83×2=220﹣166=54(元)54÷(2+7)=54÷9=6(元)答:网球每个6元.。
五年级奥数:第28讲 逻辑问题(二)
五年级奥数:第28讲逻辑问题(二)例1老师拿来五顶帽子,两顶红的三顶白的。
他让三个聪明的同学甲、乙、丙按甲、乙、丙的顺序排成一路纵队,并闭上眼睛,然后分别给他们各戴上一顶帽子,同时把余下的帽子藏起来。
当他们睁开眼后,乙和丙都判断不出自己所戴帽子的颜色,而站在最前面的甲却根据此情况判断出了自己所戴帽子的颜色。
甲戴的帽子是什么颜色?他是怎样判断的?分析与解:这是一个典型的逻辑推理问题。
甲站在最前面,虽然看不见任何一顶帽子,但他可以想到:如果我和乙戴的都是红帽子,因为一共只有两顶红帽子,那么丙就会判断出自己戴的是白帽子。
丙判断不出自己戴的帽子的颜色,说明我和乙戴的帽子是两白或一白一红。
甲接着想:乙也很聪明,当他看到丙判断不出自己戴的帽子的颜色时,他也能判断出我们两人戴的帽子是两白或一白一红。
此时,如果他看到我戴是红帽子,那么他就会知道自己戴的是白帽子,只有我戴的是白帽子时,他才可能猜不出自己戴的帽子的颜色。
所以,我戴的一定是白帽子。
例1中,甲的分析非常精采,严密而无懈可击。
例2三个盒子各装两个球,分别是两个黑球、两个白球、一个黑球一个白球。
封装后,发现三个盒子的标签全部贴错。
如果只允许打开一个盒子,拿出其中一个球看,那么能把标签全部纠正过来吗?分析与解:因为“三个盒子的标签全部贴错”了,贴错的情况见下图(○表示白球,●表示黑球):如果从标签是两黑的盒子中拿一个球,那么最不利的情况是拿出一个白球,此时无法判定是实际情况1,还是实际情况2,也就无法把标签全部纠正过来;同理,从标签是两白的盒子中拿一个球,若拿的是黑球,则也无法把标签全部纠正过来;从标签是一黑一白的盒子中拿出一个球,若拿出的是黑球,则能确定出是实际情况1,若拿出的是白球,则能确定出是实际情况2,因此能把标签全部纠正过来。
所以,只要从标签是一黑一白的盒子中拿一个球,就能纠正全部标签。
例3 A,B,C三名同学参加了一次标准化考试,试题共10道,都是正误题,每道题10分,满分为100分。
高斯小学奥数五年级上册含答案_逻辑推理二
第十三讲逻辑推理二相信学们之前已经接触过一些有趣的逻辑推理题目,其中比较典型的一类题目就是让我们来判断问题的真假.还记得我们用什么方法来判断吗?对了,假设法!假设法就像是测谎仪,用它来测一测,就知道谁说的是真话,谁说的是假话了.除此之外,如果有两个人说的话正好相反,那么我就可以断定其中必然有一个人说的是真话,另一个人说的是假话.我们可以把这个方法称为矛盾分析法.好了,下面就开始我们的推理之旅吧!例题1.3位女神分别说了如下的话.雅典娜(智慧女神):“阿佛洛狄忒不是最美的.”阿佛洛狄忒(爱和美的女神):“赫拉不是最美的.”赫拉(天后):“我是最美的.”只有最美的女神说了真话,请问她是谁?「分析」阿佛洛狄忒和赫拉的话是互相矛盾的,据此可以推理出什么呢?懒懒和笨笨是两只小猪,一只说真话,一只说假话.而且它们一只是公的,一只是母的.懒懒说:“说谎的是母猪.”笨笨说:“说谎的不是母猪.”请问懒懒和笨笨谁是母猪?例题2.艾趣、艾吕和艾游三姐妹参加了去英国的旅行团.回国后,三人向朋友们分享去英国的经历:艾趣:“我们去了爱丁堡,没去湖泊区,但参观了北威尔士.”艾吕:“我们去了爱丁堡,也去了湖泊区,但没有参观北威尔士.”艾游:“我们没有去爱丁堡,但是去了北威尔士.”已知每个人都说了一句谎话,那么她们三人到底去了哪些景区?「分析」如果要用假设法,先根据谁的话来作假设会更简单一些?一位农夫建了一个三角形的鸡窝,三边都是等高的铁丝网.这位农夫在笔记本上做了如下记录:(1)面向仓库那边的铁丝网价钱:10美元;(2)面向水池那边的铁丝网价钱:20美元;(3)面向住宅那边的铁丝网价钱:30美元.而这三个价钱中有一个是错的.又知道每一边铁丝网的价钱都是10美元的倍数,且三边铁丝网的价钱互不相同.那么这位农夫一共花了多少钱买铁丝网?除了真假问题之外,还有一类题目是告诉我们一些条件让我们做出判断或计算,我们可以把这类问题称为条件推理问题.例题3.现在要从六个人中挑选几个去参加数学竞赛,有以下要求:(1)赵甲和钱乙这两人至少去一个;(2)赵甲和李丁不能都去;(3)赵甲、周戊和吴己这三个人中要去两人;(4)钱乙和孙丙要么都去,要么都不去;(5)孙丙和李丁要去一人;(6)如果李丁不去,周戊也不去.应该挑选哪几个人去?「分析」虽然这道题目不是真话假话问题,但是也可以用假设法来解决.根据第几个条件作假设会简单一些?A,B,C,D四名学生猜测自己的数学成绩.A说:“如果我得优,那么B也得优.”B说:“如果我得优,那么C也得优.” C说:“如果我得优,那么D也得优.”结果大家都没说错,但是只有两个人得优.谁得了优?例题4.热火队和雷霆队为了争夺NBA总决赛的冠军,斗得难分难解.在今天晚上的比赛中:(1)两队都没有换过人;(2)除了三名队员外,其他队员得分都互不相同.这三名队员都得了22分,但是不在同一个队中;(3)全场最高个人得分是30分,只有三名队员得分不到20;(4)热火队中,得分最多和得分最少的球员只相差3分;(5)雷霆队每人的得分正好组成一个等差数列.这场比赛谁胜谁负?比分是多少?「分析」因为每个队都没有换过人,所以各队总分都是五个数的和.根据第二个条件和第五个条件可知,雷霆队有一个22分,热火队有两个22分.接下来继续推理就容易了.甲、乙、丙、丁四人一起打牌,每人的姓是赵、钱、孙、李中的一个.他们约好第一把赢的人可以从其他三人手中各拿100元;第二把赢的人可以从其他三人手中各拿200元;第三把赢的人可以从其他三人手中各拿300元;第四把赢的人可以从其他三人手中各拿400元.他们一共玩了4把,每人各赢了一次.又知道:(1)第一把赢的人是孙先生;(2)第二把赢的人是乙;(3)第三把赢的人是钱先生;(4)第四把赢的人是丙;(5)打牌之前李先生的钱最多,打牌后丁的钱最多.那么甲、乙、丙、丁分别姓什么?例5.鹿哼、雷婷、王萍和贺纯正在进行一场精彩的室内网球双打赛,通过下面观众的议论,我们知道以下信息:(1)鹿哼比雷婷年轻;(2)王萍比他的两个对手年龄都大;(3)鹿哼比他的搭档年纪大;(4)鹿哼和雷婷的年龄差距比王萍和贺纯的年龄差距更大.请讲这四位运动员按照年龄大小顺序排列,并且找出鹿哼的搭档是谁.「分析」这道题目与大小顺序有关系,可以先画出四个位置,然后根据题目中的条件把人放到位置上.例题6.桌上放着3红2蓝5个帽子.张三、李四和迟哼站成一排,须老师从桌上拿出3个帽子,分别戴到三个人的头上.排队的人都能看到前面的人头上帽子的颜色,但是看不到自己的(当然也看不到后面的人,但是三个人都知道帽子一共有3红2蓝).这时须老师问队伍最后面的张三是否知道自己帽子的颜色,张三说不知道.须老师又问中间的李四是否知道自己帽子的颜色,李四说不知道.想不到这时候站在最前面的迟哼,竟然非常有把握的说:“老师,我知道我帽子的颜色!”请问,迟哼头上的帽子是什么颜色的,他又是怎么知道的?「分析」张三的回答是不知道.那如果张三的回答是知道,能说明什么呢?第一次数学危机从某种意义上来讲,现代意义下的数学(也就是作为演绎系统的纯粹数学)来源于古希腊的毕达哥拉斯学派。
(完整word版)(强烈推荐)小学奥数逻辑推理
逻辑推理(一)数字游戏月日课次◇专题知识简述◇由于数学学科的特点,通过数学的学习来培养少年儿童的逻辑推理能力是一种极好的途径.为了使同学们在思考问题时更严密更合理,会有很有据地想问题,而不是凭空猜想,这里我们专门讨论一些有关逻辑推理的问题。
解答这类问题,首先要从所给的条件中理清各部分之间的关系,然后进行分析推理,排除一些不可能的情况,逐步归纳,找到正确的答案。
◇例题解析◇例1 公路上按一路纵队排列着五辆大客车.每辆车的后面都贴上了该车的目的地的标志.每个司机都知道这五辆车有两辆开往A市,有三辆开往B市;并且他们都只能看见在自己前面的车的标志.调度员听说这几位司机都很聪明,没有直接告诉他们的车是开往何处的,而让他们根据已知的情况进行判断.他先让第三个司机猜猜自己的车是开往哪里的.这个司机看看前两辆车的标志,想了想说“不知道”.第二辆车的司机看了看第一辆车的标志,又根据第三个司机的“不知道”,想了想,也说不知道.第一个司机也很聪明,他根据第二、三个司机的“不知道”,作出了正确的判断,说出了自己的目的地。
请同学们想一想,第一个司机的车是开往哪儿去的;他又是怎样分析出来的?解:根据第三辆车司机的“不知道”,且已知条件只有两辆车开往A市,说明第一、二辆车不可能都开往A市.(否则,如果第一、二辆车都开往A市的,那么第三辆车的司机立即可以断定他的车一定开往B市)。
再根据第二辆车司机的“不知道”,则第一辆车一定不是开往A市的.(否则,如果第一辆车开往A市,则第二辆车即可推断他一定开往B市)。
运用以上分析推理,第一辆车的司机可以判断,他一定开往B市。
例2 李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛.事先规定.兄妹二人不许搭伴。
第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。
请你判断,小华、小红和小林各是谁的妹妹。
解:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。
五年级奥数基础教程-逻辑问题小学
逻辑问题(一)四年级已经学习过用列表法和假设法解答逻辑推理问题。
从广义上说,任何一道数学题,任何一个思维过程,都需要逻辑分析、判断和推理。
我们这里所说的逻辑问题,是指那些主要不是通过计算,而是通过逻辑分析、判断和推理,得出正确结论的问题。
逻辑推理必须遵守四条基本规律:(1)同一律。
在同一推理过程中,每个概念的含义,每个判断都应从始至终保持一致,不能改变。
(2)矛盾律。
在同一推理过程中,对同一对象的两个互相矛盾的判断,至少有一个是错误的。
例如,“这个数大于8”和“这个数小于5”是两个互相矛盾的判断,其中至少有一个是错的,甚至两个都是错的。
(3)排中律。
在同一推理过程中,对同一对象的两个恰好相反的判断必有一个是对的,它们不能同时都错。
例如“这个数大于8”和“这个数不大于8”是两个恰好相反的判断,其中必有一个是对的,一个是错的。
(4)理由充足律。
在一个推理过程中,要确认某一判断是对的或不对的,必须有充足的理由。
我们在日常生活和学习中,在思考、分析问题时,都自觉或不自觉地使用着上面的规则,只是没有加以总结。
例如假设法,根据假设推出与已知条件矛盾,从而否定假设,就是利用了矛盾律。
在列表法中,对同一事件“√”与“×”只有一个成立,就是利用了排中律。
例1 张聪、王仁、陈来三位老师担任五(2)班的语文、数学、英语、音乐、美术、体育六门课的教学,每人教两门。
现知道:(1)英语老师和数学老师是邻居;(2)王仁年纪最小;(3)张聪喜欢和体育老师、数学老师来往;(4)体育老师比语文老师年龄大;(5)王仁、语文老师、音乐老师三人经常一起做操。
请判断各人分别教的是哪两门课程。
分析与解:题中给出的已知条件较复杂,我们用列表法求解。
先设计出右图的表格,表内用“√”表示肯定,用“×”表示否定。
因为题目说“每人教两门”,所以每一横行都应有2个“√”;因为每门课只有一人教,所以每一竖列都只有1个“√”,其余均为“×”。
五年级奥数题及答案:逻辑推理问题
五年级奥数题及答案:逻辑推理问题
五年级奥数题及答案:逻辑推理问题
编者小语:奥数教学不能单纯是传授数学知识,更重要的是培养学生数学意识、数学思想、独立获得和运用数学知识的能力和良好的数学学习习惯的过程。
让学生具备在未来的工作中科学地提出数学问题、探索数学问题、创造性地解决数学问题的能力。
查字典数学网为大家准备了小学五年级奥数题,希望小编整理的五年级奥数题及参考答案:逻辑推理问题,可以帮助到你们,助您快速通往高分之路!!
逻辑推理
李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛.事先规定.兄妹二人不许搭伴。
第一盘,李明和小华对张虎和小红;
第二盘,张虎和小林对李明和王宁的妹妹。
请你判断,小华、小红和小林各是谁的妹妹。
解:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。
第一种可能是:李明的妹妹是小红,王宁的妹妹是小林; 第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。
对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逻辑推理(二)计算逻辑
在逻辑推理过程中,需要进行数字(或数)的计算来完成的逻辑问题,如数
字问题,体育比赛的得分、场数、名次问题,在考试中的得分等等问题,我们称
这类问题为计算逻辑.
例1在一座办公大楼里,有30名办事员.某天上班有一名办事员没有和其他办事员见面.请问这一天在大楼里办公的人最多能遇到几位同事?
随堂练习1某次集会共到了68人,每人头上都戴了一顶帽子,颜色分红、蓝两种,任意两个到会的人中至少有一个人戴红帽子.问戴红帽子的人数比戴蓝帽子的人数多了多少个人?
例2如图,六张四位数的纸片互相纵横交错叠在一起.其中有且只有一个数是完全平方数.这个数是多少?
例3伟大的物理学家爱因斯坦A年B月14日生于德国乌尔姆(UIM),父母都是犹太人,他是相对论的创立者,诺贝尔物理奖获得者.C年4月D日逝世于美国,享年E岁.
请将下列给出的一组数正确的填入A、B、C、D、E中.
(1)1955 (2)3 (3)1879 (4)76 (5)18
随堂练习 2 A年B月16日在德意志的波恩附近,一件破旧的阁楼上诞生了以后
影响百年的音乐奇才——贝多芬.他以非凡的英雄气概,与残酷的命运抗争,以
无与伦比的意志和才华写出了无数欢乐的、悲壮的、田园诗一般温馨的不朽乐章.在一个雷雨交加的夜晚,他圆睁双目注视着闪电,孤独地离开了人世.一个陌生人替他合上了眼睛,时年C年3月D日,贝多芬享年E岁.
请将下列给出的一组数正确的填入A、B、C、D、E中.
(1)26 (2)57 (3)1827 (4)12 (5)1770
例4 10个好朋友彼此住得很远,没有电话,只能靠写信互通消息.现在这10个人每人都知道一条好消息,这10条好消息彼此不同,为使这10个人都知道所以的好消息,只能通过相互写信通报.请问至少要让邮递员传送几封信?
例5甲、乙、丙、丁四个同学进行象棋比赛,每两个都比赛一场,规定胜者得2分,平局各得1分,输者得0分.结果甲得第一,乙、丙并列第二,丁最后一名,那么乙得分.
随堂练习3五个选手进行象棋比赛,每两个人之间都要赛一盘.规定胜一盘得2分,平一盘各得1分,输一盘不得分.已知比赛后,其中4位选手共得16分,则第5位选手得了分.
例6 A、B、C、D、E五对夫妇聚会,见面时相互握手问候.A先生好奇地私下向每个人(包括他太太)刚才握手的次数,得到的回答使他惊奇.9个人中竟然没有两个人握手次数相同的.A太太握手次数是多少?(一对夫妇之间不握手)
随堂练习4四所小学,每所小学有两只足球队.这八支足球队进行友谊比赛.规定本校两支球队不进行比赛,不同学校的任意两队之间比赛一场.比赛进行到某一阶段后(还没有赛完).A校第一队队长发现,其他七支球队已赛过的场数互
不相同.问这时A校第二队赛了几场?
练习题
1.有9张纸牌,分别为1至9.A、B、C、D四人取牌,每人取两张.现已知A取
两张牌之和是10;B取两张牌之差是1;C取两张牌之积是24;D取两张牌之商是3.剩下的一张牌是几?
2.四名棋手每两名选手都要比赛一局,规则规定胜一局得2分,平一局得1分,
负一局得0分.比赛结果,没有人全胜,并且各人的总分都不相同.那么至多可以有多少个平局?
3.甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别为8、
7和17分.甲得了一个第一名,已知各个比赛项目分数相同,且第一名得分
不低于二、三名得分的和.那么,比赛共有几个项目,甲每项得分分别是几分?
4.三人打乒乓球,每场两人,输者退下换成另一人.这样继续下去.在甲打了9
场,乙打了6场时,丙最多打了______场.
5.在一个庆典晚会上,男女嘉宾共69人.出现了一个非常有趣的情况:每位女
士认识的男士的人数各不相同,而且组成连续的自然数,最少的认识16位男士,最多的只有两位男士不认识.这次晚会上共有女嘉宾______人.
6.一些士兵排成一列横队,第一次从左到右1至4报数,第二次从右至左1至
6报数,两次都报3的恰有5名,这列士兵最多有______名.
7.共有四人进行跳远、百米、铅球、跳高四项比赛.规定每个单项第一名记5
分,第二名记3分,第三名记2分,第四名记1分,每个单项比赛中四人得分互不相同.总分第一名得17分,其中跳高得分低于其他项的得分;总分第三名得11分,其中跳高得分高于其他项的得分.问总分第二名的铅球得分是多少?
8.在一次射击练习中,甲、乙、丙三位战士各打了四发子弹,全部中靶.其命中
情况如下:
(1)每人四发子弹所命中的环数各不相同;
(2)每人四发子弹所命中的总环数均为17环;
(3)乙有两发命中的环数分别与甲命中的环数一样;
(4)甲与丙只有一发环数相同;
(5)每人每发子弹的最好成绩不超过7环.
问:甲与丙命中的相同环数是几环?
9.12个队参加一次足球比赛,每两个队都要比赛一场,每场比赛中,胜队得3
分,负队得0分,平局各得1分.比赛完毕后,获第三名和第四名的两个队得分最多可以相差______分.
10.有A、B、C、D四支足球队进行单循环比赛,共要比赛______场.规定:胜一
场得2分,平一场得1分,负一场得0分.全部比赛结束后,A、B两队的总分并列第一名,C队第二名,D队第三名,C队最多得______分.
11.一种游戏,每一局胜则得6分,平则得5分,负则得零分,比赛足够多局,
但无论比赛多少局,不能得到的分数共有多少个?。