圆的基本性质经典题库
圆基本性质经典题库
第2课时1.判断正误.(1)三点确定一个圆. ( )(2)已知圆心和半径可以确定一个圆. ( )(3)已知圆心和圆上一点可以确定一个圆. ( )(4) 已知半径和圆上一点可以确定一个圆. ( )(5)已知半径和圆上两点可以确定一个圆. ( )2.下列说法正确的是( )A.一个点可以确定一条直线 B.两个点可以确定两条直线C.三个点可以确定一个圆 D.不在同一直线上的三点确定一个圆3.和l,那么它的外接圆的直径是( )A.1B.2C.3D.44.下列命题中,正确的是()A.三角形的外心是三角形的三条高线的交点B.等腰三角形的外心一定在它的内部C.任何一个三角形有且仅有一个外接圆D.任何一个四边形都有一个外接圆5. 下图是一个圆形轮子的一部分,请你用直尺和圆规把它补完整.[综合提高]1._______ 三角形的外心在它的内部,_______三角形的外心在它的外部;直角三角形的外心在______________.2.如果以平行四边形的对角线的交点为圆心,以它和一边中点的距离为半径画圆,若这个四边形四条边的中点都在这个圆上,那么这个四边形是()A .矩形B .正方形C .等腰梯形D .菱形 3. 下列命题正确的个数有( )① 矩形的四个顶点在同一个圆上; ② 梯形的四个顶点在同一个圆上; ③ 菱形的四边中点在同一个圆上; ④ 平行四边形的四边中点在同一个圆上. A. 1个 B. 2个 C. 3个 D. 4个 4.在Rt △ABC 中,AB=6 , BC=8,那么这个三角形的外接圆直径是( ) A. 5 B.10 C.5 或 4 D. 10或8 5.已知等腰三角形ABC 中,AB=AC ,O 是ABC ∆的外接圆,若 O 的半径是4,120BOC ∠=,求AB 的长.6.如图所示,平原上有三个村庄A 、B 、C ,现计划打一口水井p ,使水井到三个村庄的距离相等。
(1)在图中画出水井p 的位置;(2)若再建一个工厂D ,使工厂D 到水井的距离等于水井到三个村庄的距离,且工厂D 到A 、C 两个村庄的距离相等,工厂D 应建在何处?请画出其位置. .A.B .C[拓展延伸]1. 已知线段AB 和直线l ,过A 、B 两点作圆,并使圆心在l 上. (1) 当l 平行AB 时,可以作几个这样的圆? (2) 当l 与AB 斜交时,可以作几个这样的圆?(3) 当l 与AB 垂直(不过AB 中点)时,可以作几个这样的圆? (4) 当l 为AB 的中垂线时,可以作几个这样的圆/第2课时[基础训练]1.填空:如图,在⊙O中,直径CD交弦AB(不是直径)于点E.(1)若CD⊥AB,则有、、;(2)若AE = EB,则有、、;,则有、、.(3)若AC BC2.若圆的一条弦长为该圆的半径等于12cm,其弦心距等于8cm,则弦长为_________cm.3. 如图,AB是半圆⊙O的直径,E是BC的中点,OE交弦BC于点D.已知BC=8cm, DE=2cm ,则AB的长为cm.4. 已知:如图,在⊙O中M, N分别为弦AB, CD的中点,AB=CD, AB不平行于CD.求证:∠AMN=∠CNM2.如图,AB是⊙O的直径,CD是弦.若AB = 10cm, CD = 8cm, 那么A , B 两点到直线CD的距离之和为( )A. 12cmB. 10cmC.8cmD.6cm第三节圆心角第1课时[基础训练]1.如图,AC和BD是⊙O的两条直径.( l )图中哪些量相等?(指劣弧和弦)(2 )当点A在圆周上运动时是否存在一点,使AB = BC=CD=DA .2.一条弦把圆分成2:3两部分,那么这条弦所对的圆心角的度数为_______.3.在半径为9cm的圆中,60度的圆心角所对的弦长为_________.4.在半径为1的弦所对的圆心角是_________.[综合应用]1.若⊙O的弦AB的长为8cm, O到AB的距离为cm,则弦AB所对的圆心角为.2. 如图,已知AB是⊙O的直径,M, N分别是AO, BO的中点,CM⊥AB ,.DN⊥AB.求证:AC BD3.如图,在Rt△AOB中,∠B=400,以OA为半径,O为圆心作⊙O,交AB于点C,交OB于点D.求CD的度数.[拓展延伸]1.如图所示,AB 为⊙O 的直径,弦CD 和AB 的延长线交与P ,且DP=OB ,若29P ∠=,求弧AC 的度数.2课时 [基础训练]1.下列命题中,真命题是( )A .相等的圆心角所对的弧相等B .相等的弦所对的弧相等C .度数相等的弧是等弧D .在同心圆中,同一圆心角所对的两条弧的度数相等2.点O 是两个同心圆的圆心,大圆的半径QA, OB 分别交小圆于点C, D .给出下列结论: ①AB CD =、② AB=CD ; ③AB 的度数=CD 的度数; ④AB 的长度=CD 的长度.其中正确的结论有( ) A. 1个 B. 2个 C.3 个 D.4 个 3.如图,AD BC =,若AB=3,则CD= .4. 如图,在⊙O 中,AB AC =,则AB= ,∠B= ,∠C= .5.在半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为____. 6.如图,AB, CD 是⊙O 的两条弦,且AB=CD , 点M 是AC 的中点,求证:MB=MD.[综合提高]1.如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A, B 两点)上移动时,点P ( )A .到CD 的距离保持不变B .位置不变C .等分DBD .随 C 点的移动而移动2.如图,AB, CD 是⊙O 的两条弦,且AB=CD , 点M 是AC 的中点,求证:MB=MD.3.. 如图,AB, CD 是⊙O 的两条直径,过点A 作AE//CD 交⊙O 于点E ,连结BD , DE.求证:BD=DE.[拓展延伸]1. 如图,MN为半圆O的直径,半径OA⊥MN, D为OA的中点,过点D 作BC//MN,求证:( 1 ) 四边形ABOC为菱形;(2)∠MNB=18∠BAC.第四节圆周角第1课时[基础训练]1. 如图,四边形ABCD内接于⊙O,∠BOD=1600, 则∠BAD的度数是,∠BCD的度数是.2. 如图,正方形ABCD内接于⊙O,点P在弧AB上,则∠DPC = .3. 如图,已知AB是⊙O的直径,点C为AB的一个三等分点,则BC : AC :AB.(第3题)4. BD 是⊙O 的直径,OA,OC 是⊙O 的半径,且OA ,OC 在BD 两侧. 如果∠AOD:∠COD=4:1,那么∠ABD :∠CBD .5. 如图, AB 是⊙O 的直径,弦CD ⊥AB, E 是AD 上一点,若∠BCD=350, 求∠AED 的度数.[综合提高]1.已知,A, B, C 是⊙O 上的三点,∠AOC=1000, 则∠ABC = . 2. 下面每张方格纸上都画有一个圆,只用不带刻度的直尺就能确定圆心位置的是( )3. 已知AB 是⊙O 的直径,AC, AD 是弦,且,AD=1,则圆周角∠CAD 的度数是 ( )A. 450或600B. 600 C . 1050 D. 150或1050 4. 如图,A, B, C 为⊙O 上三点,∠ABO=650,则∠BCA 等于( ) A.250 B.32.50 C300 D. 4505. 已知:如图,四边形ABCD 是⊙O 的内接四边形,∠BOD=1400,则∠DCE= .6.如图,AB 是⊙O 的直径,C, D, E 都是⊙O 上的点,则∠1+∠2 = .7. 如图,已知AB为⊙O的直径,AC为弦,OD//BC交AC于点D, AC=6cm,则DC= cm .8.如图,AB,AC是⊙O的两条弦,且AB=AC, D是BC上一点,P是AC 上一点,若∠BDC=1500, 则∠APC .9. 如图,OC经过原点且与两坐标轴分别交于点A与点B, 点A的坐标为(0, 4 ) , M是圆上一点,∠BMO=1200.求:⊙C的半径和圆心C的坐标.[拓展延伸]1.如图,在⊙O中AB是直径,CD是弦,AB⊥CD.(1)P是CAD上一点(不与C, D重合).求证:∠CPD=∠COB;(2)点P’在劣弧CD上(不与C , D重合)时,∠CP/D与∠COD有什么数量关系?请证明你的结论.第2课时[基础训练]1. 下列命题中,真命题的个数为()①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③900的圆周角所对的弦是直径;④直径所对的角是直角;⑤圆周角相等,则它们所对的弧也相等;⑥同弧或等弧所对的圆周角相等.A. 1 个B. 2 个C. 3 个D. 4 个2. 如图,已知AB是半圆O的直径,∠BAC=200, D是AC上任意一点,则∠D的度数是()A . 1200 B. 1100 C .1000 D. 9003. 如图所示的暗礁区,两灯塔A, B之间的距离恰好等于圆的半径,为了使航船(S )不进入暗礁区,那么S 对两灯塔A, B 的视角∠ASB 必须 ( ) A .大于600 B .小于600 C .大于300 D .小于3004. 如图,AC 是⊙O 的直径,点B, D 在⊙O 上,那么图中等于12∠BOC 的角有( )A. l 个B. 2 个C.3 个D. 4 个 5.如图,A, B, C, D 是⊙O 上的点,已知∠1=∠2,则与AD 相等的弧是 ,与BCD 相等的弧是 ,于是AD= , BD= . 6. 如图,在⊙O 中,弦AB //CD ,求证:AC=BD.7. 如图, A, B, C, D 四点都在⊙O 上, AD 是⊙O 的直径,且AD=6cm ,若∠ABC=∠CAD .求弦AC 的长.[综合提高]1.如图, AB, AC, AD 是⊙O 的三条弦,E 是AB 上一点,AD 是∠BAC(第5题)的平分线,且∠BAC=600,则∠BED .2.如图,已知AB 是⊙O 的直径,CD 与AB 相交于点E ,∠ACD=600, ∠ADC=500 ,则∠AEC= .(第1题) (第2题) (第4题) 3. 已知3cm 长的一条弦所对的圆周角是1350 , 那么圆的直径是 . 4. 如图,A, B, C 为⊙O 上三点,∠BAC=1200,∠ABC=450 , M, N 分别为BC, AC 的中点,则OM:ON 的值为5. 如图,BC 是⊙O 的直径,弦 AE ⊥BC ,垂足为点D,12AB BF =,AE 与BF 相交于点G.求证:(1)BE EF =;(2)BG=GE6. 如图, AB 是⊙O 的直径,C, D 是AB 上的点,且AC=BD; P ,Q 是⊙O 上在AB 同侧的两点,且AP BQ =,延长PC, QD 分别交⊙O 于点M, N .求证:AM BN =[拓展延伸]1. 如图,⊙C 经过坐标原点O ,并与两坐标轴交与A ,D 两点,已知∠OBA=30,点D 的坐标为(0,2),求点A 的坐标及圆心C 的坐标.习题课[范例1]在90Rt ABC ACB CD AB ∆∠=⊥中,,,若AC=4,BC=3,以点C 为圆心,r 为半径画圆,使得A 、B 、D 三点中至少有一点在圆内,至少有一点在圆外,则r 的取值范围是________________.反馈 等腰三角形ABC 中,AB=AC=10,BC=12,AD BC ⊥于点D ,以点D 为圆心,r 为半径画圆,使得A 、B 、C 、D 四个点中至少有一个点在圆内,一个点在圆外,则r 的取值范围是________________.[范例2]如图,⊙O 的半径为5,弦AB 的长为6,求圆心O 到AB 的距离OC 的长.反馈 如图AB 是⊙O 的直径,CD 是弦,且C D ⊥AB ,垂足是P ,CP=2,PB=1,求AP 、OP 的长.[巩固练习]1.下列结论中正确的是( )A .弦是直径B .弧是半圆C .半圆是弧D .过圆心的线段是直径 2.在半径为5cm 的圆内有长为 ) A .60120或 B.30120或C. 60D. 1203.如图,以至AB 是半圆O 的直径,∠BAC=32,D 是弧AC 的中点,那么∠DAC 的度数是( )A .25B .29C .30D .32 4.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点,则线段OM 长的整数值有( )A .2个B .3个C .4个D .5个5.如图,四边形ABCD 内接与⊙O ,AC 是∠BAD 的平分线,O M ⊥BC 于M ,ON ⊥CD 于N ,下列选项中正确的是( )A .OM>ON B.ON=OM C.OM<ON D.不能确定(第3题) (第4题) (第5题)6.已知:如图,45,65,BPC ABC ∠=∠=∠则ACB 等于( ) A .40 B .50 C . 60 D .707.如图,四边形ABCD 内接与⊙O ,∠BOC=100,则∠BDC 的度数是( ) A .100 B .50 C . 80D .130第6题第7题8.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离是5,最小距离是1,则此圆的半径为_____________.9.圆的半径等于4,圆内一条弦长为则弦的中点与弦所对弧的中点的距离是____________.10.10cm 长的一条弦所对的圆周角是90,则此圆的直径为_________. 11.在半径为2的圆中,长度等于________,圆周角是_____________.12.如图,在三角形ABC 中,∠ACB=90,AC=2cm,BC=4cm,CM 是中线,以C为半径画圆,则A、B、M三点在援外的是点________,在圆上的是点_____________.13.如图,AB是⊙O的直径,C为⊙O上一点,BD平分∠ABC.已知BC=6,AC=8,求CD的长。
中考数学复习《圆的基本性质》练习题含答案
中考数学复习 圆的基本性质一、选择题1.如图,点A ,B ,C 是⊙O 上的三点,若∠OBC =50°,则∠A 的度数是( A ) A .40° B .50° C .80° D .100°【解析】∠A =12∠COB =12(180°-2∠OBC )=12(180°-2×50°)=40°.,第1题图) ,第2题图)2.如图为4×4的网格,A ,B ,C ,D ,O 均在格点上,则点O 是( B ) A .△ACD 的外心 B .△ABC 的外心 C .△ACD 的内心 D .△ABC 的内心3.如图,CD 是⊙O 的直径,弦AB ⊥CD ,垂足为M ,若AB =12,OM ∶MD =5∶8,则⊙O 的周长为( B )A .26πB .13π C.96π5 D.3910π5【解析】连结OA ,∵CD 为⊙O 的直径,弦AB ⊥CD ,∴AM =12AB =6,∵OM ∶MD =5∶8,∴设OM =5x ,DM =8x ,∴OA =OD =13x ,∴AM =12x =6,∴x =12,∴OA =132,∴⊙O 的周长=2OA ·π=13π.故选B.,第3题图) ,第4题图)4.如图,扇形OAB 的圆心角为122°,C 是弧AB 上一点,则∠ACB =( D ) A .110° B .120° C .122° D .119°【解析】因为同弧所对的圆周角等于它所对的圆心角的一半,所以与∠AOB 所对同弧的圆周角度数为12∠AOB =61°,由圆内接四边形对角互补,得∠ACB =180°-61°=119°,故选D.5.如图是自行车骑行训练场地的一部分,半圆O 的直径AB =100,在半圆弧上有一运动员C 从B 点沿半圆周匀速运动到M (最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A 点停止.设运动时间为t ,点B 到直线OC 的距离为d ,则下列图象能大致刻画d 与t 之间的关系是( C )【解析】设运动员的速度为v ,则运动的路程为v t ,设∠BOC =α,当点C 从B 运动到M 时,∵v t =α·π·50180=5πα18,∴α=18v t 5π,在直角三角形中,∵d =50sin α=50sin 18v t5π,∴d 与t之间的关系d =50sin 18v t 5π,当点C 从M 运动到A 时,d 与t 之间的关系d =50sin(180-18v t5π),故C 正确.二、填空题6.如图,在⊙O 中,AB 是弦,C 是AB ︵上一点.若∠OAB =25°,∠OCA =40°,则∠BOC 的大小为__30__度.【解析】∵∠BAO =25°,∠ACO =40°,OA =OC ,∴∠C =∠CAO =40°,∴∠CAB =∠CAO -∠BAO =15°,∴∠BOC =2∠BAC =30°.,第6题图) ,第7题图)7.如图,点A ,B ,C ,P 在⊙O 上,CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE =40°,则∠P 的度数为__70°__.【解析】∵CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE =40°,∴∠DOE =180°-40°=140°,∴∠P =12∠DOE =70°.8.如图,AB 是⊙O 的弦,AB =5,点C 是⊙O 上的一个动点,且∠ACB =45°,若点M ,N 分别是AB ,AC 的中点,则MN 长的最大值是__522__.,第8题图) ,第9题图)9.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD =5,则OH 的长度为__76__.【解析】连结OD ,∵AB 是⊙O 的直径,且经过弦CD 的中点H ,∴AB ⊥CD ,∴∠OHD=∠BHD =90°,∵cos ∠CDB =DH BD =45,BD =5,∴DH =4,∴BH =BD 2-DH 2=3,设OH=x ,则OD =OB =x +3,在Rt △ODH 中,由勾股定理得x 2+42=(x +3)2,解得x =76,∴OH=76. 若点O 是等腰△ABC 的外心,且∠BOC =60°,底边BC =2,则△ABC 的面积为__2-3或2+3__.【解析】存在两种情况,当△ABC 为钝角三角形时,连结OB ,OC ,∵点O 是等腰△ABC 的外心,且∠BOC =60°,底边BC =2,OB =OC ,∴△OBC 为等边三角形,OB =OC =BC =2,OA ⊥BC 于点D ,∴CD =1,OD =22-12=3,∴S △ABC =BC ·AD 2=2×(2-3)2=2-3;当△ABC 为锐角三角形时,连结OB ,OC ,∵点O 是等腰△ABC 的外心,且∠BOC =60°,底边BC =2,OB =OC ,∴△OBC 为等边三角形,OB =OC =BC =2,OA ⊥BC 于点D ,∴CD =1,OD =22-12=3,∴S △ABC =BC ·DA 2=2×(2+3)2=2+3,由上可得,△ABC 的面积为2-3或2+ 3.三、解答题11.如图,AB 为⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC =45°.(1)求∠EBC 的度数; (2)求证:BD =CD .解:(1)∠EBC =22.5° (2)证明略12.如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC =13,求AB 的长.解:如图,作直径AE ,连结CE ,∴∠ACE =90°,∵AH ⊥BC ,∴∠AHB =90°,∴∠ACE =∠AHB ,∵∠B =∠E ,∴△ABH ∽△AEC ,∴AB AE =AHAC,∵AC =24,AH =18,AE =2OC =26,∴AB =18×2624=39213.如图,A ,P ,B ,C 是圆上的四个点,∠APC =∠CPB =60°,AP ,CB 的延长线相交于点D .(1)求证:△ABC 是等边三角形;(2)若∠P AC =90°,AB =23,求PD 的长. 解:(1)∵∠ABC =∠APC ,∠BAC =∠BPC ,∠APC =∠CPB =60°,∴∠ABC =∠BAC =60°,∴△ABC 是等边三角形 (2)∵△ABC 是等边三角形,AB =23,∴AC =BC =AB =23,∠ACB =60°.在Rt △PAC 中,∠PAC =90°,∠APC =60°,AC =2 3.∴AP =2.在Rt △DAC 中,∠DAC =90°,AC =23,∠ACD =60°,∴AD =6.∴PD =AD -AP =6-2=414. 如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,∠APC =∠CPB =60°. (1)判断△ABC 的形状;(2)试探究线段PA ,PB ,PC 之间的数量关系,并证明你的结论;(3)当点P 位于AB ︵的什么位置时,四边形APBC 的面积最大?求出最大面积.解:(1)等边三角形(2)PA +PB =PC.证明:如图,在PC 上截取PD =PA ,连结AD.∵∠APC =60°, ∴△PAD 是等边三角形,∴PA =AD ,∠PAD =60°.又∵∠BAC =60°, ∴∠PAB =∠DAC. ∵AB =AC, ∴△PAB ≌△DAC ,∴PB =DC. ∵PD +DC =PC, ∴PA +PB =PC(3)当点P 为AB ︵的中点时,四边形APBC 面积最大.理由:如图,过点P 作PE ⊥AB ,垂足为E, 过点C 作CF ⊥AB ,垂足为F .∵S △PAB =12AB·PE ,S △ABC =12AB·CF ,∴S 四边形APBC=12AB (PE +CF ).∵当点P 为AB ︵的中点时,PE +CF =PC ,PC 为⊙O 直径,∴四边形APBC 面积最大.又∵⊙O 的半径为1,∴其内接正三角形的边长AB =3,∴S 四边形APBC =12×2×3=3。
(完整版)圆的基本性质检测试题
圆的基本性质测试题班级 姓名 得分一:选择题(每题3分,共30分)( )1.下列语句中不正确的有①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,对称轴是任意一条直径所在的直线, ④半圆是弧,⑸直径是圆内 最长的弦,⑥等弧所对的圆周角相等. A .3个 B.4个 C .5个 D.6个( )2. 如图,已知⊙O 的半径为5,弦AB=6,M 是AB 上任意一点,则线段OM 的长可能是:A .2.5B .3.5C .4.5D .5.5 ( )3.如图,,已知AB 是⊙O 的直径,∠BOC=400,那么∠AOE=A.400B. 600C.800D.1200( )4.如图,将圆沿AB 折叠后,圆弧 恰好经过圆心,则 ∠AOB 等于:A .60°B .90°C .120°D .150°(第3题) (第4题) (第5题) (第6题)( )5. 两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为A .(45)+ cmB .9 cmC .45cmD .62cm( )6. 如图,BD 是⊙O 的直径,圆周角∠A = 30︒,则∠CBD 的度数是 A .30︒ B .45︒ C .60︒ D .80︒( )7.AB 为⊙O 的直径,C 、D 是⊙O 上的两点,∠BAC =30º,AD =CD ,则∠DAC 的度数是:A .30ºB .60ºC .45ºD .75º(第7题) (第8题) (第9题) (第10题)( )8.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,连接BC ,若AB =2cm ,∠BCD =22°30′,则⊙O 的半径为: A .4cm B.2cm C.1cm D.0.5cm ( )9. 已知⊙O 的直径AB=12,弦AC=6,AD=62,则∠CAD=A. 60°B. 450C.1050 或150D. 60°或 450( )10.如图,AB 是⊙O 的直径,AB=2,点C 在⊙O 上,∠CAB=30°,D 为的中点,P 是直径AB 上一动点,则PC+PD 的最小值为: A.22 B.2 C.1 D.2二:填空题(每题3分,共18分)11. 如图,⊙O 的半径OA=10cm ,弦AB=16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距 离为 。
第3章圆的基本性质(压轴33道)(原卷版)
第3单元圆的基本性质(压轴33道)一.选择题(共8小题)1.已知⊙O的半径为2,点P是⊙O内一点,且OP=,过P作互相垂直的两条弦AC、BD,则四边形ABCD面积的最大值为()A.4B.5C.6D.72.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为()A.1B.C.2D.无法计算3.如图,半圆的直径AB=10cm,弦AC=6cm,把AC沿直线AD对折恰好与AB重合,则AD的长为()A.4cm B.3cm C.5cm D.8cm4.如图,将边长为cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动8次后,正方形的中心O经过的路线长是()cm.A.8B.8C.3πD.4π5.如图,AC是圆O的直径,AC=4,弧BA=120°,点D是弦AB上的一个动点,那么OD+BD的最小值为()A.B.C.D.6.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为()A.6.5米B.9米C.13米D.15米7.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30°C.75°D.60°8.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是()A.3πB.6πC.5πD.4π二.填空题(共13小题)9.某个圆锥的侧面展开图形是一个半径为6cm,圆心角为120°的扇形,则这个圆锥的底面半径为cm.10.如图,在平面直角坐标系中,弧ABC所在圆的圆心P的坐标为(3,4),弧ABC与x轴交于点(1,0),则⊙P与x轴的另一交点坐标是.11.如图,在四边形ACBD中,AB=BD=BC,AD∥BC,若CD=4,AC=2,则AB的长为.12.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB =60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为cm.13.如图,边长为1的正方形ABCD绕点A逆时针旋转30°,得到正方形AB′C′D′,则图中阴影部分的面积为.14.如图,在△ABC中,AB=8cm,BC=4cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的C′′处,那么AC边扫过的图形(图中阴影部分)的面积是cm2(结果保留π).15.在直径为10m的圆柱形油槽内装入一些油后,截面如图所示,如果油面宽AB=8m,那么油的最大深度是m.16.如图,将半径为1、圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A'O'B'处,则顶点O经过的路线总长为.17.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为度.18.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需个五边形.19.如图(甲),水平地面上有一面积为30πcm2的灰色扇形OAB,其中OA的长度为6cm,且与地面垂直、若在没有滑动的情况下,将图(甲)的扇形向右滚动至OB垂直地面为止,如图(乙)所示,则点O移动的距离cm.20.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为.21.如图,在平面直角坐标系中,已知点A(﹣3,0),B(0,4),对△AOB 连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O最远距离的坐标是,第2012个三角形离原点O最远距离的坐标是.三.解答题(共12小题)22.阅读下列材料:问题:如图1,在正方形ABCD内有一点P,P A=,PB=,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连接PP′.请你参考小明同学的思路,解决下列问题:(1)图2中∠BPC的度数为;(2)如图3,若在正六边形ABCDEF内有一点P,且P A=,PB=4,PC=2,则∠BPC的度数为,正六边形ABCDEF的边长为.23.如图(1)正方形ABCD和正方形AEFG,边AE在边AB上,AB=12,AE =.将正方形AEFG绕点A逆时针旋转α(0°≤α≤45°)(1)如图(2)正方形AEFG旋转到此位置,求证:BE=DG;(2)在旋转的过程中,当∠BEA=120°时,试求BE的长;(3)BE的延长线交直线DG于点Q,当正方形AEFG由图(1)绕点A逆时针旋转45°,请直接写出旋转过程中点Q运动的路线长;(4)在旋转的过程中,是否存在某时刻BF=BC?若存在,试求出DQ的长;若不存在,请说明理由.(点Q即(3)中的点)24.已知:如图,在半径为2的半圆O中,半径OA垂直于直径BC,点E与点F分别在弦AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与A、B重合.(1)求四边形AEOF的面积.=y,写出y与x之间的函数关系式,求x的取值范围.(2)设AE=x,S△OEF25.已知:△ABC是⊙O的内接正三角形,P为弧BC上一点(与点B、C不重合),(1)如果点P是弧BC的中点,求证:PB+PC=P A;(2)如果点P在弧BC上移动时,(1)的结论还成立吗?请说明理由.26.某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.27.将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF.(1)如图1,若∠ABC=α=60°,BF=AF.①求证:DA∥BC;②猜想线段DF、AF的数量关系,并证明你的猜想;(2)如图2,若∠ABC<α,BF=mAF(m为常数),求的值(用含m、α的式子表示).28.如图,已知△BAD≌△ECB,∠BAD=∠BCE=90°,∠ABD=∠BEC=30°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)如图1,当A,B,E三点在同一直线上时,判断AC与CN数量关系为;(2)将图1中△BCE绕点B逆时针旋转到图2位置时,(1)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由;(3)将图1中△BCE绕点B逆时针旋转一周,旋转过程中△CAN能否为等腰直角三角形?若能,直接写出旋转角度;若不能,说明理由.29.如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;(3)若BD=6,DF=4,求AD的长.30.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD 与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB 与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由;(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.31.如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB=24cm,CD=8cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹).(2)求残片所在圆的面积.32.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为α.在旋转过程中,两个正方形只有点A重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)如图3,如果α=45°,AB=2,AE=4,求点G到BE的距离.33.如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C 顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.。
期末复习第三章圆的基本性质好题精选
期末复习第三章圆的基本性质好题精选题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共15小题)1.已知的⊙O半径为3cm,点P到圆心O的距离OP=2cm,则点P()A.在⊙O外B.在⊙O上C.在⊙O内D.无法确定2.平面内有一点P到圆上最远的距离是6,最近的距离是2,则圆的半径是()A.2B.4C.2 或4D.83.如图,四边形ABCD内接于⊙O,∠DAB=140°,连接OC,点P是半径OC 上一点,则∠BPD不可能为()A.40°B.60°C.80°D.90°4.点E是半径为5的⊙O上的点,AB是⊙O的一条弦且AB=8.若△ABE的面积为8,那么在圆上这样的点E我们可以找到()A.4个B.3个C.2个D.1个5.如图,将⊙O上的沿弦BC翻折交半径OA于点D,再将沿BD翻折交BC于点E,连结DE.若AB=10,OD=1,则线段DE的长为()A.5B.2C.2D.+16.某品牌婴儿罐装奶粉圆形桶口如图所示,它的内直径(⊙O直径)为10cm,弧AB的度数约为90°,则弓形铁片ACB(阴影部分)的面积约为()A.(π﹣)cm2B.(π﹣25)cm2C.(π﹣)cm2D.(25π﹣)cm27.《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸8.如图,AB是⊙O的直径,AB=10,P是半径OA上的一动点,PC⊥AB交⊙O于点C,在半径OB上取点Q,使得OQ=CP,DQ⊥AB交⊙O于点D,点C,D位于AB两侧,连结CD交AB于点E.点P从点A出发沿AO向终点O运动,在整个运动过程中,△CEP与△DEQ的面积和的变化情况是()A.一直减小B.一直不变C.先变大后变小D.先变小后变大9.如图,点O是半径为3的圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使弧AB和弧BC都经过圆心O,则阴影部分的面积为()A.2πB.3πC.D.10.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1D.1﹣11.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4B.6C.4﹣2D.10﹣412.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.213.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.14.小敏在作⊙O的内接正五边形时,先做了如下几个步骤:(1)作⊙O的两条互相垂直的直径,再作OA的垂直平分线交OA于点M,如图1;(2)以M为圆心,BM长为半径作圆弧,交CA于点D,连结BD,如图2.若⊙O的半径为1,则由以上作图得到的关于正五边形边长BD的等式是()A.BD2=OD B.BD2=OD C.BD2=OD D.BD2=OD 15.扇形OAB的半径OA=1,圆心角∠AOB=90°,点C是弧AB上的动点,连结AC和BC,记弦AC、CB与弧AC、CB围成的阴影部分的面积为S,则S 的最小值为()A.﹣B.﹣C.D.第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共10小题)16.已知△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,r为半径画圆,使得点A在⊙C内,点B在⊙C外,则半径r的取值范围是.17.如图,在圆O中有折线ABCO,BC=6,CO=4,∠B=∠C=60°,则弦AB的长为.18.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.19.如图,AB为半圆O的直径,以AO为直径作半圆M,C为OB的中点,D 在半圆M上,且CD⊥MD,延长AD交⊙O于点E,若AB=4,则图中阴影部分的面积为.20.在2×2的正方形网格中,每个小正方形的边长为1.以点O为圆心,2为半径画弧,交图中网格线于点A,B,则扇形AOB的面积是.21.如图,直线PQ∥MN,点A在PQ上,直角△BEF的直角边BE在MN上,且∠B=90°,∠BEF=30°.现将△BEF绕点B以每秒1°的速度按逆时针方向旋转(E,F的对应点分别是E′,F′),同时,射线AQ绕点A以每秒4°的速度按顺时针方向旋转(Q的对应点是Q′).设旋转时间为t秒(0≤t≤45).(1)∠MBF′=.(用含t的代数式表示)(2)在旋转的过程中,若射线AQ′与边E′F′平行时,则t的值为.22.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为cm.23.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于.24.如图,小强为了帮助爸爸确定残破轮子的直径,先在轮子上画出一个弓形(如图中阴影部分),然后量得弦AB的长为4cm,这个弓形的高为1cm,则这个轮子的直径长为cm.25.如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△A n B n C n的顶点B n、C n在圆上.如图1,当n=1时,正三角形的边长a1=;如图2,当n=2时,正三角形的边长a2=;如图3,正三角形的边长a n=(用含n的代数式表示).评卷人得分三.解答题(共15小题)26.如图,在⊙O中,DE是⊙O的直径,AB是⊙O的弦,AB的中点C在直径DE上.已知AB=8cm,CD=2cm(1)求⊙O的面积;(2)连接AE,过圆心O向AE作垂线,垂足为F,求OF的长.27.如图,AB是⊙O的一条弦,OD⊥AB,垂足为点C,交⊙O于点D,点E 在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,OA=5,求AB的长.28.如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.请完成下列填空:①请在图中确定并点出该圆弧所在圆心D点的位置,圆心D坐标;②⊙D的半径=(结果保留根号);③的长为.29.如图,在破残的圆形残片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=8cm,CD=2cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求出(1)中所作圆的半径.30.要测量一个钢板上的小孔的直径,通常采用间接的测量方法.如果用一个直径为10mm的标准钢珠放在小孔上,测的钢珠顶端与小孔平面的距离h=8 mm (如图),求此小孔的直径d.31.如图,为一圆洞门.工匠在建造过程中需要一根横梁AB和两根对称的立柱CE、DF来支撑,点A、B、C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AB=2,EF=,=120°.(1)求出圆洞门⊙O的半径;(2)求立柱CE的长度.32.如图,AB是⊙O的直径,点C是圆上一点,连接CA、CB,过点O作弦BC的垂线,交于点D,连接AD.(1)求证:∠CAD=∠BAD;(2)若⊙O的半径为1,∠B=50°,求的长.。
圆的基本性质练习题
圆的基本性质练习题姓名______________学号__________一.选择题:(本题共10小题,每小题3分,共30分)1. 已知扇形的弧长为π8,扇形的圆心角为060,则这个扇形的半径为( )A. 12B. 24C. 62D. 482.如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 的大小是( )A. 030B. 045C. 060D. 0703.下列说法正确的是( )A .半圆是弧,弧也是半圆B .三点确定一个圆C .平分弦的直径垂直于弦D .直径是同一圆中最长的弦4.如图,DC 是⊙O 直径,弦AB ⊥CD 于F ,连接BC ,DB ,则下列结论错误的是( )A .弧AD=弧BDB .AF=BFC .OF=CFD D .∠DBC=90°5.已知⊙O 的直径为10,若PO=5,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法判断6.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=70°,AO ∥DC ,则∠B 的度数为( )A.40°B.45°C.50°D.55°7.如图,⊙O 的半径为10,若OP=8,则经过点P 的弦长可能是( )A .10B .6C .19D .228. 如图,在半径为13cm 的圆形铁片上切下一块高为8cm 的弓形铁片,则弓形弦AB 的长为( )A 、10cmB 、16cmC 、24cmD 、26cm9.如图,点C 是以AB 为直径的半圆O 的三等分点,AC=2,则图中阴影部分的面积是( )A 、334-πB 、3234-πC 、332-πD 、332-π 10.如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为( )A .23 B .2 C .13138 D .131312 二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案! 11.一正六边的边长为8,则它的外接圆的直径为_______________12.四边形ABCD 内接于⊙O ,弧AB :弧BC :弧CD=2:3:5,∠BAD=120°,则∠ABC=_____13.如图,将弧AC 沿弦AC 折叠交直径AB 于圆心O ,则弧AC= 度.14.在半径为2的圆中,弦AC 长为1,M 为AC 中点,过M 点最长的弦为BD ,则四边形ABCD 的面积为15.如图,⊙O 是△ABC 的外接圆,AO ⊥BC 于点F ,D 为弧AC 的中点,且弧CD 的度数为70°,则∠BAF=16.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为________________17. 已知△ABC 的边BC=23cm ,且△ABC 内接于半径为2cm 的⊙O ,则∠A= 度.18.如图,C 、D 是以AB 为直径的圆O 上的两个动点(点C 、D 不与A 、B 重合),在运动过程中弦CD 始终保持不变,M 是弦CD 的中点,过点C 作CP ⊥AB 于点P .若CD=3,AB=5,PM=x ,则x 的最大值是_________.19.如图,△ABC 内接于⊙O ,∠B=90°,AB=BC ,D 是⊙O 上与点B关于圆心O 成中心对称的点,P 是BC 边上一点,连接AD 、DC 、AP .已知AB=8,CP=2,Q 是线段AP 上一动点,连接BQ 并延长交四边形ABCD 的一边于点R ,且满足AP=BR ,则=QRBQ ______ 三.解答题(共6题,共66分) 温馨提示:解答题应将必要的解答过程呈现出来!20(本题6分)如图,AB ,CD 是⊙O 的两条直径,过点A 作AE ∥CD 交⊙O 于点E ,连接BD ,DE ,求证:BD=DE .21(本题8分).如图所示,AB=AC ,AB 为⊙O 的直径,AC 、BC 分别交⊙O 于E 、D ,连结ED 、BE .(1)求证:BE ⊥AC ;(2)求证:BD=DE ;22(本题8分).如图,在直角坐标系中,⊙E 的半径为5,点E (1,﹣4).(1)求弦AB 与弦CD 的长;(2)求点A ,B 坐标.23(本题10分).如图,AB 是⊙O 的直径,弦CD⊥AB 于点E ,点P 在⊙O 上,PB 与CD 交于点F ,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O 的半径R=2,求劣弧AC 的长度.24.如图,在⊙O 中,两弦AB 与CD 的中点分别是P 、Q ,且⋂⋂=CD AB ,连结PQ ,求证:∠APQ =∠CQP 。
初中数学《圆的基本性质》中考集锦(含答案)
初中数学《圆的基本性质》好题集锦一、圆的有关线段和角1.如图所示,已知△ABC 内接于⊙O ,AB =AC ,∠BOC =120°,延长BO 交⊙O 于D 点.(1)试求∠BAD 的度数; (2)求证:△ABC 为等边三角形.2.如图,在⊙O 中,直径CD ⊥弦AB 于点E ,AM ⊥BC 于点M ,交CD 于点N ,连接AD . (1)求证:AD =AN ;(2)若AB =24,ON =1,求⊙O 的半径.3.已知,在⊙O 中,AB 是⊙O 的直径,点C .、P 在AB 的两侧,AC =21AB ,连接CP ,BP . (Ⅰ)如图①,若CP 经过圆心,求∠P 的大小;(Ⅱ)如图②,点D 是PB 上一点,CD ⊥PB ,若CP ⊥AB ,求∠BCD 的大小.4.如图,⊙P 的圆心的坐标为(2,0),⊙P 经过点)25,4(B .(1)求⊙P 的半径r ;(2)⊙P 与坐标轴的交点A ,E ,C ,F 的坐标;(3)点B 关于x 轴的对称点D 是否在⊙P 上,请说明理由.5.如图,AB 是⊙O 的直径,C 是BD 的中点,CE ⊥AB 于 E ,BD 交CE 于点F . (1)求证:CF =BF ;(2)若CD =6,AC =8,求CE 的长.6.已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连结AD . (1)求证:∠DAC =∠DBA ; (2)求证:P 是线段AF 的中点;(3)连接CD ,若CD =3,BD =4,求⊙O 的半径和DE 的长.7.如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD =60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).二、圆与四边形8.如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC 的外接圆O于点E,连结A E.(1)求证:四边形AECD为平行四边形;(2)连结CO,求证:CO平分∠BCE.9.如图,正方形ABCD的外接圆为⊙O,点P在劣弧上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.10.如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.11.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)在平行四边形、矩形、菱形、正方形中,一定是“十字形”的有________.(2)如图1,在四边形ABCD中,AB=AD,且CB=CD①证明:四边形ABCD是“十字形”;②若AB=2.∠BAD=60°,∠BCD=90°,求四边形ABCD的面积.(3)如图2.A、B、C、D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,若∠ADB﹣∠CDB=∠ABD﹣∠CBD.满足AC+BD=3,求线段OE的取值范围.三、圆的综合运用12.已知圆O的直径AB=12,点C是圆上一点,且∠ABC=30°,点P是弦BC上一动点,过点P作PD┴OP交圆O于点D.(1)如图1,当PD∥AB时,求PD的长;(2)如图2,当BP平分∠OPD时,求PC的长.13.如图,点E为⊙O的直径AB上一个动点,点C、D在下半圆AB上(不含A、B两点),且∠CED=∠OED=60°,连OC、OD(1)求证:∠C=∠D;(2)若⊙O的半径为r,请直接写出CE+ED的变化范围(用含r的代数式表示).14.如图,有两条公路OM、ON相交成 30°角,沿公路OM方向离O点 80 米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心 50 米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为 18 千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.15.如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D 两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.16.如图,△ABC内接于⊙O,AB=AC,CF垂直直径BD于点E,交边AB于点F.(1)求证:∠BFC=∠ABC.(2)若⊙O的半径为5,CF=6,求AF长.《圆的基本知识好题》参考答案1.解:(1)∵BD是⊙O的直径,∴∠BAD=90°(直径所对的圆周角是直角).(2)证明:∵∠BOC =120°,∴∠BAC =21∠BOC =60°.又∵AB =AC ,∴△ABC 是等边三角形. 2.(1)证明:∵∠BAD 与∠BCD 是同弧所对的圆周角, ∴∠BAD =∠BCD ,∵AE ⊥CD ,AM ⊥BC ,∴∠AEN =∠AMC =90°,∵∠ANE =∠CNM ,∴∠BAM =∠BCD , ∴∠BAM =∠BAD ,,∴△ANE ≌△ADE (A S A ),∴AN =AD ;(2)解:∵AB =42,AE ⊥CD ,∴AE =22,又∵ON =1,∴设NE =x ,则OE =x -1,NE =ED =x ,OD =OE +ED =2x -1,解图,连接AO ,则AO =OD =2x -1,第2题解图3.解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∵AC =21AB ,∴∠ABC =30°,∴∠A =90°-∠ABC =60°, ∴∠P =∠A =60°;(Ⅱ) ∵AB 是⊙O 的直径,AC =21AB , ∴∠A =60°,∴∠BPC =∠A =60°, ∵CD ⊥PB ∴∠PCD =90°-BPC =30°,∵CP ⊥AB ,AB 是⊙O 的直径, ∴BC =BP ,∴∠P =∠BCP =60°,∴∠BCD =∠BCP -∠PCD =60°-30°=30°.4..解:(1)过点B 作x 轴的垂线,交x 轴于点G ,连接BP . 则点G 坐标为(4,0).在Rt △PBG 中,PG =4-2=2,BG =25,斜边PB =241∴⊙P 的半径r =241.(2)点E 坐标为(2-241,0),点F 坐标为(2+241,0)∵点A 坐标的y 值=25,∴点A 坐标为(0,25).点C 坐标为(0,-25). (3)∵⊙P 关于x 轴对称,又∵B 与D 关于x 轴对称,∴D 在⊙P 上.5.证明:如图.∵AB 是⊙O 的直径,∴∠ACB =90°,又∵CE ⊥AB ,∴∠CEB =90°.∴∠2=90°-∠ACE =∠A . 又∵C 是弧BD 的中点,∴∠1=∠A .∴∠1=∠2,∴ CF =BF .(2)此时,CE =5246.(1)证明:∵BD 平分∠CBA , ∴∠CBD =∠DBA ,∵∠DAC 与∠CBD 都是弧CD 所对的圆周角, ∴∠DAC =∠CBD , ∴∠DAC =∠DBA ;(2)证明:∵AB 为直径, ∴∠ADB =90°,∵DE ⊥AB 于E , ∴∠DEB =90°,∴∠1+∠3=∠5+∠3=90°,∴∠1=∠5=∠2, ∴PD =P A ,∵∠4+∠2=∠1+∠3=90°,且∠ADB =90°,∴∠3=∠4, ∴PD =PF ,∴P A =PF ,即P 是线段AF 的中点;(3)解:连接CD , ∵∠CBD =∠DBA ,∴CD =AD ,∵CD =3,∴AD =3, ∵∠ADB =90°,AB =5,⊙O 的半径为2.5,∵DE ×AB =AD ×BD ,∴5DE =3×4, ∴DE =2.4.即DE 的长为2.4.7.(1)证明:∠ABF =∠ADC =120°﹣∠ACD =120°﹣∠DEC =120°﹣(60°+∠ADE )=60°﹣∠ADE , 而∠F =60°﹣∠ACF , 因为∠ACF =∠ADE ,所以∠ABF =∠F ,所以AB =AF .(2)证明:四边形ABCD 内接于圆,所以∠ABD =∠ACD , 又DE =DC ,所以∠DCE =∠DEC =∠AEB , 所以∠ABD =∠AEB , 所以AB =AE . ∵AB =AF ,∴AB =AF =AE ,即A 是三角形BEF 的外心.8.(1)根据圆周角定理知∠E =∠B , 又∵∠B =∠D ,∴∠E =∠D .∵AD ∥CE ,∴∠D +∠DCE =180°, ∴∠E +∠DCE =180°,∴AE ∥DC ,∴四边形AECD 为平行四边形. (2)如图,连结OE ,OB ,由(1)得四边形AECD 为平行四边形, ∴AD =EC .又∵AD =BC ,∴EC =BC . ∵OC =OC ,OB =OE , ∴△OCE ≌△OCB (SSS ),∴∠ECO =∠BCO ,即OC 平分∠BCE .9.11.解:连接OB ,OC ,∵四边形ABCD 为正方形,∴∠BOC =90°,∴∠BPC =21∠BOC =45°;(2)解:过点O 作OE ⊥BC 于点E , ∵OB =OC ,∠BOC =90°,∴∠OBE =45°,∴OE =BE ,∵OE 2+BE 2=OB 2 , ∴BE = 24 ∴BC =2BE =2810.解析:(1)∵A B 是直径, ∴∠AEB =90°,∴AE ⊥BC , ∵AB =AC ,∴BE =CE ,∵AE =EF ,∴四边形ABFC 是平行四边形, ∵AC =AB ,∴四边形ABFC 是菱形.(2)设CD =x .连接BD . ∵AB 是直径,∴∠ADB =∠BDC =90°, ∴AB2﹣AD2=CB2﹣CD2, ∴(7+x )2﹣72=42﹣x 2, 解得x=1或﹣8(舍弃)∴AC=8,BD=157822=-, ∴S 菱形ABF C=158. ∴S 半圆=ππ84212=⨯11.15. (1)菱形,正方形(2)解:①如图1,连接AC ,BD∵AB =AD ,且CB =CD∴AC 是BD 的垂直平分线,∴AC ⊥BD ,∴四边形ABCD 是“十字形”②如图,设AC 与BD 交于点O∵AB =AD ,AC ⊥BD∴∠BAO =∠BAD =30°同理可证∠BCO =45°在Rt △ABO 中,OB =1AO =AB ×cos30°=3OB =OC =1∴AC =AO +CO =1+3, BD =2∴ 四边形ABCD 的面积=21×AB ×BD =21×2×(1+3)=1+3(3)解:如图2∵∠ADB +∠CBD =∠ABD +∠CDB ,∠CBD =∠CDB =∠CAB ,∴∠ADB +∠CAD =∠ABD +∠CAB ,∴180°﹣∠AED =180°﹣∠AEB ,∴∠AED =∠AEB =90°,∴AC ⊥BD ,过点O 作OM ⊥AC 于M ,ON ⊥BD 于N ,连接OA ,OD ,∴OA =OD =1,OM 2=OA 2﹣AM 2 , ON 2=OD 2﹣DN 2 , AM =21AC ,DN = 21BD ,四边形OMEN 是矩形,∴ON =ME ,OE 2=OM 2+ME 2 ,∴OE 2=OM 2+ON 2=2﹣41(AC 2+BD 2) 设AC =m ,则BD =3﹣m ,∵⊙O 的半径为1,AC +BD =3,∴1≤m≤2,∴41423≤≤OE由图可知:以 50m 为半径画圆,分别交 ON 于 B ,C 两点,AD ⊥BC ,BD =CD =21BC ,OA =80m , ∵在 Rt △AOD 中,∠AOB =30°,AD = 21OA = 21×80=40m , 在 Rt △ABD 中,AB =50,AD =40,由勾股定理得:BD =30m , 故BC =2×30=60 米,即重型运输卡车在经过 BC 时对学校产生影响.∵重型运输卡车的速度为 18 千米/小时,即300 米/分钟,∴重型运输卡车经过 BC 时需要 60÷300=0.2(分钟)=12(秒).答:卡车 P 沿道路 ON 方向行驶一次给学校 A 带来噪声影响的时间为 12 秒.15.(1)连接PA ,如图1所示.∵PO ⊥AD ,∴AO =DO .∵AD =2,∴OA =.点P 坐标为(﹣1,0),∴OP =1.∴PA ==2.∴BP =CP =2. ∴B (﹣3,0),C (1,0). (2)连接AP ,延长AP 交⊙P 于点M ,连接MB 、MC .如图2所示,线段MB 、MC 即为所求作. 四边形AC MB 是矩形.理由如下∵△MCB 由△ABC 绕点P 旋转180°所得,∴四边形ACMB 是平行四边形.∵BC 是⊙P 的直径,∴∠CAB =90°.∴平行四边形ACMB 是矩形.过点M 作MH ⊥BC ,垂足为H ,如图2所示.在△MHP 和△AOP 中,∵∠MHP =∠AOP ,∠HPM =∠OPA ,MP =AP ,∴△MHP ≌△AOP .∴MH =OA =,PH =PO =1.∴OH =2.∴点M 的坐标为(﹣2,).(3)在旋转过程中∠MQG 的大小不变.∵四边形ACMB 是矩形,BMC =90°.EG ⊥BO ,∴∠BGE =90°.∴∠BMC =∠BGE =90°.∵点Q 是BE 的中点,∴QM =QE =QB =QG .∴点E 、M 、B 、G 在以点Q 为圆心,QB 为半径的圆上,如图3所示.∴∠MQG =2∠MBG .∵∠COA =90°,OC =1,OA =,∴tan ∠OCA =.∴∠OCA =60°.∴∠MBC =∠BCA =60°.MQG =120°.∴在旋转过程中∠MQG 的大小不变,始终等于120°.16.(1)证明:连结AD ,∵BD 是⊙O 的直径,∴∠BAD =90°,∵CF ⊥BD ,∴∠BEF =90°,∵∠ABD +∠ADB =90°,∠ABD +∠BFE =90°,∴∠BFC =∠ADB ,∵AB =AC ,∴∠ABC =∠ACB ,∵∠ACB =∠ADB ,∴∠BFC =∠ABC .(2)解:连结CD ,∵BD 是⊙O 的直径,∴∠BCD =90°,∵∠BFC =∠ABC ,∴BC =CF =6,∵BD =10,∴CD =8在Rt △BCE 中,BE=518,CE =524,56 EF , ,∴AF =AB -BF =1059。
第3章 圆的基本性质 浙教版数学九年级上册测试(含答案)
浙教版数学九年级上册第三章圆的基本性质一、选择题1.下列说法正确的是( )A.三个点可以确定一个圆B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.长度相等的弧是等弧2.已知一个扇形的面积是24π,弧长是2π,则这个扇形的半径为( )A.24B.22C.12D.63.如图,点A、B、C在⊙O上,∠C=40∘,则∠AOB的度数是( )A.50∘B.60∘C.70∘D.80∘4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,AE=1,则弦CD的长是()A.5B.5C.25D.65.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是( )A.28°B.30°C.36°D.56°6.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为( )A .103πB .109πC .59πD .518π7.如图, AB 是半圆O 的直径,点C ,D 在半圆O 上.若 ∠ABC =50° ,则 ∠BDC 的度数为( )A .90°B .100°C .130°D .140°8. 如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )A .3B .6C .3D .239.如图,正五边形ABCDE 内接于⊙O ,阅读以下作图过程:①作直径AF ;②以点F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接AM ,MN ,AN .结论Ⅰ:△AMN 是等边三角形;结论Ⅱ:从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正十八边形.对于结论Ⅰ和结论Ⅱ,下列判断正确的是( )A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对10.如图,抛物线y=x2﹣8x+15与x轴交于A、B两点,对称轴与x轴交于点C,点D(0,﹣2),点E (0,﹣6),点P是平面内一动点,且满足∠DPE=90°,M是线段PB的中点,连接CM.则线段CM的最大值是( )A.3B.412C.72D.5二、填空题11.如图,在⊙O中,弦AB,CD相交于点P.若∠A=40°,∠APD=75°,则∠B= °.12.如图,AB、AC是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N.如果MN=2.5,那么BC= .13.如图,四边形ABCD内接于⊙O ,若四边形ABCD的外角∠DCE=65°,则∠BAD的度数是 .14.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为 .15.我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的割圆术:“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O,若用圆内接正十二边形作近似估计,可得π的估计值为 .的面积,可得π的估计值为33216.如图,点M(2,0)、N(0,4),以点M为圆心5为半径作⊙M交y轴于A、B两点,点C为⊙M上一动点,连接CN,取CN中点D,连接AD、BD,则A D2+B D2的最大值为 .三、解答题17.如图,四边形ABCD为⊙O的内接四边形,AC是⊙O的直径,AD=BD,∠CAB=32°.求∠ACD的度数.18.如图,OC为⊙O的半径,弦AB⊥OC于点D,OC=10,CD=4,求AB的长.19.如图,正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求解答下列问题:(1)△A1B1C1与△ABC关于坐标原点O成中心对称,则B1的坐标为__________;(2)BC与B1C1的位置和数量关系为___________;(3)将△ABC绕某点逆时针旋转90°后,其对应点分别为A2(―1,―2),B2(1,―3),C2(0,―5),则旋转中心的坐标为___________.20.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,(1)求∠ACB的度数;(2)求BC的长;(3)求AD,BD的长.21.如图,AB是⊙O的直径,C是⏜BD的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF.(2)若CD=6,AC=8,求⊙O的半径及CE的长.22.如图所示,AB为☉O的直径,AC是☉O的一条弦,D为BC的中点,作DE⊥AC于点E,交AB的延长线于点F,连接DA.(1)若AB=90 cm,则圆心O到EF的距离是多少?说明你的理由.(2)若DA=DF=63,求阴影部分的面积(结果保留π).23.如图,AB是⊙O的直径,弦CD⊥AB与点E,已知AB=10,AE=8,点P为AB上任意一点,(点P不与A、B重合),连结CP并延长与⊙O交于点Q,连QD,PD,AD.(1)求CD的长.(2)若CP=PQ,直接写出AP的长.(3)①若点P在A,E之间(点P不与点E重合),求证:∠ADP=∠ADQ.②若点P在B,E之间(点P不与点E重合),求∠ADP与∠ADQ满足的关系.答案解析部分1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】C9.【答案】D10.【答案】C11.【答案】3512.【答案】513.【答案】65°14.【答案】15°15.【答案】316.【答案】49217.【答案】61°18.【答案】1619.【答案】(1)(2,2);(2)平行且相等;(3)(0,―1).20.【答案】(1)∠ACB=90°(2)BC=8cm(3)BD=AD=52cm21.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠A=90°-∠ABC.∵CE⊥AB,∴∠ECB=90°-∠ABC,又∵C是BD的中点,∴CD=BC,∴∠DBC=∠A,∴∠ECB=∠DBC,∴CF= BF;(2)解:∵BC=CD,∴BC=CD=6.在Rt△ABC中,AB= BC2+AC2=62+82=10,∴⊙O的半径为5;∵S△ABC= 12AB×CE= 12BC×AC,∴CE= BC×ACAB =6×810=245.22.【答案】(1)解:如图所示,连接OD,∵D为BC的中点,∴∠CAD=∠BAD.∵OA=OD,∴∠BAD=∠ADO.∴∠CAD=∠ADO.∴OD∥AE.∵DE⊥AC,∴OD⊥EF.∴OD的长是圆心O到EF的距离.∵AB=90 cm,∴OD=12AB=45 cm.(2)解:如图所示,过点O作OG⊥AD交AD于点G.∵DA=DF,∴∠F=∠BAD.由(1),得∠CAD=∠BAD,∵∠F+∠BAD+∠CAD=90°,∴∠F=∠BAD=∠CAD=30°.∴∠BOD=2∠BAD=60°,OF=2OD.∵在Rt△ODF中,OF2-OD2=DF2,∴(2OD)2-OD2=(63)2,解得OD=6.在Rt△OAG中,OA=OD=6,∠OAG=30°,AG=OA2―O G2=33,AD=23,S△AOD=1×63×3=93.2+93=6π+93.∴S阴影=S扇形OBD+S△AOD=60π×6236023.【答案】(1)解:连接OD,∵直径AB=10,AE=8,∴BE=2.∴OE=5-2=3.又∵AB⊥CD,在Rt△PED中,P D2=P E2+E D2∴ED=52―32=4∴CD=2ED=8(2)解:若CP=PQ,则点P与点O重合,或点P与点E重合.所以AP=5或8(3)解:①连接AC,由图可知∠ACQ=∠ADQ,因为AB是⊙O的直径,AB⊥CD,所以CE=DE,即AB是CD的垂直平分线,所以AC=AD,PC=PD,因为AP=AP,所以∠ACP=∠ADP ,所以∠ADP=∠ADQ .②∠ADP+∠ADQ=180°.理由如下:连接AC ,因为AB 是直径,AB ⊥CD ,所以AC=AD ,CE=DE ,所以△ACP ≌△ADP (SSS ),所以∠ACP=∠ADP ,因为∠ACP=12ADQ ,∠ADQ=12ACQ ,所以∠ACP+∠ADQ=12(ADQ +ACQ )=180°.。
圆的基本性质单元过关题
圆的基本性质单元过关题一、选择题1.有下列四种说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中,错误的说法有()A.1种B.2种C.3种D.4种2.下列说法正确的是()A.直径是圆中最长的弦,有4条B.长度相等的弧是等弧C.如果⊙A的周长是⊙B周长的4倍,那么⊙A的面积是⊙B面积的8倍D.已知⊙O的半径为8,A为平面内的一点,且OA=8,那么点A在⊙O上3.下列结论正确的是()A.半径相等的两条弧是等弧B.半圆是弧C.半径是弦D.弧是半圆4.小明在半径为5的圆中测量弦AB的长度,下列测量结果中一定是错误的是()A.4B.5C.10D.115.下列图形为圆的是()A.B.C.D.6.(2022秋•桃城区校级期末)如图,已知⊙O的直径为26,弦AB=24,动点P、Q在⊙O 上,弦PQ=10,若点M、N分别是弦AB、PQ的中点,则线段MN的取值范围是()A.7≤MN≤17B.14≤MN≤34C.7<MN<17D.6≤MN≤16 7.如图,⊙O的半径为10,若OP=8,则经过点P的弦长可能是()A.10B.6C.19D.228.如图,CD为⊙O直径,弦AB⊥CD于点E,CE=1,AB=6,则CD长为()A.10B.9C.8D.59.点P是⊙O内一点,过点P的最长弦的长为10,最短弦的长为6,则OP的长为()A.8B.2C.5D.410.如图,已知⊙O的半径为10,弦AB=12,M是AB上任意一点,则线段OM的长可能是()A.5.5B.6.5C.7.5D.8.511.“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”这是《九章算术》中的一个问题,用现代的语言表述为:如图,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,弦AB=10寸,则⊙O的半径为多少寸()A.5B.12C.13D.2612.高速公路的隧道和桥梁最多,如图是一个隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=8米,净高CD=8米,则此圆的半径OA=()A .5米B .112米C .6米D .132米 13. “圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问:径几何?”转化为数学语言:如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =10寸,直径CD 的长是( )A .13寸B .26寸C .28寸D .30寸14.(2022秋•桃城区校级期末)如图1,点M 表示我国古代水车的一个盛水筒.如图2,当水车工作时,盛水筒的运行路径是以轴心O 为圆心,5m 为半径的圆.若⊙O 被水面截得的弦AB 长为6m ,则在水车工作时,盛水筒在水面以下的最大深度为( )A .4mB .3mC .2mD .1m15.(2022秋•黄石期末)筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,如图1,点M 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O 为圆心.5米为半径的圆,旦圆心在水面上方,若圆被水面截得的弦AB 长为8米,则筒车工作时,盛水桶在水面以下的最大深度为( )A.1米B.2米C.3米D.4米16.下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;④长度相等的两条弧是等弧.A.3个B.2个C.1个D.以上都不对17.(2022秋•天河区校级期末)如图,已知在⊙O中,BC是直径,AB=DC,则下列结论不一定成立的是()A.OA=OB=AB B.∠AOB=∠COD̂=DĈD.O到AB、CD的距离相等C.AB̂的中点,弦AB=8,CD⊥AB,且CD=2,18.(2022秋•大名县校级期末)如图,C是AB̂所在圆的半径为()则ABA.4B.5C.6D.1019.(2022秋•天河区校级期末)如图,AB是⊙O的直径,CD为弦,CD⊥AB于点E,则下列结论中不成立的是()̂=AD̂B.BĈ=BD̂C.OE=BE D.CE=DE A.AC20.(2022秋•河西区校级期末)如图,AB是⊙O的弦,OC⊥AB于点H,若∠AOC=60°,OH=2,则弦AB的长为()A.4B.√3C.2√3D.4√321.(2022秋•历下区期末)如图,AB为⊙O的直径,C,D为⊙O上的两点,若∠ACD=56°,则∠DAB的度数为()A.34°B.36°C.46°D.54°22.(2022秋•南关区校级期末)如图,点A、B、C在⊙O上,点D是AB延长线上一点,若∠CBD=67°,则∠AOC的度数为()A.67B.113C.134D.13723.(2022秋•江津区期末)如图,AB是⊙O的弦,半径OC⊥AB于点D,∠P=26°,点P在圆周上,则∠A等于()A.26°B.30°C.34°D.38°24.(2022秋•甘井子区校级期末)如图,A、B、C为⊙O上的三个点,∠C=30°,则∠AOB的度数为()A.15°B.30°C.45°D.60°25.(2022秋•河西区校级期末)如图,CD是⊙O的直径,A、B是⊙O上的两点,若∠ADC =65°,则∠ABD的度数为()A.55°B.45°C.25°D.30°26.(2022秋•沙坪坝区校级月考)下列条件中能够确定一个圆的是()A.已知圆心B.已知半径C.已知三个点D.过一个三角形的三个顶点27.下列语句中正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③三点确定一个圆;④经过圆心的每一条直线都是圆的对称轴.A.1个B.2个C.3个D.4个28.(2021秋•大荔县期末)下列说法:①等弧所对的圆心角相等;②经过三点可以作一个圆;③平分弦的直径垂直于这条弦;④圆的内接平行四边形是矩形.其中正确的有()A.①②B.②③C.③④D.①④29.(2021秋•凤山县期末)经过不在同一直线上的三个点可以作圆的个数是()A.1B.2C.3D.无数二、填空题30.(2022秋•新罗区校级期中)如图,⊙O的半径为4cm,∠AOB=60°,则弦AB的长为cm.31.(2022秋•青山湖区期中)过圆O内一点P的最长的弦、最短弦的长度分别是10cm,8cm,则OP=cm.32.如图,OB是⊙O的半径,弦CD⊥OB于点E,若OB=10,CD=16,则线段OE的长为.33.(2022秋•宁德期末)如图,⊙O的直径CD=20cm,弦AB=16cm,AB⊥CD,垂足为M,则CM的长为.34.(2022秋•丰台区期末)如图,AB是⊙O的弦,OC⊥AB于点C,若AB=8,OC=3,则⊙O半径的长为.35.(2022秋•莲池区校级期末)如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为.36.(2022秋•门头沟区期末)石拱桥是中国传统桥梁四大基本形式之一,它的主桥拱是圆弧形.如图,已知某公园石拱桥的跨度AB=16米,拱高CD=4米,那么桥拱所在圆的半径OA=米.37.(2022秋•和平区校级期末)如图,一下水管道横截面为圆形,直径为260cm,下雨前水面宽为100cm,一场大雨过后,水面宽为240cm,则水位上升cm.38.(2022秋•莱州市期末)把一条长2m的铁丝折成顶角为120°的等腰三角形,那么这个三角形外接圆的半径为m.39.(2022秋•河北区校级期末)蔬菜基地圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则高度CD为m.40.(2022秋•天河区校级期末)如图,AB是⊙O的直径,点C是半圆上的一个三等分点,̂的中点,点P是直径AB上一点,若⊙O的半径为2,则PC+PD的最小值是.点D是AC41.(2022秋•苍溪县期末)如图,正方形ABCD是⊙O的内接四边形,则∠AOD的度数是.42.(2021秋•天河区期末)如图,在⊙O中,AC=BD,若∠AOC=120°,则∠BOD=.̂的中点,43.(2022秋•汉阴县期中)如图,AB为⊙O的直径,AE为⊙O的弦,C为优弧ABECD⊥AB,垂足为D.若AE=8,DB=2,则⊙O的半径为.44.(2022秋•滑县期中)如图,在⊙O中,点D为弧BC的中点,∠COD=40°,则∠BAD =.̂的45.(2022秋•红桥区校级期末)如图,A,B是⊙O上的两点,∠AOB=120°,C是AB中点,则∠A的大小为(度).46.(2022秋•襄州区期末)如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,则CD的长为.,交x轴正半轴于点47.(2022秋•莱州市期末)如图,平面直角坐标系中,⊙O的半径为52B,弦AB=3,点P为y轴上一点,且P A+PB的值最小,则点P坐标为.三、解答题48.(2021秋•崆峒区期末)如图,CD是⊙O的直径,点A在DC的延长线上,∠A=20°,AE交⊙O于点B,且AB=OC.(1)求∠AOB的度数.(2)求∠EOD的度数.49.(2022秋•邗江区期中)如图,半圆O的直径AB=8,半径OC⊥AB,D为弧AC上一点,DE⊥OC,DF⊥OA,垂足分别为E、F,求EF的长.50.(2022秋•西城区期末)如图,AB是⊙O的一条弦,点C是AB的中点,连接OC并延长交劣弧AB于点D,连接OB,DB.若AB=4,CD=1,求△BOD的面积.51.(2022秋•莱州市期末)如图,AB是⊙O的直径,点P是AB上一点,且点P是弦CD 的中点.(1)依题意画出弦CD;(尺规作图不写作法,保留作图痕迹)(2)若AP=4,CD=16,求⊙O的半径.52.(2022秋•朝阳区期末)圆管涵是公路路基排水中常用的涵洞结构类型,它不仅力学性能好,而且构造简单、施工方便.某水平放置的圆管涵圆柱形排水管道的截面是直径为1m的圆,如图所示,若水面宽AB=0.8m,求水的最大深度.̂表示桥拱.53.(2022秋•槐荫区期末)如图所示的拱桥,用AB̂所在圆的圆心为O,EF是弦CD的垂直平分线,请你利用尺规作图,找出圆(1)若AB心O.(不写作法,但要保留作图痕迹)̂的中点到弦AB的距离)为4m,求(2)若拱桥的跨度(弦AB的长)为16m,拱高(AB拱桥的半径R.54.如图,AC,BD为⊙O的弦,且AC=BD,求证AB与CD是否相等,为什么?̂的中点,M,N分别是OA,OB的中点,55.如图,已知OA,OB是⊙O的半径,C为AB求证:MC=NC.56.(2022秋•红旗区校级期末)已知:如图,在△ABC中,AB=AC,以腰AB为直径作半圆O,分别交BC,AC于点D,E.(1)求证:BD=DC.̂所对的圆心角的度数.(2)若∠BAC=40°,求DE57.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=4√2,OE=1,求⊙O的半径.。
圆的性质练习题
圆的性质练习题1. 以下哪个说法是关于圆心的?- (A) 圆心是圆的中点- (B) 圆心位于圆周上- (C) 圆心与半径相等- (D) 圆心可以位于圆外答案:(A) 圆心是圆的中点2. 在一个圆中,有两条相交的弦AB和CD,若弦AB的长度为12,弦CD的长度为16,那么弦AB的一半加上弦CD的一半等于多少?答案:弦AB的一半加上弦CD的一半等于143. 下列哪个选项不能确定一个圆?- (A) 圆心和半径- (B) 直径和半径- (C) 弦和半径- (D) 弧和半径答案:(C) 弦和半径4. 若一个圆的直径为10,那么它的半径是多少?答案:半径是55. 下列哪个说法是关于切线的?- (A) 切线与圆相切于圆的内部- (B) 切线与圆相切于圆的外部- (C) 切线与圆的切点位于圆的任意位置- (D) 切线与圆不可能相切答案:(B) 切线与圆相切于圆的外部6. 如果AB是一个圆的直径,CD是一个切线,且切点为E,那么角CED的度数是多少?答案:角CED的度数是90度7. 以下哪个选项不能作为一个圆的弧长?- (A) 3- (B) 3π- (C) π/2- (D) 2π答案:(C) π/28. 若一个圆的半径为8,那么它的周长是多少?答案:周长是16π9. 若一个圆的周长为12π,那么它的直径是多少?答案:直径是610. 以下哪个说法是关于圆的面积的?- (A) 圆的面积与周长成正比- (B) 圆的面积与半径的平方成正比- (C) 圆的面积与直径成正比- (D) 圆的面积与弧度成正比答案:(B) 圆的面积与半径的平方成正比以上是关于圆的性质的练习题,希望能帮助你巩固对圆的相关概念的理解。
请根据题目给出的选项选择正确答案,并核对答案的准确性。
初中数学:圆的基本性质测试题(含答案)
初中数学:圆的基本性质测试题(含答案)一、选择题(每小题4分,共24分)1.如图G -3-1,在⊙O 中,AB ︵=AC ︵,∠AOB =40°,则∠ADC 的度数是( ) A .40° B .30° C .20° D .15°2.在同圆或等圆中,下列说法错误的是( ) A .相等的弦所对的弧相等 B .相等的弦所对的圆心角相等 C .相等的圆心角所对的弧相等 D .相等的圆心角所对的弦相等G -3-1G -3-23.如图G -3-2,在两个同心圆中,大圆的半径OA ,OB ,OC ,OD 分别交小圆于点E ,F ,G ,H ,∠AOB =∠GOH ,则下列结论中,错误的是( )A .EF =GH B.EF ︵=GH ︵ C .∠AOC =∠BOD D.AB ︵=GH ︵4.已知正六边形的边长为2,则它的外接圆的半径为( )A.1 B. 3 C.2 D.2 35.在如图G-3-3所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须( ) A.大于60° B.小于60°C.大于30° D.小于30°G-3-3G-3-46.如图G-3-4,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③BC 平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED.其中一定成立的是( ) A.②④⑤⑥ B.①③⑤⑥C.②③④⑥ D.①③④⑤二、填空题(每小题4分,共24分)7.如图G-3-5,AB是⊙O的直径,AC=BC,则∠A=________°.G-3-5G-3-68.如图G-3-6,在⊙O的内接四边形ABCD中,点E在DC的延长线上.若∠A=50°,则∠BCE=________°.9.如图G-3-7,AB是⊙O的直径,C是⊙O上的一点.若BC=6,AB=10,OD⊥BC于点D,则OD的长为________.G-3-7G-3-810.用一条宽相等的足够长的纸条,打一个结,然后轻轻拉紧、压平就可以得到如图G-3-8所示的正五边形ABCDE,其中∠BAC=________°.11.如图G-3-9,⊙O的半径为4,△ABC是⊙O的内接三角形,连结OB,OC.若∠BAC和∠BOC互补,则弦BC的长度为________.G-3-9图G-3-1012.如图G-3-10,已知正六边形ABCDEF内接于半径为4的⊙O,则B,D 两点间的距离为__________.三、解答题(共52分)13.(12分)如图G-3-11所示,⊙O的直径AB长为6,弦AC长为2,∠ACB 的平分线交⊙O于点D,求四边形ADBC的面积.图G-3-1114.(12分)如图G-3-12,∠BAC的平分线交△ABC的外接圆于点D,∠ABC 的平分线交AD于点E,连结DB.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC的外接圆半径.图G -3-1215.(12分)作图与证明:如图G -3-13,已知⊙O 和⊙O 上的一点A ,请完成下列任务:(1)作⊙O 的内接正六边形ABCDEF ;(2)连结BF ,CE ,判断四边形BCEF 的形状,并加以证明.图G -3-1316.(16分)如图G -3-14,正方形ABCD 内接于⊙O ,E 为CD ︵上任意一点,连结DE ,AE .(1)求∠AED的度数;(2)如图②,过点B作BF∥DE交⊙O于点F,连结AF,AF=1,AE=4,求DE 的长.图G-3-14详解详析1.C 2.A 3.D 4.C 5.D6.D [解析] ∵AB是⊙O的直径,∴∠D=90°,即AD⊥BD,∴①正确;∵OC∥BD,∴∠C=∠CBD.又∵OB=OC,∴∠C=∠OBC,∴∠OBC=∠CBD,即BC平分∠ABD,∴③正确;∵∠D=90°,OC∥BD,∴∠CFD=∠D=90°,即OC⊥AD,∴AF=DF,∴④正确;又∵AO=BO,∴OF是△ABD的中位线,∴OF=12BD,即BD=2OF,∴⑤正确.故选D.7.45 [解析] ∵AB是⊙O的直径,∴∠C=90°.∵AC=BC,∴△ABC是等腰直角三角形,∴∠A=∠B=12(180°-∠C)=45°.8.509.4 [解析] ∵AB是⊙O的直径,∴∠ACB=90°.∵BC=6,AB=10,∴AC =102-62=8.∵OD⊥BC于点D,∴DB=DC.又∵OA=OB,∴OD=12AC=4.10.3611.4 3 [解析] ∵∠BAC+∠BOC=180°,2∠BAC=∠BOC,∴∠BOC=120°,∠BAC=60°.过点O作OD⊥BC于点D,则∠BOD=12∠BOC=60°.∵OB=4,∴OD=2,∴BD=OB2-OD2=42-22=2 3,∴BC=2BD=4 3.12.4 3 [解析] 如图,连结OB,OC,OD,BD,BD交OC于点P,∴∠BOC=∠COD=60°,∴∠BOD =120°,BC ︵=CD ︵, ∴OC ⊥BD . ∵OB =OD , ∴∠OBD =30°. ∵OB =4,∴PB =OB ·cos ∠OBD =32OB =2 3, ∴BD =2PB =4 3.13.解:∵AB 是⊙O 的直径, ∴∠ACB =∠ADB =90°. 在Rt △ABC 中,AB =6,AC =2, ∴BC =AB 2-AC 2=62-22=4 2. ∵∠ACB 的平分线交⊙O 于点D , ∴∠DCA =∠BCD , ∴AD ︵=BD ︵, ∴AD =BD ,∴在Rt △ABD 中,AD =BD =3 2,∴四边形ADBC 的面积=S △ABC +S △ABD =12AC ·BC +12AD ·BD =12×2×4 2+12×32×3 2=9+4 2.故四边形ADBC的面积是9+4 2.14.解:(1)证明:连结CD,∵AD平分∠BAC,∴∠BAD=∠CAD.又∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵BE平分∠ABC,∴∠CBE=∠ABE,∴∠DBE=∠CBE+∠CBD=∠ABE+∠BAD.又∵∠BED=∠ABE+∠BAD,∴∠DBE=∠BED,∴DE=DB.(2)∵∠BAC=90°,∴BC是圆的直径,∴∠BDC=90°.∵AD平分∠BAC,BD=4,∴BD=CD=4,∴BC=BD2+CD2=4 2.∴△ABC的外接圆半径为2 2.15.解:(1)如图①,首先作直径AD,然后分别以A,D为圆心,OA长为半径画弧,分别交⊙O 于点B ,F ,C ,E ,连结AB ,BC ,CD ,DE ,EF ,AF ,则正六边形ABCDEF 即为所求.(2)四边形BCEF 是矩形.证明:如图②,连结OE ,∵六边形ABCDEF 是正六边形,∴AB =AF =DE =DC =FE =BC ,∴AB ︵=AF ︵=DE ︵=DC ︵,∴BF ︵=CE ︵,∴BF =CE ,∴四边形BCEF 是平行四边形.∵六边形ABCDEF 是正六边形,∴∠DEF =∠EDC =120°.∵DE =DC ,∴∠DEC =∠DCE =30°,∴∠CEF =∠DEF -∠DEC =90°,∴平行四边形BCEF 是矩形.16.解:(1)如图①,连结OA ,OD .∵四边形ABCD是正方形,∴∠AOD=90°,∴∠AED=12∠AOD=45°.(2)如图②,连结CF,CE,CA,过点D作DH⊥AE于点H.∵BF∥DE,AB∥CD,∴∠ABF=∠CDE.∵∠CFA=∠AEC=90°,∠AED=∠BFC=45°,∴∠DEC=∠AFB=135°.又∵CD=AB,∴△CDE≌△ABF,∴AF=CE=1,∴AC=AE2+CE2=17,∴AD=22AC=342.∵∠DHE=90°,∴∠HDE=∠HED=45°,∴DH=EH,设DH=EH=x,在Rt△ADH中,∵AD2=AH2+DH2,∴344=(4-x)2+x2,解得x=32或x=52,∴DE=2DH=3 22或5 22.。
2.3_圆的基本性质水平测试题(含答案)
圆的基本性质一、选择题1、下面三个命题:①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③相等的圆心角所对的弧相等。
其中是真命题的是 ( )A.①②;B. ①③;C. ②③;D. ①②③。
2、已知⊙O 的半径为5cm ,P 为该圆内一点,且OP=1cm ,则过点P 的弦中,最短的弦长为( )A 、8cm ;B 、6cm ;C 、; D 、。
3.如图1,CD 是O 的直径,A B ,是O 上的两点,若20ABD ∠=,则ADC ∠的度数为( )A .40B .50 C .60 D .70图1 图2 图34、如图2,点A 、B 、D 、C 是⊙O 上的四个点,且∠BOC=110°,则∠BAC 的度数是( )A.110°B.70°C.100°D.55°5、如图3,正方形ABCD 的四个顶点分别在⊙O 上,点P 在劣弧CD 上不同于点C 得到任意一点,则∠BPC 的度数是( )A 、45 ;B 、60 ;C 、75 ;D 、90。
6、如图4,AD 平分∠BAC ,则图中相似三角形有( )A 、2对;B 、3对;C 、4对;D 、5对。
图4D二、精心填一填(每小题3分,共24分)7、如图,已知AB是⊙O的直径,弦CD与AB相交于点E。
若______,则CE=DE(只须填上一个适合的条件即可)。
8、已知AB、CD为⊙O的两条弦,圆心O到它们的距离分别为OM、ON,如果AB>CD,那么OM____ON。
(填“>、=、<”中的一种)9、在⊙O中,AB是直径,CD是弦,若AB⊥CD于E,且AE=2,EB=8,则CD=__________.10、△ABC的三边长分别是AB=4cm,AC=2cm,,以点C为圆心,CA为半径画圆交边AB于另一点D,设AD的中点为E,则CE=_______。
11、半径为10cm的圆内有两条平行弦,长度分别为12cm、16cm,则这两条平所弦间的距离为_______cm。
【必刷题】2024八年级数学下册圆的相关性质专项专题训练(含答案)
【必刷题】2024八年级数学下册圆的相关性质专项专题训练(含答案)试题部分一、选择题:1. 在圆中,如果一个弦恰好垂直于直径,那么这条弦是圆的()。
A. 半径B. 直径C. 弦D. 圆周2. 下列关于圆的说法,错误的是()。
A. 圆上的所有点到圆心的距离相等B. 圆的半径都相等C. 圆的直径是圆上任意两点间的距离D. 圆的周长与半径成正比3. 在圆中,圆心角为90°的扇形面积是圆面积的()。
A. 1/4B. 1/2C. 1/3D. 1/84. 下列关于圆的周长的计算公式,正确的是()。
A. C = πr²B. C = 2πrC. C = πd²D. C = 2d5. 在圆中,弧长相等的两个扇形,它们的面积()。
A. 一定相等B. 一定不相等C. 无法确定D. 可能相等6. 一个圆的半径是5cm,那么它的直径是()cm。
A. 10B. 15C. 20D. 257. 下列关于圆的对称轴,正确的是()。
A. 圆的对称轴只有一条B. 圆的对称轴是圆的直径C. 圆的对称轴是圆的半径D. 圆的对称轴有无数条8. 在圆中,一个60°的圆心角所对的弧长是圆周长的()。
A. 1/6B. 1/4C. 1/3D. 1/29. 下列关于圆的位置关系,错误的是()。
A. 两个圆相切,它们的圆心距等于两个圆的半径之和B. 两个圆内含,它们的圆心距小于两个圆的半径之差C. 两个圆相交,它们的圆心距大于两个圆的半径之和D. 两个圆外离,它们的圆心距大于两个圆的半径之和10. 在圆中,一个直径与一个弦垂直相交,那么这条弦被平分于()。
A. 圆心B. 弦的中点C. 直径的中点D. 无法确定二、判断题:1. 圆的半径是圆心到圆上任意一点的距离。
()2. 圆的直径是圆上任意两点的距离。
()3. 在同一个圆中,所有半径的长度都相等。
()4. 两个圆的半径分别为3cm和5cm,那么它们的圆心距一定大于8cm。
专题04 圆的基本性质(重点)(解析版)
专题04 圆的基本性质(重点)一、单选题1.下列说法正确的是( )A .直径是圆中最长的弦,有4条B .长度相等的弧是等弧C .如果A e 的周长是B e 周长的4倍,那么A e 的面积是B e 面积的8倍D .已知O e 的半径为8,A 为平面内的一点,且8OA =,那么点A 在O e 上【答案】D【分析】根据圆的相关概念解答即可.【解析】解:A.直径是圆中最长的弦,有无数条,故该选项不符合题意;B.在同圆或等圆中长度相等的弧是等弧,故该选项不符合题意;C.如果A e 的周长是B e 周长的4倍,那么B e 的面积是B e 面积的16倍,故该选项不符合题意;D.已知O e 的半径为8,A 为平面内的一点,且OA =8,那么点A 在O e 上,故该选项符合题意.故选:D .【点睛】本题考查了圆的认识,熟练掌握圆的相关概念是解答本题的关键.2.如图,在⊙O 的内接四边形ABCD 中,∠D =135°,则∠B 的度数为( )A .45°B .60°C .65°D .70°【答案】A 【分析】根据圆内接四边形的性质可进行求解.【解析】解:∵四边形ABCD 是⊙O 的内接四边形,∠D =135°,∴∠D =180°-∠D =45°,故选A .【点睛】本题主要考查圆内接四边形的性质,熟练掌握圆内接四边形的性质是解题的关键.3.如图所示,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于点E ,则下列结论中不成立的是()A .∠COE =∠DOEB .CE =DEC .OE =BED . BDBC =【答案】C 【分析】根据垂径定理可得: BDBC =,DE =CE ,进而得到∠COE =∠DOE ,无法得到OE =BE .【解析】∵AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于点E ,∴ BDBC =,DE =CE ,90OEC OED Ð=Ð=°,∴B ,D 选项正确;∵OC OD =,∴OCD ODC Ð=Ð,∴∠COE =∠DOE ,∴A 选项正确;只有当∠COE =60°时,才有OE =BE .∴C 选项不成立;故选:C .【点睛】本题考查了垂径定理和圆心角、弧之间的关系.解题的关键是熟练掌握垂径定理.垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧.4.如图,在⊙O 中,点C 是 ADB 的中点,若65ABC Ð=°,则∠D 的度数是( )A .75°B .65°C .50°D .40°【答案】C 【分析】利用等弧对相等的圆周角可求得65CAB ABC Ð=Ð=°,然后在ABC V 中利用三角形的内角和即可求得C Ð,最后利用同弧所对的圆周角相等即可求解.【解析】解:∵点C 是 ADB 的中点,∴ AC BC=,∴AC =BC ,∴65CAB ABC Ð=Ð=°,∵180180656550C CAB ABC Ð=°-Ð-Ð=°-°-°=° ,∴50C D Ð=Ð=°,故选:C .【点睛】本题考查了圆周角定理及三角形的内角和定理,熟练掌握圆周角定理是解题的关键.5.如图,在圆内接正六边形ABCDEF 中,BD ,EC 交于点G ,已知半径为3,则EG 的长为( )A B .3C .D .66.如图,在△ABC 中,AB =AC ,∠ABC =45°,以AB 为直径的⊙O 交BC 于点D ,若BC =4,则图中阴影部分的面积为( )A .112p + B .π+2C .2π+2D .4π+1【答案】A 【分析】连接DO 、AD ,求出圆的半径,再求出∠BOD 和∠DOA 的度数,再分别求出V BOD 和扇形DOA 的面积即可得到答案.【解析】解:连接OD 、AD ,7.如图,点A ,B ,C ,D 是⊙O 上的四个点,且AB CD =,OE ⊥AB ,OF ⊥CD ,则下列结论错误的是( )A . AB CD =B .OE OF =C .AOB COD Ð=ÐD . AC BC=8.如图,将长方形ABCD绕点A旋转至长方形AB C D¢¢¢位置,此时AC'的中点恰好与D点重合,AB¢交CD于点E.若BC=3,则△AEC的面积为( )A.6B.12C.D.9.如图,计算机处理任务时,经常会以圆形进度条的形式显示任务完成的百分比.若圆的半径为1,当任务完成的百分比为x 时,线段MN 的长度记为d (x ),下列描述正确的是( )A .()25%1d =B .当50%x >时,()1d x >C .当12x x >时,()()12d x d x >D .当12100%x x +=时,()()12d x d x =【答案】D【分析】根据已知,利用图象判断即可.【解析】解:如图,当x =25%时,∠MON =90°;当x =50%时,∠MON =180°;OM =ON =1;10.如图,⊙O的半径为1,点A、B、C、D在⊙O上,且四边形ABCD是矩形,点P是劣弧AD上一动点,PB、PC分别与AD相交于点E、点F.当PA=AB且AE=EF=FD时,AE的长度为( )A3B.23C2D.12【答案】A【分析】作辅助线,构建矩形的对角线,根据等边对等角得∠ABP=∠APB,由同弧所对的圆周角相等可得∠ACB=∠ACP,根据矩形的四个角都是直角得∠ABC=90°,AE=EF=FD得FC=2FD,∠DCF=30°,得出∠ACB=30°,求出BC的长,则可得AD的长,再三等分即可.【解析】解:连接AC、BD,∵PA=AB,二、填空题11.已知圆外点到圆上各点的距离中,最大值是6,最小值是1,则这个圆的半径是______.【答案】2.5【分析】画出图形,根据点在圆外时,点到圆周上点的最大距离最小距离转化为点到圆心的距离表示即可得到结论.【解析】解:如图所示:MO半径,最小值可表示为MO-半径,当点M在圆外时,外点到圆上各点的距离中,最大值可表示为+\点到圆上的最小距离MB=1,最大距离MA=6,∴2半径=6﹣1=5,∴半径r=2.5,故答案为:2.5.【点睛】本题主要考查了点与圆的位置关系,根据题意画出图形是解决本题的关键.12.已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB P CD,AB=6cm,CD=8cm,则弦AB和CD 之间的距离是_____cm.【答案】7或1##1或7【分析】分两种情况考虑:当两条弦位于圆心O一侧时,如图1所示,过O作OE⊥CD,交CD于点F,交AB于点E,连接OA,OC,由AB∥CD,得到OE⊥AB,利用垂径定理得到E与F分别为CD与AB的中点,在直角三角形AOF中,利用勾股定理求出OF的长,在三角形COE中,利用勾股定理求出OE的长,由OE−OF即可求出EF的长;当两条弦位于圆心O两侧时,如图2所示,同理由OE+OF求出EF的长即可.【解析】解:分两种情况考虑:当两条弦位于圆心O一侧时,如图1所示,过O作OE⊥AB,交AB于点E,交CD于点F,连接OA,OC,13.如图,正八边形ABCDEFGH内接于⊙O,若AC=4,则点O到AC的距离为____.14.如图,将△AOB绕点A顺时针旋转得到△ACD,使得点C,D都在圆上,则旋转角的度数为_____.【答案】60°##60度【分析】根据旋转的性质,OA=AC,即可证得△AOC是等边三角形,得到旋转角的度数.【解析】解:由题意可知,OA=AC,∵OA=OC,∴△AOC是等边三角形,∴∠OAC=60°,∴旋转角的度数为60°,故答案为:60°.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,证明△AOC是等边三角形是本题的关键.15.如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°,则图中阴影部分的面积______.【点睛】本题主要考查圆中的综合应用,重点是利用三角形全等进行阴影面积的转化.16.如图,四边形ABCD 内接于O e ,点M 在AD 的延长线上,140AOC Ð=°,则CDM Ð=______.【答案】70°##70度17.如图,扇形OAB 中,∠AOB =60°,OA =,点E 为弧AB 的中点,C 为半径OA 上一点,将线段CE 绕点C 逆时针旋转90°得到线段CE ′,若点E ′恰好落在半径OB 上,则OE ′=_____.【点睛】本题考查了圆心角、弧、弦的关系、旋转的性质,解题的关键是在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.18.如图,AB ,CD 是O e 的直径,弦BE 与CD 交于点F ,F 为BE 中点,AF ED ∥.若AF =,则BC 的长为______.∵F 为BE 中点,CD 是O e 的直径,∴CD BE ^.∵AB 是O e 的直径,∴AE BE ^,三、解答题19.如图,在Rt ABC △中,90BAC Ð=°,将Rt ABC △绕点A 旋转一定的角度得到Rt ADE △,且点E 恰好落在边BC 上.(1)求证:AE 平分CED Ð;(2)连接BD ,求证:90DBC Ð=°.【答案】(1)见解析(2)见解析【分析】(1)根据旋转性质得到对应边相等,对应角相等,进而根据等边对等角性质可将角度进行等量转化,最后可证得结论;(2)根据旋转性质、等腰三角形的性质以及三角形内角和定理对角度进行等量转化可证得结论.(1)证明:由旋转性质可知:AE AC =,AED C Ð=Ð,AEC C\Ð=ÐAED AEC\Ð=ÐAE \平分CED Ð.(2)证明:如图所示:由旋转性质可知:AD AB =,90DAE BAC Ð=Ð=°,ADB ABD \Ð=Ð,DAE BAE BAC BAE Ð-Ð=Ð-Ð,即DAB EAC Ð=Ð,=1802DAB ABD а-ÐQ ,1802EAC C Ð=°-Ð,ABD C \Ð=Ð,∵在Rt ABC △中,90BAC Ð=°,90ABC C \Ð+Ð=°,90ABC ABD \Ð+Ð=°,即90DBC Ð=°.【点睛】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键.20.如图,六边形ABCDEF 是⊙O 的内接正六边形.(1)求证:在六边形ABCDEF 中,过顶点A 的三条对角线四等分∠BAF .(2)设⊙O 的面积为S 1,六边形ABCDEF 的面积为S 2,求12S S的值(结果保留π).21.如图,在四边形ABCD 中,AD BC =,B D Ð=Ð,AD 不平行于BC ,过点C 作CE AD ∥交ABC V 的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形;(2)连接CO ,求证:CO 平分BCE Ð.【答案】(1)见解析(2)见解析∵四边形AECD为平行四边形,∴CO 平分∠BCE .【点睛】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.22.如图,AB 是O e 的直径,弦AD 平分BAC Ð,过点D 分别作DE AC ^,DF AB ^,垂足分别为E 、F ,O e 与AC 交于点G .(1)求证:EG BF =;(2)若O e 的半径6r =,2BF =,求AG 长.【答案】(1)见详解(2)AG = 8.【分析】(1)连接BD ,GD ,证明DEG DFB V V ≌,即可得到结论;(2)先证明DEA DFA V V ≌,可得AE =AF ,结合EG =BF =2,即可得到答案.(1)解:连接BD ,GD ,∵弦AD 平分∠BAC ,DE ⊥AC 、DF ⊥AB ,∴DE =DF ,∠DEG =∠DFB =90°,∵∠GAD =∠FAD ,∴ =GDDB ,∴DG =DB ,在Rt △DEG 和Rt △DFB 中,==DE DF DG DB ìíî,∴DEG DFB V V ≌(HL ),∴EG =BF ;(2)解:∵∠GAD =∠FAD ,∠DEG =∠DFB =90°,AD =AD ,∴DEA DFA V V ≌(AAS ),∴AE =AF ,∵⊙O 的半径r =6,BF =2,∴AE =AF =2×6-2=10,∵EG =BF =2,∴AG =AE -EG =10-2=8.【点睛】本题主要考查圆与三角形的综合,圆周角与弧,弧与弦关系,全等三角形的判定和性质,添加辅助线构造全等三角形的性质是解题的关键.23.如图,已知AB 是⊙O 直径,且AB =8.C ,D 是⊙O 上的点,OC P BD ,交AD 于点E ,连接BC ,∠CBD =30°.(1)求∠COA 的度数.(2)求出CE 的长度.(3)求出图中阴影部分的面积(结果保留π).【答案】(1)60°(2)224.如图,如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=62°,求DEBÐ的度数;(2)若OC=6,OA=10,求AB的长.25.如图1,点D为△ABC的外接圆上的一动点(点D在 AC上,且不与点A,C重合),∠ADB=∠BAC=60°.(1)求证:△ABC是等边三角形;(2)连接CD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)如图2,记BD与AC交于点E,过点E分别作EM⊥AB于点M,EN⊥BC于点N,连接MN,若AB=6,求MN的最小值.∴△ABC是等边三角形;(2)解:BD=AD+CD.理由如下:把△BCD绕点B逆时针旋转至△BAM,如图1,∵四边形ABCD是圆内接四边形,∴∠BCD+∠BAD=180°,∵∠BAM=∠BCD,∴∠BAD+∠BAM=180°,∴M,A,D三点共线,∵BD=BM,∠D=60°,∴△BDM是等边三角形,∴BD=DM=MA+AD=CD+AD;(3)解:如图2,取BE的中点O,以O为圆心,OB的长为半径作圆,∵ME⊥AB,NE⊥CB,∴M,N在圆O上,连接OM,ON,过点O作OH⊥MN于点H,∵∠ABC=60°,26.在平面直角坐标系xOy中,已知点P(4,3),⊙O经过点P,过点P作x轴的平行线交⊙O于点E.(1)如图1,求线段OP的长;(2)点A为y轴正半轴上的一动点,点B和点A关于直线PE对称,连接PA,PB.直线PA,PB分别交⊙O 于点C,D.直线CD交x轴于点F,交直线PE于点G.①点A运动到如图2位置,连接CE,DE.求证:∠DGP=ÐECP.②在点A运动过程中,当DF=OP时,求点D的坐标.【答案】(1)5(2)①见解析;②点D的坐标为(-3,4)或(-3,-4)或(3,-4)【分析】(1)过P作PH⊥x轴于H,利用勾股定理求解OP的长即可;(2)①利用外角性质得∠DGP=∠EPC+∠DCP,由对称性知∠EPC=∠DPE,根据弧与圆周角关系知∠DPE=∠DCE,再进行等量代换即可;则∠POE=2∠ECP(同圆中,同弧所对的圆心角的度数是圆周角度数的2倍),由①知,∠ECP=∠DGP,∴∠POE=2∠DGP,∵PE∥x轴,即PE⊥y轴,y轴过圆心O,∴OM⊥PE,∠POE=2∠POM,∴∠POM=∠DGP,而∠DGP=∠DFH(两直线平行,同位角相等),∴∠POM=∠DFH,又DF=OP=5,∴△DFH≌△POM,∴DH=PM=4,即D点纵坐标的绝对值为4,连接OD,易知OD=5,则由勾股定理得:OH=3,即D点横坐标的绝对值为3,∵A在y轴正半轴上运动,∴D不会在第一象限,∴D(-3,4)或(-3,-4)或(3,-4).【点睛】本题考查了勾股定理,同圆中弧、圆心角、圆周角的关系,三角形外角性质及全等三角形判定与性质等知识,解题关键是利用圆的性质证明三角形全等的条件.。
(完整版)圆的基本性质练习题一
圆的基本性质练习一、看准了再选1..如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是( ) A.110° B.70° C.55° D.125°2.如图,⊙O 的直径CD 过弦EF 的中点G 且EF ⊥CD ,若∠EOD=40°,则∠DCF 等于( ) A.80° B. 50° C.40° D. 20°3.直线a上有一点到圆心O 的距离等于⊙O 的半径,则直线a与⊙O 的位置关系是( ) A、相离 B、相切 C、相切或相交 D、相交4.在⊙O 中,弦AB 垂直并且平分一条半径,则劣弧AB 的度数等于( ) A.30° B.120° C.150° D.60°5.如图,⊙O 的半径OA=3,以点A 为圆心,OA 的长为半径画弧交⊙O 于B ,C•则BC=( ). A .32 B .33 C .323 D .3326..如图所示,∠1,∠2,∠3的大小关系是( ).A .∠1>∠2>∠3B .∠3>∠1>∠2C .∠2>∠1>∠3D .∠3>∠2>∠1 7..如图,已知∠BAC=45°,一动点O 在射线AB 上运动(点O•与点A 不重合),设OA=x ,如果半径为1的圆O 与射线AC 有公共点,那么x 的取值范围是( ) A .0<x ≤2 B .1<x ≤2 C .1≤x ≤2 D .x>28.如图,AB 、AC 与⊙O 相切于点B 、C ,∠A=50°,点P 是圆上异于B 、C 的一动点,则∠BPC 的度数是( )OCFGD EAPBC OA .65°B .115°C .65°或115°D .130°或50°9如图,PA 、PB 分别切⊙O 于A 、B ,AC 是⊙O 的直径,连结AB 、BC 、OP ,则与∠PAB 相等的角有( )个。
圆的基本性质练习(含答案)
圆的基本性质考点1 对称性圆既是________①_____对称图形,又是______②________对称图形。
任何一条直径所在的直线都是它的____③_________。
它的对称中心是_____④_______。
同时圆又具有旋转不变性。
温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。
考点2 垂径定理定理:垂直于弦的直径平分______⑤______并且平分弦所对的两条___⑥________。
常用推论:平分弦(不是直径)的直径垂直于______⑦_______,并且平分弦所对的两条_____⑧___________。
温馨提示:垂径定理是中考中的重点考查内容,每年基本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。
在这里总结一下:(1)垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;(2)常用的辅助线:连接半径;过顶点作垂线;(3)另外要注意答案不唯一的情况,若点的位置不确定,则要考虑优弧、劣弧的区别;(4)为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧;考点3 圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧______⑨______,所对的弦也_____⑩________。
常用的还有:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角___○11____________,所对的弦_____○12___________。
(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角____○13___________,所对的弧______○14 __________。
方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。
初三圆的基本性质练习题
初三圆的基本性质练习题1. 判断题1) 四分之一圆的圆心角为90度。
2) 每个半圆的弧长是直径的一半。
3) 在同一圆上,弧长相等的弧对应的圆心角相等。
4) 在同一圆上,圆心角相等的弧的弧长相等。
5) 半径相等的两个圆,面积相等。
2. 选择题1) 半径为r的圆,其面积S等于下面哪个式子?a) S = πrb) S = 2πrc) S = πr^2d) S = 2πr^22) 如果圆的直径是8cm,那么该圆的半径是多少?a) 2cmb) 4cmc) 6cmd) 8cm3) 半径为3cm的圆,它的周长等于多少?a) πcmb) 3πcmc) 6πcmd) 9πcm4) 一个扇形的圆心角是120度,如果圆的半径为5cm,那么该扇形的弧长是多少?a) 2.5cmb) 5cmc) 10cmd) 20cm3. 计算题1) 半径为6cm的圆,计算其面积和周长。
2) 直径为12cm的圆,计算其面积和周长。
3) 圆的周长为20πcm,计算其半径和面积。
4) 一个扇形的圆心角是60度,半径为8cm,计算其弧长和面积。
5) 两个圆的面积分别为36πcm^2和64πcm^2,它们的半径分别是多少?4. 应用题1) 一个半径为10cm的圆中,切一个等边三角形,求三角形的边长。
2) 一个半径为r的圆中,切一个等边三角形,求三角形的边长与r的关系。
3) 一个直径为20cm的圆,在圆的外部连接两个相切的切线,连接切线的两个端点和圆心构成一个直角三角形,请计算该三角形的斜边长。
4) 一个半径为5cm的圆上,取一点O,并连接O与圆的两个切点A和B,形成一条弦AB。
设弧OA所对的圆心角为α,则弦AB的长度与圆心角α之间有什么关系?5) 在平面直角坐标系中,一个圆心位于原点O,半径为r的圆与x轴和y轴相交于四个点A、B、C、D,求证:四边形ABCD是一个正方形。
以上就是初三圆的基本性质练习题的内容,希望能够帮助你巩固和提高对圆的基本性质的理解和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时1.判断正误.(1)三点确定一个圆. ( )(2)已知圆心和半径可以确定一个圆. ( )(3)已知圆心和圆上一点可以确定一个圆. ( )(4) 已知半径和圆上一点可以确定一个圆. ( )(5)已知半径和圆上两点可以确定一个圆. ( )2.下列说法正确的是( )A.一个点可以确定一条直线 B.两个点可以确定两条直线C.三个点可以确定一个圆 D.不在同一直线上的三点确定一个圆3.直角三角形两直角边长分别为3和l,那么它的外接圆的直径是( )A.1B.2C.3D.44.下列命题中,正确的是()A.三角形的外心是三角形的三条高线的交点B.等腰三角形的外心一定在它的内部C.任何一个三角形有且仅有一个外接圆D.任何一个四边形都有一个外接圆5. 下图是一个圆形轮子的一部分,请你用直尺和圆规把它补完整.[综合提高]1._______ 三角形的外心在它的内部,_______三角形的外心在它的外部;直角三角形的外心在______________.2.如果以平行四边形的对角线的交点为圆心,以它和一边中点的距离为半径画圆,若这个四边形四条边的中点都在这个圆上,那么这个四边形是()A.矩形 B.正方形 C.等腰梯形 D.菱形3.下列命题正确的个数有( )① 矩形的四个顶点在同一个圆上; ② 梯形的四个顶点在同一个圆上; ③ 菱形的四边中点在同一个圆上; ④ 平行四边形的四边中点在同一个圆上.A. 1个B. 2个C. 3个D. 4个4.在Rt △ABC 中,AB=6 , BC=8,那么这个三角形的外接圆直径是( )A. 5B.10C.5 或 4D. 10或85.已知等腰三角形ABC 中,AB=AC ,O 是ABC ∆的外接圆,若 O 的半径是4,120BOC ∠=,求AB 的长.6.如图所示,平原上有三个村庄A 、B 、C ,现计划打一口水井p ,使水井到三个村庄的距离相等。
(1)在图中画出水井p 的位置;(2)若再建一个工厂D ,使工厂D 到水井的距离等于水井到三个村庄的距离,且工厂D 到A 、C 两个村庄的距离相等,工厂D 应建在何处?请画出其位置. .A.B .C[拓展延伸]1. 已知线段AB 和直线l ,过A 、B 两点作圆,并使圆心在l 上.(1) 当l 平行AB 时,可以作几个这样的圆?(2) 当l 与AB 斜交时,可以作几个这样的圆?(3) 当l 与AB 垂直(不过AB 中点)时,可以作几个这样的圆?(4) 当l 为AB 的中垂线时,可以作几个这样的圆/第2课时[基础训练]1.填空:如图,在⊙O 中,直径CD 交弦AB (不是直径)于点E.(1)若CD ⊥AB ,则有 、 、 ;(2)若 AE = EB ,则有 、 、 ;(3)若 AC BC =,则有 、 、 .2.若圆的一条弦长为该圆的半径等于12cm ,其弦心距等于8cm ,则弦长为_________cm.3. 如图,AB是半圆⊙O的直径,E是BC的中点,OE交弦BC于点D.已知BC=8cm, DE=2cm ,则AB的长为cm.4. 已知:如图,在⊙O中M, N分别为弦AB, CD的中点,AB=CD, AB不平行于CD.求证:∠AMN=∠CNM2.如图,AB是⊙O的直径,CD是弦.若AB = 10cm, CD = 8cm,那么A , B 两点到直线CD的距离之和为( )A. 12cmB. 10cmC.8cmD.6cm第三节圆心角第1课时[基础训练]1.如图,AC和BD是⊙O的两条直径.( l )图中哪些量相等?(指劣弧和弦)(2 )当点A在圆周上运动时是否存在一点,使AB = BC=CD=DA .2.一条弦把圆分成2:3两部分,那么这条弦所对的圆心角的度数为_______.3.在半径为9cm的圆中,60度的圆心角所对的弦长为_________.4.在半径为1的圆中,长度等于2的弦所对的圆心角是_________.[综合应用]1.若⊙O的弦AB的长为8cm, O到AB的距离为43cm,则弦AB所对的圆心角为.2. 如图,已知AB是⊙O的直径,M, N分别是AO, BO的中点,CM⊥AB ,.DN⊥AB.求证:AC BD3.如图,在Rt△AOB中,∠B=400,以OA为半径,O为圆心作⊙O,交AB于点C,交OB于点D.求CD 的度数.[拓展延伸]1.如图所示,AB 为⊙O 的直径,弦CD 和AB 的延长线交与P ,且DP=OB ,若29P ∠=,求弧AC 的度数.2课时[基础训练]1.下列命题中,真命题是( )A .相等的圆心角所对的弧相等B .相等的弦所对的弧相等C .度数相等的弧是等弧D .在同心圆中,同一圆心角所对的两条弧的度数相等2.点O 是两个同心圆的圆心,大圆的半径QA, OB 分别交小圆于点C, D .给出下列结论: ①AB CD =、② AB=CD ; ③AB 的度数=CD 的度数; ④AB 的长度=CD 的长度.其中正确的结论有( )A. 1个B. 2个C.3 个D.4 个3.如图,AD BC =,若AB=3,则CD= .4. 如图,在⊙O 中,AB AC =,则AB= ,∠B= ,∠C= .5.在半径为5cm的圆中,有一条长为6cm的弦,则圆心到此弦的距离为____.6.如图,AB, CD是⊙O的两条弦,且AB=CD , 点M是AC的中点,求证:MB=MD.[综合提高]1.如图,AB为⊙O的一固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD 的平分线交⊙O于点P,当点C在上半圆(不包括A, B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.等分DB D.随C 点的移动而移动2.如图,AB, CD是⊙O的两条弦,且AB=CD , 点M是AC的中点,求证:MB=MD.3.. 如图,AB, CD是⊙O的两条直径,过点A作AE//CD交⊙O于点E,连结BD , DE.求证:BD=DE.[拓展延伸]1. 如图,MN为半圆O的直径,半径OA⊥MN, D为OA的中点,过点D作BC//MN,求证:( 1 ) 四边形ABOC为菱形;(2)∠MNB=18∠BAC.第6题第四节圆周角第1课时[基础训练]1. 如图,四边形ABCD内接于⊙O,∠BOD=1600, 则∠BAD 的度数是,∠BCD的度数是.(第3题)2. 如图,正方形ABCD内接于⊙O,点P在弧AB上,则∠DPC = .3. 如图,已知AB是⊙O的直径,点C为AB的一个三等分点,则BC : AC :AB .4. BD是⊙O的直径,OA,OC是⊙O的半径,且OA,OC在BD两侧.如果∠AOD:∠COD=4:1,那么∠ABD:∠CBD .5. 如图,AB是⊙O的直径,弦CD⊥AB, E是AD上一点,若∠BCD=350,求∠AED的度数.[综合提高]1.已知,A, B, C是⊙O上的三点,∠AOC=1000, 则∠ABC = . 2. 下面每张方格纸上都画有一个圆,只用不带刻度的直尺就能确定圆心位置的是()3. 已知AB是⊙O的直径,AC, AD是弦,且AB=2, AC=2,AD=1,则圆周角∠CAD的度数是( )A. 450或600B. 600 C . 1050 D. 150或10504. 如图,A, B, C为⊙O上三点,∠ABO=650,则∠BCA 等于()A.250B.32.50C300 D. 4505. 已知:如图,四边形ABCD是⊙O的内接四边形,∠BOD=1400,则∠DCE= .6.如图,AB是⊙O的直径,C, D, E都是⊙O上的点,则∠1+∠2 = .(第8题)7. 如图,已知AB为⊙O的直径,AC为弦,OD//BC交AC于点D, AC=6cm,则DC= cm .8.如图,AB,AC是⊙O的两条弦,且AB=AC, D是BC上一点,P是AC 上一点,若∠BDC=1500, 则∠APC .9. 如图,OC经过原点且与两坐标轴分别交于点A与点B, 点A的坐标为(0, 4 ) , M是圆上一点,∠BMO=1200.求:⊙C的半径和圆心C的坐标.[拓展延伸]1.如图,在⊙O中AB是直径,CD是弦,AB⊥CD.(1)P是CAD上一点(不与C, D重合).求证:∠CPD=∠COB;(2)点P’在劣弧CD上(不与C , D重合)时,∠CP/D与∠COD有什么数量关系?请证明你的结论.第2课时[基础训练]1. 下列命题中,真命题的个数为()①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③900的圆周角所对的弦是直径;④直径所对的角是直角;⑤圆周角相等,则它们所对的弧也相等;⑥同弧或等弧所对的圆周角相等.A. 1 个B. 2 个C. 3 个D. 4 个2. 如图,已知AB是半圆O的直径,∠BAC=200, D是AC上任意一点,则∠D的度数是()A . 1200 B. 1100 C .1000 D. 9003. 如图所示的暗礁区,两灯塔A, B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S 对两灯塔A, B的视角∠ASB 必须( )A.大于600B.小于600C.大于300D.小于3004. 如图,AC是⊙O的直径,点B,D在⊙O 上,那么图中等于12∠BOC的角有()A. l 个B. 2 个C.3 个D. 4 个5.如图,A, B, C, D是⊙O上的点,已知∠1=∠2,则与AD相等的弧是,与BCD相等的弧是,于是AD= , BD= .6. 如图,在⊙O中,弦AB //CD,求证:AC=BD.7. 如图,A, B, C, D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,若∠ABC=∠CAD.求弦AC的长.[综合提高]1.如图,AB, AC, AD是⊙O的三条弦,E是AB上一点,AD是∠BAC的平分线,且∠BAC=600,则∠BED .2.如图,已知AB 是⊙O的直径,CD与AB相交于点E,∠ACD=600,∠ADC=500 ,则∠AEC= .(第1题)(第2题)(第4题)3. 已知3cm长的一条弦所对的圆周角是1350 , 那么圆的直径是.4. 如图,A, B, C为⊙O上三点,∠BAC=1200,∠ABC=450 , M, N 分别为(第4题)(第5题)BC, AC 的中点,则OM:ON 的值为5. 如图,BC 是⊙O 的直径,弦 AE ⊥BC ,垂足为点D,12AB BF =,AE 与BF 相交于点G.求证:(1)BE EF =;(2)BG=GE6. 如图, AB 是⊙O 的直径,C, D 是AB 上的点,且AC=BD; P ,Q 是⊙O 上在AB 同侧的两点,且AP BQ =,延长PC, QD 分别交⊙O 于点M, N .求证:AM BN =[拓展延伸]1. 如图,⊙C 经过坐标原点O ,并与两坐标轴交与A ,D 两点,已知∠OBA=30,点D 的坐标为(0,2),求点A 的坐标及圆心C 的坐标.DA O xyC B习题课 [范例1]在90Rt ABC ACB CD AB ∆∠=⊥中,,,若AC=4,BC=3,以点C 为圆心,r 为半径画圆,使得A 、B 、D 三点中至少有一点在圆内,至少有一点在圆外,则r 的取值范围是________________.反馈 等腰三角形ABC 中,AB=AC=10,BC=12,AD BC ⊥于点D ,以点D 为圆心,r 为半径画圆,使得A 、B 、C 、D 四个点中至少有一个点在圆内,一个点在圆外,则r 的取值范围是________________.[范例2]如图,⊙O 的半径为5,弦AB 的长为6,求圆心O 到AB 的距离OC 的长.反馈 如图AB 是⊙O 的直径,CD 是弦,且C D ⊥AB ,垂足是P ,CP=2,PB=1,求AP 、OP 的长.[巩固练习]1.下列结论中正确的是( )A .弦是直径B .弧是半圆C .半圆是弧D .过圆心的线段是直径2.在半径为5cm 的圆内有长为 )A .60120或 B.30120或C. 60D. 1203.如图,以至AB 是半圆O 的直径,∠BAC=32,D 是弧AC 的中点,那么∠DAC 的度数是( )A .25B .29C .30D .324.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点,则线段OM 长的整数值有( )A .2个B .3个C .4个D .5个5.如图,四边形ABCD 内接与⊙O ,AC 是∠BAD 的平分线,O M ⊥BC 于M ,ON ⊥CD 于N ,下列选项中正确的是( )A .OM>ON B.ON=OM C.OM<ON D.不能确定(第3题) (第4题) (第5题)6.已知:如图,45,65,BPC ABC ∠=∠=∠则ACB 等于( )A .40B .50C . 60D .707.如图,四边形ABCD 内接与⊙O ,∠BOC=100,则∠BDC 的度数是( )A .100B .50C .80 D .130第6题第7题8.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离是5,最小距离是1,则此圆的半径为_____________.9.圆的半径等于4,圆内一条弦长为则弦的中点与弦所对弧的中点的距离是____________.10.10cm 长的一条弦所对的圆周角是90,则此圆的直径为_________.11.在半径为2的圆中,长度等于________,圆周角是_____________.12.如图,在三角形ABC中,∠ACB=90,AC=2cm,BC=4cm,CM是中线,以C为半径画圆,则A、B、M三点在援外的是点________,在圆上的是点_____________.13.如图,AB是⊙O的直径,C为⊙O上一点,BD平分∠ABC.已知BC=6,AC=8,求CD的长。