2020-2021学年北师大版高中数学必修五模块测试卷及答案解析
2020_2021学年新教材高中数学单元素养评价第六章立体几何初步作业含解析北师大版必修第二册
单元素养评价(五)(第六章)(120分钟150分)一、单选题(每小题5分,共40分)1.对两条不相交的空间直线a与b,必存在平面α,使得( )A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α【解析】选B.已知两条不相交的空间直线a和b,可以在直线a上任取一点A,则A∉b,过A作直线c∥b,则过直线a,c必存在平面α且使得a⊂α,b∥α.2.在空间四边形ABCD的边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,HG交于一点P,则( )A.点P一定在直线BD上B.点P一定在直线AC上C.点P一定在直线AC或BD上D.点P既不在直线AC上,也不在直线BD上【解析】选B. 如图,因为P∈HG,HG⊂平面ACD,所以P∈平面ACD.同理,P∈平面BAC.因为平面BAC∩平面ACD=AC,所以P∈AC.3.(2020·全国Ⅰ卷)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. B. C. D.【解析】选C.如图,设CD=a,PE=b,则PO==,由题意PO2=ab,即b2-=ab,化简得4-2·-1=0,解得=(负值舍去).4.《算数书》是我国现存最早的有系统的数学典籍,其中记载有求“困盖”的术:置如其周,令相乘也. 又以高乘之,三十六成一. 该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为( )A. B. C. D.【解析】选B.设圆锥底面积的半径为r,高为h,则L=2πr,πr2h=(2πr)2h,所以π=.5.菱形ABCD在平面α内,PC⊥α,则PA与对角线BD的位置关系是( )A.平行B.相交但不垂直C.相交垂直D.异面垂直【解析】选D.如图,PC⊥平面ABCD,所以PC⊥BD.又四边形ABCD是菱形,所以BD⊥AC. 因为PC∩AC=C,所以BD⊥平面PAC.因为PA⊂平面PAC,所以BD⊥PA.显然PA与BD异面,所以PA与BD异面垂直.6.一个水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC=45°,AB=AD=1,DC⊥BC,则这个平面图形的面积为( )A.+B.2+C.+D.+【解析】选 B.如图,将直观图ABCD 还原后为直角梯形A′BCD′,其中A′B=2AB=2,BC=1+,A′D′=AD=1.所以这个平面图形的面积S=×(1+1+)×2=2+.7.在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC【解析】选C.如图,连接BC1,B1C,A1D,由题设知,A1B1⊥平面BCC1B1,从而A1B1⊥BC1,又B1C⊥BC1,且A1B1∩B1C=B1,所以BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,所以A1E⊥BC1.8.如图,等边三角形ABC的边长为4,M,N分别为AB,AC的中点,沿MN将△AMN折起,使得平面AMN与平面MNCB所成的二面角为30°,则四棱锥A-MNCB的体积为(A. B. C. D.3【解析】选A.如图,作出二面角A-MN-B的平面角∠AED,AO为△AED底边ED上的高,也是四棱锥A-MNCB的高.由题意,得ED=,AO=,所以S四边形MNCB=×(2+4)×=3,V=××3=.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.用一张长、宽分别为8 cm和4 cm的矩形硬纸折成正四棱柱的侧面,则此正四棱柱的对角线长可以为( )A. cmB.2 cmC.32 cmD. cm【解析】选BD.分两种情况:(1)以4 cm的长为高,则正四棱柱底面是边长为2 cm的正方形,因此对角线长l1==2(cm).(2)以8 cm长为高,则正四棱柱底面是边长为 1 cm的正方形,因此对角线长l2==(cm).10.用一个平面去截正方体,关于截面的形状,下列判断正确的是( )A.直角三角形B.正五边形C.正六边形D.梯形【解析】选CD.画出截面图形如图:可以截出三角形但不是直角三角形,故A错误;如图1经过正方体的一个顶点去截就可得到五边形,但不是正五边形,故B错误;正方体有六个面,如图2用平面去截正方体时最多与六个面相交得六边形,且可以截出正六边形,故C正确;可以截出梯形,故D正确.11.如图,在棱长均相等的正四棱锥P-ABCD中,O为底面正方形的中心,M,N分别为侧棱PA,PB 的中点,下列结论正确的是( )A.PC∥平面OMNB.平面PCD∥平面OMNC.OM⊥PAD.直线PD与直线MN所成角的大小为90°【解析】选ABC.连接AC,易得PC∥OM,所以PC∥平面OMN,结论A正确.同理PD∥ON,所以平面PCD∥平面OMN,结论B正确.由于四棱锥的棱长均相等,所以AB2+BC2=PA2+PC2=AC2,所以PC⊥PA,又PC∥OM,所以OM⊥PA,结论C正确.由于M,N分别为侧棱PA,PB的中点,所以MN∥AB.又四边形ABCD为正方形,所以AB∥CD,所以直线PD与直线MN所成的角即为直线PD与直线CD所成的角,即为∠PDC.又三角形PDC 为等边三角形,所以∠PDC=60°,故D错误.12.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O 的直径,且SC=2,则( )A.三棱锥S-ABC的体积为B.三棱锥S-ABC的体积为C.三棱锥O-ABC的体积为D.三棱锥O-ABC的体积为【解析】选AC.由于三棱锥S-ABC与三棱锥O-ABC的底面都是△ABC,O是SC的中点,因此三棱锥S-ABC的高是三棱锥O-ABC高的2倍,所以三棱锥S-ABC的体积也是三棱锥O-ABC体积的2倍,由题知三棱锥O-ABC的棱长都为1,如图,所以S△ABC=,高OD==,则V O-ABC=××=,V S-ABC=2V O-ABC=.三、填空题(每小题5分,共20分)13.已知a,b表示不同的直线,α,β,γ表示不重合的平面.①若α∩β=a,b⊂α,a⊥b,则α⊥β;②若a⊂α,a垂直于β内任意一条直线,则α⊥β;③若α⊥β,α∩β=a,α∩γ=b,则a⊥b;④若a⊥α,b⊥β,a∥b,则α∥β.上述命题中,正确命题的序号是________.【解析】对①可举反例,如图,需b⊥β才能推出α⊥β;对③可举反例说明,当γ不与α,β的交线垂直时,即可知a,b不垂直;根据面面、线面垂直的定义与判定知②④正确.答案:②④14.古希腊数学家阿基米德的墓碑上刻着一个圆柱,此圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,如图所示,相传这个图形表达了阿基米德最引以为豪的发现,我们不妨称这个圆柱为“阿氏球柱体”,若在装满水的阿氏球柱体中放入其内切球(溢出部分水),则“阿氏球柱体”中剩下的水的体积与圆柱体积的比值为________.【解析】因为球内切于圆柱,所以圆柱的底面半径与球的半径相等,不妨设为r,则圆柱的高为2r,所以V圆柱=πr2·2r=2πr3,V球=πr3.所以球与圆柱的体积之比为2∶3,即球的体积等于圆柱体积的.所以在装满水的阿氏球柱体中放入其内切球,溢出部分水的体积为圆柱体积的,即剩下的水的体积是圆柱体积的,则“阿氏球柱体”中剩下的水的体积与圆柱体积的比值为. 答案:15.已知正四棱台的上底面边长为2,下底面边长为6,侧棱长为6,则正四棱台外接球的半径为________.【解析】根据题意,设该四棱台为ABCD-A1B1C1D1,取正棱台的上下底面的中心O1,O2,即上下底面外接圆的圆心也为O1,O2,则O2A=AC=AB=3,同理O1A1=A1C1=A1B1=.过点A1作A1H⊥AO2,且交AO2于点H,则有A1H===8,球心O在线段O1O2上,则有+=8,解得R=3.答案:316.(本题第一空3分,第二空2分)已知二面角α-l-β为60°,动点P,Q分别在平面α,β内,P 到β的距离为,Q到α的距离为2,则P,Q两点之间距离的最小值为________,此时直线PQ与平面α所成的角为________.【解析】如图,分别作QA⊥α于点A,AC⊥l于点C,PB⊥β于点B,PD⊥l于点D,连接CQ,BD,则∠ACQ=∠PDB=60°,AQ=2,BP=,所以AC=PD=2.又因为PQ==≥2,当且仅当AP=0,即点A与点P重合时取最小值,此时,PQ⊥平面α,故PQ与平面α所成的角为90°.答案:290°四、解答题(共70分)17.(10分)(2020·江苏高考)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C 的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.【证明】(1)因为E,F分别是AC,B1C的中点,所以EF∥AB1,因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂平面ABC,所以B1C⊥AB,又因为AB⊥AC,AC∩B1C=C,AC⊂平面AB1C,B1C⊂平面AB1C,所以AB⊥平面AB1C,因为AB⊂平面ABB1,所以平面AB1C⊥平面ABB1.【补偿训练】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且∠ABC=60°,E为CD的中点,F 为PD上一点.(1)求证:BD⊥平面PAC;(2)求证:平面PAB⊥平面FAE.【证明】(1)因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA⊥BD.因为底面ABCD为菱形,所以AC⊥BD,又PA⊂平面PAC,AC⊂平面PAC,PA∩AC=A,所以BD⊥平面PAC.(2)在菱形ABCD中,∠BAD=180°-∠ABC=120°,AD=CD,所以∠BAC=∠CAD=∠BAD=60°,AC=AD.因为E为CD的中点,所以∠CAE=∠CAD=30°,所以∠BAE=∠BAC+∠CAE=60°+30°=90°,即AB⊥AE.因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.又PA⊂平面PAB,AB⊂平面PAB,PA∩AB=A,所以AE⊥平面PAB.因为AE⊂平面FAE,所以平面PAB⊥平面FAE.18.(12分)在四面体A-BCD中,点E,F,M分别是AB,BC,CD的中点,且BD=AC=2,EM=1.(1)求证:EF∥平面ACD;(2)求异面直线AC与BD所成的角.【解析】(1)因为点E,F分别是AB,BC的中点,所以EF∥AC.因为EF⊄平面ACD,AC⊂平面ACD,所以EF∥平面ACD.(2)因为点E,F,M分别是AB,BC,CD的中点,所以EF∥AC,FM∥BD,所以∠EFM是异面直线AC与BD所成的角(或所成角的补角).在△EFM中,EF=FM=EM=1,所以△EFM是等边三角形,所以∠EFM=60°,所以异面直线AC与BD所成的角为60°.19.(12分)某广场设置了一些多面体形或球形的石凳供市民休息.如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是cm3.(1)求正方体石块的棱长;(2)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大表面积.【解析】(1)设正方体石块的棱长为a cm,则每个截去的四面体的体积为××××=.由题意可得8×+=a3,解得a=40.故正方体石块的棱长为40 cm.(2)当球形石凳的面与正方体的各个面都相切时球形石凳的表面积最大.此时正方体的棱长正好是球的直径,所以球形石凳的表面积S=4π×2=1 600π(cm)2.20.(12分)(2020·全国Ⅲ卷)如图,在长方体ABCD-A1B1C1D1中,点E,F分别在棱DD1,BB1上,且2DE=ED1,BF=2FB1.证明:(1)当AB=BC时,EF⊥AC;(2)点C1在平面AEF内.【证明】(1)因为长方体ABCD-A1B1C1D1,所以BB1⊥平面ABCD,所以AC⊥BB1,因为在长方体ABCD-A1B1C1D1中,AB=BC,所以四边形ABCD为正方形,所以AC⊥BD,因为BB1∩BD=B,BB1,BD⊂平面BB1D1D,因此AC⊥平面BB1D1D,因为EF⊂平面BB1D1D,所以EF⊥AC;(2)在CC1上取点M使得CM=2MC1,连接DM,MF,EC1,因为D1E=2ED,DD1∥CC1,DD1=CC1,所以ED=MC1,ED∥MC1,所以四边形DMC1E为平行四边形,所以DM∥EC1,因为MF∥DA,MF=DA,所以四边形MFAD为平行四边形,所以DM∥AF,所以EC1∥AF,因此点C1在平面AEF内.【补偿训练】如图,在四棱柱ABCD-A1B1C1D1中,AB∥CD,AB=BC=CC1=2CD,E为线段AB的中点,F是线段DD1上的动点.(1)求证:EF∥平面BCC1B1;(2)若∠BCD=∠C1CD=60°,且平面D1C1CD⊥平面ABCD,求平面BCC1B1与平面DC1B1所成角(锐角)的余弦值.【解析】(1)如图,连接DE,D1E.因为AB∥CD,AB=2CD,E是AB的中点,所以BE∥CD,BE=CD,所以四边形BCDE是平行四边形,所以DE∥BC.又DE⊄平面BCC1B1,BC⊂平面BCC1B1,所以DE∥平面BCC1B1.因为DD1∥CC1,DD1⊄平面BCC1B1,CC1⊂平面BCC1B1,所以D1D∥平面BCC1B1.又D1D∩DE=D,DE⊂平面DED1,D1D⊂平面DED1,所以平面DED1∥平面BCC1B1.因为EF⊂平面DED1,所以EF∥平面BCC1B1.(2)如图,连接BD.设CD=1,则AB=BC=CC1=2.因为∠BCD=60°,所以BD==.所以CD2+BD2=BC2,所以BD⊥CD.同理可得,C1D⊥CD.因为平面D1C1CD⊥平面ABCD,平面D1C1CD∩平面ABCD=CD,C1D⊂平面D1C1CD,所以C1D ⊥平面ABCD,因为BC⊂平面ABCD,所以C1D⊥BC,所以C1D⊥B1C1.在平面ABCD中,过点D作DH⊥BC,垂足为H,连接C1H,如图.因为C1D∩DH=D,所以BC⊥平面C1DH.因为C1H⊂平面C1DH,所以BC⊥C1H,所以B1C1⊥C1H,所以∠DC1H为平面BCC1B1与平面DC1B1所成的角.因为在Rt△C1CD中,C1D=,在Rt△BCD中,DH=CD·sin 60°=,所以在Rt△C1DH中,C1H==,所以cos ∠DC1H==.所以平面BCC1B1与平面DC1B1所成角(锐角)的余弦值为.21.(12分)在三棱锥P-ABC中,AB=BC,PA⊥平面ABC,D为PC的中点,E为AC的中点.(1)求证:BD⊥AC;(2)若M为AB的中点,请问线段PC上是否存在一点N,使得MN∥平面BDE?若存在,请说明点N 的位置,并说明理由.若不存在,也请说明理由.【解析】(1)因为AE=EC,PD=CD,所以DE∥AP.又因为PA⊥平面ABC,所以DE⊥平面ABC.因为AC⊂平面ABC,所以DE⊥AC.因为AB=BC,AE=EC,所以BE⊥AC.因为AC⊥DE,AC⊥BE,BE∩DE=E,所以AC⊥平面BDE.又因为BD⊂平面BDE,所以BD⊥AC.(2)PC上存在点N,使得MN∥平面BDE.理由如下:取AE的中点Q,连接MQ,NQ.因为MB=MA,AQ=QE,所以MQ∥BE.又因为MQ⊄平面BDE,BE⊂平面BDE,所以MQ∥平面BDE.因为MN⊂平面MNQ,MQ⊂平面MNQ,MN∩MQ=M,MN∥平面BDE,MQ∥平面BDE,所以平面MNQ∥平面BDE.又因为NQ⊂平面MNQ,所以NQ∥平面BDE.因为平面PAC∩平面BDE=DE,NQ∥平面BDE,NQ⊂平面PAC,所以NQ∥DE.又因为AQ=QE,NQ∥DE,所以N为线段PD的中点.故线段PC上存在一点N,使得MN∥平面BDE,此时点N是线段PC上靠近点P的四等分点.22.(12分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,E为侧棱PD上一点.(1)求证:CD∥平面ABE;(2)求证:CD⊥AE;(3)若E为PD中点,平面ABE与侧棱PC交于点F,且PA=PD=AD=2,求四棱锥P-ABFE的体积. 【解析】(1)因为底面ABCD是正方形,所以AB∥CD.因为AB⊂平面ABE,CD⊄平面ABE,所以CD∥平面ABE.(2)因为底面ABCD是正方形,所以CD⊥AD,又侧面PAD⊥底面ABCD,且侧面PAD∩底面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,而AE⊂平面PAD,所以CD⊥AE.(3)由AB∥CD,CD⊂平面PCD,AB⊄平面PCD,得AB∥平面PCD,而AB⊂平面ABFE,且平面ABFE∩平面PCD=FE,可得FE∥CD∥AB.又E为PD的中点,可得EF=CD.由(2)知CD⊥平面PAD,则AB⊥平面PAD,得AB⊥PD.因为三角形PAD是等边三角形,E为PD 的中点,所以PD⊥AE.又AE∩AB=A,所以PD⊥平面ABFE.在等边三角形PAD中,求得AE=. 所以S梯形ABFE=(1+2)×=.则四棱锥P-ABFE的体积V=S梯形ABFE·PD=×××2=.【补偿训练】在直三棱柱ABC-A1B1C1中,D,E分别为AC1,B1C的中点.(1)证明:DE∥平面A1B1C1;(2)若A1B1=B1C=2,AA1=AC=2,证明:C1E⊥平面ACB1.【证明】(1)连接A1C,如图.因为四边形ACC1A1是平行四边形,D为AC1的中点,所以A1D=DC.因为B1E=EC,所以DE∥A1B1.又因为A1B1⊂平面A1B1C1,DE⊄平面A1B1C1,所以DE∥平面A1B1C1.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1B1⊂平面A1B1C1,所以A1A⊥A1B1,同理AC⊥CC1,BC⊥CC1.因为A1A=2,A1B1=2,所以AB1=2.又因为AC=2,B1C=2,所以AC2+B1C2=A,得AC⊥B1C.因为CC1∩B1C=C,CC1,B1C⊂平面BB1C1C,所以AC⊥平面BB1C1C,又C1E⊂平面BB1C1C,所以AC⊥C1E,同理AC⊥BC.因为AC⊥BC,AC=2,AB=2,所以BC=2.又因为CC1=2,BC⊥CC1, 所以平行四边形BB1C1C为正方形.因为E为B1C的中点,所以C1E⊥B1C,又AC∩B1C=C,AC,B1C⊂平面ACB1,所以C1E⊥平面ACB1.。
2021_2022学年高中数学第一章数列2.2.1等差数列的前n项和课时素养评价含解析北师大版必修5
五等差数列的前n项和(20分钟35分)1.设数列{a n}是等差数列,其前n项和为S n,若a6=2且S5=30,则S8等于( )A.31B.32C.33D.34【解析】选B.由已知解得所以S8=8a1+d=32.2.在等差数列{a n}和{b n}中,a1=25,b1=15,a100+b100=139,则数列{a n+b n}的前100项的和为( )A.0B.4475C.8950D.10000【解析】选C.设=a n+b n,则c1=a1+b1=40,c100=a100+b100=139,{}是等差数列,所以前100项和S100===8 950.3.设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9等于( )A.63B.45C.36D.27【解析】选B.因为a7+a8+a9=S9-S6,而由等差数列的性质可知,S3,S6-S3,S9-S6构成等差数列, 所以S3+(S9-S6)=2(S6-S3),即a7+a8+a9=S9-S6=2S6-3S3=2×36-3×9=45.4.设S n是等差数列{a n}的前n项和,若=,则等于( )A. B.C.D.【解析】选A.设S3=m,因为=,所以S6=3m,所以S6-S3=2m.由等差数列依次每k项之和仍为等差数列,得S3=m,S6-S3=2m,S9-S6=3m,S12-S9=4m,所以S12=10m.所以=.5.(2019·高考)设等差数列{a n}的前n项和为S n,若a2=-3,S5=-10,则a5=,S n的最小值为. 【解析】设公差为d,a2=a1+d=-3,S5=5a1+d=-10,即a1+2d=-2,解得a1=-4,d=1,所以a5=a1+4d=0,S n=na1+d=,当n=4或5时,S n最小,为-10.答案:0 -106.在等差数列{a n}中,a1=25,S17=S9,求S n的最大值.【解析】方法一:设等差数列{a n}的公差为d.由S17=S9,得25×17+×(17-1)d=25×9+×(9-1)d,解得d=-2.所以S n=25n+×(n-1)×(-2)=-(n-13)2+169.由二次函数的性质,知当n=13时,S n有最大值169.方法二:设等差数列{a n}的公差为d.由S17=S9,得25×17+×(17-1)d=25×9+×(9-1)d,解得d=-2.因为a1=25>0,由解得≤n≤,所以当n=13时,S n有最大值,S13=25×13+=169.【补偿训练】设数列{a n}是公差不为零的等差数列,S n是数列{a n}的前n项和,且=9S2,S4=4S2,求数列{a n}的通项公式.【解析】设等差数列{a n}的公差为d,由S n=na1+d及已知条件得(3a1+3d)2=9(2a1+d),①4a1+6d=4(2a1+d).②由②得d=2a1,代入①,有=a1,解得a1=0或a1=.当a1=0时,d=0(舍去),因此a1=,d=.故数列{a n}的通项公式为a n=+(n-1)×=(2n-1).(30分钟60分)一、选择题(每小题5分,共25分)1.已知等差数列{a n}的前n项和为S n.若S5=7,S10=21,则S15等于( )A.35B.42C.49D.63【解析】选B.在等差数列{a n}中,S5,S10-S5,S15-S10成等差数列,即7,14,S15-21成等差数列,所以7+(S15-21)=2×14,解得S15=42.2.(2018·全国Ⅰ卷)记S n为等差数列的前n项和.若3S3=S2+S4,a1=2,则a5=( )A.-12B.-10C.10D.12【解析】选 B.3=2a1+d+4a1+×d⇒9a1+9d=6a1+7d⇒3a1+2d=0⇒6+2d=0⇒d=-3,所以a5=a1+4d=2+4×(-3)=-10.3.(2020·某某高一检测)《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的是最小的两份之和,则最小的一份的量是( )A. B. C.D.【解题指南】由题意可得中间部分的为20个面包,设最小的一份为a1,公差为d,可得到a1和d 的方程,即可求解.【解析】选D.由题意可得中间的那份为20个面包,设最小的一份为a1,公差为d,由题意可得[20+(a1+3d)+(a1+4d)]×=a1+(a1+d),解得a1=.4.(2020·仙游高一检测)记S n为等差数列的前n项和.已知S4=0,a5=5,则( )A.a n=2n-5B.a n=3n-10C.S n=2n2-8nD.S n=n2-2n【解析】选A.由题知,解得,所以a n=2n-5.所以S n==n2-4n.【光速解题】选 A.本题还可用排除法,对B,a5=5,S4==-10≠0,排除B;对C,S4=0,a5=S5-S4=2×52-8×5-0=10≠5,排除C;对D,S4=0,a5=S5-S4=×52-2×5-0=≠5,排除D.5.等差数列{a n}的前四项和为124,后四项和为156,各项和为210,则此数列的项数为( )A.5B.6C.7D.8【解析】选B.由题意知a1+a2+a3+a4=124,a n+a n-1+a n-2+a n-3=156,所以4(a1+a n)=280,所以a1+a n=70.又S==×70=210,所以n=6.二、填空题(每小题5分,共15分)6.(2019·某某高考)已知数列{a n}(n∈N+)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.【解析】设等差数列的首项为a1,公差为d,由a2a5+a8=0,S9=27,得解得a1=-5,d=2,所以S8==4(2a1+7d)=16.答案:167.已知S n是等差数列{a n}的前n项和,若a1=-2018,-=6,则S2020=.【解析】由等差数列的性质可得也为等差数列.设其公差为d,则-=6d=6,所以d=1.故=+2 019d=-2 018+2 019=1,所以S2 020=1×2 020=2 020.答案:2 0208.(2020·全国Ⅱ卷)记S n为等差数列的前n项和.若a1=-2,a2+a6=2,则S10=.【解析】设等差数列的公差为d.因为是等差数列,且a1=-2,a2+a6=2,根据等差数列通项公式:a n=a1+d,可得a1+d+a1+5d=2,即-2+d++5d=2,整理可得:6d=6,解得:d=1.根据等差数列前n项和公式:S n=na1+d,n∈N*,可得:S10=10×+=-20+45=25,所以S10=25. 答案:25三、解答题(每小题10分,共20分)9.在等差数列{a n}中.(1)a1=105,a n=994,d=7,求S n;(2)d=2,a n=11,S n=35,求a1和n.【解析】(1)d====7,解得n=128.所以S n===70 336.(2)由得解方程组得或10.设等差数列的前n项和为S n,且a5+a13=34,S3=9.(1)求数列的通项公式及前n项和公式.(2)设数列{b n}的通项公式为b n=,问:是否存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.【解析】(1)设等差数列的公差为d,因为a5+a13=34,S3=9.所以整理得解得所以a n=1+(n-1)×2=2n-1,S n=n×1+×2=n2.(2)由(1)知b n=,所以b1=,b2=,b m=,若b1,b2,b m(m≥3,m∈N)成等差数列,则2b2=b1+b m,所以=+,即6(1+t)(2m-1+t)=(3+t)(2m-1+t)+(2m-1)(1+t)(3+t),整理得(m-3)t2-(m+1)t=0,因为t是正整数,所以(m-3)t-(m+1)=0,m=3时显然不成立,所以t===1+.又因为m≥3,m∈N,所以m=4或5或7,当m=4时,t=5;当m=5时,t=3;当m=7时,t=2.所以存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列.即当t=5时,b1,b2,b4成等差数列;当t=3时,b1,b2,b5成等差数列;当t=2时,b1,b2,b7成等差数列.1.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n等于( )A.12B.16C.9D.16或9【解析】选C.a n=120+5(n-1)=5n+115,由a n<180得n<13且n∈N+,由n边形内角和定理得,(n-2)×180=n×120+×5.解得n=16或n=9,因为n<13,所以n=9.2.某仓库有同一型号的圆钢600根,堆放成如图所示的形状,从第二层开始,每一层比下面一层少放一根,而第一层至少要比第二层少一根,要使堆垛的占地面积最小(即最下面一层根数最少),则最下面一层放几根?共堆了多少层?【解析】设最下面一层放n根,则最多可堆n层,则1+2+3+…+n=≥600,所以n2+n-1 200≥0,记ƒ(n)=n2+n-1 200,因为当n∈N+时,f(n)单调递增,而f(35)=60>0,f(34)=-10<0,所以n≥35,因此最下面一层最少放35根.因为1+2+3+…+35=630,所以最多可堆放630根,必须去掉上面30根,去掉顶上7层,共1+2+3+…+7=28根,再去掉顶上第8层的2根,剩下的600根共堆了28层.故最下面一层放35根,共堆了28层.高考- 11 - / 11。
2020_2021学年高中数学第一章数列2等差数列第1课时等差数列的概念及通项公式练习(含解析)北师大版必修5
等差数列的概念及通项公式A 级 基础巩固一、选择题1.在等差数列{a n }中,a 2=2,a 3=4,则a 10=( D ) A .12 B .14 C .16D .18[解析] 该题考查等差数列的通项公式,由其两项求公差d . 由a 2=2,a 3=4知d =4-23-2=2.∴a 10=a 2+8d =2+8×2=18.2.等差数列3,1,-1,-3,…,-97的项为( B ) A .52 B .51 C .49D .50[解析] ∵a 1=3,a 2=1,∴d =1-3=-2, ∴a n =3+(n -1)×(-2)=-2n +5, 由-97=-2n +5,得n =51.3.(2019·威海检测)已知m 和2n 的等差中项是4,2m 和n 的等差中项是5,则m 和n 的等差中项是( B )A .2B .3C .6D .9 [解析] 由题意2m +n =10,2n +m =8,两式相加得3m +3n =18,∴m +n =6,∴m +n2=3.4.在等差数列{a n }中,a 2=-5,a 6=a 4+6,则a 1等于( B ) A .-9 B .-8 C .-7D .-4[解析] 由题意,得⎩⎪⎨⎪⎧a 1+d =-5a 1+5d =a 1+3d +6,解得a 1=-8. 5.已知a =13+2,b =13-2,则a ,b 的等差中项为( A ) A . 3 B . 2 C .33D .22[解析]a +b2=13+2+13-22=3-2+3+22= 3.6.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a ,b 的关系是( C ) A .a =-bB .a =3bC .a =-b 或a =3bD .a =b =0[解析] 由等差中项的定义知:x =a +b2,x 2=a 2-b 22,∴a 2-b 22=(a +b2)2,即a 2-2ab -3b 2=0.故a =-b 或a =3b . 二、填空题7.lg(3+2)与lg(3-2)的等差中项是 0 .[解析] lg(3+2)+lg(3-2)=lg(3-2)=0,所以lg(3+2)与lg(3-2)的等差中项是0.8.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为6766升. [解析] 设此等差数列为{a n },公差为d ,则⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,∴⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1=1322,d =766,∴a 5=a 1+4d =1322+4×766=6766.三、解答题9.在等差数列{a n }中,已知a 5=10,a 15=25,求a 25.[解析] 方法一:设数列{a n }的首项为a 1,公差为d ,则根据题意可得⎩⎪⎨⎪⎧a 1+4d =10,a 1+14d =25.解这个方程组,得a 1=4,d =32.∴这个数列的通项公式为a n =4+32×(n -1),即a n =32n +52.∴a 25=32×25+52=40.方法二:由题意可知:a 15=a 5+10d ,即25=10+10d , ∴10d =15.又∵a 25=a 15+10d ,∴a 25=25+15=40. 10.已知数列{a n }满足a 1=2,a n +1=2a na n +2, (1)数列{1a n}是否为等差数列?说明理由.(2)求a n .[解析] (1)数列{1a n}是等差数列,理由如下:∵a 1=2,a n +1=2a n a n +2,∴1a n +1=a n +22a n =12+1a n, ∴1a n +1-1a n =12,即{1a n }是首项为1a 1=12, 公差为d =12的等差数列.(2)由上述可知1a n =1a 1+(n -1)d =n2,∴a n =2n.(n ∈N +)B 级 素养提升一、选择题1.{a n }是首项为a 1=4,公差d =2的等差数列,如果a n =2 020,则序号n 等于( A ) A .1 009 B .1 012 C .1 008D .1 010[解析] ∵a 1=4,d =2,∴a n =a 1+(n -1)d =4+2(n -1)=2n +2, ∴2n +2=2 020,∴n =1 009.2.数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101的值是( D ) A .49 B .50 C .51D .52 [解析] 由2a n +1=2a n +1得a n +1-a n =12,∴{a n }是等差数列,首项a 1=2,公差d =12,∴a n =2+12(n -1)=n +32,∴a 101=101+32=52.3.在首项为81,公差为-7的等差数列中,值最接近零的项是( C ) A .第11项 B .第12项 C .第13项D .第14项[解析] 由a n =a 1+(n -1)d 得a n =-7n +88, 令a n ≥0,解得n ≤887=1247.而a 12=4,a 13=-3, 故a 13的值最接近零.4.等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( D )A .d >875B .d <325C .875<d <325D .875<d ≤325[解析] 由题意⎩⎪⎨⎪⎧a 10>1a 9≤1,∴⎩⎪⎨⎪⎧125+9d >1125+8d ≤1,∴875<d ≤325. 二、填空题5.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6= 13 . [解析] 由a 5=a 2+6得a 5-a 2=6, 故3d =6,d =2.∴a 6=a 3+3d =7+3×2=13.6.若x ≠y ,两个数列:x ,a 1,a 2,a 3,y 和x ,b 1,b 2,b 3,b 4,y 都是等差数列,则a 2-a 1b 3-b 2= 54.[解析] 设这两个等差数列的公差分别为d 1,d 2. 则a 2-a 1b 3-b 2=d 1d 2.由等差数列的性质,是y -x =4d 1=5d 2,∴d 1d 2=54. 三、解答题7.等差数列{a n }中, a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.[解析] (1)设数列{a n }的公差为d ,由题意有2a 1+5d =4,a 1+5d =3.解得a 1=1,d =25. 所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =[2n +35].当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2<2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4<2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2 =24. 8.已知f (x )=2x x +2,在数列{x n }中,x 1=13,x n =f (x n -1)(n ≥2,n ∈N *),试说明数列{1x n}是等差数列,并求x 95的值.[解析] 因为当n ≥2时,x n =f (x n -1), 所以x n =2x n -1x n -1+2(n ≥2),即x n x n -1+2x n =2x n -1(n ≥2), 得2x n -1-2x n x n x n -1=1(n ≥2),即1x n -1x n -1=12(n ≥2).又1x 1=3,所以数列{1x n }是以3为首项,12为公差的等差数列,所以1x n =3+(n -1)×12=n +52,所以x n =2n +5,所以x 95=295+5=150.。
2021_2022学年新教材高中数学第五章计数原理§3第1课时组合一课后篇巩固提升训练含解析北师大版
第五章计数原理§3组合问题 第1课时组合(一) 课后篇巩固提升合格考达标练1.下列问题中,组合问题的个数是()①从全班50人中选出5人组成班委会;②从全班50人中选出5人分别担任班长、副班长、团支部书记、学习委员、生活委员; ③从1,2,3,…,9中任取两个数求积; ④从1,2,3,…,9中任取两个数求差或商. A.1 B.2 D.4①,从50人中选出5人组成班委会,不考虑顺序,是组合问题;②为排列问题;对于③,从1,2,3,…,9中任取两个数求积是组合问题;因为乘法满足交换律,而减法和除法不满足,故④为排列问题.2.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有() A.60种 B.70种 D.150种,选2名男医生、1名女医生的方法有C 62C 51=75(种). 3.C 3C 41+C 52+C 63+…+C 20132010的值为()A.C 20133B.C 201434 D.C 2013430+C 41+C 52+C 63+…+C 20132010=C 44+C 43+C 53+…+C 20133=C 20144.4.若集合M={x|C 7x≤21},则组成集合M 的元素共有() B.3个 C.6个 D.7个C 70=C 77=1,C 71=C 76=7,C 72=C 75=7×62!=21,C 73=C 74=7×6×53×2=35>21,∴x=0,1,2,5,6,7.5.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种(用数字填写答案).)可分两种情况:第一种情况,只有1位女生入选,不同的选法有C 21C 42=12(种);第二种情况,有2位女生入选,不同的选法有C 22C 41=4(种).根据分类加法计数原理知,至少有1位女生入选的不同的选法有16种.(方法二)从6人中任选3人,不同的选法有C 63=20(种),从6人中任选3人都是男生,不同的选法有C 43=4(种),所以至少有1位女生入选的不同的选法有20-4=16(种). 6.以下四个式子:①m=A nm m !;②A n m =n A n -1m -1;③m÷m+1=m+1n -m;④+1m+1=n+1m+1m.其中正确的个数是.式显然成立;②式中A n m=n(n-1)(n-2)…(n-m+1),A n-1m-1=(n-1)(n-2)…(n-m+1),所以A n m=n A n-1m-1,故②式成立;对于③式,m÷m+1=mm+1=A n m·(m+1)!m!·A n m+1=m+1n-m,故③式成立;对于④式,+1m+1=A n+1m+1(m+1)!=(n+1)·A n m(m+1)m!=n+1m+1m,故④式成立.7.从2,3,5,7四个数中任取两个不同的数相乘,有m个不同的积;任取两个不同的数相除,有n个不同的商,则mn=.m=C42,n=A42,∴mn =12.8.如图,有A,B,C,D四个区域,用五种不同的颜色给它们涂色,要求共边的两区域颜色互异,每个区域只涂一种颜色,共有多少种不同的涂色方法?1步,涂A区域有C51种方法;第2步,涂B区域有C41种方法;第3步,涂C区域和D区域;若C 区域涂与A区域相同的颜色,则D区域有4种涂法;若C区域涂A、B剩余3种颜色之一,即有C31种涂法,则D区域有C31种涂法.故共有C51·C41·(4+C31·C31)=260种不同的涂色方法.9.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加;1人参加.从中任取5人是组合问题,共有C125=792种不同的选法.(2)甲、乙、丙三人必须参加,则只需从另外9人中选2人,是组合问题,共有C92=36种不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C95=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,可分为两步:先从甲、乙、丙中选1人,有C31=3种选法,再从另外9人中选4人,有C94种选法,共有C31C94=378种不同的选法.等级考提升练10.用0,1,…,9十个数字组成的三位数中,有重复数字的三位数的个数为()A.243B.252D.2799×10×10=900.没有重复数字的三位数有C 91A 92=648,所以有重复数字的三位数的个数为900-648=252.11.若A n 3=122,则n 等于() A.8 B.5或6 4 D.4A n 3=n (n-1)(n-2),2=12n (n-1),所以n (n-1)(n-2)=12×12n (n-1).又n ∈N +,且n ≥3,所以n=8.12.(2020某某某某期末)某校开设10门课供学生选修,其中A ,B ,C 三门由于上课时间相同,至多选一门,学校规定每位学生选修三门,则每位学生不同的选修方案种数是() A.120 B.98 D.35,分2种情况讨论:①从A ,B ,C 三门中选出1门,其余7门中选出2门,选法有C 31C 72=63(种);②从除A ,B ,C 三门之外的7门中选出3门,选法有C 73=35(种). 故不同的选法种数为63+35=98.13.(多选题)若C 17x =C 172x -1,则正整数x 的值是() A.1 B.4 D.8C 17x =C 172x -1,x=2x-1或x+2x-1=17, 解得x=1或x=6, 经检验都满足题意. 故选AC .14.(多选题)在100件产品中,有98件合格品,2件不合格品,从这100件产品中任意抽出3件,则()A.抽出的3件中恰好有1件是不合格品的抽法有C 21C 982种B.抽出的3件中恰好有1件是不合格品的抽法有C 21C 982+C 22C 981种C.抽出的3件中至少有1件是不合格品的抽法有C 21C 982+C 22C 981种3件中至少有1件是不合格品的抽法有C 1003−C 983种,依次分析选项:对于A,抽出的3件中恰好有1件是不合格品,即2件合格品,1件不合格品,有C 21C 982种抽取方法,A 正确,B 错误;对于C,抽出的3件中至少有1件是不合格品,即2件合格品,1件不合格品或1件合格品,2件不合格品,有C 21C 982+C 22C 981种抽取方法,C 正确;对于D,用间接法分析,抽出的3件中没有不合格品的抽取方法有C 983种,则抽出的3件中至少有1件是不合格品的抽法有C 1003−C 983种,D 正确. 故选ACD .15.某餐厅供应饭菜,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需准备不同的素菜品种种(结果用数值表示).x种不同的素菜.由题意,得C52·C x2≥200,从而有C x2≥20,即x(x-1)≥40.又x∈N+,所以x的最小值为7.A={1,2,3,4,5},则至少含一个偶数的集合A的子集个数为.)当子集中含有1个偶数时,共有C21(C30+C31+C32+C33)=16(个);当子集中含有2个偶数时,共有C30+C31+C32+C33=8(个);满足题意的集合A的子集个数为16+8=24(个).(方法二)集合A的子集共有C50+C51+C52+C53+C54+C55=32(个),不符合题意的子集有空集、分别只含有1,2,3个奇数的子集,有C50+C31+C32+C33=8(个),故符合题意的子集个数为32-8=24(个).17.已知10件不同产品中有4件是次品,现对它们一一进行测试,直至找出所有4件次品为止. (1)若恰在第5次测试,才测试到第一件次品,第十次测试才找到最后一件次品,则这样的不同测试方法数是多少?5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?先排前4次测试,只能取正品,有A64种不同的测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有A42种测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A64·A42·A44=103680(种).(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现.所以共有不同测试方法C41·(C61·C33)A44=576(种).新情境创新练18.某次足球比赛中,共有32支球队参加,它们先平均分成8个小组进行循环赛,决出16强(每队均与本组其他队赛一场,各组第一、二名晋级16强),这16支球队按确定的程序进行淘汰赛,最后决出冠、亚军,此外还要决出第三名、第四名,请问这次足球赛总共进行多少场比赛?:(1)小组循环赛:每组有C42=6(场),8个小组共有48场;(2)八分之一淘汰赛:8个小组的第一、二名组成16强,根据赛制规则,每两个队比赛一场,可以决出8强,共有8场;(3)四分之一淘汰赛:根据赛制规则,8强中每两个队比赛一次,可以决出4强,共有4场;(4)半决赛:根据赛制规则,4强每两个队比赛一场,可以决出2强,共有2场;(5)决赛:2强比赛1场确定冠、亚军,4强中的另两支队比赛1场决出第三、四名,共有2场.综上,由分类加法计数原理知,共有48+8+4+2+2=64场比赛.。
高中数学第七章概率质量评估卷练测评含解析北师大版第一册
第七章单元质量评估卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数是()①2020年8月18日,北京市不下雨;②在标准大气压下,水在4 ℃时结冰;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④x∈R,则|x|的值不小于0.A.1 B.2C.3 D.42.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.52,摸出白球的概率是0。
28,那么摸出黑球的概率是()A.0。
2 B.0.28C.0。
52 D.0.83.若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头” B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾" D.“甲不站排头”与“乙不站排尾”4.从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为()A.错误!B。
错误!C。
错误! D.错误!5.甲邀请乙、丙、丁三人加入了微信群聊“兄弟”,为庆祝兄弟相聚,甲发了一个9元的红包,被乙、丙、丁三人抢完,已知三人均抢到整数元,且每人至少抢到2元,则丙领到的钱数不少于乙、丁的概率是()A。
错误!B。
错误!C.错误!D.错误!6.袋中有大小相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则下列事件的概率为错误!的是()A.颜色相同B.颜色不全同C.颜色全不同D.无红球7.如图,是由一个圆、一个三角形和一个长方形构成的组合图形,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个图形颜色不全相同的概率为()A.错误!B.错误!C。
错误!D。
错误!8.设两个独立事件A和B都不发生的概率为错误!,A发生B 不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是()A.错误!B.错误!C。
2020_2021学年高中数学第三章不等式3.3.3基本不等式的实际应用作业课件北师大版必修5
二、填空题(本大题共3小题,每小题5分,共15分) 9.在如图所示的锐角三角形空地中,欲建一个面积最大的 内接矩形花园(阴影部分),则其边长x为 20 (m).
解析:如图,过A作AH⊥BC于H,交DE于F,易知 DBCE = 4x0 =
AD AB
=
AF AH
,则AF=x,故FH=40-x.则矩形面积S=x(40-
站的距离x(km)成反比,而每月库存货物的运费y2(万元)与仓库到
车站的距离x(km)成正比.如果在距离车站10 km处建仓库,费用
y1和y2分别为2万元和8万元,那么要使这两项费用之和最小,仓
库应建在离车站( A )
A.5 km处
B.m处
解析:由题意知y1=
k1 x
解析:C=
t22+0t4=
20 t+4t
.因为t>0,所以t+4t
≥2
4 t·t
=4(当且仅当t
=
4t ,即t=2时等号成立),所以C=
20 t+4t
≤240
=5,即当t=2时,C取得
最大值.
11.如图,有一张单栏的竖向张贴的海报,它的印刷面积为 72 dm2(图中阴影部分),上下空白各宽2 dm,左右空白各宽1 dm,则四周空白部分面积的最小值是 56 dm2.
小.设这种汽车使用n年报废最合算,n年汽车的维修总费用为0.2
+0.4+0.6+…+0.2n=0.2n+nn2-1×0.2=0.1(n2+n)(万元),年
平均费用y=
10+0.9n+0.1n2+n=10+
n
n
1n0+1≥2
1n0·1n0+1=
3,当且仅当1n0=1n0,即n=10时取等号.
6.某公司租地建仓库,每月土地占用费y1(万元)与仓库到车
2021_2022学年高中数学第一章数列1.1数列的概念课时素养评价含解析北师大版必修5202103
一数列的概念(20分钟35分)1.已知数列-1,,-,…,(-1)n,…,它的第5项的值为( )A.B.-C. D.-【解析】选D.a5=(-1)5×=-.2.下列四个数中,哪一个是数列{n(n+1)}中的一项( )A.380B.391C.352D.23【解析】选A.由n(n+1)=380得n=19.可验证其他项不符合.3.数列,,,,…的第10项是( )A. B. C. D.【解题指南】由数列,,,,…可得一个通项公式a n=,即可得出.【解析】选C.由数列,,,,…可得一个通项公式a n=,所以a10==.4.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n等于( )A. B.C.cosπD.cosπ【解析】选D.A项,展开可得数列为0,1,0,1,…不符合题意.B项,展开可得数列为0,-1,0,1,…不符合题意.C项,展开可得数列为-1,0,1,0,…不符合题意.D项,展开可得数列为0,1,0,-1,…符合题意.5.(2020·某某高一检测)已知数列满足a1=1,a n+1=2a n+1(n∈N*),则a5=.【解题指南】根据数列的首项及递推公式依次求出a2,a3,…a5即可.【解析】因为a1=1,a n+1=2a n+1,所以a2=2a1+1=3,a3=2a2+1=7,a4=2a3+1=15,a5=2a4+1=31,答案:316.写出下列数列的一个通项公式:(1)0,3,8,15,24,…(2)1,2,3,4,…(3)1,11,111,1111,…【解析】(1)观察数列中的数,可以看到0=1-1,3=4-1,8=9-1,15=16-1,24=25-1,…所以它的一个通项公式是a n=n2-1.(2)此数列的整数部分1,2,3,4,…恰好是序号n,分数部分与序号n的关系为,故所求的数列的一个通项公式为a n=n+=.(3)原数列的各项可变为×9,×99,×999,×9 999,…易知数列9,99,999,9 999,…的一个通项公式为a n=10n-1.所以原数列的一个通项公式为a n=(10n-1).(30分钟60分)一、选择题(每小题5分,共25分)1.有下列一列数:,1,1,1,( ),,,,,…,按照规律,括号中的数应为( )A.B. C. D.【解析】选B.把数列变为,,,,( ),,,,,…可得分子为连续的奇数,分母为连续的质数,故括号中的数应该为.【易错提醒】本题中不知道对第2,3,4项进行变形,使整个数列遵循同样的规律是解不出题的主要原因.2.数列2,5,11,20,32,x,…中的x等于( )A.28B.32C.33D.47【解析】选D.由5-2=3,11-5=6,20-11=9,32-20=12,则x-32=15,所以x=47.3.已知数列{a n}满足a n+2=a n+1-a n,若a1=1,a3=3,则a17=( )A.-4B.-3C.3D.4【解析】选A.因为数列满足a n+2=a n+1-a n,故有a n+3=a n+2-a n+1=-a n+1=-a n,所以a n+6=-a n+3=a n,故数列是以6为周期的周期数列,所以a17=a5=-a2,又因为a1=1,a3=3,a3=a2-a1得a2=4,故a17=-4.4.若一个数列的前三项依次为6,18,54,则此数列的一个通项公式为( )A.a n=4n-2B.a n=2n+4C.a n=2×3nD.a n=3×2n【解题指南】6=1×6=30×6,18=3×6=31×6,54=9×6=32×6,可以归纳出数列的通项公式. 【解析】选C.依题意,6=1×6=30×6,18=3×6=31×6,54=9×6=32×6,所以此数列的一个通项公式为a n=6×3n-1=2×3n.5.(2020·某某高一检测)数列,,,,…的递推公式可以是( )A.a n=B.a n=C.a n+1=a nD.a n+1=2a n【解题指南】观察数列,数列从第二项起,可知每一项是前一项的,由此可以得到递推公式,得出结果.【解析】选C.由题意可知,数列从第二项起,后一项是前一项的,所以递推公式为a n+1=a n.二、填空题(每小题5分,共15分)6.正整数列满足a1=a,且对于n∈N*有a n+1=,若a6=1,则a的所有可能取值为.【解析】因为正整数列满足a1=a,且对于n∈N*有a n+1=, 由a6=1,得a5=2或a5=0(舍),则a4=4,则a3=1,a2=2,a1=4或a3=8,a2=16,a1=5或a3=8,a2=16,a1=32,即a的所有可能取值为4,5或32.答案:4,5或327.将正偶数按下表排列则2010在第行第列.【解析】由题意可知,2 010是第1 005个正偶数,因为1 005÷4=251……1,所以2 010在第252行.观察表格知,第偶数行的四个数字从第4列开始从右至左排列,所以2 010在第252行,第4列.答案:252 48.如图1是第七届国际数学教育大会(简称ICME-7)的会徽图案,会徽的主体图案是由如图2的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图2中的直角三角形继续作下去,记OA1,OA2,…,OA n,…的长度构成数列{a n},则此数列的通项公式为a n=.【解析】因为OA1=1,OA2=,OA3=,…,OA n=,…,所以a1=1,a2=,a3=,…,a n=.答案:三、解答题(每小题10分,共20分)9.已知数列的通项公式为a n=.(1)求a10.(2)是否是这个数列中的项?(3)这个数列中有多少整数项?【解析】(1)a10==.(2)由a n==,解得,n=100.即是这个数列中的项,且是第100项.(3)由a n=为整数项可知,n=1,n=2,n=3,n=6,即数列中有4个整数项.10.写出数列的一个通项公式,使它的前几项分别为下列各数.(1)3,5,9,17,33;(2)4,-4,4,-4,4;(3)1,0,1,0;(4),,,.【解析】(1)每项都可以看成2的n次幂加1的形式,所以a n=2n+1.(2)数列中的每一项的绝对值均等于4,只有各项的系数的符号正负相间,所以a n=4(-1)n+1(答案不唯一).(3)原数列可改写为+,-,+,…,所以a n=+(-1)n+1(答案不唯一).(4)可将分子、分母分别求其通项,再合并,分子通项为2n-1,分母通项为2n+1,所以a n=.1.已知f(1)=2,f(n+1)=(n∈N+),则f(4)=.【解析】因为f(1)=2,f(n+1)=,所以f(2)==,f(3)===,f(4)===.答案:2.如图,下列四个图形中,着色三角形的个数依次构成一个数列的前4项,求这个数列的一个通项公式.【解析】4个图形中着色三角形的个数依次为1,3,9,27,都是3的指数幂,猜想数列的通项公式为a n=3n-1.。
高中数学同步测试卷(十五)北师大数学选修1-1(2021学年)
高中数学同步测试卷(十五)北师大数学选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学同步测试卷(十五)北师大数学选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学同步测试卷(十五)北师大数学选修1-1的全部内容。
高中同步测试卷(十五)模块综合检测(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.“1<x〈2”是“x<2”成立的()A.充分不必要条件ﻩ B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.函数f(x)=错误!x+cos x的一个单调递增区间为( )A.(-7π6,错误!) ﻩB.(错误!,错误!)C.(-\f(4π,3),\f(π,3)) D.(错误!,错误!)3.设F1,F2分别为双曲线错误!-错误!=1(a〉0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|·|PF2|=错误!ab,则该双曲线的离心率为( ) A。
错误!ﻩ B.错误!C。
\f(9,4)ﻩ D.34.函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f′(x)<0,设a=f(0),b=f错误!,c=f(3),则( )A.a<b<cﻩB.c<b<aC.c<a<b D.b<c<a5.已知F是抛物线y=\f(1,4)x2的焦点,P是该抛物线上的动点,则线段PF中点的轨迹方程是( )A.x2=2y-1ﻩB.x2=2y-错误!C.x2=y-\f(1,2) ﻩD.x2=2y-26.二次函数y=f(x)的图像过原点,且它的导函数y=f′(x)的图像是过第一、二、三象限的一条直线,则函数y=f(x)的图像的顶点在()A.第一象限ﻩB.第二象限C.第三象限ﻩD.第四象限7.已知F1(-1,0),F2(1,0)是椭圆错误!+错误!=1的两个焦点,若椭圆上一点P满足|错误! |+|错误!|=4,则椭圆的离心率e=()A.错误!B.2C.错误!ﻩD.错误!8.设F1、F2分别为双曲线\f(x2,a2)-错误!=1(a〉0,b〉0)的左、右焦点,双曲线上存在一点P使得(|PF1|-|PF2|)2=b2-3ab,则该双曲线的离心率为( )A。
2020-2021学年北师大版高中数学必修五章末综合测评2及答案解析
(新课标)最新北师大版高中数学必修五章末综合测评(二) 解三角形(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·南昌高二检测)已知△ABC 中,a =2,b =3,B =60°,那么A 等于( )A .135°B .120°C .60°D .45°【解析】 由正弦定理a sin A =b sin B 得2sin A =332,可得sin A =22, 又∵a =2<3=b , ∴A <B ,A =45°. 【答案】 D2.在△ABC 中,若sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10)D .⎝⎛⎦⎥⎤0,403【解析】 由正弦定理a sin A =c sin C 得c =1034·sin C =403·sin C ,又sin C ∈(0,1],所以c ∈⎝ ⎛⎦⎥⎤0,403.【答案】 D3.如图1,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )图1A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°【解析】 由条件及图可知,A =B =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.【答案】 D4.(2016·西安高二检测)在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =ac ,则B 的值是( )A.π3B .π6C.π3或2π3 D .π6或5π6【解析】 由余弦定理得a 2+c 2-b 2=2accos B.∴2accos B·tan B=ac,∴sin B=1 2,∴B=π6或5π6.【答案】 D5.在△ABC中,A、B、C所对的边分别为a、b、c,若A∶B=1∶2,a∶b =1∶3,则角A等于( )A.45°B.30°C.60°D.75°【解析】由正弦定理得ab=sin Asin B,∵A∶B=1∶2,a∶b=1∶3,∴13=sin Asin 2A=12cos A,∴cos A=3 2,即A=30°.【答案】 B6.△ABC的三个内角A,B,C所对的边分别为a,b,c,若asin Asin B+bcos2A=2a,则ba等于( )A.2 3 B.2 2 C. 3 D. 2 【解析】∵asin Asin B+bcos2A=2a,∴sin2Asin B+sin Bcos2A=2sin A,sin B=2sin A,∴b=2a,∴ba= 2.【答案】 D7.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A=( )A.30°B.60°C.120°D.150°【解析】由sin C=23sin B及正弦定理,得c=23b,∴a2-b2=3bc=6b2,即a2=7b2.由余弦定理,cos A=b2+c2-a22bc=b2+12b2-7b22b·23b=6b243b2=32,又0°<A<180°,∴A=30°. 【答案】 A8.在△ABC中,A=60°,b=1,其面积为3,则a+b+csin A+sin B+sin C等于( )A.3 3 B.239 3C.833D.392【解析】∵a+b+csin A+sin B+sin C=2R,∴由S△ABC=12bcsin A知3=12×1×c×sin 60°,∴c=4.又由余弦定理a2=b2+c2-2bccos A,得a=13.故2R=asin A =2393.【答案】 B9.在△ABC中,∠ABC=π4,AB=2,BC=3,则sin∠BAC=( )A.1010B.105C.31010D.55【解析】由余弦定理可得AC2=9+2-2×3×2×22=5,所以AC=5,再由正弦定理得ACsin∠ABC=BCsin∠BAC,所以sin∠BAC=BC·sin∠ABCAC=3×225=31010.【答案】 C10.如图2所示,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船航行的速度为( )图2A.1762海里/小时B.346海里/小时C.1722海里/小时D.342海里/小时【解析】由题意知PM=68,∠MPN=120°,N=45°,由正弦定理知PMsin 45°=MNsin 120°,∴MN=68×32×2=346,∴速度为3464=1762海里/小时.【答案】 A11.在斜三角形ABC中,sin A=-2cos B·cos C,且tan B·tan C=1-2,则角A的值为( )A.π4B.π3C.π2D.3π4【解析】由题意知,sin A=-2cos B·cos C=sin(B+C) =sin B·cos C+cos B·sin C,∴-2cos B·cos C=sin B·cos C+cos B·sin C,在等式两端同除以cos B·cos C得tan B+tan C=-2,tan(B+C)=tan B+tan C1-tan B·tan C=-22=-1=-tan A,∴tan A=1,即A=π4 .【答案】 A12.如图3所示,在△ABC中,已知A∶B=1∶2,角C的平分线CD把三角形面积分为3∶2两部分,则cos A等于( ) 【导学号:67940050】图3A.13B.12C.34D.0【解析】在△ABC中,设∠ACD=∠BCD=β,∠CAB=α,由A∶B=1∶2 得∠ABC=2α,∵A<B,∴AC>BC,∴S△ACD>S△BCD,∴S△ACD∶S△BCD=3∶2,∴12AC ·DC ·sin β12BC ·DC ·sin β=32,∴AC BC =32. 由正弦定理得AC sin B =BC sin A ,AC sin 2α=BC sin α, ∴AC BC =sin 2αsin α=2cos α,∴cos α=34, 即cos A =34.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.(2015·福建高考)若锐角△ABC 的面积为103,且AB =5,AC =8,则BC 等于________.【解析】 由正弦定理,得S =12×AB ×AC ×sin A =103,∴sin A =2035×8=32.∵A ∈⎝⎛⎭⎪⎫0,π2,∴A =π3.由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos A =25+64-2×5×8×cos π3=49,∴BC =7. 【答案】 714.(2015·北京高考)在△ABC 中,a =4,b =5,c =6,则sin 2Asin C =________.【解析】 由正弦定理得sin A sin C =ac ,由余弦定理得cos A =b 2+c 2-a 22bc,∵a =4,b =5,c =6,∴sin 2A sin C =2sin Acos A sin C =2·sin A sin C ·cos A =2×46×52+62-422×5×6=1. 【答案】 115.(2015·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.【解析】 在△ABC 中,由cos A =-14可得sin A =154,所以有⎩⎪⎨⎪⎧12bc ×154=315,b -c =2,a 2=b 2+c 2-2bc ×⎝ ⎛⎭⎪⎫-14,解得⎩⎪⎨⎪⎧a =8,b =6,c =4.【答案】 816.(2015·南通调研)已知等腰三角形腰上的中线长为3,则该三角形的面积的最大值是________.【解析】 如图,设AB =AC =2x ,则在△ABD 中,由余弦定理,得3=x 2+4x 2-4x 2cos A , 所以cos A =5x 2-34x 2.所以sin A =1-cos 2A =-9x 4+30x 2-94x 2,所以S △ABC =12(2x)2sin A=12-9x 4+30x 2-9. 故当x 2=53时,(S △ABC )max =12-9×⎝ ⎛⎭⎪⎫532+30×53-9=1216=2. 【答案】 2三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(2015·全国卷Ⅱ)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC.(1)求sin B sin C;(2)若∠BAC =60°,求∠B. 【解】 (1)由正弦定理,得 AD sin B =BD sin ∠BAD ,AD sin C =DCsin ∠CAD . 因为AD 平分∠BAC ,BD =2DC ,所以sin B sin C =DC BD =12. (2)因为∠C =180°-(∠BAC +∠B),∠BAC =60°,所以sin C =sin(∠BAC +∠B)=32cos B +12sin B. 由(1)知2sin B =sin C ,所以tan B =33, 所以∠B =30°.18.(本小题满分12分)(2015·安徽高考)在△ABC 中,∠A =3π4,AB =6,AC =32,点D 在BC 边上,AD =BD ,求AD 的长.【解】 设△ABC 的内角∠BAC ,B ,C 所对边的长分别是a ,b ,c ,由余弦定理得a 2=b 2+c 2-2bccos ∠BAC =(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90,所以a =310.又由正弦定理得sin B =bsin ∠BAC a =3310=1010, 由题设知0<B<π4, 所以cos B =1-sin 2B =1-110=31010. 在△ABD 中,因为AD =BD ,所以∠ABD =∠BAD ,所以∠ADB =π-2B ,故由正弦定理得AD =AB ·sin B sin (π-2B )=6sin B 2sin Bcos B =3cos B=10. 19.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,错误!·错误!=3.(1)求△ABC的面积;(2)若b+c=6,求a的值.【解】(1)∵cos A2=255,∴cos A=2cos2A2-1=35,sin A=45.又由错误!·错误!=3,得bccos A=3,∴bc=5,∴S△ABC=12bcsin A=2.(2)∵bc=5,又b+c=6.∴b=5,c=1或b=1,c=5,由余弦定理,得a2=b2+c2-2bccos A=20,∴a=2 5.20.(本小题满分12分)在△ABC中,已知2acos B=c,sin Asin B(2-cos C)=sin2C2+12,试判断△ABC的形状.【解】依题意得2sin Acos B=sin C=sin(A+B),2sin Acos B-sin(A+B)=sin(A-B)=0,因此B=A,C=π-2A,于是有sin2A(2+cos 2A)=cos2A+12,即sin2A(3-2sin2A)=1-sin2A+12=3-2sin2A2,解得sin2A=12,因此sin A=22,又B=A必为锐角,因此B=A=π4,△ABC是等腰直角三角形.21.(本小题满分12分)甲船在A处遇险,在甲船西南10海里B处的乙船收到甲船的求救信号后,测得甲船正沿着北偏西15°的方向,以每小时9海里的速度向某岛靠近.如果乙船要在40分钟内追上甲船,问乙船应以多大速度、向何方向航行?⎝ ⎛⎭⎪⎫注:sin 21°47′=3314. 【导学号:67940051】 【解】 设乙船速度为v 海里/时,在△ABC 中,由余弦定理可知BC 2=AC 2+AB 2-2AC ·AB ·cos ∠CAB ,⎝ ⎛⎭⎪⎫23v 2=⎝ ⎛⎭⎪⎫23×92+102-2×23×9×10×cos 120°, ∴v =21海里/时.又由正弦定理可知BC sin ∠BAC =AC sin B, ∴sin B =AC ·sin ∠BAC BC =23×923×21×sin 120°=3314, ∴B ≈21°47′,即乙船应按北偏东45°-21°47′=23°13′的方向航行.22.(本小题满分12分)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知cos A -2cos C cos B =2c -a b.(1)求sin Csin A的值;(2)若cos B=14,b=2,求△ABC的面积S.【解】(1)由正弦定理,设asin A =bsin B=csin C=k,则2c-ab=2ksin C-ksin Aksin B=2sin C-sin Asin B,所以cos A-2cos Ccos B=2sin C-sin Asin B,即(cos A-2cos C)sin B=(2sin C-sin A)cos B,化简可得sin(A+B)=2sin(B+C).又A+B+C=π,所以sin C=2sin A,因此sin Csin A=2.(2)由sin Csin A=2得c=2a.由余弦定理b2=a2+c2-2accos B及cos B=14,b=2,得4=a2+4a2-4a2×1 4,解得a=1,从而c=2.又因为cos B=14,且0<B<π.所以sin B=15 4,因此S=12acsin B=12×1×2×154=154.。
(常考题)北师大版高中数学必修五第一章《数列》测试卷(含答案解析)(3)
一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.在等比数列{}n a 中,有31598a a a =,数列{}n b 是等差数列,且99b a =,则711b b +等于( ) A .4B .8C .16D .243.已知数列{}n a 满足11a =,24a =,310a =,1{}n n a a +-是等比数列,则数列{}n a 的前8项和8S =( ) A .376B .382C .749D .7664.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N*-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .175.数列{}n a 中,11a =,113,3,3n n n n a N a n a N *+*-⎧+∉⎪⎪=⎨⎪∈⎪⎩,使2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为( ) A .1008B .2016C .2018D .20206.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51017.已知数列1a ,21a a ,…1nn a a -,…是首项为1,公比为2的等比数列,则2log n a =( )A . (1)n n +B .(1)4n n - C .(1)2n n + D .(1)2n n -8.数列{}n a 的通项公式是*1()(1)n a n n n =∈+N ,若前n 项的和为1011,则项数为( ). A .12B .11C .10D .99.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ). A .2B .1C .32D .1210.已知数列{}n a的通项公式为)*n a n N =∈,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .4511.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-12.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A .1B .1-或2C .3D .1-二、填空题13.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________.14.数列{}n a 中,16a =,29a =,且{}1n n a a +-是以2为公差的等差数列,则n a =______.15.数列{}n a 满足11a =,22a =,且2221sin 2cos 22n nn n a a ππ+⎛⎫=+⋅+ ⎪⎝⎭(*n N ∈),则2020a =__.16.已知等差数列{}n a 的前n 项和为n S ,1a 为整数,213a =-,8n S S ≥,则数列{}n a 的通项公式为n a =________.17.设,n n S T 分别是等差数列{}{},n n a b 的前n 项和,已知()*2142n n S n n N T n +=∈-,则10317a b b =+_________.18.已知n S 为数列{}n a 的前n 项和,若112a =,且122n n a a +=-,则100S =________. 19.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____.20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________.三、解答题21.已知等差数列{}n a 满足()()()()*122312(1)n n a a a a a a n n n N +++++⋅⋅⋅++=+∈. (1)求数列{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .22.在①119n n a a +-=-,②113n n a a +=-③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,并解答.设n S 是数列{}n a 的前n 项和,且19a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值,若存在,求出最大值:若不存在,说明理由. 注:如果选择多个条件分别解答,按第一个解答计分23.已知数列{}n a 的前n 项和为n S ,且11a =,()121n n a S n N *+=+∈,等差数列{}n b 满足39b =,15272b b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 的前n 项和为n T ,且n n n c a b =⋅,求n T . 24.已知递增等比数列{}n a 满足:12a =,416a = . (1)求数列{}n a 的通项公式;(2)若数列{}n b 为等差数列,且满足221b a =-,3358b a =,求数列{}n b 的通项公式及前10项的和;25.已知数列{}n a 满足11a =,1nn n a pa q +=+,(其中p 、q 为常数,*n N ∈).(1)若1p =,1q =-,求数列{}n a 的通项公式;(2)若2p =,1q =,数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T .证明:22n T n <+,*n N ∈.26.设等差数列{}n a 的首项1a 为()0a a >,其前n 项和为n S . (Ⅰ)若1S ,2S ,4S 成等比数列,求数列{}n a 的通项公式;(Ⅱ)若对任意的*n ∈N ,恒有0n S >,问是否存在()*2,k k k ≥∈N ,使得ln k S 、1ln k S +、2ln k S +成等比数列?若存在,求出所有符合条件的k 值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272n nn c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n nn c -=,则111252792222n n n n n n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.C解析:C 【分析】根据等比数列性质求得9a ,再由等差数列性质求解. 【详解】∵{}n a 是等比数列,∴2931598a a a a ==,90a ≠,所以98a =,即998b a ==,∵{}n b 是等差数列,所以7119216b b b +==. 故选:C . 【点睛】关键点点睛:本题考查等差数列和等比数列的性质,掌握等差数列和等比数列的性质是解题关键,设,,,m n p l 是正整数,m n p l +=+,若{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =.p l =时,上述结论也成立.3.C解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式和分组求和法,求解8S 即可 【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,878128123(122)2831612S a a a -=++=⨯+++-⨯=⨯--83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项.4.C解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C . 【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.5.C解析:C 【分析】根据数列的通项公式,列出各项,找数列的规律,判断到哪一项是大于2021,即可得答案. 【详解】由已知可得,数列{}n a :1,4,7,4,7,10,7,10,13,,可得规律为1,4,7,4,7,10,7,10,13……此时将原数列分为三个等差数列:1,4,7,n a n =,{}31,n n n m m N ∈=+∈;4,7,10,2n a n =+,{}32,n n n m m N ∈=+∈;7,10,13,4n a n =+,{}33,n n n m m N ∈=+∈,当673m =时,312020n m =+=,即2020202120222020,2023,2026a a a ===. 而672m =时,312017n m =+=,即2017201820192017,2020,2023a a a ===, 所以满足2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为2018.故选:C. 【点睛】关于数列的项的判断,一般有两种题目类型,一种是具有周期的数列,可以通过列出前几项找出数列的周期,利用周期判断;另一种是数列的项与项之间存在规律,需要通过推理判断项与项之间的规律从而得数列的通项.6.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.7.D解析:D 【分析】根据题意,求得1nn a a -,再利用累乘法即可求得n a ,再结合对数运算,即可求得结果.【详解】由题设有111122(2)n n nn a n a ---=⨯=≥, 而(1)1213221121122(2)n n n n n n a aa a a n a a a -+++--=⨯⨯⨯⨯=⨯=≥,当1n =时,11a =也满足该式,故(1)22(1)n n n a n -=≥,所以2(1)log 2n n n a -=, 故选:D. 【点睛】本题考查利用累乘法求数列的通项公式,涉及对数运算,属综合基础题.8.C解析:C 【解析】分析:由已知,111(1)1n a n n n n ==-++,利用裂项相消法求和后,令其等于1011,得到n 所满足的等量关系式,求得结果.详解:111(1)1n a n n n n ==-++ ()n *∈N ,数列{}n a 的前n 项和11111(1)()()2231n S n n =-+-+⋯+-+ 1111n n n =-=++,当1011n S =时,解得10n =,故选C. 点睛:该题考查的是有关数列的问题,在解题的过程中,需要对数列的通项公式进行分析,选择相应的求和方法--------错位相减法,之后根据题的条件,建立关于n 的等量关系式,从而求得结果.9.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==.故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.10.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ===1n n =-+. 12n n S a a a ∴=++⋯+122=-+1= 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B . 【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.11.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.12.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B. 【点睛】本题考查等比数列与等差数列的综合运用.二、填空题13.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+, 又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010. 【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.14.【分析】由是以2为公差的等差数列可得:再利用累加求和方法等差数列的求和公式即可得出【详解】∵是以2为公差的等差数列∴∴故答案为:【点睛】本题考查了等差数列的通项公式与求和公式累加求和方法考查了推理能 解析:25n +【分析】由{}1n n a a +-是以2为公差的等差数列,可得:121n n a a n --=-,再利用累加求和方法、等差数列的求和公式即可得出. 【详解】∵{}1n n a a +-是以2为公差的等差数列, ∴()()1212221n n a a a a n n --=-+-=-,∴()()()12116321n n n a a a a a a n -=+-+⋯⋯+-=++⋯⋯+-()2121552n n n +-=+=+, 故答案为:25n +. 【点睛】本题考查了等差数列的通项公式与求和公式、累加求和方法,考查了推理能力与计算能力,属于中档题.15.2020【分析】当n 为偶数时可得出故偶数项是以2为首项公差为2的等差数列求出通项公式代值计算即可得解【详解】当n 为偶数时即故数列的偶数项是以2为首项公差为2的等差数列所以所以故答案为:2020【点睛解析:2020 【分析】当n 为偶数时,可得出22n n a a +=+,故偶数项是以2为首项,公差为2的等差数列,求出通项公式,代值计算即可得解. 【详解】 当n 为偶数时,2223cos 1sin 2cos 1cos 2222n n n n n n n a a a n a ππππ+-⎛⎫=+⋅+=⋅++=+ ⎪⎝⎭, 即22n n a a +=+,故数列{}n a 的偶数项是以2为首项,公差为2的等差数列, 所以2122n n a n ⎛⎫=+-⨯=⎪⎝⎭, 所以20202020a =. 故答案为:2020. 【点睛】本题考查数列的递推式,解题关键是得出当n 为偶数时,可得出2n a +与n a 的关系式,进而求出{}n a 的通项公式,考查逻辑思维能力和计算能力,属于常考题.16.【分析】设等差数列的公差为由等差数列的性质及前n 项和公式可得再由二次函数的图象与性质可得求得后再由等差数列的通项公式即可得解【详解】设等差数列的公差为则为整数所以由结合二次函数的图象与性质可得解得所 解析:217n -【分析】设等差数列{}n a 的公差为d ,由等差数列的性质及前n 项和公式可得231322n n d d S n ⎛⎫+ ⎝-⎪⎭=,再由二次函数的图象与性质可得313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯,求得d 后再由等差数列的通项公式即可得解. 【详解】设等差数列{}n a 的公差为d ,则1213a a d d =-=--,d 为整数, 所以()()()2131313112222n d S d n n n n d a n d d n n n --=+⎛⎫--++ ⎪⎝=⎭=-, 由8n S S ≥,结合二次函数的图象与性质可得0d >,313151722222d d ⎛⎫-+ ⎪⎝⎭≤-≤⨯, 解得131376d ≤≤, 所以2d =,所以1215a a d =-=-,所以()()111521217n a a n d n n =+-=-+-=-. 故答案为:217n -. 【点睛】本题考查了等差数列通项公式及前n 项和公式的应用,考查了利用二次函数的图象与性质解决等差数列前n 项和最值的问题,属于中档题.17.【分析】利用等差数列的性质得到再根据求解【详解】因为所以故答案为:【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用还考查了运算求解的能力属于中档题 解析:39148【分析】利用等差数列的性质得到1013171191912a a a b b b b =⨯+++191912S T =⨯,再根据2142n n S n T n +=-求解.【详解】因为()*2142n n S n n N T n +=∈-, 所以()()110113171119191991921912221a a a b b b a b b b a =⨯=⨯+++++,191911219139224192148S T ⨯+=⨯=⨯=⨯-, 故答案为:39148【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用,还考查了运算求解的能力,属于中档题.18.【分析】由递推公式依次计算出数列的前几项得出数列是周期数列从而可求和【详解】由题意∴数列是周期数列且周期为4故答案为:【点睛】本题考查数列的周期性考查求周期数列的和解题时可根据递推公式依次计算数列的解析:4256【分析】 由递推公式依次计算出数列的前几项,得出数列是周期数列,从而可求和. 【详解】 由题意2241322a ==-,33a =,42a =-,512a =, ∴数列{}n a 是周期数列,且周期为4.10012341442525()2532236S a a a a ⎛⎫=+++=⨯++-= ⎪⎝⎭.故答案为:4256. 【点睛】本题考查数列的周期性,考查求周期数列的和,解题时可根据递推公式依次计算数列的项,然后归纳出周期性.19.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数.7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)21n a n =-;(2)2332n nn S +=-. 【分析】(1)利用已知条件列出关于首项与公差的方程组,解方程组即得数列{}n a 的通项公式;(2)先由(1)得到n n n a 2n 122-=,再利用错位相减法求和即可. 【详解】(1)设等差数列{}n a 的公差为d ,由已知得()()121223412a a a a a a +=⎧⎨+++=⎩,即122348a a a a +=⎧⎨+=⎩,所以()()()1111428a a d a d a d ⎧++=⎪⎨+++=⎪⎩,解得112a d =⎧⎨=⎩,所以21n a n =-. (2)由(1)得n n n a 2n 122-=, 所以1212321223212n n n n n S ---=++⋯++,① 231123212222213n n n n n S +--=++⋯⋯++,② -①②得:21111112132322222222n n n n n n S ++-+⎛⎫=+⨯+⋯+-=- ⎪⎝⎭, 所以2332n nn S +=-.易错点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 22.答案见解析 【分析】选①:由等差数列通项公式得出通项n a 后,解0n a ≥,满足此不等式的最大的n 使得n S 最大,注意若n a 0=,则有两个值使得n S 最大,选②:由等比数列前n 项和公式得出n S ,由于公比是负数,因此按n 的奇偶性分类讨论求得n S 的最大值;选③:由累加法求得n a ,利用n a 的表达式是n 的二次函数形式,当15n ≥时,0n a >,确定n S 不存在最大值. 【详解】 选①因为119n n a a +-=-,19a =,所以{}n a 是首项为9,公差为19-的等差数列.所以()118291999n a n n ⎛⎫=+-⋅-=-+ ⎪⎝⎭. 由182099n -+≥,得82n ≤,即820a ≥ 所以n S 存在最大值,且最大值为81S 或82S , 因为818180181936929S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为369. 选② 因为113n n a a +=-,19a =,所以{}n a 是首项为9,公比为13-的等比数列. 所以1311933n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.1︒当n 为奇数时,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为271143n ⎛⎫+ ⎪⎝⎭随着n 的增大而减小,所以此时n S 的最大值为19S =;2︒当n 为偶数的,1913271114313n n n S ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭+, 且2712719434n n S ⎛⎫=-<< ⎪⎝⎭, 综上,n S 存在最大值,且最大值为9. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…,19n n a a n --=-, 以上1n -个等式相加得()()21791171622n n n n n a a -+---+-==, 因为19a =,所以()2173422n n n a n -+=≥,又19a =也满足上式,所以217342n n n a -+=. 当15n ≥时,0n a >,故n S 不存在最大值. 【点睛】关键点点睛:本题考查数列前n 项和的最大值问题,一种方法是求出n S 的表达式,由函数的性质确定n S 的最大值,一种是利用数列项的性质,如数列是递减的数列,10a >,则满足0n a ≥的最大的n 使得n S 最大. 23.(1)13-=n n a ,3n b n =;(2)1321344n n n T +-=+⋅. 【分析】(1)由数列的递推关系式求出等比数列{}n a 的通项公式,利用等差数列的基本量运算得出{}n b 的通项公式; (2)利用错位相减法求出n T . 【详解】(1)1211n n a S n +=+≥①1212n n a S n -=+≥②①-②得:13n n a a +=,2n ≥ 又因为11a =,23a =所以数列{}n a 是以1为首项,3为公比的等比数列所以13-=n n a因为{}n b 为等差数列且39b =,15272b b +=所以有:()111292724b d b b d +=⎧⎨+=+⎩解得:13b =,3d =,所以3n b n =(2)由(1)知3nn c n =⋅213233n n T n =⋅+⋅+⋅①()23131323133n n n T n n +=⋅+⋅+-⋅+⋅②①-②得:2312333...33n n n T n +-=++++-⋅()11131********2n n n n n T n n +++---=-⋅=-⋅-1321344n n n T +-=+⋅【点睛】方法点睛:本题考查数列的通项公式,考查数列的求和,数列求和的方法总结如下: 1.公式法,利用等差数列和等比数列的求和公式进行计算即可;2.裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;3.错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;4.倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和.24.(1)2nn a =;(2)21n b n =-,数列{}n b 前10项的和10100S =.【分析】(1)利用等比数列的通项公式,结合已知12a =,416a =,可以求出公比,这样就可以求出数列{}n a 的通项公式;(2)由数列{}n a 的通项公式,可以求出21a -和 358a 的值,这样也就求出2b 和 3b 的值,这样可以求出等差数列{}n b 的公差,进而可以求出通项公式,利用前n 项和公式求出数列{}n b 前10项的和.【详解】(1)设等比数列的公比为q ,由已知12a =,34121616q a a q =⇒⋅=⇒=,所以112n n n a q a -=⋅=,即数列{}n a 的通项公式为2n n a =;(2)由(1)知2nn a =,所以2221213b a =-=-=,333552588b a ==⨯=, 设等差数列{}n b 的公差为d ,则322d b b -==,12121n d b b n b =-=∴=-, 设数列{}n b 前10项的和为10S ,则11010910910101210022S d b ⨯⨯=+⋅=⨯+⨯=, 所以数列{}n b 的通项公式21n b n =-,数列{}n b 前10项的和10100S =. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等.(4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.25.(1)()*1(1)2n n a n N --=∈;(2)证明见解析. 【分析】(1)1p =,1q =-,已知条件可得1(1)nn n a a +-=-,利用累加法及等比数列的求和公式,计算可求数列{}n a 的通项公式;(2)2p =,1q =,121n n a a +=+,化简可得1121n n a a ++=+,通过等比数列的通项公式求得()*21nn a n N =-∈,化简可得11212222n n nn a a +=+≤+-,放缩后,通过分组求和可证得结果. 【详解】(1)∵1p =,1q =-,∴1(1)n n n a a ++-=,即1(1)nn n a a +-=-,∴当2n ≥:12111221(1)(1)(1)n n n n n n a a a a a a ------+-++-=-+-++-,得1(1)12n n a a -+-=,∴11a =,∴1(1)2nn a --=,当1n =:11a =也符合上式,故()*1(1)2n n a n N --=∈(或1,0,nn a n ⎧=⎨⎩为奇数为偶数).(2)∵2p =,1q =,∴121n n a a +=+,∴()1121n n a a ++=+, 即1121n n a a ++=+,∴{}1n a +是以2为首项,2为公比的等比数列, ∴12nn a +=,即()*21nn a n N=-∈.又1112122122221112122n n n n n n n n a a +++--+===+≤+---, ∴11122221221212n n n T n n n -⎛⎫≤+=+-<+ ⎪⎝⎭-, 综上说述:()*22n T n n N <+∈.【点睛】方法点睛:数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和 (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和. 26.(Ⅰ)0d =时,n a a =;2d a =时,2n a an a =-;(Ⅱ)不存在,理由见解析. 【分析】(Ⅰ)根据等差数列写出(1)2n n n dS na -=+,利用等比中项性质列式代入求解;(2)设存在()*2,k k k ≥∈N ,根据等比中项列式,整理化简之后分类讨论0d =与0d >是否成立. 【详解】(Ⅰ)因为1S ,2S ,4S 成等比数列,所以2214S S S ,又因为数列{}n a 是等差数列,首项1a 为()0a a >,所以(1)2n n n d S na -=+,则()()2246a d a a d +=+,可得0d =或2d a =,当0d =时,n a a =;当2d a =时,2(1)2n a a n a an a =+-=-.(Ⅱ)设存在()*2,k k k ≥∈N,使ln kS、1ln k S +、2ln k S +成等比数列,则122ln l ln n k k k S S S ++=⋅,对任意的*n ∈N ,恒有0n S >,首项0a >,所以0d ≥因为()22222ln ln ln ln ln 22k k k k k k S S S S S S +++⋅⎡⎤+⎡⎤⋅<=⎢⎥⎢⎥⎣⎦⎣⎦()()()22211121112ln ln 22k k k k k k k k S dS a a S a S a ++++++++⎡⎤+--+⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦,当0d =时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k S dS a a S a S S +++++++⎡⎤⎡⎤⎡⎤+--⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即122ln l ln n k k k S S S ++>⋅,不成立;当0d >时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k k S dS a a S dS a S S +++++++⎡⎤⎡⎤⎡⎤+-+-⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即122ln l ln n k k k S S S ++>⋅,不成立;综上,不存在()*2,k k k ≥∈N ,使得ln kS、1ln k S +、2ln k S +成等比数列.【点睛】关于等比中项性质的运用,需要注意,,a b c 三个数成等比数列,列式得2b ac =,然后再根据数列是等差还是等比数列化为基本量1,a d 或1,a q 计算.。
(北师大版)济南市高中数学选修4-5第二章《重要的不等式》测试卷(包含答案解析)
一、选择题1.若0x y >>,{}0,1,2,,2020n ∈⋅⋅⋅,则使得1ny nx x y +>恒成立的n 有( )个.A .1B .2C .3D .20212.若222494x y z ++=,则3x y z ++的最大值( ) A .3B .6C .9D .273.若函数()f x 在其图象上存在不同的两点()()1122,,,A x y B x y,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”,则下列函数: ①1()(0)f x x x x=+>;②()ln (0)f x x x e =<<;③()cos f x x =;④2()1f x x =-.其中是“柯西函数”的为( ) A .①②B .③④C .①③D .②④4.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的最大值是( )A1 BC1D5.已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠= ,记椭圆和双曲线的离心率分别为12,e e,则121e e +的最大值为( ) A.3BC.D.6.设,x y ∈R ,且0xy ≠,则222241x y y x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .9-B .9C .10D .07.已知,,x y z ∈R ,若234x y z -+=,则222(5)(1)(3)x y z ++-++的最小值为( ) A .37200B .2007C .36D .408.已知向量a =(x -1,2),b =(4,y ),若a ⊥b ,则9x +3y 的最小值为( ) A.B .4C .12D .69.已知,,x y z ∈R ,且225x y z -+=,则222(5)(1)(3)x y z ++-++的最小值是 A .20 B .25 C .36D .4710.若实数a ,b ,c 均大于0,且a +b +c =3,则的最小值为( )A .3B .1C .33D .311.设a ,b ,c ,x ,y ,z 是正数,且2a +2b +2c =10, 2x +2y +2z =40, ax +by +cz =20,则a b cx y z++++=( )A .14B .13C .12D .3412.设a 、b 、c 、x 、y 、z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则=( )A .B .C .D .二、填空题13.用数学归纳法证明关于n 的不等式1111312224n n n +++>++ (n ∈N +),由n=k 递推到n=k+1时,不等式的左边的变化为________. 14.函数2223y x x =--_______.15.若231x y z +=,则222x y z ++的最小值为__________ 16.已知x 2+y 2=10,则3x +4y 的最大值为______.17.设向量(,)a b α=,(,)c d β=,其中a ,b ,c ,d R ∈,由不等式||||||⋅≤αβαβ恒成立,可以证明柯西不等式22222()()()a b c d ac bd ≥+++(当且仅当k αβ=,即ad bc =时等号成立).已知x ,y R +∈3x y x y <+恒成立,利用柯西不等式可求得实数k 的取值范围为________________. 18.已知,x y R ∈,且222,x y x y +=≠,则2211()()x y x y ++-的最小值是__________.19.已知正实数,,a b c ,且1a b c ++=,则()222149a b c +++的最小值为______. 20.若,,,(0,)a b c d ∈+∞,2222,a b c d a b c dx ++=++=,则x 的取值范围为_____.三、解答题21.已知函数()3f x k x =--,k ∈R ,且()30f x +≥的解集为[]1,1-. (1)求k 的值;(2)若a ,b ,c 是正实数,且111123ka kb kc++=,求证:239a b c ++≥. 22.已知函数()|2||21|f x x x =-++. (1)求不等式()3f x 的解集;(2)已知222(1)(1)6a b c +-++=,证明:824a b c --+. 23.已知函数()46f x x x =-+-. (1)求不等式()6f x ≥的解集; (2)设()f x 的最小值为m ,且()114,,0m a b c a b c++=>,证明:8a b c ++≥. 24.已知不等式15|2|22x x -++≤的解集为M . (1)求集合M ;(2)设集合M 中元素的最大值为t .若0a >,0b >,0c >,满足111223t a b c++=,求2993a b c ++的最小值. 25.已知()3f x x x =+-. (1)求不等式()5xf x x>的解集; (2)若()f x 的最小值为M ,且22a b c M ++=(a ,b ,c ∈R ),求证:2221a b c ++≥.26.已知实数a 、b 、c 满足0a >,0b >,0c >,2223a b cb c a++=,求证:3a b c ++≤.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题意,分情况讨论,1x y >≥和10x y >>>,0n =,1n =,2n ≥判断,得出结论. 【详解】如1x y >≥,1ny nx x y +>显然成立;当10x y >>>,0n =时,21ny nx x y +=>成立;当1n =时,由贝努力不等式(1)1r x rx +>+,1r >,1x >-,取1r y =,y a x=, 则111(1)10y y x x x+=+>>,1y x y x x +>,得y x x x y >+, 同理xy y x y>+,故1ny nx x y +>成立;当2n ≥时,取12x =,14y =,代入检验1124211111()()()()122224n nynxnx y +=+<+=+<,不成立,故选:B . 【点睛】本题考查恒成立问题,利用了贝努力不等式,考查运算求解能力,是中档题.2.A解析:A 【分析】利用条件构造柯西不等式22222221(3)()[1()1]492z x y z x y ++++≤++,即可求出结论.【详解】根据柯西不等式可得:222222219(23)()[1()1]994244x y x y z z ++≤+=⨯+++=33x y z ∴++≤,当且仅当43x y z ==,即414,,339x y z ===时,等号成立. 故选:A. 【点睛】本题考查应用柯西不等式求最值,属于基础题.3.B解析:B 【分析】由柯西不等式,得到函数()f x 在其图象上存在不同的两点()()1122,,,A x y B x y ,使得,OA OB 共线,转化为存在过原点的直线y kx =与()y f x =的图象有两个不同的交点,进行逐项判定,即可求解. 【详解】由柯西不等式得,对任意实数11221212,,,,0x y x y x x y y +-≤恒成立,当且仅当1221x y x y =时取等号,若函数()f x 在其图象上存在不同的两点()()1122,,,A x y B x y , 其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0, 则函数()f x 在其图象上存在不同的两点()()1122,,,A x y B x y ,使得,OA OB 共线, 即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点. 对于①,方程1(0)kx x x x=+>,即2(1)1k x -=,最多有1个正根,所以不是柯西函数;对于②,由图①可知不存在;因为在点(),1e 处,1y x e=与ln y x =相切,所以ln kx x =最多有1个正解;对于③,由图②可知存在;对于④,由图③可知存在.所以①②不是柯西函数,③④是柯西函数. 【点睛】本题主要考查了函数新定义的应用,其中把函数的定义,转化为存在过原点的直线y kx =与()y f x =的图象有两个不同的交点是解答的关键,着重考查分析问题和解答问题的能力,属于中档试题.4.C解析:C 【分析】设(),B x y ,利用两点间的距离公式可得221x y ax cy +=++,再利用柯西不等式进行放22x y +的最大值. 【详解】设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++()()222222112ac x y x y ≤++=++取等号条件:ay cx =; 令22OB x y d =+=,则212d d ≤+,得21d ≤.故选:C. 【点睛】本题考查两点间的距离公式,勾股定理、柯西不等式的应用,考查转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意不等式放缩时等号成立的条件.5.D解析:D 【分析】先设椭圆的长半轴长为1a ,双曲线的半实轴长为2a ,不妨设点P 在第一象限,然后根据椭圆和双曲线的定义可得12||,||PF PF ,再利用余弦定理列等式,转化为离心率的等式后,根据柯西不等式可求得. 【详解】 如图所示:设椭圆的长半轴长为1a ,双曲线的半实轴长为2a ,不妨设点P 在第一象限,则根据椭圆及双曲线的定义得,121||||2PF PF a += ,122||||2PF PF a -=,所以,112||PF a a =+, 212||PF a a =-, 设12||2F F c =,123F PF π∠=,则在△1212PF F 中,由余弦定理得2221212121214()()2()()2c a a a a a a a a =++--+-⨯, 即2221243=+c a a ,所以222212134c c a a =+,即2212134e e +=,由柯西不等式得2222212121313(11(11)([()(]e e e e ⨯+≤++, 即12132422e e +≤⨯=当且仅当12113e =即122e =,26e =时,等号成立.故选:D 【点睛】,本题考查了椭圆和双曲线的定义,余弦定理,离心率,柯西不等式,属于中档题.6.B解析:B 【解析】【分析】利用柯西不等式得出最小值. 【详解】 (x 224y +)(y 221x+)≥(x 12y x y ⋅+⋅)2=9.当且仅当xy 2xy=即xy=时取等号. 故选:B . 【点睛】本题考查了柯西不等式的应用,熟记不等式准确计算是关键,属于基础题.7.B解析:B 【分析】根据柯西不等式得到不等式关系,进而求解. 【详解】根据柯西不等式得到()()()()()()2222221(2)352135313x y z x y z ⎡⎤+-+≥++-+++--++⎡⎤⎣⎦⎣⎦()()()()2222511423164030x y z x y z ⎡⎤++-++≥-++=⎣⎦进而得到最小值是:2007故答案为B. 【点睛】这个题目考查了柯西不等式的应用,比较基础.8.D解析:D 【解析】 【分析】首先由向量垂直的充分必要条件得到x ,y 的等式关系,然后利用均值不等式的结论整理计算即可求得最终结果. 【详解】∵a ⊥b ,∴4(x-1)+2y=0. ∴2x+y=2,∴y=2-2x ,∴9x +3y =9x +32-2x =32x +32-2x ≥ 6.=当且仅当32x =32-2x ,即x 1,12y ==时等号成立. 本题选择D 选项. 【点睛】本题的核心在考查基本不等式求最值的方法.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.9.C解析:C 【解析】 由于()()()()()()()()()222222251312252123x y z x y z ⎡⎤⎡⎤⎡⎤++-+++-+≥++--++=⎣⎦⎢⎥⎣⎦⎣⎦324,所以()()()22251336x y z ++-++≥,当且仅当513122x y z +-+==-,即331x y z =-⎧⎪=-⎨⎪=⎩时取等号.故选C . 10.D解析:D 【解析】()()()22222221111119,3a b c a b c a b c ++++≥⨯+⨯+⨯=∴++≥,1a b c ===时等号成立,故选D. 11.C解析:C 【解析】 由柯西不等式得()2222222111111444222a b c x y z ax by cz ⎛⎫⎛⎫++++≥++ ⎪ ⎪⎝⎭⎝⎭当且仅当111222a b cx y z ==时等号成立,2222221040a b c x y z ++=++=,,20ax by cz ++=∴等号成立 111222a b c x y z ∴== 12a b c x y z ++∴=++ 故答案选C12.C解析:C 【解析】由柯西不等式得()2222222111111444222a b c x y z ax by cz ⎛⎫⎛⎫++≥++ ⎪ ⎪⎝⎭⎝⎭++, 当且仅当111222a b cx y z ==时等号成立∵22210a b c ++=,22240x y z ++=,20ax by cz ++=∴()2222222111111444222a b c x y z ax by cz ⎛⎫⎛⎫++≥++ ⎪ ⎪⎝⎭⎝⎭++中等号成立,∴一定有:111222a b cx y z ==,∴12a b c x y z === 则12a b c x y z ++=++ 故选C二、填空题13.增加【分析】先写出当n=k 时左边的代数式再写出当n=k+1时左边的代数式相减即可得出结果注意分母及项数的变化【详解】假设n=k 时不等式成立即+…+则当n=k+1时不等式左边=+…+=+…+=+…+=解析:增加112122k k -++ 【分析】先写出当n=k 时左边的代数式,再写出当n=k+1时左边的代数式,相减即可得出结果,注意分母及项数的变化 【详解】假设n=k 时,不等式成立,即1112k k ++++…+113224k >, 则当n=k+1时,不等式左边=11(1)1(1)2k k ++++++…+1112212(1)k k k ++++=1123k k ++++…+11122122k k k ++++ =1112k k ++++…+1111221221⎛⎫++- ⎪+++⎝⎭k k k k=1112k k++++…+11122122k k k+-++.故答案为:增加11 2122 k k-++【点睛】本题主要考查数学归纳法的应用,解题的关键是随着项的变化代数式的变化,属于中档题. 14.【分析】拆解函数利用三维形式的柯西不等式可得求得函数的最大值【详解】∵当且仅当即时等号成立∴函数的最大值为故答案为:【点睛】本题主要考查了三维形式的柯西不等式在求解函数最值中的应用属于基础题【分析】拆解函数,利用三维形式的柯西不等式可得求得函数的最大值.【详解】∵y==111++53x=时等号成立,∴函数y【点睛】本题主要考查了三维形式的柯西不等式在求解函数最值中的应用,属于基础题.15.【分析】本题可根据柯西不等式得出然后通过化简即可得出结果【详解】根据柯西不等式可得因为所以当且仅当时取等号故答案为:【点睛】本题考查柯西不等式柯西不等式公式考查计算能力是简单题解析:18【分析】本题可根据柯西不等式得出222222212323x y z x y z,然后通过化简即可得出结果.【详解】根据柯西不等式可得222222212323x y z x y z,因为21x y+=,所以22218x y z,当且仅当23y zx时取等号,故答案为:18. 【点睛】本题考查柯西不等式,柯西不等式公式()()()2222222123123112233aa ab b b a b a b a b ++++≥++,考查计算能力,是简单题.16.【分析】由二维柯西不等式即可得解【详解】解:∵(32+42)(x2+y2)≥(3x +4y)2当且仅当3y =4x 时等号成立∴25×10≥(3x +4y)2即∴(3x +4y)max =5故答案为:5【点睛】【分析】由二维柯西不等式即可得解. 【详解】解:∵(32+42)(x 2+y 2)≥(3x +4y )2, 当且仅当3y =4x 时等号成立, ∴25×10≥(3x +4y )2,即34x y -≤+≤ ∴(3x +4y )max =.故答案为: 【点睛】本题考查了柯西不等式,重点考查了柯西不等式的应用,属基础题.17.【解析】因为所以所以因为恒成立所以故实数的取值范围为解析:)+∞【解析】因为()()()22222a bc d ac bd ++≥+,所以()()22213x y ≤++,所以≤x ,y R +∈恒成立,所以k >.故实数k 的取值范围为)+∞.18.【解析】令则∵∴∴由柯西不等式得:当且仅当u=v=即或时的最小值是1故填1 解析:1【解析】令,u x y v x y =+=-,则,22u vu vxy , ∵222x y +=,∴22()()8u v u v ++-=,∴224u v ,由柯西不等式得:222211()()4u v u v++≥,当且仅当u=v=2,即2x =±,0y =或0x =,2y =±时,2211()()x y x y ++-的最小值是1,故填1.19.【解析】试题分析:因为所以得当且仅当即时有最小值考点:柯西不等式 解析:14449【解析】试题分析:因为1a b c R a b c +∈++=,,,,所以()()22221111114912344923a b c a b c ⎛⎫⎡⎤⎡⎤+++++≥++⋅+⋅= ⎪⎢⎥⎣⎦⎝⎭⎣⎦,得()22214414949a b c +++≥.当且仅当,即23187,,494949a b c ===时,()222149a b c +++有最小值14449. 考点:柯西不等式.20.【分析】根据题意两边同除d 用换元法重新构造变量再利用柯西不等式以及放缩法即可求出取值范围【详解】∵abcd 都是正数a2+b2+c2=d2∴;又∵a+b+c =dx ∴x =设=m =n =p 且m >0n >0p > 解析:(3【分析】根据题意,两边同除d ,用换元法重新构造变量,再利用柯西不等式以及放缩法即可求出取值范围. 【详解】∵a ,b ,c ,d 都是正数,a 2+b 2+c 2=d 2,∴2221a b c d d d ⎛⎫⎛⎫⎛⎫++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 又∵a +b +c =dx ,∴x =a b c d d d++设a d=m ,bd =n ,c d =p ,且m >0,n >0,p >0,则m 2+n 2+p 2=1, x =m +n +p ;由柯西不等式得:3=(12+12+12)•(m 2+n 2+p 2)≥(1•m +1•n +1•p )2,∴m +n +p 2221m n p m n p ==⎧⎨++=⎩,即m =n =p =3时,取得最大值又∵m >0,n >0,p >0,∴(m +n +p )2=m 2+n 2+p 2+2mn +2mp +2np >m 2+n 2+p 2=1, ∴m +n +p >1;综上,1<m +n +p x 的取值范围是(1.故答案为(1. 【点睛】本题考查了不等式的应用问题,也考查了换元法以及不等式放缩法的应用问题,是综合性题目.三、解答题21.(1)1k =;(2)证明见解析. 【分析】(1)将3x +带入()3f x k x =--,由()30f x +≥可得x k ≤,然后绝对值不等式的解集确定k 的值; (2)结合(1)可得111123a b c++=,然后利用柯西不等式进行证明即可. 【详解】解:(1)因为()3f x k x =--, 所以()30f x +≥等价于x k ≤,由x k ≤有解,得0k ≥,且x k ≤解集为[],k k -. 因为()30f x +≥的解集为[]1,1-. 因此1k =.(2)证明:将(1)中所得1k =带入可知知:111123a b c++=, 因为a ,b ,c 为正实数, 所以由柯西不等式得:()21112323923a b c a b c a b c ⎛⎫++=++++≥= ⎪⎝⎭ 当且仅当23a b c ==时,等号成立. 因此239a b c ++≥成立.. 【点睛】本题的难点在于(2)的证明,证明时可利用柯西不等式,设1a ,2a ,3a ,,n a ,1b ,2b ,3b ,,n b 为实数,则有:()()()222222222123123112233n n n n aa a ab b b b a b a b a b a b ++++++++≥++++,当且仅当()01,2,3,,i b i n ==或存在一个数k 使得()1,2,3,,i i a kb i n ==时,等号成立.22.(1)(-∞,2][03-,)+∞;(2)证明见解析.【分析】(1)分三种情况讨论解不等式得解;(2)由柯西不等式得2(22)36a b c -++,化简即得证. 【详解】(1)()3f x 即为2213x x -++,等价为2{2213x x x -++或12{22213x x x -<<-++或1{22213x x x ----, 解得2x 或02x <或23x -, 综上可得,原不等式的解集为(-∞,2][03-,)+∞;(2)证明:由柯西不等式可得2222222[(1)(1)][2(1)1][2(1)1]a b c a b c +-++⨯+-+--++,当112ab c =-=+时,上式取得等号. 又222(1)(1)6a b c +-++=,则2(22)36a b c -++,即6226a b c --++, 即824a b c --+. 即得证. 【点睛】本题主要考查绝对值不等式的解法,考查柯西不等式的应用,考查不等式的证明,意在考查学生对这些知识的理解掌握水平和分析推理能力. 23.(1)(][),28,-∞⋃+∞;(2)证明见解析. 【分析】(1)分段讨论去绝对值即可求解;(2)根据绝对值不等式求出m ,再利用柯西不等式即可证明. 【详解】(1)由()6f x ≥,得4,1026x x ≤⎧⎨-≥⎩或46,26x <<⎧⎨≥⎩或6,2106,x x ≥⎧⎨-≥⎩解得2x ≤或8x ≥,故所求不等式的解集为(][),28,-∞⋃+∞.(2)证明:因为()()46462f x x x x x =-+-≥---=, 所以2m =.因为,,0a b c >,所以()()211141112822a b c a b c a b c ⎛⎫++=++++≥++= ⎪⎝⎭, 当且仅当114a b ca b c==,即22c a b ===时,等号成立, 故8a b c ++≥. 【点睛】本题考查含绝对值不等式的解法,考查柯西不等式的应用,属于基础题. 24.(1)1,22⎡⎤-⎢⎥⎣⎦;(2)14.【分析】(1)利用绝对值不等式和已知条件得出15|2|22x x -++=,解出x 的范围即可; (2)利用三个数的柯西不等式配凑整理即可得出结果. 【详解】 (1)115|2|(2)222x x x x ⎛⎫-++≥--+≥ ⎪⎝⎭, 又因为15|2|22x x -++≤, 所以15|2|22x x -++=, 当12x <-时,1351(2)2,2222x x x x ⎛⎫---+=-+==- ⎪⎝⎭舍去, 当122x -≤≤时,15(2)22x x ⎛⎫--++= ⎪⎝⎭成立,当2x >时,135(2)2,2222x x x x ⎛⎫-++=-== ⎪⎝⎭舍去, 则122M xx ⎧⎫=-≤≤⎨⎬⎩⎭∣ (2)设集合M 中元素的最大值为2t =, 即111423a b c++=. 又因为2 212111119934993234334 a b c a b ca b c⎛⎫⎛⎫⎛⎫++=++++≥+=⎪⎪⎝⎭⎝⎭⎝所以即2993a b c++的最小值14,当且仅当34a=,38b=,14c=时取等号.【点睛】本题主要考查了绝对值不等式和柯西不等式.属于中档题.25.(1)()(),04,-∞+∞;(2)证明见解析.【分析】(1)分0x<,03x<≤,3x>三类解不等式,再求并集即可;(2)根据三角不等式得3M=,再利用三维形式的柯西不等式证明即可.【详解】∵f(x)=|x|+|x﹣3|,∴当x<0时,()5xf xx>等价于|x|+|x﹣3|>﹣5,该不等式恒成立;当0<x≤3时,()5xf xx>等价于3>5,该不等式不成立;当x>3时,()5xf xx>等价于3235xx⎧⎨-⎩>>,解得x>4,∴不等式()5|xf xx>的解集为(﹣∞,0)∪(4,+∞).(2)证明:∵f(x)=|x|+|x﹣3|≥|x﹣(x﹣3)|=3,当且仅当0≤x≤3时取等号,∴M=3,a+2b+2c=3,由柯西不等式,可得9=(a+2b+2c)2≤(12+22+22)(a2+b2+c2)=9(a2+b2+c2),当且仅当111366a b c===,,时等号成立,∴2221a b c++≥.【点睛】本题考查分类讨论法解绝对值不等式,利用柯西不等式证明不等式,考查数学运算能力,是中档题.26.见解析【分析】利用柯西不等式证明出()()2222a b cb c a a b cb c a⎛⎫++++≥++⎪⎝⎭,由此可证明出3a b c++≤.【详解】由柯西不等式,得()()2223a b c a b c b c a b c a ⎛⎫++=++++ ⎪⎝⎭222222⎡⎤⎡⎤=++⋅++⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦()22a b c ≥=++, 所以3a b c ++≤.【点睛】本题考查利用柯西不等式证明不等式,解答的关键在于对代数式进行合理配凑,考查推理能力,属于中等题.。
高中数学必修一至五模块综合测试
主视图6侧视图高中数学必修模块综合测试卷一、选择题:本大题共10小题,每小题5分,共50分. 1. 已知集合11{2,1,0,1,2}{|28R}2x M N x x +=--=<<∈,,,则M N =A .{0,1}B .{10}-,C .{1,0,1}-D .{2,1,0,1,2}--2. 某社区现有480个住户,其中中等收入家庭200户、低收入家庭160户,其他为高收入家庭。
在建设幸福广东的某次分层抽样调查中,高收入家庭被抽取了6户,则该社区本次被抽取的总户数为A .20B .24C .30D .36 3. 已知实数列1,,,,2a b c 成等比数列,则abc 等于( ) A .4 B .±4 C .22 D .±22 4. 过点(1,1),(1,1)A B 且圆心在直线20x y 上的圆的方程是A .22(3)(1)4x y B. 22(3)(1)4x y C .22(1)(1)4x yD. 22(1)(1)4x y5. 已知向量a 与b 的夹角为120,且||1a b ==||,则||a b -等于 A .1 BC .2D .3 6.已知1,4,20,x y x y y -≥-+≤-≥则24x y +的最小值是 A .8 B .9 C .10 D .13 7. 有一个几何体的三视图及其尺寸如图所示 (单位:cm ),则该几何体的表面积...为 A .212cm π B. 215cm π C. 224cm π D. 236cm π 8.设,x yR 则“2x 且2y”是“224x y ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件9. 若23x <<,12xP ⎛⎫= ⎪⎝⎭,2log Q x =,R =则P ,Q ,R 的大小关系是 A .Q P R << B .Q R P << C .P R Q << D .P Q R <<10. 一个三角形同时满足:①三边是连续的三个自然数;②最大角是最小角的2倍,则这个三角形最小角的余弦值为 AB .34 CD .18二、填空题:本大题共4小题,每小题5分,共20分. 11.sin(30)sin(30)cos的值为 .12. 如右图所示,函数()2x f x =,()2g x x =,若输入的x 值为3,则输出的()h x 的值为 .13. 若函数()()()2213f x a x a x =-+-+是偶函数,则函数()f x 的单调递减区间为 .14. 已知数列{}n a 满足12a =,*121()n n a a n N +=+∈,则4a = , 该数列的通项公式n a = .三、解答题:本大题共6小题,共80分.15.(本题满分12分)有四个数,已知前三个成等比数列,且和为19,后三个成等差数列,且和为12,求此四数。
高一数学上学期期中测试卷及解析(2020-2021学年北师大版)
2020-2021学年北师大版高一数学上学期期中测试卷(一)学校:___________姓名:___________班级:___________考号:___________一、单选题(共12小题,每小题5分,共60分)1.设全集为R ,集合{}A |10x x =->,{}B |||2x x =>,则集合()RA B (⋃= )A .{|1}x x ≤B .{|2x x <-或1}x >C .{|12}x x ≤<D .{|1x x ≤或2}x >【答案】D 【解析】 【分析】先分别求出集合A 和集合集合B ,再求出R C A ,与集合B 求并集即可. 【详解】因为{}A |1x x =>,B {x |x 2=<-或x 2}>;R A {x |x 1}∴=≤;()R A B {x |x 1∴⋃=≤或x 2}>.故选D 【点睛】本题主要考查集合的混合运算,熟记概念即可,属于基础题型. 2.已知()f x 满足()x f e x =,则(1)f =( ) A .0 B .1C .eD .ln 2【答案】A 【解析】 【分析】由()f x 满足()xf e x =,利用f (1)0()f e =,能求出结果.【详解】()f x 满足()x f e x =,f ∴(1)0()0f e ==.故选A . 【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.3.函数()2f x x =-的定义域为( ) A .(1,)+∞ B .[1,)+∞C .[1,2)D .[1,2)(2,)⋃+∞【答案】D 【解析】 【分析】根据分式分母不为零,偶次方根的被开方数为非负数列不等式组,解不等式组求得函数()f x 的定义域. 【详解】依题意1020x x -≥⎧⎨-≠⎩,解得[1,2)(2,)x ∈⋃+∞.故选:D. 【点睛】本小题主要考查具体函数定义域的求法,属于基础题.4.下列函数()f x 中,满足对任意()12,0,x x ∈+∞,当x 1<x 2时,都有()()12f x f x >的是( ) A .()2f x x =B .()1f x x=C .()f x x =D .()21f x x =+【答案】B 【解析】 【分析】根据题意,选取在()0,∞+上为减函数的函数. 【详解】由12x x <时,()()12f x f x >,所以函数()f x 在()0,∞+上为减函数的函数.A 选项,2yx 在()0,∞+上为增函数,不符合题意.B 选项,1y x=在()0,∞+上为减函数,符合题意.C 选项,y x =在()0,∞+上为增函数,不符合题意.D 选项,()21f x x =+在()0,∞+上为增函数,不符合题意.故选B. 【点睛】本小题主要考查函数的单调性定义,考查基本初等函数单调性,属于基础题. 5.若()f x 的定义域为R 且在(0,)+∞上是减函数,则下列不等式成立的是( )A .23()(1)4f f a a >-+B .23()(1)4f f a a ≥-+C .23()(1)4f f a a <-+D .23()(1)4f f a a ≤-+【答案】B 【解析】 【分析】 判断34与21a a -+的大小,利用函数的单调性,即可推出结果. 【详解】解:221331244a a a ⎛⎫-+=-+≥ ⎪⎝⎭, 函()f x 的定义域为R 且在(0,)+∞上是减函数, 可得23()(1)4f f a a ≥-+. 故选:B . 【点睛】本题考查函数的单调性的应用,基本知识的考查.6.已知函数245y x x =-+在闭区间[0,]m 上有最大值5,最小值1,则m 得取值范围是( ) A .[0,1] B .[1,2] C .[0,2] D .[2,4]【答案】D 【解析】 【分析】由函数的解析式可得函数22()45(2)1f x x x x =-+=-+的对称轴为2x =,此时,函数取得最小值为1,当0x =或4x =时,函数值等于5,结合题意求得m 的范围.【详解】函数22()45(2)1f x x x x =-+=-+的对称轴为2x =,此时,函数取得最小值为1, 当0x =或4x =时,函数值等于5.又2()45f x x x =-+在区间[0,]m 上的最大值为5,最小值为1,∴实数m 的取值范围是[2,4],故选D .【点睛】本题考查二次函数在闭区间上的最值问题,考查数形结合思想,深刻理解二次函数在特定区间上的最值问题,熟练掌握二次函数的对称性是解决该类问题的关键. 7.下列函数既是奇函数又是增函数的是( ) A .21y x =+ B .1y x =+C .12y x =D .3y x =【答案】D 【解析】 【分析】选项中所涉及到的函数既是奇函数又是增函数的才能符合条件,要从这两个方面进行判断,这两个方面可以借助于图象,也可以直接利用奇函数的定义和函数单调性的判定方法进行求解. 【详解】选项A 中,设函数()y f x =,()()f x f x -=,函数21y x =+是偶函数,不符合题意;选项B 中,设函数()y f x =,()()f x f x -≠±,则函数1y x =+为非奇非偶函数,选项B 不符合题意;选项C 中,函数12y x =的定义域为[0,)+∞,则12y x =为非奇非偶函数,选项C 不符合题意;选项D 中,3y x =是单调递增且满足()()f x f x -=-,则3y x =是奇函数,符合条件.故选D. 【点睛】本题重点考查常见函数的单调性和奇偶性,注意它们的判定方法,属基础题. 8.函数f (x )=a x -b 的图象如图,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 【答案】D 【解析】 【分析】由函数的单调性得到0<a <1,再根据函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,分析出b 的范围.【详解】 由f (x )=a x-b的图象可以观察出,函数f (x )=a x-b在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的, 所以b <0. 故选:D. 【点睛】本题主要考查指数函数的图象和性质,考查图象变换,意在考查学生对这些知识的理解掌握水平.9.已知关于x 的不等式42133x x --⎛⎫> ⎪⎝⎭,则该不等式的解集为( )A .[4,+∞)B .(-4,+∞)C .(-∞,-4 )D .(]4,1-【答案】B 【解析】 【分析】先将不等式两边化为同底,然后利用指数函数单调性列一元一次不等式,由此求得不等式的解集. 【详解】依题意可知,原不等式可转化为4233x x -+->,由于指数函数3xy =为增函数,故42,4x x x -+>->-,故选B.【点睛】本小题主要考查指数运算,考查指数函数的单调性以及指数不等式的解法,属于基础题. 10.已知131log 3,2,ln 3a b c π===,则,,a b c 的大小关系为( ) A .a b c >> B .a c b >> C . c a b >> D .b a c >>【答案】D 【解析】 【分析】利用指数函数、对数函数的单调性直接求解 . 【详解】 解:0131log a log log ππππ=<=<=,103221b =>=,1103c ln ln =<=,a ∴,b ,c 的大小关系为:b a c >>.故选:D . 【点睛】本题考查利用指数函数、对数函数的单调性等基础知识比较三个数的大小,考查运算求解能力,考查函数与方程思想,是基础题 .11.函数f (x )=ln x +3x -4的零点所在的区间为( ) A .()0,1 B .()1,2C .()2,3D .()2,4【答案】B 【解析】 【分析】根据函数零点的判定定理可得函数()f x 的零点所在的区间. 【详解】 解:函数()34f x lnx x =+-在其定义域上单调递增,f ∴(2)2234220ln ln =+⨯-=+>,f (1)3410=-=-<,f ∴(2)f (1)0<.根据函数零点的判定定理可得函数()f x 的零点所在的区间是(1,2), 故选:B . 【点睛】本题考查求函数的值及函数零点的判定定理,属于基础题. 12.若函数()2020xlog x x f x a x ⎧=⎨--≤⎩,>,有且只有一个零点,则a 的取值范围是( ) A .(﹣∞,﹣1)∪(0,+∞) B .(﹣∞,﹣1)∪[0,+∞) C .[﹣1,0) D .[0,+∞)【答案】B 【解析】 【分析】根据()f x 在(],0-∞没有零点列不等式,解不等式求得a 的取值范围. 【详解】当x >0时,因为log 21=0,所以有一个零点,所以要使函数()2020x log x x f x a x ⎧=⎨--≤⎩,>,有且只有一个零点,则当x ≤0时,函数f (x )没有零点即可,当x ≤0时,0<2x ≤1,∪﹣1≤﹣2x <0,∪﹣1﹣a ≤﹣2x ﹣a <﹣a , 所以﹣a ≤0或﹣1﹣a >0,即a ≥0或a <﹣1. 故选:B 【点睛】本小题主要考查分段函数零点,属于基础题.二、填空题(共4小题,每小题5分,共20分)13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则=【答案】12- 【解析】 【分析】利用函数的周期为2,将52f ⎛⎫- ⎪⎝⎭转化为12f ⎛⎫- ⎪⎝⎭,然后将12x =代入题目所给解析式,由此求得函数值.【详解】 依题意,得f =-f=-f =-f =-2××=-.【点睛】本小题主要考查函数的奇偶性,考查函数的周期性.将不属于给定区间内的自变量,通过周期性转化为给定区间内的自变量,由此求得函数值,属于基础题. 14.若10x =3,10y =4,则10x -y =__________. 【答案】34【解析】因为103,104xy==,所以10310104x x yy -==,应填答案34.15.(本题0分)函数()()212log 23f x x x =--+的值域是___________. 【答案】[)2,-+∞ 【解析】 【分析】设2230t x x =--+>,求出t 的范围,再根据12log y t =的单调性可求得结果.【详解】设t =2223(1)4x x x --+=-++,则(0,4]t ∈, 因为12log y t =在(0,4]上单调递减,所以12log 42y ≥=-,所以函数()f x 的值域为[2,)-+∞. 故答案为:[)2,-+∞. 【点睛】本题考查了利用对数函数的单调性求函数的值域,属于基础题. 16.设a b 23x ==,且111a b+=,则x 的值为______.【解析】 【分析】由2a =3b =x ,根据对数的定义,分别表示出a 与b ,代入111a b+=中,利用对数的运算法则即可求出x 的值. 【详解】由a b 23x ==,得到x 2a log =,x3b log =,代入111a b+=中得:x x 23111log log +=,即lg2lg3lg61lgx lgx lgx +==, 得到lgx lg6=,即x 6=. 故答案为6 【点睛】此题考查学生掌握对数的定义及运算法则,是一道基础题.三、解答题(共6小题,17题10分,18-22题12分,共70分)17.已知全集U =R ,若集合{}24A x x =-<< ,{}0B x x m =-<. (1)若3m =,求()U A C B ;(2)若AB A =, 求实数m 的取值范围.【答案】(1)[3,4)(2)4m ≥ 【解析】 【分析】(1)利用集合的交集及补集的定义直接求解即可;(2)由A B A ⋂=可得A B ⊆,利用集合的包含关系求解即可. 【详解】 (1)当时,,所以, 因为,所以;(2)由得,,所以本题主要考查了集合的运算及包含关系求参,属于基础题. 18.已知函数f(x)=xx 2+2.(1)判断并证明f(x)在[0,1]上的单调性; (2)若x ∈[−1,2],求f(x)的值域.【答案】(1)见解析,(2)[−13,√24].【解析】 【分析】(1)根据函数的单调性的定义证明即可;(2)根据函数的单调性,求出函数的值域即可. 【详解】解:(1)f(x)在[0,1]上单调递增函数,证明如下: 任取0≤x 1<x 2≤1,则f(x 1)−f(x 2)=x 1x 12+2−x 2x 22+2=x 1(x 22+2)−x 2(x 12+2)(x 12+2)(x 22+2)=(2−x 1x 2)(x 1−x 2)(x 12+2)(x 22+2)因为0≤x 1<x 2≤1,所以x 1−x 2<0,0≤x 1x 2≤1,2−x 1x 2>0,x 12+2>0,x 22+2>0,∴f(x 1)−f(x 2)<0,∴f(x)在[0,1]上是增函数因为x 1<x 2,所以,∴f(x 1)−f(x 2)<0, ∴f(x)在[0,1]上是增函数. (2)∵x ∈[−1,2],又f(x)在[−1,√2]上递增,在[√2,2]上递减, ∴f(x)min =f(−1)=−13,f(x)max =f(√2)=√24, ∴f(x)的值域为[−13,√24].【点睛】本题考查了函数的单调性问题,考查求函数的最值,是一道中档题. 19.已知函数()2210f x x x =-.(1)若[1,3]x ∈-,求()f x 的单调区间和值域;(2)设函数()f x 在[,1]t t +的最小值为()g t ,求()g t 的表达式.【答案】(1)()f x 的单调递减区间为[-1,25),单调递增区间为5,32⎛⎤ ⎥⎝⎦,值域为[min 525()()22f x f ,12];(2)223268,22535(),2225210,2t t t g t t t t t ⎧--≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩. 【解析】 【分析】(1)求出函数()f x 的对称轴,根据二次函数的开口方向和对称轴即可判断; (2)讨论对称轴在区间的不同位置,即可根据二次函数的性质求出最小值. 【详解】(1)可知函数()2210f x x x =-的对称轴为52x =,开口向上, ∴ ()f x 在区间[-1,52x =]上单调递减;()f x 在区间5,32⎛⎤⎥⎝⎦上单调递增, min525()()22f x f ,max ()(1)12f x f ,综上,()f x 的单调递减区间为[-1, 52x =],单调递增区间为5,32⎛⎤⎥⎝⎦,值域为[min 525()()22f x f ,12]; (2)()f x 对称轴为52x =,开口向上, ∴当52t ≥时,()f x 在[,1]t t +单调递增,2min ()()210f x f t t t , 当512t t <<+,即3522t <<时, min 525()()22f x f ,当512t +≤,即32t ≤时,()f x 在[,1]t t +单调递减,2min ()(1)268f x f t t t ,综上,223268,22535(),2225210,2t t t g t t t t t ⎧--≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩. 【点睛】本题主要考查二次函数的性质,遇到含参数的最值问题时,注意讨论对称轴与区间的位置关系.20.已知函数()()2101x x f x m m -=>+,且()325f =.(1)求m 的值,并指出函数()y f x =在R 上的单调性(只需写出结论即可); (2)证明:函数()f x 是奇函数; (3)若()()2230f mf m +-<,求实数m 的取值范围.【答案】(1)2,()f x 在R 上为增函数;(2)证明见解析;(3)(3-,1). 【解析】 【分析】 (1)由()325f =,代入解析式,解方程求出m 的值,利用指数函数的单调性即可求解. (2)利用函数的奇偶性定义即可判断.(3)利用函数为奇函数,将不等式转化为()()232f m f m <-,再利用函数为增函数可得232mm <-,解不等式即可求解. 【详解】(1)因为()325f =,所以2221315m -=+,即24m =,因为0m >,所以2m =.函数()21212121x x xf x -==-++在R 上为增函数. (2)由(1)知()2121x x f x -=+定义域为(),-∞+∞.对任意(),x ∈-∞+∞,都有()()211221211221x x x x xx f x f x --------====-+++. 所以函数()f x 是奇函数, (3)不等式()()2230f mf m +-<等价于()()223f m f m <--,因为函数()f x 是奇函数,所以()()232f mf m <-,又因为函数()f x 在R 上为增函数, 所以232m m <-,即2230m m +-<. 解得231m -<<.所以实数m 的取值范围为(3-,1). 【点睛】本题考查了利用定义判断函数的奇偶性、利用函数的单调性解不等式,考查了基本运算求解能力,属于基础题.21.已知二次函数()f x 满足()()121f x f x x +-=-且()00f =, (1)求二次函数()f x 的解析式. (2)求函数()1()()2f xg x =的单调增区间和值域.【答案】(1)()22f x x x =-;(2)单调递增区间是(],1-∞,()g x 的值域为(]0,2.【解析】 【分析】(1)依题意设2(),0f x ax bx a =+≠,代入已知等式,建立,a b 方程关系,求解即可;(2)令()t f x =根据(1)求出()f x 单调区间,再由12ty ⎛⎫= ⎪⎝⎭在R 上单调递减,结合复合函数的单调性,得出()g x 的单调区间,即可求出()g x 的值域. 【详解】(1)由()00f =,设2()f x ax bx =+∪()()1221f x f x ax a b x +-=++=-∪22112a a a b b ==⎧⎧⇒⎨⎨+=-=-⎩⎩∪()22f x x x =-(2)由(1)知()()221122f x x xg x -⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭; ∪22t x x =-在(],1-∞递减,在[)1,+∞递增;12ty ⎛⎫= ⎪⎝⎭在R 上是减函数,∪()g x 的单调递增区间是(],1-∞,单调递减区间是[)1,+∞. ∪()()12g x g ≤=,由()0g x >所以()02g x <≤,即()g x 的值域为(]0,2 【点睛】本题考查待定系数法求解析式、指数型函数的单调性和值域,掌握基本初等函数的性质是解题的关键,属于中档题.22.已知函数f (x )=ax 2+bx +c (a >0),且f (1)2a=-. (1)求证:函数f (x )有两个不同的零点;(2)设x 1,x 2是函数f (x )的两个不同的零点,求|x 1﹣x 2|的取值范围; (3)求证:函数f (x )在区间(0,2)内至少有一个零点.【答案】(1)证明见解析(2))+∞.(3)证明见解析 【解析】 【分析】(1)通过计算一元二次方程的判别式可以证明出结论;(2)利用一元二次方程的根与系数关系,可以得到|x 1﹣x 2|的表达式,再利用配方法求出取值范围; (3)根据零点存在原理,分类讨论证明出结论. 【详解】(1)∪()12a f abc =++=-, ∪32c a b =--,∪()232f x ax bx a b =+--,∪222223464(2)22b a a b b a ab a b a ⎛⎫=---=++=++ ⎪⎝⎭, ∪a >0,∪∪>0恒成立,故函数f (x )有两个不同的零点.(2)由x 1,x 2是函数f (x )的两个不同的零点, 则x 1,x 2是方程f (x )=0的两个根. ∪12b x x a +=-,1232b x x a =--,∪|x 1﹣x 2|===≥.∪|x 1﹣x 2|的取值范围是)+∞. (3)证明:∪f (0)=c ,f (2)=4a +2b +c , 由(1)知:3a +2b +2c =0, ∪f (2)=a ﹣c .(∪)当c >0时,有f (0)>0,又∪a >0, ∪()1102f =-<,∪函数f (x )在区间(0,1)内至少有一个零点. (∪)当c ≤0时,f (2)=a ﹣c >0,f (1)<0, ∪函数f (x )在区间(1,2)内至少有一个零点.综上所述,函数f (x )在区间(0,2)内至少有一个零点. 【点睛】本题考查了一元二次方程的判别式、根与系数的关系的应用,考查了零点存在原理,考查了数学运算能力.2020-2021学年北师大版高一数学上学期期中测试卷(三)学校:___________姓名:___________班级:___________考号:___________一、单选题(共12小题,每小题5分,共60分)1.已知集合{}ln 1A x x =<,{B y y ==,则A ∪B =( )A . ()0,eB . ()0,+∞C .[)0,+∞D .()0,e [)20,+∞【答案】C 【解析】 【分析】由条件计算出A B 、集合,再计算并集. 【详解】集合{}{}ln 10A x x x x e ==<<<,{{}0B y y y y ===≥,∪{}0A B x x ⋃=≥,故选C.【点睛】集合的描述法一定要辨别清楚集合所描述的对象,{B y y ==所描述的是函数值构成的集合,易错.2.函数()ln(1)f x x =-+的定义域是( ) A .(]1,1- B .(1,0)(0,1]-⋃C .(1,1)-D .(1,0)(0,1)-【答案】C 【解析】 【分析】根据分式分母不为零,偶次方根的被开方数为非负数,对数的真数大于零列不等式组,解不等式组求得函数()f x 的定义域. 【详解】 依题意1010x x ->⎧⎨+>⎩,解得11x -<<.故选:C. 【点睛】本小题主要考查函数定义域的求法,属于基础题. 3.幂函数()a f x x 的图象经过点(2,4),则1()2f -= ( )A .12B .14C .14-D .2【答案】B 【解析】 【分析】根据幂函数的图象过点()2,4即可求得2a =,求出函数解析式,再计算12f ⎛⎫- ⎪⎝⎭的值. 【详解】解:幂函数()af x x =的图象经过点()2,4,则24a =,解得2a =; ∪()2f x x =,∪2111224f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭. 故选B . 【点睛】本题主要考查了幂函数的定义与应用问题,是基础题. 4.今有一组实验数据如下表所示:则体现这些数据关系的最佳函数模型是( ) A .12y t = B .2log y t = C .123ty =⋅ D .212y t =【答案】C 【解析】 【分析】画出散点图,观察点的分布情况,即可判断. 【详解】画出散点图如图所示,根据点的分布特征,选项C, 123ty =⋅更能体现这些的数据关系.故答案选C. 【点睛】本题主要考查函数模型的应用,掌握基本初等函数的图象,能根据散点图的分布选择合适的函数模型,着重考查数形结合的能力,属于基础题.5.某同学用二分法求方程3380x x +-=在x ∪(1,2)内近似解的过程中,设()338x f x x =+-,且计算f (1)<0,f (2)>0,f (1.5)>0,则该同学在第二次应计算的函数值为A .f (0.5)B .f (1.125)C .f (1.25)D .f (1.75)【答案】C 【解析】 【分析】先根据题目已知中的函数值,确定根的分布区间,再结合二分法的原理,可以求出 该同学在第二次应计算的函数值. 【详解】∪f (1)<0,f (2)>0,f (1.5)>0,∪在区间(1,1.5)内函数f (x )=3x +3x –8存在一个零点,该同学在第二次应计算的函数值1 1.52+=1.25,故选C . 【点睛】本题考查了二分法的步骤,零点存在定理,考查了数学运算能力.6.函数21()x f x x-=的图象一定关于( )A .x 轴对称B .y 轴对称C .原点对称D .直线x =1对称【答案】C 【解析】 【分析】由21()x f x x-=知()()f x f x -=-,根据函数的奇偶性即可求解.【详解】21()x f xx-=,定义域为{|0}x x ≠, ∴2211()()x x f x f x x x---==-=--, ∴()f x 是奇函数,故图象一定关于原点对称, 故选:C 【点睛】本题主要考查了函数的奇偶性,奇函数的性质,属于容易题.7.已知函数f (x )=21,02,0xx log x a x +≤⎧+>⎨⎩,若f (f (0))=3a ,则a =( )A .12B .12-C .1-D .1【答案】A 【解析】 【分析】根据自变量所在的范围代入相应的解析式计算即可得到答案. 【详解】解:由题意,f (0)=2,f (f (0))=f (2)=1+a=3a , ∪a=12.故选:A . 【点睛】本题考查分段函数函数值的计算,解决策略:(1)在求分段函数的值f (x 0)时,一定要判断x 0属于定义域的哪个子集,然后再代入相应的关系式;(2) 求f (f (f (a )))的值时,一般要遵循由里向外逐层计算的原则. 8.函数3log 3x y =的图象是( )A .B .C .D .【答案】A 【解析】 【分析】利用绝对值得几何意义,将函数3log 3xy =,转化为333log log log 3,133,01x xx x y x -⎧≥==⎨<<⎩,再由对数的性质求解.【详解】 因为333log log log 3,133,01x xx x y x -⎧≥==⎨<<⎩,由对数的性质得:,11,01x x y x x≥⎧⎪=⎨<<⎪⎩,所以当1x ≥时,是直线y x =的一部分,当1x ≥时,是反比例函数1y x=的一部分. 故选:A 【点睛】本题主要考查分段函数的解析式的求法及其图象,还考查了理解辨析的能力,属于中档题. 9.函数33()log 2f x x x =-在区间[1,3]内有零点,则用二分法判断含有零点的区间为( ) A .31,2⎡⎤⎢⎥⎣⎦B .3,22⎡⎤⎢⎥⎣⎦C .52,2⎡⎤⎢⎥⎣⎦D .5,32⎡⎤⎢⎥⎣⎦【答案】C【分析】分别求得()1f ,32f ⎛⎫⎪⎝⎭,()2f ,52f ⎛⎫ ⎪⎝⎭,()3f ,进而根据零点存在性定理进行判断即可 【详解】由题,3(1)02f =-<,33333331log 1log log 3log 02222f ⎛⎫=-=-=< ⎪⎝⎭,43333333(2)log 2log 2log 3log log 04f =-=-==<,3333353355355log log log 3log log log 022524f ⎛⎫=-=-=>=> ⎪⎝⎭, 11(3)1022f =-=>, 因此,()5202f f ⎛⎫⋅<⎪⎝⎭,则函数()f x 的零点在区间52,2⎡⎤⎢⎥⎣⎦内, 故选:C【点睛】本题考查利用零点存在性定理判断零点所在区间,考查对数的运算10.已知定义在R 上的函数f(x)=2|x−m|−1(m 为实数)为偶函数,记a =f(log 0.53), b =f(log 25),c =f(2m),则a,b,c ,的大小关系为( )A .a <b <cB .c <a <bC .a <c <bD .c <b <a 【答案】B【解析】由f(x)为偶函数得m =0,所以a =2|log 0,53|−1=2log 23−1=3−1=2, b =2log 25−1=5−1=4,c =20−1=0,所以c <a <b ,故选B.考点:本题主要考查函数奇偶性及对数运算.11.函数()()2log 1f x ax =-在区间[]1,2上单调递增,则a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭ B .()0,∞+ C .1,2⎛⎫+∞ ⎪⎝⎭ D .()1,+∞【解析】【分析】令1t ax =-,则()2log f x t =,利用复合函数的单调性的判断分别研究内层和外层函数的单调性即可.【详解】令1t ax =-,则()2log f x t =,因为()2log f x t =在定义域内是单调递增函数,故1t ax =-也必为单调递增函数,又1t ax =-在[]1,2上要恒大于零,则有010a a >⎧⎨->⎩,解得1a >. 故选:D.【点睛】本题考查复合函数的单调性问题,注意内层函数的值域要符合外层函数的定义域,是基础题.12.若()f x 满足对任意的实数,a b 都有()()()f a b f a f b +=⋅且()12f =,则(2)(4)(6)(2020)(1)(3)(5)(2019)f f f f f f f f +++⋅⋅+=( ) A .2019B .2020C .1009D .1010 【答案】B【解析】 【分析】 因为()()()f a b f a f b +=,可得()()()f a b f b f a +=,令1b =,故(1)(12)()f a f f a +==,即可求得答案. 【详解】 函数()f x 对任意实数a ,b 满足()()()f a b f a f b +=∴()()()f a b f b f a +=令1b =,故(1)(12)()f a f f a +== (2)(4)(6)(2020)101022020(1)(3)(5)(2019)f f f f f f f f ∴+++⋯+=⨯= 故选: B.【点睛】本题主要考查了根据函数关系式求函数值,解题关键是掌握由函数关系式求值的解法,考查了分析能力和计算能力,属于中档题.二、填空题(共4小题,每小题5分,共20分)13.设函数ln(2),1()24,1x x f x x x +≥-⎧=⎨--<-⎩,若()1f a =-,则a =_______. 【答案】32-【解析】【分析】当1a ≥-时,解方程ln(2)1a +=-,求出a 的值,判断a 是否存在;当1a <-时,解方程241a --=-,求出a 的值,判断a 是否存在,最后确定a 的值.【详解】 当1a ≥-时,()1f a =- 12ln(2)1e a a e -⇒+=-⇒=,而121e e-<-,故舍去; 当1a <-时,()1f a =- 324112a a ⇒--=-⇒=-<-,所以32a =-. 【点睛】本题考查了分段函数求值问题,考查了分类运算能力.14.已知函数()f x 的定义域是(-1,2),则(21)f x +的定义域是________【答案】11,2⎛⎫- ⎪⎝⎭【解析】【分析】根据函数定义域的概念列不等式,由此求得()21f x +的定义域.【详解】由于()f x 的定义域是()1,2-,所以对于函数()21f x +有1212x -<+<,解得112x -<<.所以函数()21f x +的定义域为11,2⎛⎫- ⎪⎝⎭. 故答案为:11,2⎛⎫- ⎪⎝⎭【点睛】本小题主要考查抽象函数定义域的求法,属于基础题.15.已知函数3()31f x x x a =-++在[2,)x ∈-+∞上有3个不同的零点,则实数a 的取值范围为____;【答案】(-3,1)【解析】【分析】取3()31=0f x x x a =-++,参数分离,画出图像得到答案.【详解】 33()31=031+f x x x a a x x =-++⇒=--32()31'()3301+g x x x g x x x =--⇒=-+=⇒=±画出图像:实数a 的取值范围为(-3,1)故答案为(-3,1)【点睛】本题考查了函数的零点问题,参数分离画出图像是解题的关键.16.设函数()f x 是定义域为R 上的奇函数,当0x ≥时,()()1f x x x =-,求0x <时()f x 的解析式为______.【答案】()()()10f x x x x =+<【解析】【分析】根据函数奇偶性的性质,利用转化法进行求解即可.【详解】解:()f x 是定义域为R 上的奇函数,当0x ≥时,()()1f x x x =-∴当0x <时,0x ->,则()(1)()f x x x f x -=-+=-,则()(1)f x x x =+,故答案为:()()()10f x x x x =+<【点睛】本题主要考查函数解析式的求解,结合函数奇偶性的性质利用转化法是解决本题的关键,属于基础题.三、解答题(共6小题,17题10分,18-22题12分,共70分)17.设全集U =R ,集合{}lg()0A x x a =->,{}2340B x x x =--<.(1)当1a =时,求A B 集合;(2)若A B A ⋃=,求实数a 的取值范围.【答案】(1) (2,4)A B ⋂= (2) 2a ≤-【解析】【分析】(1)当1a =时,解对数不等式求得集合A ,解一元二次不等式求得集合B ,由此求得两个集合的交集.(2)根据A B A ⋃=得到B 是A 的子集,解对数不等式求得集合A ,根据集合B 是集合A 的子集列不等式,解不等式求得a 的取值范围.【详解】(1)当1a =时,由于()lg 10lg1x ->=,即11x ->,所以{}2A x x =>.由于2340x x --<,即()()140x x +-<,所以()1,4B =-.所以()2,4A B ⋂=.(2)因为A B A ⋃=,所以B A ⊆. 由于{}1A x x a =>+,则11a +≤-所以2a ≤-.【点睛】本小题主要考查对数不等式的解法,考查一元二次不等式的解法,考查子集的概念及运算.属于基础题. 18.已知函数()21,02,036,3x x f x x x x x x ⎧<⎪⎪=-≤<⎨⎪-+≥⎪⎩(1)请在给定的坐标系中画出此函数的图象;(2)写出此函数的定义域及单调区间,并写出值域.【答案】(1)作图见解析;(2)定义域为R ,增区间为[]1,3,减区间为(),0-∞、[]0,1、[)3,+∞,值域为(],3-∞.【解析】【分析】(1)根据函数()y f x =的解析式作出该函数的图象;(2)根据函数()y f x =的图象可写出该函数的定义域、单调增区间和减区间以及值域.【详解】(1)图象如图所示:(2)由函数()y f x =的图象可知,该函数的定义域为R ,增区间为[]1,3,减区间为(),0-∞、[]0,1、[)3,+∞,值域为(],3-∞.【点睛】本题考查分段函数的图象,以及利用图象得出函数的单调区间、定义域和值域,考查函数概念的理解,属于基础题.19.(1)已知()f x 的定义域为[]1,4,求(23)f x -的定义域.(2)已知()f x 是二次函数,且(0)1,(1)()2f f x f x x =+-=,求()f x .【答案】(1)21,33⎡⎤-⎢⎥⎣⎦(2)()21f x x x =-+ 【解析】【分析】(1)根据同一对应关系下变量的范围相同来求解函数的定义域.(2)设出二次函数()f x 的表达式,结合题中的条件运用待定系数法求出函数解析式.【详解】(1)已知()f x 的定义域为[]1,4,所以对(23)f x -有1234x ≤-≤,解得2133x -≤≤,所以函数(23)f x -的定义域为21,33⎡⎤-⎢⎥⎣⎦.(2)已知()f x 是二次函数,不妨设2()(0)f x ax bx c a =++≠,因为(0)1f =,则代入解析式中可得(0)1f c ==,又因为(1)()2f x f x x +-=,则有22(1)(1)2a x b x c ax bx c x ++++---=,化简得22ax a b x ++=,有220a a b =⎧⎨+=⎩即1a =,1b =-. 综上二次函数的解析式为:2()1f x x x =-+【点睛】本题考查了求抽象函数的定义域,同一函数的对应关系的变量相同来求解,在求函数解析式的方法有:待定系数法,方程组解法,配凑法,换元法等,需要掌握一些题型的固定解法,本题需要掌握解题方法.20.已知1()ln 1mx f x x -=-是奇函数. (1)求实数m 的值;(2)判定()f x 在()1,+∞上的单调性,并加以证明.【答案】(1)1m =-;(2)减函数,证明见解析【解析】【分析】(1)由奇函数定义可求得m ;(2)用单调性定义证明.【详解】(1)1111()ln ln ,()ln ln 1111mx mx mx x f x f x x x x mx+-----==-=-=--+-- ()f x 是奇函数,()()f x f x ∴-=-, 即11ln ln ,111mx x m x mx---=∴=-+-. (2)由(1)知12()lnln 111x f x x x +⎛⎫==+ ⎪--⎝⎭. 任取12,x x 满足121x x <<,则()()()211212122222211111111x x x x x x x x -⎛⎫⎛⎫+-+=-= ⎪ ⎪------⎝⎭⎝⎭. 由121x x <<知,21120,10,10x x x x ->->->12122222110,1101111x x x x ⎛⎫⎛⎫∴+-+>∴+>+> ⎪ ⎪----⎝⎭⎝⎭ 1222ln 1ln 111x x ⎛⎫⎛⎫∴+>+ ⎪ ⎪--⎝⎭⎝⎭,即()()12,()f x f x f x >∴在(1,)+∞上是减函数 【点睛】本题考查函数的奇偶性与单调性,函数的这两个性质一般都是根据定义求解.21.某企业生产A ,B 两种产品,根据市场调查和预测,A 产品的利润与投资额成正比,设比例系数为1k ,其关系如图1;B 产品的利润与投资额的算术平方根成正比,设比例系数为2k ,其关系如图2.(注:利润与投资额单位是万元)(1)分别将A ,B 两种产品的利润表示为投资额的函数,并求出1,k 2k 的值,写出它们的函数关系式; (2)该企业已筹集到10万元资金,并全部投入A ,B 两种产品的生产,问:怎样分配这10万元投资额,才能使企业获得最大利润,其最大利润为多少万元.【答案】(1)114k =,254k =.1(),4f x x =(0)x ≥,()g x =(0)x ≥.(2)A 产品投入3.75万元,B 产品投入6.25万元时,企业获得最大利润为65(4.0625)16万元. 【解析】【分析】 (1)由已知给出的函数模型设出解析式,代入已知数据可得;(2)设A 产品投入x 万元,则B 产品投入10x -万元,设企业的利润为y 万元.则有()(10)y f x g x =+-,(010)x ≤≤,用换元法转化为求二次函数在给定区间上最值问题.【详解】解析:(1)设投资额为x 万元,A 产品的利润为()f x 万元,B 产品的利润为()g x 万元,由题设1()f x k x =,()g x k =. 由图知1(1)4f =,所以114k =,又5(4)2g =,所以254k =.所以1(),4f x x =(0)x ≥,()g x =(0)x ≥. (2)设A 产品投入x 万元,则B 产品投入10x -万元,设企业的利润为y 万元. 1()(10)4y f x g x x =+-=+(010)x ≤≤,t =,则221051565,444216t y t t -⎛⎫=+=--+ ⎪⎝⎭(0t ≤≤. 所以当52t =时,max 6516y =,此时251510 3.7544x =-==. ∴当A 产品投入3.75万元,B 产品投入6.25万元时,企业获得最大利润为6516即4.0625万元. 【点睛】本题考查函数模型的应用.已知函数模型,直接设出解析式形式代入已知数据即可得函数解析式.换元法是求得最大值的关键.22.已知函数()y f x =,若在定义域内存在0x ,使得()()00f x f x -=-成立,则称0x 为函数()f x 的局部对称点.(1)证明:函数()21xf x =-在区间[]1,2-内必有局部对称点; (2)若函数()12423x x f x m m +=-⋅+-在R 上有局部对称点,求实数m 的取值范围.【答案】(1)见解析;(2)1m ≤【解析】【分析】(1)设()212x t x =-≤≤,可求出12t t +=的解为11,42t ⎡⎤=∈⎢⎥⎣⎦,从而可知当00x =时,001221x x --=+-成立,即可证明函数()21xf x =-在区间[]1,2-内必有局部对称点;(2)由题意知()()0f x f x -+=在R 上有解,令22x x t -+=,则222280t mt m -+-=在[)2,t ∈+∞上有解,结合二次函数零点的分布,分别讨论方程在[)2,t ∈+∞上根的个数,得到关于m 的不等式,从而可求出实数m 的取值范围. 【详解】证明:(1)设()212xt x =-≤≤,则12t ≤≤4,令12t t+=,则2210t t -+=, 解得11,42t ⎡⎤=∈⎢⎥⎣⎦,即当00x =时,001221x x --=+-,即()()00f x f x -=-成立,即函数()21xf x =-在区间[]1,2-内必有局部对称点解:(2)()12423xx f x m m --+-=-⋅+-,则()()0f x f x -+=在R 上有解.即12124234230x x x x m m m m --++-⋅+-+-⋅+-=在R 上有解, 于是()()()244222230x xxx m m --+-⋅++-=(*)在R 上有解.令22x x t -+=,则2442x x t -+=-,所以方程(*)变为222280t mt m -+-=, 设120x x <<,则()()()1212121122121222212221212222222x x x x x x x x x x x x x x +--+--+++-+=-=,由120x x <<,2xy =在R 上单调递增知,12220x x -<,1221x x +<,1220x x +>,即此时()112222220xx x x --+-+>,所以函数22x x y -=+在(),0-∞上单调递减;设120x x <<,则()()()1212121122121222212221212222222x x x x x x x x x x x x x x +--+--+++-+=-=,由120x x <<,2xy =在R 上单调递增知,12220x x -<,1221x x +>,1220x x +>,即此时()112222220xx x x --+-+<,所以函数22x x y -=+在()0,∞+上单调递增;故[)2,t ∈+∞,从而已知即222280t mt m -+-=在[)2,t ∈+∞上有解. 设()22228g t t mt m =-+-(2t ≥),分为两种情况:∪当方程有在[)2,t ∈+∞唯一解时:则()2244280g m m =-+-<或()2244280222g m m m⎧=-+-=⎪⎨--≤⎪⎩, 解()20g <得,11m <<;解()2244280222g m m m⎧=-+-=⎪⎨--≤⎪⎩得,1m =,则11m ≤<;∪当方程在[)2,t ∈+∞有两个解时:()()222244280114428012222g m m m m m m m m m m ⎧⎪⎧=-+-≥≥≤⎪⎪⎪⎪∆=--≥⇔-≤≤⇔≤≤⎨⎨⎪⎪>-⎪⎪⎩->⎪⎩或综上得1m ≤ 【点睛】本题考查了换元法的应用,考查了由二次函数零点的分布求参数的取值范围.在第二问中,通过换元将函数在R 上有局部对称点问题,转化为222280t mt m -+-=在[)2,t ∈+∞上有解.已知二次函数的零点求参数的取值范围时,常依据∆与0的大小关系,对称轴、区间端点的函数值列关于参数的不等式.2020-2021学年北师大版高一数学上学期期中测试卷(二)学校:___________姓名:___________班级:___________考号:___________一、单选题(共12小题,每小题5分,共60分)1.已知集合|A x y ==,{}3|log 2B x x =<,则A B =( )A .[]1,3-B .()1,3-C .(]03,D .()0,3【答案】C【分析】根据函数定义域求出{}|13A x x =-≤≤,根据定义域和对数运算求出{}|09B x x =<<,再求A B 即可.【详解】对于集合A ,2230x x -++≥,解得13x -≤≤, 所以集合{}|13A x x =-≤≤,对于集合B ,3log 2x <,解得09x <<, 所以集合{}|09B x x =<<, 所以{}|03A B x x =<≤.故选:C 【点睛】本题主要考查集合的交集运算和不等式运算,属于基础题. 2.已知幂函数()()22322n nf x n n x-=+-(n ∈Z )在()0,∞+上是减函数,则n 的值为( ) A .3- B .1C .1-D .1和3-【答案】B 【解析】 【分析】先由函数是幂函数,让其系为1,即2221+-=n n ,得到3n =-或1n =,再分别讨论,是否符合在()0,∞+上是减函数的条件. 【详解】 因为函数是幂函数 所以2221+-=n n 所以3n =-或1n =当3n =-时()18=f x x 在()0,∞+上是增函数,不合题意.当1n =时()2f x x -=在()0,∞+上是减函数,成立故选:B本题主要考查了幂函数的定义及性质,还考查了运算求解的能力,属于基础题.3.已知函数f(x)=x2–m是定义在区间[–3–m,m2–m]上的奇函数,则A.f(m)<f(1)B.f(m)=f(1)C.f(m)>f(1)D.f(m)与f(1)大小不确定【答案】A【解析】【分析】根据奇函数的定义域关于原点对称,列方程求得m的两个值,再根据定义域包括原点,排除其中一个值,由此得到m的值和函数的解析式,进而得出正确的选项.【详解】因为幂函数f(x)是奇函数,奇函数的定义域必然关于原点对称,所以(–3–m)+(m2–m)=0,解得m=–1或m=3.当m=–1时,函数f(x)=x3,–2≤x≤2,所以f(m)=f(–1)<f(1);当m=3时,函数f(x)=1x,在x=0时无意义,不满足题意,舍去,故选A.【点睛】本小题主要考查奇函数和偶函数定义域关于原点对称,考查奇函数的定义域,属于基础题. 4.下列哪一组函数相等()A.f(x)=x与g(x)=x2xB.f(x)=x2与g(x)=(√x)4C.f(x)=|x|与g(x)=(√x)2D.f(x)=x2与g(x)=√x63【答案】D【解析】【分析】根据相等函数的要求依次判断两个函数的定义域和解析式是否相同,从而可求得结果.【详解】A选项:f(x)定义域为R;g(x)定义域为:{x|x≠0}∴两函数不相等B选项:f(x)定义域为R;g(x)定义域为:{x|x≥0}∴两函数不相等C选项:f(x)定义域为R;g(x)定义域为:{x|x≥0}∴两函数不相等。
2020_2021学年高中数学第一章数列3等比数列第2课时等比数列的性质学案(含解析)北师大版必修5
第2课时等比数列的性质Q情景引入ing jing yin ru1915年,波兰数学家谢尔宾斯基(W.Sierpinski)创造了一个美妙的“艺术品”,被人们称为谢尔宾斯基三角形,如图所示.如果我们来看一看图中那些白色三角形的个数,并把它们按面积大小,从小到大依次排列起来,可以得到一列数:1,3,9,27,81,……我们知道这是一个等比数列,那么,等比数列中,有什么特殊的性质呢?X新知导学in zhi dao xue1.等比数列的性质:(1)通项公式的推广:a n=a m·q n-m (m、n∈N+).(2)公比为q的等比数列的各项同乘以一个不为零的数m,所得数列是等比数列,公比为q .(3)若{a n}是等比数列,且m+n=p+q,m、n、p、q∈N+,则a m·a n=a p·a q .(4)若等比数列{a n}的公比为q,则{1a n }是以1q为公比的等比数列.(5)一组等比数列{a n}中,下标成等差数列的项构成等比数列 .(6)若{a n}与{b n}均为等比数列,则{a n b n}为等比数列 .(7)公比为q的等比数列,按m项分组,每m项之和(和不为0)组成一个新数列,仍是等比数列,其公比为q m .(8){a n}是等差数列,c是正数,则数列{ca n}是等比数列.(9){a n}是等比数列,且a n>0,则{log a a n}(a>0,a≠1)是等差数列.2.等比数列中的设项方法与技巧(1)若三个数成等比数列,可设三个数为a,aq,aq2或aq,a,aq.(2)若四个数成等比数列,可设 a ,aq ,aq 2,aq 3;若四个数均为正(负)数,可设a q 3,a q,aq ,aq 3. Y 预习自测u xi zi ce1.在等比数列{a n }中,若 a 6=6,a 9=9,则a 3等于( A ) A .4 B .32 C .169D .3[解析] 解法一:∵a 6=a 3·q 3, ∴a 3·q 3=6.a 9=a 6·q 3,∴q 3=96=32.∴a 3=6q 3=6×23=4.解法二:由等比数列的性质,得a 26=a 3·a 9, ∴36=9a 3,∴a 3=4.2.在等比数列{a n }中,a 4+a 5=10,a 6+a 7=20,则a 8+a 9等于( D ) A .90 B .30 C .70 D .40[解析] ∵q 2=a 6+a 7a 4+a 5=2, ∴a 8+a 9=(a 6+a 7)q 2=20q 2=40.3.如果数列{a n }是等比数列,那么( A ) A .数列{a 2n }是等比数列 B .数列{2a n }是等比数列 C .数列{lg a n }是等比数列 D .数列{na n }是等比数列[解析] 数列{a 2n }是等比数列,公比为q 2,故选A . 4.等比数列{a n }中,a 1=1,a 9=9,则a 5= 3 . [解析] 由a 25=a 1·a 9,∴a 25=9,∴a 5=±3. 而a 1、a 9均为正值,故a 5也为正值,∴a 5=3.5.已知等比数列{a n }中,a 4=7,a 6=21,则a 12= 567 . [解析] 解法一:可知a 4、a 6、a 8、a 10、a 12成等比数列.其公比为 a 6a 4=217=3,所以a 12=a 4·35-1=7×34=567.解法二:设等比数列{a n }的公比为q ,则a 6a 4=q 2=3. ∴a 12=a 4·q 8=7×34=567.解法三:由⎩⎪⎨⎪⎧a 4=7,a 6=21,得⎩⎪⎨⎪⎧a 1q 3=7,a 1q 5=21,两式相比得q 2=3.∴a 12=a 1·q 11=(a 1·q 5)·q 6=a 6·(q 2)3=21×33=567.H 互动探究解疑u dong tan jiu jie yi命题方向1 ⇨运用等比数列性质解题例题1 在等比数列{a n }中,若a 2=2,a 6=162,求a 10.[分析] 解答本题可充分利用等比数列的性质及通项公式,求得q ,再求a 10. [解析] 解法一:设公比为q ,由题意得⎩⎪⎨⎪⎧a 1q =2a 1q 5=162,解得⎩⎪⎨⎪⎧ a 1=23q =3,或⎩⎪⎨⎪⎧a 1=-23q =-3.∴a 10=a 1q 9=23×39=13 122或a 10=a 1q 9=-23×(-3)9=13 122.解法二:∵a 6=a 2q 4,∴q 4=a 6a 2=1622=81,∴a 10=a 6q 4=162×81=13 122.解法三:在等比数列中,由a 26=a 2·a 10得a 10=a 26a 2=16222=13 122.『规律总结』 比较上述三种解法,可看出解法二、解法三利用等比数列的性质求解,使问题变得简单、明了,因此要熟练掌握等比数列的性质,在解有关等比数列的问题时,要注意等比数列性质的应用.〔跟踪练习1〕(1)若1,a 1,a 2,4成等差数列;1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值等于( A ) A .-12B .12C .±12D .14(2)若等比数列{a n } 的各项均为正数,且a 10·a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20= 50 .[解析] (1)∵1,a 1,a 2,4成等差数列, 3(a 2-a 1)=4-1, ∴a 2-a 1=1.又∵1,b 1,b 2,b 3,4成等比数列,设其公比为q ,则b 22=1×4=4,且b 2=1×q 2>0, ∴b 2=2, ∴a 1-a 2b 2=-a 2-a 1b 2=-12. (2)因为等比数列{a n }中,a 10·a 11=a 9·a 12, 所以由a 10a 11+a 9a 12=2e 5,可解得a 10·a 11=e 5. 所以ln a 1+ln a 2+…+ln a 20=ln(a 1·a 2·…·a 20) =ln(a 10·a 11)10=10ln(a 10·a 11) =10·lne 5=50.命题方向2 ⇨对称法设未知项例题2 已知四个数前三个成等差,后三个成等比,中间两数之积为16,首尾两个数之积为-128,求这四个数.[分析] 求四个数,给出四个条件,若列四个方程组成方程组虽可解,但较麻烦,因此可依据条件减少未知数的个数.设未知数时,可以根据前三个数成等差来设,也可以依据后三个数成等比来设,还可以依据中间(或首尾)两数之积来设,关键是要把握住未知量要尽量少,下一步运算要简捷.[解析] 设四个数为2a q -a 、aq、a 、aq ,则由题意得⎩⎪⎨⎪⎧a 2q =162aq-a ·aq =-128,解得⎩⎪⎨⎪⎧ a =8q =4或⎩⎪⎨⎪⎧a =-8q =4.因此所求的四个数为-4,2,8,32或4,-2,-8,-32.『规律总结』 (1)根据四个数中前3个成等差、后三个成等比列方程时,可以据后三个成等比用a 、q 表示四个数,也可以据前三个成等差,用a 、d 表示四个数,由于中间两数之积为16,将中间两个数设为aq,aq 这样既可使未知量减少,同时解方程也较为方便.(2)注意到中间两数的特殊地位,可设第三个数为x ,则第二个数为16x ,则第一个数为32x-x ,最后一个数为x 316,再利用首尾两数之和为-128可列出关于x 的方程x 316·⎝ ⎛⎭⎪⎫32x -x =-128,解之得x =±8,则更简捷.〔跟踪练习2〕有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,则这四个数为多少.[解析] 解法一:设四个数依次为a -d ,a ,a +d ,a +d2a ,由条件得⎩⎪⎨⎪⎧a -d +a +d 2a =16,a +a +d =12,解得⎩⎪⎨⎪⎧a =4d =4或⎩⎪⎨⎪⎧a =9.d =-6.所以,当a =4,d =4时, 所求四个数为0,4,8,16. 当a =9,d =-6时, 所求四个数为15,9,3,1.故所求四个数为0,4,8,16或15,9,3,1.解法二:设四个数依次为2a q -a ,aq,a ,aq (a ≠0),由条件得⎩⎪⎨⎪⎧2a q -a +aq =16,aq +a =12,解得⎩⎪⎨⎪⎧q =2,a =8或⎩⎪⎨⎪⎧q =13,a =3.当q =2,a =8时,所求四个数为0,4,8,16. 当q =13,a =3时,所求四个数为15,9,3,1.解法三:设四个数依次为x ,y,12-y,16-x ,由条件有⎩⎪⎨⎪⎧2y =x +12-y ,12-y2=y ·16-x ,解得⎩⎪⎨⎪⎧x =0,y =4或⎩⎪⎨⎪⎧x =15,y =9.故所求四个数为0,4,8,16,或15,9,3,1.命题方向3 ⇨有关等比数列的开放探究题例题3 已知数列{a n }是各项为正数的等比数列,数列{b n }定义为b n =1n[lg a 1+lg a 2+…+lg a n -1+lg(ka n )],是否存在实数k ,使得数列{b n }为等差数列?并证明你的结论.[分析] 先利用数列{a n }是等比数列,求出数列{b n }的通项公式,再求b n +1-b n ,看使它成为常数的条件是什么?[解析] 设数列{a n }的公比为q ,则a n =a 1qn -1,b n =1n[lg a 1+lg(a 1q )+lg(a 1q 2)+…+lg(ka 1q n -1)],解得b n =1n [n lg a 1+12n (n -1)lg q +lg k ]=lg a 1+12(n -1)lg q +1nlg k ,∴b n +1-b n =[lg a 1+12n lg q +1n +1lg k ]-[lg a 1+12(n -1)lg q +1nlg k ]=12lg q -1n n +1lg k . 要使数列{b n }为等差数列,只需k =1, 故存在实数k =1,使得数列{b n }成为等差数列.『规律总结』 除了用假设法,也可以从寻求使它成立的条件入手,找到解决问题的突破口.下面的性质要熟悉:①若{a n }是等差数列,c 是正数,则数列{ca n }是等比数列;②若{a n }是等比数列,且a n >0,则{log a a n }(a >0,a ≠1)是等差数列,这两个基本性质反映了等差、等比数列可以互相转化.〔跟踪练习3〕在公差不为零的等差数列{a n }和等比数列{b n }中,已知a 1=1,且a 1=b 1,a 2=b 2,a 8=b 3. (1)求数列{a n }的公差d 和数列{b n }的公比q ;(2)是否存在常数a ,b 使得对一切正整数n ,都有a n =log a b n +b 成立?若存在,求出a 和b ;若不存在,说明理由.[解析] (1)由已知a 1=b 1=1,a 2=b 2,a 8=b 3,得⎩⎪⎨⎪⎧1+d =q1+7d =q2,解得⎩⎪⎨⎪⎧q =6d =5或⎩⎪⎨⎪⎧q =1d =0(舍去).(2)假设存在a ,b 使得a n =log a b n +b 成立, 即有1+5(n -1)=log a 6n -1+b .整理,得(5-log a 6)n -(4+b -log a 6)=0. ∵a n =log a b n +b 对一切正整数n 恒成立.∴⎩⎪⎨⎪⎧5-log a 6=04+b -log a 6=0,∴a =56,b =1.Y 易混易错警示i hun yi cuo jing shi例题4 四个实数成等比数列,且前三项之积为1,后三项之和为134,求这个等比数列的公比.[误解] 设这四个数为aq -3,aq -1,aq ,aq 3,由题意得⎩⎪⎨⎪⎧a 3q -3=1,①aq -1+aq +aq 3=134.②由①得a =q ,把a =q 代入②并整理,得4q 4+4q 2-3=0,解得q 2=12或q 2=-32(舍去),故所求的公比为12.[辨析] 上述解法中,四个数成等比数列,设其公比为q 2,则公比为正数,但题设并无此条件,因此导致结果有误.[正解] 设四个数依次为a ,aq ,aq 2,aq 3,由题意得⎩⎪⎨⎪⎧aq 3=1,①aq +aq 2+aq 3=134.②由①得a =q -1,把a =q -1代入②并整理,得4q 2+4q -3=0,解得q =12或q =-32,故所求公比为12或-32.B 本节思维导图ei jie si wei dao tu等比数列的性质⎩⎪⎨⎪⎧等比数列的性质等比数列中的设项方法与技巧等差数列与等比数列的综合应用。
(常考题)北师大版高中数学必修五第二章《解三角形》测试卷(包含答案解析)(4)
一、选择题1.如图,某人在一条水平公路旁的山顶P 处测得小车在A 处的俯角为30,该小车在公路上由东向西匀速行驶7.5分钟后,到达B 处,此时测得俯角为45.已知小车的速度是20km/h ,且33cos AOB ∠=-,则此山的高PO =( )A .1 kmB .2km 2C 3 kmD 2 km2.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若22212a b c =+,则tan A 的取值范围是( ) A .)3,⎡+∞⎣ B .()3,+∞C .)2,+∞D .[)2,+∞3.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,43,60b c C ===︒D .4,3,30b c C ===︒4.在ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若2224ABCa b c S +-=(其中ABCS表示ABC 的面积),且角A 的平分线交BC 于E ,满足0AE BC ⋅=,则ABC 的形状是( )A .有一个角是30°的等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形5.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos sin sin B A C =,则ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .3kmD .53km7.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,且1,45a B ==,2ABC S ∆=,则ABC ∆的外接圆直径为( )A .5B .5C .52D .628.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知3a =cos sin b A B =,则A =( )A .12πB .6π C .4π D .3π 9.已知点O 为ABC 的外心,且3A π=,CO AB BO CA ⋅=⋅,则ABC 的形状是( ) A .直角三角形 B .等边三角形C .直角三角形或等边三角形D .钝角三角形10.在ABC 中,边a ,b ,c 分别是角A ,B ,C 的对边,且满足()cos 3cos b C a c B =-,若4BC BA ⋅=,则ac 的值为 ()A .12B .11C .10D .911.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35m ,则此电视塔的高度是( ) A .35mB .10mC .490013m D .521m12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若tan 7C =52cos 8A =,32b =时,则ABC 的面积为( ) A .37B .372C .374D .378二、填空题13.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =,B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.14.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若6a =,2c b =,则ABC 面积的最大值是______.15.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中23a c ==,,且满足(2)cos cos a c B b C -⋅=⋅,则AB BC ⋅=______.16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22212b c a -=,则tan B =________.17.在ABC 中,60,12,183ABCA b S=︒==,则sin sin sin a b cA B C____________.18.某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠=,从点C 测得45ACD ∠=,75BCE ∠=,从点E 测得60BEC ∠=,并测得23DC =,2CE =(单位:千米),测得A 、B 两点的距离为___________千米.19.在ABC ∆中,A ∠,B ,C ∠所对的边长分别为a ,b ,c .设a ,b ,c 满足222b c bc a +-=和132c b =,则tan B =______20.对于ABC ,有如下命题:①若sin2A =sin2B ,则ABC 为等腰三角形; ②若sin A =cos B ,则ABC 为直角三角形; ③若sin 2A +sin 2B +cos 2C <1,则ABC 为钝角三角形; ④若满足C =6π,c =4,a =x 的三角形有两个,则实数x 的取值范围为(4,8). 其中正确说法的序号是_____.三、解答题21.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C ,现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量得4sin 5C =,63sin 65B =,B 为钝角.(1)求缆车线路AB 的长:(2)问乙出发多少min 后,乙在缆车上与甲的距离最短. 22.在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,5b c =,sin 1c A =.点D 是AC的中点,BD AB ⊥,求c 和ABC ∠.23.已知ABC 中,角,,A B C 所对的边分别为,,a b c ,且()2cos cosA cosC b 0a C c ++=(1)求角C 的大小;(2)求22sin sin A B +的取值范围.24.△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b +c =2a ,3c sin B =4a sin C . (1)求cos B ; (2)求sin(2)6B π+的值.25.现有三个条件①sin()sin ()sin c A B b B c a A +=+-,②tan 2sin b aB A=,③(1cos )3sin a B b A +=,请任选一个,填在下面的横线上,并完成解答. 已知ABC 的内角,,A B C 所对的边分别是a ,b ,c ,若______. (1)求角B ;(2)若25a c +=ABC 周长的最小值,并求周长取最小值时ABC 的面积.26.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .已知()3cos cos A c a C -=.(1)求c b; (2)若cos 2c A b =,且ABC 的面积为9114,求a .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由题意作图可得60APO ∠=,45BPO ∠=,设PO h =,在Rt POA △,Rt POB 中 求出3AO h =,BO h =,在AOB 中,由余弦定理列方程即可求解.【详解】由题意可知:PO ⊥平面AOB ,903060APO ∠=-=,904545BPO ∠=-=,7.520 2.560AB =⨯=km , 设PO h =,在POA 中,tan AO APO PO ∠=,tan 60AOh=,所以3AO h =, 在POB 中,tan BO BPO PO ∠=,tan 45BOh=,所以BO h =, 在AOB 中,由余弦定理可得:2222cos AB AO BO AO A BO OB =∠+-⨯, 所以)2222.5323338h h h h =+-⨯⎛⎫- ⎪ ⎝⎭⨯⎪,即2252544h =,解得:1h =, 所以山的高1PO =, 故选:A.2.B解析:B 【分析】根据题中条件,由三角形的余弦定理、正弦定理和两角和的正弦公式,化简可得tan 3tan A B =,再由两角和的正切公式,以及锐角三角形的定义,可得tan 0A >,tan 0C >,解不等式可得所求范围. 【详解】因为22212a b c =+,由余弦定理可得,2222cos a b c bc A =+-,则222212cos 2b c b c bc A +=+-,可得4cos c b A =,由正弦定理可得:sin 4sin cos C B A =,可得sin()sin cos sin cos 4sin cos A B A B B A B A +=+=, 化为3sin cos sin cos B A A B =, 在锐角ABC 中,cos 0A ≠,cos 0B ≠, 则tan 3tan A B =,又21tan tan tan tan 3tan tan()11tan tan 1tan 3A AA B C A B A B A ++=-+=-=---,由tan 0A >,tan 0C >,可得211tan 03A -<,解得tan A >, 故选:B . 【点睛】本题考查三角形的正弦定理和余弦定理的运用,以及两角和的三角函数公式,考查方程思想和化简运算能力,属于中档题.3.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin 3a b B A B =⇒=且,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.4.D解析:D 【分析】根据角A 的平分线交BC 于E ,满足0AE BC ⋅=,得到ABC 是等腰三角形,再由2221sin 24+-==ABC a b c S ab C ,结合余弦定理求解. 【详解】因为0AE BC ⋅=, 所以AE BC ⊥,又因为AE 是角A 的平分线, 所以ABC 是等腰三角形, 又2221sin 24+-==ABCa b c Sab C , 所以2221sin cos 22a b c ab C C ab+-==,因为()0,C π∈, 所以4Cπ,所以ABC 是等腰直角三角形, 故选:D 【点睛】本题主要考查余弦定理,面积公式以及平面向量的数量积,属于中档题.5.B解析:B 【分析】利用正弦定理、余弦定理将角化为边,即可得到,a b 之间的关系,从而确定出三角形的形状. 【详解】因为2cos sin sin B A C =,所以22222a c b a c ac+-⋅⋅=,所以22a b =,所以a b =,所以三角形是等腰三角形,故选:B. 【点睛】本题考查利用正、余弦定理判断三角形的形状,难度一般.本例还可以直接利用()sin sin C A B =+,通过三角函数值找到角之间的联系从而判断三角形形状. 6.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=, 在ABP ∆中,利用正弦定理得30sin 30sin120PB ==即这时船与灯塔的距离是km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.C解析:C 【解析】11sin 1222ABC S ac B c ∆==⨯⨯== ,c =2222cos 132338252b ac ac B =+-=+-=-= ,5b = ,2sin b R B === ,选C. 8.D解析:D 【分析】由cos sin b A B =有1sin cos b B A =,再由正弦定理有sin sin a b AB =,1cos A=,可解出答案. 【详解】由cos sin b A B =有1sin cos b B A=, 由正弦定理有sin sin a bA B=, 又a =即31sin cos A A=. 所以tan 3A =.因为A 为ABC 的内角,则3A π=.故选:D 【点睛】本题考查正弦定理的应用,属于中档题.9.B解析:B 【分析】取AB 、AC 的中点E 、F ,利用向量加法的平行四边形法则以及向量得减法的几何意义可得2222a b c =+,再利用余弦定理得2bc a =,由正弦定理得边角互化以及两角差得正弦公式求出3B π=,即证.【详解】取AB 、AC 的中点E 、F ,则()CO AB CE EO AB CE AB ⋅=+⋅=⋅()()()221122CB CA CB CA a b =+⋅-=-, 同理()2212BO CA c a ⋅=-,所以2222a b c =+, 又3A π=,由余弦定理,得222a b c bc =+-,即222b c a bc +=+,所以2bc a =,由正弦定理,得23sin sin sin 4B C A ==, 即23sin sin 34B B π⎛⎫-=⎪⎝⎭,所以211cos 23sin sin sin sin 23244B B B B B B B π⎫-⎛⎫-=+=+=⎪⎪⎪⎝⎭⎝⎭,2cos 22B B -=,所以2sin 226B π⎛⎫-= ⎪⎝⎭,即sin 216B π⎛⎫-= ⎪⎝⎭,因为20,3B π⎛⎫∈ ⎪⎝⎭,72,666B πππ⎛⎫-∈- ⎪⎝⎭, 所以262B ππ-=,解得3B π=,所以3A B C π===, 所以ABC 是等边三角形. 故选:B 【点睛】本题考查了向量加法、减法的运算法则,正弦定理、余弦定理、三角恒等变换,综合性比较强,属于中档题.10.A解析:A 【分析】利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理可得cos B 的值,由4BC BA ⋅=可得ac 的值 【详解】 在ABC 中,()3bcosC a c cosB =-由正弦定理可得()sin cos 3sin sin cos B C A C B =-3sin cos sin cos sin cos A B C B B C ∴-=化为:3sin cos sin cos sin cos A B C B B C =+即()sin sin B C A += 在ABC 中,sin 0A ≠,故1cos 3B =4BC BA ⋅=,可得cos 4ac B =,即12ac = 故选A 【点睛】本题以三角形为载体,主要考查了正弦定理,向量的数量积的运用,考查了两角和公式,考查了分析问题和解决问题的能力,属于中档题.11.D解析:D 【分析】设塔底为O ,设塔高为h ,根据已知条件求得,OA OB 的长,求得AOB ∠的大小,利用余弦定理列方程,解方程求得h 的值. 【详解】设塔底为O ,设塔高为h ,由已知可知3,OA h OB h ==,且150AOB ∠=,在三角形AOB 中,由余弦定理得22233352cos15033h h h h ⎛⎫=+-⨯⨯⨯ ⎪ ⎪⎝⎭,解得521h m =.故选D.【点睛】本小题主要考查解三角形的实际应用,考查利用余弦定理解三角形,属于基础题.12.B解析:B 【分析】结合同角三角函数的基本关系可求出14sin 4C =,2cos 4C =,14sin 8A =,由两角和的正弦公式可求出sin B ,结合正弦定理即可求出a ,进而可求出三角形的面积.【详解】 因为sin tan 7cos C C C ==,且22sin cos 1C C +=,解得14sin C =,2cos C =,又cos 8A =,所以sin 8A ==,故sin sin[()]sin()sin cos cos sin B A C A C A C A C π=-+=+=+=.因为sin sin a bA B =,b =,故sin 2sin b A a B==,故11sin 22242ABC S ab C =⨯=⨯⨯=△. 故选:B . 【点睛】本题考查了同角三角函数的基本关系,考查了两角和的正弦公式,考查了正弦定理,考查了三角形的面积公式,属于中档题.二、填空题13.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC θ=⋅⋅︒=OAB 的面积11sin 122OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.14.【分析】先根据余弦定理求出结合平方关系求得利用三角形的面积公式及二次函数可求面积的最大值【详解】∵∴可得∴由可得即则的面积当且仅当时即时取等号故答案为:【点睛】本题主要考查三角形的面积最值常见求解思 解析:12【分析】先根据余弦定理求出cos A ,结合平方关系求得sin A ,利用三角形的面积公式及二次函数可求ABC 面积的最大值. 【详解】∵6a =,2c b =,∴2222644cos b b b A =+-,可得22536cos 4b A b-=,∴sin A ==,由()2223043600b --≥,可得2436b ≤≤,即26b ≤≤,则ABC的面积221sin sin 122S bc A b A b ====≤,当且仅当2360b =时,即b =故答案为:12. 【点睛】本题主要考查三角形的面积最值,常见求解思路是建立关于三角形面积的表达式结合二次函数或者基本不等式的知识求解,侧重考查数学运算的核心素养.15.【分析】由题意利用正弦定理边化角求得∠B 的值然后结合数量积的定义求解的值即可【详解】根据正弦定理得:故答案为【点睛】本题主要考查正弦定理余弦定理的应用等知识意在考查学生的转化能力和计算求解能力 解析:3-【分析】由题意利用正弦定理边化角,求得∠B 的值,然后结合数量积的定义求解AB BC ⋅的值即可. 【详解】()2a c cosB bcosC -=根据正弦定理得:()2sinA sinC cosB sinBcosC -=2sinAcosB sinBcosC sinCcosB =+ ()2sinAcosB sin B C =+2sinAcosB sinA =12cosB ∴=,60B ∴=1||2332AB BC AB BC cosB ⎛⎫∴⋅=-⋅=-⨯⨯=- ⎪⎝⎭故答案为3- 【点睛】本题主要考查正弦定理、余弦定理的应用等知识,意在考查学生的转化能力和计算求解能力.16.3【分析】由题意结合余弦定理得进而可得再由余弦定理即可求得利用平方关系求得进而求得【详解】由余弦定理可得即又所以所以所以所以所以所以故答案为:3【点睛】本题考查了余弦定理的综合应用考查了同角三角函数解析:3 【分析】由题意结合余弦定理得3c =,进而可得3a b =,再由余弦定理即可求得cos 10B=,利用平方关系求得sin 10B =,进而求得sin tan 3cos B B B ==.【详解】4A π=,∴由余弦定理可得2222cos a b c bc A =+-即222b ac -=-,又22212b ac -=, 所以2212c c =-,所以3c =,222222145299a b c b b b =-=-=,所以3a b =,所以22222258cos 2b b ba cb B ac +-+-===,所以sin B ==,所以sin tan 3cos BB B==, 故答案为:3. 【点睛】本题考查了余弦定理的综合应用,考查了同角三角函数关系式,考查了运算求解能力与转化化归思想,属于中档题.17.【分析】根据三角形面积公式以及余弦定理求解即可【详解】由余弦定理可知故答案为:【点睛】本题主要考查了三角形面积公式以及余弦定理的应用属于中档题 解析:12【分析】根据三角形面积公式以及余弦定理求解即可. 【详解】11sin 1222ABC S bc A c ==⨯=△6c ∴=由余弦定理可知a =12sin sin sin sin a b c a A B C A ++∴===++故答案为:12 【点睛】本题主要考查了三角形面积公式以及余弦定理的应用,属于中档题.18.【分析】在中分析边角关系可得在中由正弦定理可求得的值然后在中利用余弦定理可求得的长【详解】在中则在中则由正弦定理得可得在中由余弦定理得因此(千米)故答案为:【点睛】本题考查距离的测量问题考查了利用正 解析:3【分析】在ACD △中,分析边角关系可得AC CD ==BCE 中,由正弦定理可求得BC 的值,然后在ABC 中,利用余弦定理可求得AB 的长. 【详解】在ACD △中,45ACD ∠=,67.5ADC ∠=,CD =67.5CAD ∴∠=,则AC CD ==在BCE 中,60BEC ∠=,75BCE ∠=,CE 45CBE ∠=,由正弦定理得sin 45sin 60CE BC=,可得2sin 60sin 452CE BC ===在ABC 中,AC =BC =,18060ACB ACD BCE ∠=-∠-∠=, 由余弦定理得2222cos609AB AC BC AC BC =+-⋅=,因此,3AB =(千米). 故答案为:3. 【点睛】本题考查距离的测量问题,考查了利用正弦定理和余弦定理解三角形,考查计算能力,属于中等题.19.【分析】先利用余弦定理求得再由正弦定理结合已知条件求得的关系式求得即可【详解】由得又因为得由正弦定理得又因为所以所以故答案为:【点睛】本题考查了正余弦定理的综合运用属于中档题 解析:12【分析】先利用余弦定理求得3A π=,再由正弦定理()sin sin sin sin A B c C b B B+==结合已知条件,求得tan B 的关系式,求得tan B 即可.【详解】由222b c bc a +-=得2221cos 22b c a A bc +-==, 又因为()0A π∈,得3A π=.由正弦定理,得()sin sin sin sin A B c C b B B +==sin cos cos sin 1sin 2tan 2A B A B B B +==+又因为12c b =+1=2+12+1tan 2B =. 故答案为:12. 【点睛】本题考查了正余弦定理的综合运用,属于中档题.20.③④【分析】举出反例可判断①②;由同角三角函数的平方关系正弦定理可得再由余弦定理可判断③;由正弦定理可得再由三角形有两个可得且即可判断④;即可得解【详解】对于①当时满足此时△ABC 不是等腰三角形故①解析:③④ 【分析】举出反例可判断①、②;由同角三角函数的平方关系、正弦定理可得222a b c +<,再由余弦定理可判断③;由正弦定理可得8sin x A =,再由三角形有两个可得566A ππ<<且2A π≠,即可判断④;即可得解.【详解】 对于①,当3A π=,6B π=时,满足sin 2sin 2A B =,此时△ABC 不是等腰三角形,故①错误; 对于②,当23A π=,6B π=时,满足sin cos A B =,此时△ABC 不是直角三角形,故②错误;对于③,∵222sin sin cos 1A B C ++<,∴22222sin sin cos sin cos A B C C C ++<+, ∴222sin sin sin A B C +<,∴根据正弦定理得222a b c +<,∵222cos 02a b c C ab+-=<,()0,C π∈,∴C 为钝角,∴△ABC 为钝角三角形,故③正确;对于④,∵,4,6C c a x π===,∴根据正弦定理得481sin sin 2a c A C ===,∴8sin x A =,由题意566A ππ<<,且2A π≠,∴1sin 12A <<,∴48x ,即x 的取值范围为(4,8),故④正确. 故答案为:③④. 【点睛】本题考查了三角函数及解三角形的综合应用,考查了运算求解能力,合理转化条件是解题关键,属于中档题.三、解答题21.(1)1040m ;(2)3537min 【分析】(1)在ABC 中,根据4sin 5C =,63sin 65B =,由正弦定理sin sin AB ACC B=,可得AB ;(2)假设乙出发t 分钟时,甲,乙两游客距离为d ,此时,甲行走了()10050t m +,乙距离A 处()130t m ,由余弦定理得2d =235625200373737t ⎛⎫⎛⎫-+ ⎪ ⎪ ⎪⎝⎭⎝⎭,再利用二次函数求解. 【详解】(1)在ABC 中,根据4sin 5C =,63sin 65B =,由正弦定理得:sin sin AB ACC B=,得41260sin 5104063sin 65AC C AB B ⋅⋅===(m )所以缆车线路AB 的长为1040m(2)假设乙出发t 分钟时,甲,乙两游客距离为d ,此时,甲行走了()10050t m +,乙距离A 处()130t m ,由余弦定理得()()()222121005013021301005013d t t t t =++-⨯⨯+⨯()2200377050t t =-+235625200373737t ⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 又在AB 段的时间10400130t ≤≤,即08t ≤≤, 故3537t =时,甲,乙两游客的距离最短. 【点睛】关键点点睛:本题主要考查了解三角形的实际应用.实际应用题关键是构造三角形,将各个已知条件向这个主三角形集中,转化为数学模型,列出数学表达式,再通过正弦、余弦定理,勾股定理或其他基本性质建立条件之间的联系,列方程或列式求解. 22.5c =,34ABC π∠=. 【分析】由勾股定理求出BD ,再由sin BDA AD=,sin 1c A =,5b c =求出5c =,5b =,再由余弦定理求出a ,最后由正弦定理求出ABC ∠. 【详解】解:在直角三角形ABD 中,22222224b c BD AD AB c ⎛⎫=-=-= ⎪⎝⎭,所以2c BD =.所以5sin 5BD A AD ==. 又因为sin 1c A =,所以5c =由5b c =得,5b =.因为sin 5A =,0,2A π⎛⎫∈ ⎪⎝⎭,所以cos 5A ==.在ABC 中,由余弦定理,得a ==由正弦定理,得sin sin a b A ABC =∠,即5sin ABC =∠sin ABC ∠=. 又因为,2ABC ππ⎛⎫∠∈ ⎪⎝⎭,所以34ABC π∠=. 【点睛】关键点睛:解决本题的关键在于正余弦定理的综合应用,综合利用两个定理求出c 和ABC ∠.23.(1)23C π=;(2)13,24⎡⎫⎪⎢⎣⎭. 【分析】(1)利用正弦定理的边角互化即可求解. (2)利用二倍角公式以及三角形的内角和性质可得22sin sin A B +11sin 226A π⎛⎫=-+ ⎪⎝⎭,利用三角函数的性质即可求解.【详解】解:(1)由已知及正弦定理得2(sin cos sin cos )cos sin 0A C C A C B ++=, 2sin()cos sin 0A C C B ++=,因为A B C π+=-,所以sin (2cos 1)0B C +=, 因为sin 0B ≠,所以1cos 2C =-, 因为0C π<<,所以23C π=. (2)221cos 21cos 21sin sin 1(cos 2cos 2)222A B A B A B --+=+=-+12111cos 2cos 21cos 2cos 222322A A A A A π⎛⎫⎡⎤⎛⎫=-+-=-- ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭1111cos 221sin 22226A A A π⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为03A π<<,所以52666A πππ<+<,1sin 2126A π⎛⎫<+≤ ⎪⎝⎭,111sin 22264A π⎛⎫-≤-+<- ⎪⎝⎭,1131sin 22264A π⎛⎫≤-+< ⎪⎝⎭, 所以2213sin sin 24A B ≤+<,即22sin sin A B +的取值范围是13,24⎡⎫⎪⎢⎣⎭. 24.(1)14-;(2)716-. 【分析】(1)由正弦定理化角为边,再结合2b c a +=,把,b c 用a 表示,然后由余弦定理得cos B ;(2)由同角关系求出sin B ,利用二倍角公式求得sin 2,cos 2B B ,再由两角和的正弦公式求得结论. 【详解】(1)因为3c sin B =4a sin C ,由正弦定理得34cb ac =,所以43b a =, 又2b c a +=,所以23c a =,所以222222416199cos 22423a a a a cb B ac a a +-+-===-⋅. (2)因为(0,)B π∈,所以sin B ==sin 22sin cos B B B ==,27cos 212sin 8B B =-=-,所以sin(2)sin 2coscos 2sin666B B B πππ+=+71()82=+-⨯= 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理. 25.(1)3π;(2)4. 【分析】若选①:(1)利用诱导公式和正弦定理化简,再利用余弦定理即可求出角B ;(2)由(1)得到()223b a c ac =+-,再利用基本不等式求出b 的最小值及此时等号成立的条件,再利用面积公式即可求出面积.若选②:(1)利用正弦定理以及同角三角函数的基本关系化简求解即可;(2)由(1)得到()223b a c ac =+-,再利用基本不等式求出b 的最小值及此时等号成立的条件,再利用面积公式即可求出面积. 若选③:(1)利用正弦定理以及辅助角公式化简整理即可求出角B ;(2)由(1)得到()223b a c ac =+-,再利用基本不等式求出b 的最小值及此时等号成立的条件,再利用面积公式即可求出面积.【详解】若选①:(1)sin()sin ()sin c A B b B c a A +=+-,sin()sin sin sin c C b B c A a A π-=+-, sin sin sin sin c C b B c A a A =+-,222c b ac a =+-,222a c b ac +-=,2221cos 22a cb B ac +-==, 0B π<<,3B π∴=; (2)由(1)知:()22223b a c ac a c ac =+-=+-, 22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c ==()()()()2222231344b ac ac a c a c a c ∴=+-≥+-+=+,又a c +=则()(22211544b ac ≥+=⨯=,又0b >,所以b ≥则ABC 周长的最小值为:=此时a c b ===,所以ABC 的面积为:1sin 602ac ︒= 若选②:(1)由tan 2sin b a B A=,得2sin tan b A a B =, 则sin 2sin cos AsinB AsinB B=, 又0,0A B ππ<<<<,则sin 0,sin 0A B >>, 所以1cos 2B =, 即3B π=;(2)由(1)知:()22223b a c ac a c ac =+-=+-, 22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c ==()()()()2222231344b ac ac a c a c a c ∴=+-≥+-+=+,又a c +=则()(22211544b ac ≥+=⨯=,又0b >,所以b ≥则ABC 周长的最小值为:=此时a c b ===,所以ABC 的面积为:1sin 602ac ︒=若选③:(1)(1cos )sin a B A +=,sin (1cos )sin A B A B +,0A π<<,sin 0A ∴>,1cos +=B B ,2sin 16B π⎛⎫-= ⎪⎝⎭, 1sin 62B π⎛⎫-= ⎪⎝⎭, 66B ππ∴-=或566B ππ-=,即3B π=或B π=(舍);(2)由(1)知:()22223b a c ac a c ac =+-=+-, 22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c ==()()()()2222231344b ac ac a c a c a c ∴=+-≥+-+=+,又a c +=则()(22211544b ac ≥+=⨯=,又0b >,所以b ≥则ABC 周长的最小值为:=此时a c b ===,所以ABC 的面积为:1sin 602ac ︒= 【点睛】思路点睛:本题首先利用正弦定理,同角三角函数的基本关系,诱导公式,辅助角公式以及余弦定理进行化简求角;其次利用余弦定理,基本不等式,三角形面积公式求解.26.(1)3;(2) 【分析】(1)根据正弦定理边角互化以及两角和的正弦公式可求得结果;(2)根据三角形的面积公式以及余弦定理可求得结果.【详解】(1)因为)cos cos A c a C =,cos sin sin cos C A C A C -=,()sin cos sin cos sin C C A A C A C =+=+,而()sin sin A C B +=b =,故3c b =.(2)由(1)知cos 6A =,则sin 6A =,又ABC 的面积为21sin 244bc A c ==,则3c =,b =由余弦定理得2222cos 27923276a b c bc A =+-=+-⨯⨯=,解得a =.【点睛】关键点点睛:利用正余弦定理以及三角形的面积公式求解是解题关键.。
(压轴题)高中数学必修五第三章《不等式》测试卷(答案解析)(4)
一、选择题1.若实数x ,y 满足约束条件403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A .1B .20C .28D .322.若正实数a ,b 满足lg a +lg b =1,则25a b+的最小值为( ) AB .CD .23.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( ) A .9 B .94C .52D .24.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R5.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n+的最小值为( ) A .23B .43C .2D .46.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( ) A.B.C .6D .87.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.8.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( ) A .11a b< B .a 2>b 2 C .a 3>b 3 D .a b b a> 9.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<- 10.已知直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,则124123a b +++的最小值为( ) A.720+B.720- C.720+ D.720-11.如果0a b >>,0t >,设b M a =,b t N a t+=+,那么( ) A .M N < B .M N >C .MND .M 与N 的大小关系和t 有关12.若实数,x y 满足约束条件40400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .0B .4C .8D .12二、填空题13.已知实数x ,y 满足约束条件010x y x y x -≤⎧⎪+≤⎨⎪⎩,则23x y z +=的最大值__________.14.已知正数a ,b 满足(1)(1)1a b --=,则4a b +的最小值等于________.15.已知实数,x y 满足40{1010x y x y +-≤-≥-≥,则x yx+的取值范围是__________. 16.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________. 17.已知0m >,0n >,且111223m n +=++,则2m n +的最小值为________. 18.已知实数,x y 满足11y x x y y ≥⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最大值是________________.19.若对定义域内任意x ,都有()()f x a f x +>(a 为正常数),则称函数()f x 为“a 距”增函数.若()3144f x x x =-+,x ∈R 是“a 距”增函数,则a 的取值范围是________.20.若(0,1)x ∈时,不等式111m x x≤+-恒成立,则实数m 的最大值为________. 三、解答题21.已知函数2()(21)f x ax a x c =-++,且(0)2f =.(1)若()0f x <的解集为{|28}x x <<,求函数()f x y x=的值域; (2)当0a >时,解不等式()0f x <.22.定义两个函数的关系:函数()m x ,()n x 的定义域为A ,B ,若对任意的1x A ∈,总存在2x B ∈,使得()()12m x n x =,我们就称函数()m x 为()n x 的“子函数”.设,0a b >,已知函数()f x =23(1)b a b+--,22||11()1822||x g x x a a x x =+-++. (1)当1a =时,求函数()f x 的单调区间;(2)若函数()f x 是()g x 的“子函数”,求22a b ab+的最大值.23.设函数()()()2230f x ax b x a =+-+≠.(1)若不等式()0f x >的解集()1,1-,求a ,b 的值; (2)若()12f =, ①0a >,0b >,求14a b+的最小值; ②若()1f x >在R 上恒成立,求实数a 的取值范围. 24.设函数2()(1)f x x m x m =-++. (1)若2m =,求不等式()0f x <的解集; (2)求不等式()0f x <的解集;(3)若对于[1,2]x ∈,()4f x m >-恒成立,求m 的取值范围. 25.已知函数2()3f x x x m =++. (1)当m =-4时,解不等式()0f x ≤; (2)若m >0,()0f x <的解集为(b ,a ),求14a b+的最大値. 26.已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C画出可行域,向上平移基准直线320x y +=到可行域边界的位置,由此求得目标函数的最大值. 【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域,如下图所示的阴影部分:其三角形区域(包含边界),由40340x y x y -+=⎧⎨--=⎩得点(4,8)A ,由图得当目标函数=3+2z x y 经过平面区域的点(4,8)A 时,=3+2z x y 取最大值max 342828z =⨯+⨯=.故选:C.【点睛】方法点睛:求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.2.D解析:D 【分析】应用对数运算得到10ab =,由目标式结合基本不等式有25252a b a b+≥⋅. 【详解】∵lg lg 1a b +=,即lg 1ab =, ∴10ab =,而0,0a b >>, ∴252522a b a b+≥⋅=当且仅当2,5a b ==时等号成立. ∴25a b+的最小值为2.【点睛】易错点睛:利用基本不等式求最值时,须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方3.B解析:B 【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值. 【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++62264119(5)(5444a a a a =++≥+=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B . 【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.4.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.5.C解析:C 【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值. 【详解】令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=, ∵0mn >,24m n +=,∴0,0m n >>,∴12112141(2)442444n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4n mm n=,即1,2m n ==时等号成立. 故选:C . 【点睛】本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.6.D解析:D 【分析】运用基本不等式2422x y +≥=【详解】因为20,40xy>>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”). 故答案为D. 【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③等号取得的条件.7.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为,4t =最后通过基本不等式求得AD 的最大值。
【名师一号】2020-2021学年北师大版高中数学必修2双基限时练4
双基限时练(四)一、选择题1.如图所示的三棱锥的主视图为()解析由三视图的画法,可知答案为B.答案 B2.下列说法正确的是()A.任何物体的三视图都与物体的摆放位置有关B.任何物体的三视图都与物体的摆放位置无关C.有的物体的三视图与物体摆放位置无关D.正方体的三视图肯定是三个全等的正方形解析球的三视图与物体的摆放位置无关.答案 C3.若一几何体的主视图和左视图均为等腰梯形,则这个几何体可能是() A.圆锥B.圆柱C.圆台D.球答案 C4.四个正方体按如图所示的方式放置,其中阴影部分为我们观看的正面.则该物体的三视图正确的为()解析由三视图的画法,可知答案为B.答案 B5.如图,已知正三棱柱ABC-A1B1C1的底面边长为2,高为3,则其左视图的面积为()A.6 B.3C.3 3 D.6 3解析由三视图的画法可知,该几何体的左视图是一个矩形,其底面边长为2sin60°=3,高为3,∴面积S=3 3.答案 C6.如图所示的几何体是一个四棱柱截去一个角后剩余的几何体,则此几何体的主视图正确的是()解析由三视图的画法,可知答案为C.答案 C二、填空题7.给出下列命题:①假如一个几何体的三个视图是完全相同的,则这个几何体是正方体;②假如一个几何体的主视图和俯视图都是矩形,则这个几何体是长方体;③假如一个几何体的三个视图都是矩形,则这个几何体是长方体;④假如一个几何体的主视图和左视图都是等腰梯形,则这个几何体是圆台.其中正确的是________.(将正确的全都写在横线上)解析对于①由于球的三个视图也是完全相同的,故①不对;对于④,主视图与左视图都是等腰梯形的除圆台之外,还有棱台,故④不对;对于②,当圆柱倒置时,如图,其主视图与俯视图均为矩形,故②不正确.答案③8.下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.②④C.①③D.①④解析①中的三个视图均相同,③中主视图为与左视图不同,只有②④中的左视图与主视图相同.答案 B9.如图是4个三视图和4个实物图,请将三视图与实物图正确配对________________.解析由三视图的画法可知.答案(1)→B,(2)→A,(3)→C,(4)→D 三、解答题10.观看下列实物体,画出它们的三视图.解(1)三视图如下:(2)三视图如下:11.如图所示,是一个长方体截去一个角所得多面体的直观图和它的主视图和左视图(单位:cm).请在正视图下面,依据画三视图的要求画出该多面体的俯视图.解依据三视图的绘图原则,可作出该几何体的俯视图如图.12.如图,直角梯形ABCD绕底边AD所在直线EF旋转,在旋转前,非直角的腰的端点A可以在DE上选定.当点A选在射线DE上的不同位置时,形成的几何体的大小、外形不同,分别画出它的三视图并比较其异同点.解(1)当点A在图①射线DE的位置时,绕EF旋转一周所得几何体为底面半径为CD的圆柱和圆锥拼成,其三视图如图②.(2)当点A位于如图③所示位置时,其旋转所得几何体为圆柱中挖去一个同底的圆锥,其三视图如图④所示.思维探究13.已知一个正三棱锥S-ABC的棱长均为a,分别求出它的三个视图的面积.解∵S-ABC为正三棱锥,∴S在底面ABC上的射影为△ABC的中心O,又BO=a sin60°×23=33a,∴SO=SB2-BO2=a2-a23=63a.∴S主视图=12×a×63a=66a2,S左视图=12×a×sin60°×63a=24a2,S俯视图=12×a2sin60°=34a2.。
高二期末测试卷必修五用
高中数学必修5模块期末综合测试卷一一、选择题(本大题共12小题,每小题5分,共60分.)1.一个直角三角形三内角的正弦值成等比数列,则其最小内角的正弦值为( ) A.5+12 B.5-12 C.1-52 D.122.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9 3.不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎫-12,13,则a +b 的值是( )A .10B .-10C .-14D .144.已知数列{a n }满足a 1=0,a n +1=a n +2n ,那么a 2 009的值是( )A .2 0092B .2 008×2 007C .2 009×2 010D .2 008×2 009 5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3 6.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( ) A .5 2 B .7 C .6 D .4 27.若变量x ,y 满足约束条件⎩⎨⎧y ≤1,x +y ≥0,x -y -2≤0,则z =x -2y 的最大值为( )A .4B .3C .2D .18.设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .X +Z =2Y B .Y (Y -X )=Z (Z -X ) C .Y 2=XZ D .Y (Y -X )=X (Z -X )9.下列命题正确的是( )A .a ,b ∈R ,且a >b ,则a 2>b 2B .若a >b ,c >d ,则a c >bdC .a ,b ∈R ,且ab ≠0,则a b +ba ≥2D .a ,b ∈R ,且a >|b |,则a n >b n (n ∈N *) 10.在△ABC 中,已知a 比b 长2,b 比c 长2,且最大角的正弦值是32,则△ABC 的面积是( )A.154B.1543C.214 3D.3543 11.已知数列{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .35B .33C .31D .29 12.已知x ,y ∈R +,2x +y =2,c =xy ,那么c 的最大值为( )A .1 B.12 C.22 D.14二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.在△ABC 中,若b =1,c =3,∠C =2π3,则a =________. 14.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.15.设x ,y 满足约束条件⎩⎨⎧2x -y +2≥0,8x -y -4≤0,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为8,则a +b 的最小值为________.16.设实数x ,y 满足3≤xy 2≤8,4≤x 2y ≤9,则x3y4的最大值是______.三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)某单位在抗雪救灾中,需要在A ,B 两地之间架设高压电线,测量人员在相距6 000 m 的C 、D 两地(A ,B ,C ,D 在同一平面上)测得∠ACD =45°,∠ADC =75°,∠BCD =30°,∠BDC =15°(如图).假如考虑到电线的自然下垂和施工损耗等原因,实际所需电线长度大约是A 、B 两地之间距离的1.2倍,问施工单位至少应该准备多长的电线(精确到0.1 m)?(参考数据:2≈1.4,3≈1.7,7≈2.6)18.(本小题满分12分)已知关于x的不等式2x2+(3a-7)x+(3+a-2a2)<0的解集中的一个元素为0,求实数a的取值范围,并用a表示该不等式的解集.19.(本小题满分12分)已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(1)求数列{a n}的通项;(2)求数列{2a n}的前n项和S n.20.(本小题满分12分)某村计划建造一个室内面积为72 m2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m宽的通道,沿前侧内墙保留3 m宽的空地.当矩形温室的边长各为多少时?蔬菜的种植面积最大,最大种植面积是多少?21.(本小题满分12分)某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:22.(本小题满分14分)设数列{a n}的前n项和为S n=2n2,{b n}为等比数列,且a1=b1,b2(a2-a1)=b1.(1)求数列{a n}和{b n}的通项公式;(2)设c n =a nb n,求数列{c n }的前n 项和T n .1.解析: 设最小内角为α,则sin α,cos α,1成等比数列,所以1-sin 2α=sin α, 解得sin α=5-12或sin α=-5-12(舍).答案: B 2.解析: a 4+a 6=2a 5=-6∴a 5=-3∴d =a 5-a 15-1=2∴S n =-11n +n (n -1)2·2=n 2-12n故n =6时S n 取最小值.答案: A3.解析: 不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎫-12,13,即方程ax 2+bx +2=0的解为x =-12或13, 故⎩⎪⎨⎪⎧-12+13=-b a ,-12×13=2a .解得⎩⎨⎧a =-12,b =-2,∴a +b =-14.答案: C4.解析:由已知a n +1-a n =2n ,所以a 2-a 1=2×1,a 3-a 2=2×2,a 4-a 3=2×3,…,a n -a n -1=2×(n -1),以上各式两端分别相加得:a n -a 1=2[1+2+3+…+(n -1)]=n (n -1),即a n =n (n -1)∴a 2 009=2 008×2 009.D5.解析: 由余弦定理,得a 2+c 2-b 2=2ac cos B .由已知,得2ac cos B ·sin Bcos B =3ac ,即sin B=32,又B 是三角形的内角,所以B =π3或2π3.故选D.答案: D 6.解析:a 7·a 8·a 9a 1·a 2·a 3=q 18=2,∴q 9=2,a 4·a 5·a 6=(a 1·a 2·a 3)·q 9=5 2.答案: A7.解析: 作出可行域如图所示目标函数y =12x -12z过点A (1,-1)时z max =3答案: B8.解析: 易知X ,Y -X ,Z -Y 成等比数列∴(Y -X )2=X (Z -Y ) 化简可得Y (Y -X )=X (Z -X ).答案: D 9.解析: a >|b |≥0,故a n >b n .答案: D10.解析: 由题可知a =b +2,b =c +2,∴a =c +4.∵sin A =32,∴A =120°.又cos A =cos 120°=b 2+c 2-a 22bc=(c +2)2+c 2-(c +4)22c (c +2)=c 2-4c -122c (c +2)=-12,整理得c 2-c -6=0,∴c =3(c =-2舍去),从而b =5,∴S △ABC =12bc sin A =1543.故选B.答案: B11.解析: 设公比为q ,由题意知⎩⎪⎨⎪⎧a 2·a 3=a 12q 3=2a 1a 4+2a 7=a 1q 3+2a 1q 6=52即⎩⎪⎨⎪⎧a 1q 3=2a 1q 3+2a 1·q 3·q 3=52解得⎩⎪⎨⎪⎧q =12a 1=16,故S 5=16×⎝ ⎛⎭⎪⎫1-1251-12=31.答案: C12.解析: 由已知,2=2x +y ≥22xy =22c ,所以c ≤12.答案: B13.解析: ∵c 2=a 2+b 2-2ab cos ∠C ,∴(3)2=a 2+12-2a ·1·cos 23π,∴a 2+a -2=0,∴(a +2)(a -1)=0∴a =1答案: 114.解析: 不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,即(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立.若a +2=0,则4x -3>0,显然不恒成立;若a +2≠0,则⎩⎨⎧a +2>0,Δ<0,即⎩⎨⎧a +2>0,42-4(a +2)(a -1)<0,解得a >2.答案: (2,+∞) 15.解析: 可行域如图所示 目标函数y =-abx +z∵a >0,b >0 ∴斜率-ab <0∴直线过A (1,4)时z 取到最大值8∴ab =4∴a +b ≥2ab =4(当且仅当a =b =2时等号成立)∴a +b 的最小值为4.16.解析: 由3≤xy 2≤8得18≤1xy 2≤13①由4≤x 2y ≤9得16≤x 4y 2≤81②①×②得2≤x 3y4≤27∴最大值为2717.解析: 在△ACD 中∠CAD =180°-∠ACD -∠ADC =60°,=23CD .在CD =6 000,∠ACD =45°,根据正弦定理,得AD =CD sin 45°sin 60°△BCD 中,∠CBD =180°-∠BCD -∠BDC =135°,CD = 6 000,∠BCD=30°,根据正弦定理,得BD =CD sin 30°sin 135°=22CD .又在△ABD 中,∠ADB =∠ADC +∠BDC =90°,根据勾股定理,得AB =AD 2+BD 2=23+12CD =1 00042,而1.2AB ≈7 425.6,则实际所需电线长度约为7 425.6 m.18.解析: 原不等式即(2x -a -1)(x +2a -3)<0,由x =0,适合不等式,故(0-a -1)(2a -3)<0,即(a +1)(2a -3)>0,∴a >32或a <-1.若a >32,则-2a +3-a +12=52(1-a )<-54,∴不等式的解集为⎝⎛⎭⎪⎫3-2a ,a +12; 若a <-1,则-2a +3-a +12=52(1-a )>5,∴不等式的解集为⎝ ⎛⎭⎪⎫a +12,3-2a .综上,a 的取值范围是(-∞,-1)∪⎝ ⎛⎭⎪⎫32,+∞.当a >32时,不等式的解集为⎝ ⎛⎭⎪⎫3-2a ,a +12.当a <-1时,不等式的解集为⎝ ⎛⎭⎪⎫a +12,3-2a .19.解析: (1)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得1+2d 1=1+8d1+2d,解得d =1,d =0(舍去),故{a n }的通项a n =1+(n -1)×1=n .(2)由(1)知2a n =2n ,由等比数列前n 项和公式得S n =2+22+23+ (2)=2(1-2n)1-2=2n +1-2.20.解析: 设矩形温室的左侧边长为a m ,后侧边长为b m ,则ab =72,蔬菜的种植面积S =(a -4)(b -2)=ab -4b -2a +8=80-2(a +2b )≤80-42ab =32(m 2)当且仅当a =2b ,即a =12,b =6时,S max =32.答:矩形温室的边长为6 m,12 m 时,蔬菜的种植面积最大,最大种植面积是32 m 2. 21.解析: 设空调机、洗衣机的月供应量分别是x ,y 台,总利润是z ,则z =6x +8y由题意有⎩⎨⎧30x +20y ≤300,5x +10y ≤110,x ≥0,y ≥0,x ,y 均为整数.由图知直线y =-34x +18z 过M (4,9)时,纵截距最大.这时z 也取最大值z max =6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9 600元. 22.解析: (1)当n ≥2时,a n =S n -S n -1=2n 2-2(n -1)2=4n -2, 当n =1时,a 1=S 1=2满足上式,故{a n }的通项式为a n =4n -2.设{b n }的公比为q ,由已知条件b 2(a 2-a 1)=b 1知,b 1=2,b 2=12,所以q =14,∴b n =b 1q n -1=2×14n -1,即b n =24n -1.(2)∵c n =a n b n=4n -224n -1=(2n -1)4n -1,∴T n =c 1+c 2+…+c n =[1+3×41+5×42+…+(2n -1)4n -1]. 4T n =[1×4+3×42+5×42+…+(2n -3)4n -1+(2n -1)4n ]. 两式相减得:3T n =-1-2(41+42+43+…+4n -1)+(2n -1)4n =13[(6n -5)4n +5].∴T n =19[(6n -5)4n +5].高中数学必修5模块期末综合测试卷二一、选择题(本大题共12小题,每小题5分,共60分. 1.在△ABC 中,a =5,b =15,A =30°,则c 等于( ) A .25 B.5C .25或 5 D .3 5 2.当0<a <b <1时,下列不等式正确的是( )A .(1-a )1b >(1-a )bB .(1+a )a >(1+b )bC .(1-a )b >(1-a )b2D .(1-a )a >(1-b )b3.已知点(3,1)和(-4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是( ) A .a <-7或a >24 B .a =7或a =24C .-7<a <24 D .-24<a <74.数列1,3,7,15,…的通项公式a n 等于( ) A .2n B .2n +1 C .2n -1D .2n -15.△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,如果a ,b ,c 成等差数列,B =30°,△ABC 的面积为32,那么b =( )A.1+32 B .1+3C.2+32D .2+ 36.若数列{x n }满足lg x n +1=1+lg x n (n ∈N *),且x 1+x 2+x 3+…+x 100=100,则lg(x 101+x 102+…+x 200)的值为( )A .102 B .101C .100 D .997.在△ABC 中,角A 、B ,C 所对的边长分别为a ,b ,c ,若∠C =120°,c =2a ,则( ) A .a >b B .a <b C .a =b D .a 与b 的大小关系不能确定8.设变量x ,y 满足约束条件⎩⎨⎧x ≥0,x -y ≥0,2x -y -2≤0,则z =3x -2y 的最大值为( )A .0B .2C .4D .69.函数f (x )=1x ln(x 2-3x +2+-x 2-3x +4)的定义域为( )A .(-∞,-4]∪[2,+∞)B .(-4,0)∪(0,1)C .[-4,0)∪(0,1]D .[-4,0)∪(0,1) 10.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最小值54B .最大值54C .最小值1D .最大值111.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6.则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5B.3116或5C.3116D.15812.已知各项均为正数的等差数列{a n }的前20项和为100,那么a 3·a 18的最大值是( ) A .50 B .25 C .100 D .220二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.在△ABC 中,已知a =4,b =6,C =120°,则sin A 的值是________. 14.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________.15.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比,如果在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站________处.16.已知关于x 的不等式(a 2-4)x 2+(a +2)x -1≥0的解集为空集,则实数a 的取值范围是________.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分12分)在△ABC 中,a ,b ,c 分别是A ,B ,C 的对边,且2sin A =3cos A .(1)若a 2-c 2=b 2-mbc ,求实数m 的值; (2)若a =3,求△ABC 面积的最大值.18.(本小题满分12分)数列{a n }中,a 1=13,前n 项和S n 满足S n +1-S n =⎝ ⎛⎭⎪⎫13n +1(n ∈N *).(1)求数列{a n}的通项公式a n以及前n项和S n;(2)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.19.(本小题满分12分)已知全集U=R,集合A={x|x2+(a-1)x-a>0},B={x|(x+a)(x+b)>0(a≠b)},M={x|x2-2x-3≤0}.(1)若∁U B=M,求a,b的值;(2)若-1<b<a<1,求A∩B;(3)若-3<a<-1,且a2-1∈∁U A,求实数a的取值范围.20.(本小题满分12分)某人有楼房一幢,室内面积共180 m2,拟分隔成两类房间作为旅游客房.大客房每间面积为18 m2,可住游客5名,每名游客每天住宿费为40元;小房间每间15 m2,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需1 000元,装修小房间每间需600元.如果他只能筹款8 000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,才能获得最大收益?21.(本小题满分12分)森林失火,火势以每分钟100 m2的速度顺风蔓延,消防站接到报警后立即派消防员前去,在失火5分钟到达现场开始救火,已知消防员在现场平均每人每分钟可灭火50 m2,所消耗的灭火材料、劳务津贴等费用平均每人每分钟125元,所消耗的车辆、器械和装备等费用平均每人100元,而每烧毁1 m2的森林损失费为60元,设消防队派x名消防队员前去救火,从到现场把火完全扑灭共用n分钟.(1)求出x与n的关系式;(2)求x为何值时,才能使总损失最少.22.(本小题满分14分)已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n . (1)求a n 及S n ; (2)令b n =1a n 2-1(n ∈N *),求数列{b n }的前n 项和T n .高中数学必修5模块期末综合测试卷二一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.解析: 由余弦定理:cos A =b 2+c 2-a 22bc ,∴32=15+c 2-52×15×c,即c 2-35c +10=0,∴c =5或25,经检验,a ,b ,c 能构成三角形.故选C.2.解析: 特值法.取a =14,b =12,则(1-a )1b =⎝ ⎛⎭⎪⎫1-142=⎝ ⎛⎭⎪⎫342=916.(1-a )b =⎝ ⎛⎭⎪⎫1-1412=32.∴(1-a )1b <(1-a )b .故排除 A.同理可排除B ,C.答案: D3.解析: (3×3-2×1+a )·(-3×4-2×6+a )<0⇔-7<a <24.答案: C4.解析: 取n =1时,a 1=1,排除A 、B ,取n =2时,a 2=3,排除D.答案: C 5.解析: 2b =a +c ,S =12ac sin B =32∴ac =6又∵b 2=a 2+c 2-2ac cos B ∴b 2=(a +c )2-2ac -2ac cos 30°∴b 2=4+23,即b =1+3,故选B6.解析: 由lg x n +1=1+lg x n 得x n +1x n =10,∴数列{x n }是公比为10的等比数列,又x 101=x 1·q 100,x 102=x 2·q 100,…,x 200=x 100·q 100,∴x 101+x 102+…+x 200=q 100(x 1+x 2+…+x 100) =10100·100=10102.∴lg(x 101+x 102+…+x 200)=102.答案: A 7.解析: 由正弦定理得a sin A =c sin C 即a sin A =2a sin 120°∴sin A =64>12∴A >30°,则B <30°故A >B ,∴a >b 答案: A8.解析: 作出可行域如图所示目标函数y =32x -12z 易知过A (0,-2)时z max =4答案: C9.解析: 由已知得⎩⎨⎧x 2-3x +2≥0,-x 2-3x +4≥0,x 2-3x +2+-x 2-3x +4>0,x ≠0.⇔⎩⎨⎧x ≤1或x ≥2,-4≤x ≤1,x 2-3x +2+-x 2-3x +4>0,x ≠0.⇔x ∈[-4,0)∪(0,1).答案: D10.解析: f (x )=(x -2)2+12(x -2)=(x -2)2+12(x -2).∵x ≥52,∴x -2>0,∴f (x )≥214=1.当且仅当x -22=12(x -2),即x =3时,取等号.答案: C11.解析: 9S 3=S 6而S 6=S 3+a 4+a 5+a 6∴8(a 1+a 2+a 3)=a 4+a 5+a 6即q 3=8∴q =2 ∴数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列.S ′5=1·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=3116.答案: C12.解析: 由题可知S 20=20(a 1+a 20)2=20(a 3+a 18)2=100,所以a 3+a 18=10,故a 3·a 18≤⎝⎛⎭⎪⎫a 3+a 1822=25. 13.解析: 根据余弦定理c 2=a 2+b 2-2ab cos C =42+62-2×4×6cos120°=76.所以c =219,根据正弦定理,得sin A =a sin C c =4sin 120°219=5719.14.解析: 由⎩⎨⎧S 3=3S 6=24知⎩⎪⎨⎪⎧3a 1+3×(3-1)2d =36a 1+6(6-1)2d =24即⎩⎨⎧ a 1+d =12a 1+5d =8,∴⎩⎨⎧a 1=-1d =2∴a 9=-1+8×2=1515.解析: 由已知得y 1=20x ,y 2=0.8x (x 为仓库与车站的距离).费用之和y =y 1+y 2=0.8x +20x ≥20.8x ·20x =8,当且仅当0.8x =20x 即x =5时等号成立.16.解析: 当a =-2时,原不等式可化为0·x 2+0·x -1≥0,解集为空集,符合题意. 当a =2时,原不等式可化为0.x 2+4x -1≥0,解集不能为空集.当⎩⎨⎧a 2-4<0Δ=(a +2)2+4(a 2-4)<0,不等式的解集为空集.∴-2<a <65综上-2≤a <65. 17.解析: (1)将2sin A =3cos A 两边平方,得2sin 2A =3cos A ,即(2cos A -1)(cos A +2)=0.解得cos A =12>0,∵0<A <π2,∴A =60°.a 2-c 2=b 2-mbc 可以变形得b 2+c 2-a 22bc =m 2.即cos A =m 2=12,∴m=1.(2)∵cos A =b 2+c 2-a 22bc =12,∴bc =b 2+c 2-a 2≥2bc -a 2,即bc ≤a 2.故S △ABC =bc 2sin A ≤a 22×32=334.∴△ABC 面积的最大值为34 3.18.解析: (1)由S n +1-S n =⎝ ⎛⎭⎪⎫13n +1得a n +1=⎝ ⎛⎭⎪⎫13n +1(n ∈N *);又a 1=13,故a n =⎝ ⎛⎭⎪⎫13n (n ∈N *).从而,S n =13×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n (n ∈N *).(2)由(1)可得S 1=13,S 2=49,S 3=1327.从而由S 1,t (S 1+S 2),3(S 2+S 3)成等差数列可得 13+3⎝ ⎛⎭⎪⎫49+1327=2×⎝ ⎛⎭⎪⎫13+49t ,解得t =2. 19.解析: 由题意,得A ={x |(x +a )(x -1)>0},∁U B ={x |(x +a )(x +b )≤0},M ={x |(x +1)(x-3)≤0}.(1)若∁U B =M ,则(x +a )(x +b )=(x +1)(x -3),所以a =1,b =-3,或a =-3,b =1. (2)若-1<b <a <1,则-1<-a <-b <1,所以A ={x |x <-a 或x >1},B ={x |x <-a 或x >-b }.故A ∩B ={x |x <-a 或x >1}.(3)若-3<a <-1,则1<-a <3,所以A ={x |x <1或x >-a },∁U A ={x |1≤x ≤-a }.又由a 2-1∈∁U A ,得1≤a 2-1≤-a ,即⎩⎨⎧a 2-2≥0a 2+a -1≤0,解得-1-52≤a ≤- 2.20.解析: 设隔出大房间x 间,小房间y 间,获得收益为z 元,则⎩⎨⎧18x +15y ≤180,1 000x +600y ≤8 000,x ≥0,y ≥0,且x ,y ∈N即⎩⎨⎧6x +5y ≤60,①5x +3y ≤40,②x ≥0,y ≥0,且x ,y ∈N.目标函数为z =200x +150y 画出可行域如图阴影部分所示.作出直线l :200x +150y =0,即直线4x +3y =0.当l 经过平移过可行域上的点A ⎝ ⎛⎭⎪⎫207,607时,z 有最大值,由于A 的坐标不是整数,而x ,y ∈N ,所以A 不是最优解.调整最优解: 4x +3y ≤37,令4x +3y =37,即y =37-4x3,代由x ,y ∈N ,知z ′=解得52≤x ≤3.入约束条件①,②,可但此时y =253∉N.再次调整最优解: 由于x ∈N ,得x =3,令4x +3y =36,即y =36-4x3,代入约束条件①,②,可解得0≤x ≤4(x ∈N).当x =0时,y =12;当x =1时,y =1023;当x =2时,y =913;当x =3时,y =8;当x =4时,y =623.所以最优解为(0,12)和(3,8),这时z ′max =36,z max =1 800.所以应隔出小房间12间或大房间3间、小房间8间,可以获得最大收益. 21.解析: (1)由已知可得50nx =100(n +5),所以n =10x -2(x >2).(2)设总损失为y 元,则y =6 000(n +5)+100x +125nx =6 000⎝ ⎛⎭⎪⎫10x -2+5+100x +1 250x x -2=62 500x -2+100(x -2)+31450≥26250 000+31 450=36 450,当且仅当62 500x -2=100(x -2),即x =27时,y 取最小值.答:需派27名消防员,才能使总损失最小,最小值为36 450元.22.解析:(1)设等差数列{a n}的首项为a1,公差为d,由于a3=7,a5+a7=26,所以a1+2d=7,2a1+10d=26,解得a1=3,d=2.由于a n=a1+(n-1)d,S n=n(a1+a n)2,所以a n=2n+1,S n=n(n+2).(2)因为a n=2n+1,所以a n2-1=4n(n+1),因此b n=14n(n+1)=14⎝⎛⎭⎪⎫1n-1n+1.故T n=b1+b2+…+b n=14⎝⎛⎭⎪⎫1-12+12-13+…+1n-1n+1=14⎝⎛⎭⎪⎫1-1n+1=n4(n+1)所以数列{b n}的前n项和T n=n4(n+1).。
2020-2021学年北师大版高中数学必修五《解三角形》单元综合练习及解析
(新课标)最新北师大版高中数学必修五第二章 解三角形(北师大版必修5)建议用时 实际用时满分 实际得分90分钟150分一、选择题(每小题5分,共30分)1.有一山坡,坡角为30°,若某人在斜坡的平面上沿着一条与山坡底线成30°角的小路前进一段路后,升高了100米,则此人行走的路程为( ) A.200米 B.300米 C.400米 D.500米2.线段AB 外有一点C ,∠ABC =60°,AB =200 km ,汽车以80 km/h 的速度由A 向B 行驶,同时摩托车以50 km/h 的速度由B 向C 行驶,则行驶( )h 后,两车的距离最小. A.B.C. D.3.已知a ,b ,c 为△ABC 三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A),若m ⊥n ,且 a cos B +b cos A =c sin C ,则角B=( )A. B.C. D.4.在△ABC 中, B =60°,最大边与最小边的比为3+12,则三角形的最大内角为( ) A.45° B.60° C.70° D.75°5.若△ABC 的周长是20,面积是103,A =60°,则BC 的长是( )A.5B.6C.7D.86.在△ABC 中,面积S =a 2-(b -c)2,则cos A =( )A. B. C. D.二、填空题(每小题5分,共30分) 7.在锐角△ABC 中,1,2,BC B A ==则cos ACA的值等于 ,AC 的取值范围为 .8.在△ABC 中, 2sin Acos B =sin C ,那么△ABC 一定是 . 9.在△ABC 中,cos22B =2a +c c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为 .10.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c.若a =c =6+2,且A =75°,B=30°,则 b= .11.一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为 km.12.轮船A 和轮船B 在中午12时同时离开海港O ,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h ,15 n mile/h ,则下午2时两船之间的距离是 n mile. 三、解答题(共90分)13.(10分)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.(1)若c =2,C =,且△ABC 的面积为,求a,b的值;(2)若sin C +sin(B -A)=sin 2A,试判断△ABC 的形状.14.(10分)在△ABC 中,已知23=a ,62=+c ,B=45°,求b 及A.15.(12分)在△ABC 中,角,,A B C 所对的边分别为,,a b c ,且满足25cos 25A =,3AB AC ⋅=u u ur u u u r . (1)求△ABC 的面积;(2)若6b c +=,求a 的值.16.(12分)在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,已知2b ac =,且a 2-c 2=ac -bc ,求A 的大小及cBb sin 的值.17.(10分)在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =,b =,a +c =4,求a 的值.18.(18分)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC = 0.1 km.试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离.(计算结果精确到0.01 km,2≈1.414,6≈2.449)19.(18分)为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤.第二章解三角形参考答案1.C 解析:如图所示,AD 为山坡底线,AB 为行走路线,BC 垂直于水平面,作BD ⊥AD 于点D,则BC=100米,∠BDC=30°,∠BAD=30°, ∴ BD=200米,AB=2BD=400 米.故选C.2.A 解析:如图所示,设行驶t h 后,汽车由A 行驶到D (0≤t ≤2.5),摩托车由B 行驶到E ,则AD =80t ,BE =50t.因为AB =200,所以BD =200-80t , 问题就转化为求DE 最小时t 的值.由余弦定理得DE 2=BD 2+BE 2-2BD ·BEcos 60°=(200-80t)2+2 500t 2-(200-80t)·50t =12 900t 2-42 000t+40 000.当t =7043时,DE 最小.故选A. 3.C 解析:∵ m ⊥n ,∴3cos A -sin A =0,∴ tan A =3,∴ A =π3.∵ acos B +bcos A =csin C ,∴ sin A cos B +sin B cos A =sin C sin C ,∴ sin(A +B)=sin 2C ,∴ sin C =sin 2C.∵ sin C ≠0,∴ sin C =1.∴ C =π2,∴ B =π6.故选C.4.D 解析:不妨设a 为最大边,则c 为最小边.由题意得,=sin sin A C=3+12,即sin sin(120)AA ︒-=3+12,∴ 31cos sin A A +=3+12,即(3-3)sin A =(3+3)cos A ,∴ tan A =2+3,∴ A =75°.故选D.5.C 解析:依题意及面积公式S =12bc sin A ,得103=12bc sin 60︒,即bc =40.因为△ABC 周长是20,故a +b +c =20,∴ b +c =20-a.由余弦定理得:a 2=b 2+c 2-2bc cos A =b 2+c 2-2bc cos 60°=b 2+c 2-bc =(b +c)2-3bc ,故a 2=(20-a)2-120,解得a =7.6.B 解析:S =a 2-(b -c)2=a 2-b 2-c 2+2bc =2bc -2bc cos A =12bc sin A ,∴ sin A =4(1-cos A),16(1-cos A)2+cos 2A =1,∴ cos A =1517或cos A=1(舍去).故选B.7. 2 ,)3,2( 解析:设,A =θ则B 2B θ=,由正弦定理得,1 2.sin 2sin 2cos cos AC BC AC ACθθθθ=∴=⇒=由锐角△ABC 得0290045θθ<<⇒<<o o o o , 又01803903060θθ<-<⇒<<o o o o o ,故233045cos 22θθ<<⇒<<oo, 2(2,3).AC ∴=∈θcos8.等腰三角形 解析一:∵ 在△ABC 中,A +B +C =π,即C =π-(A +B),∴ sin C =sin(A +B).由2sin Acos B =sin C ,得2sin Acos B =sin Acos B +cos Asin B , 即sin Acos B -cos Asin B =0,即sin(A -B)=0.又∵ -π<A -B <π,∴ A -B =0,即A =B.∴ △ABC 是等腰三角形. 解析二:利用正弦定理和余弦定理2sin Acos B =sin C 可化为2a ·2222a +c -b ac=c ,即a 2+c 2-b 2=c 2,即a 2-b 2=0,a 2=b 2,故a =b.∴ △ABC 是等腰三角形. 9.直角三角形 解析:∵ cos22 B =2a +c c ,∴ cos 12 B+=2a +c c, ∴ cos B =,∴ 2222a +c -b ac=,∴ a 2+c 2-b 2=2a 2,即a 2+b 2=c 2,∴ △ABC 为直角三角形.10.2 解析:如图所示,在△ABC 中,由正弦定理得=4,∴ b=2.11. 30解析:如图所示,依题意有AB =15×4=60. 由题意易知∠MAB =30°,∠AMB =45°, 在△AMB 中,由正弦定理得=,解得BM =30(km ).12. 70 解析:如图所示,由题意可得OA =50,OB =30.而AB 2=OA 2+OB 2-2OA ·OB cos 120°=502+302-2×50×30×(-12)=2 500+900+1 500=4 900, ∴ AB =70.13. 解:(1)∵ c =2,C =,∴ 由余弦定理=+-2abcos C 得+-ab =4. 又∵△ABC 的面积为,∴ absin C =,ab =4.联立方程组解得(2)由sin C +sin(B -A)=sin 2A,得sin(A +B)+sin(B -A)=2sin Acos A, 即2sin Bcos A =2sin Acos A,∴ cos A ·(sin A -sin B)=0, ∴ cos A =0或sin A -sin B =0, 当cos A =0时,∵ 0<A <π, ∴ A =,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A,由正弦定理得a =b,即△ABC 为等腰三角形. ∴ △ABC 为等腰三角形或直角三角形. 14.解:∵ 2222cos =+-b a c ac B=22(23)(62)223(62)++-⨯⨯cos 45° =212(62)43(31)+-=8, ∴ 2 2.=b求A 可以利用余弦定理,也可以利用正弦定理.方法一:∵ cos 222222(22)(62)(23)1,22222(62)+-++-==⨯⨯+b c a A bc ∴ 60.A ︒=方法二:∵ sin 23sin sin 4522a A B b =︒ =23, 又62 2.41.4 3.8,+=2321.8 3.6,⨯=∴ a <c ,即0︒<A <90,︒∴ 60.A ︒=15.解:(1)∵ 25cos2A =,234cos 2cos 1,sin 255A A A ∴=-==. 又由3AB AC ⋅=u u u r u u u r ,得cos 3,bc A =5bc ∴=,1sin 22ABC S bc A ∆∴==.(2)由(1)知5bc =,又6b c +=,∴ b=5,c=1或b=1,c=5.由余弦定理,得2222cos 20a b c bc A =+-=,5a ∴=16.分析:因给出的是a 、b 、c 之间的等量关系,要求A ,需找A 与三边的关系,故可用余弦定理.由b 2=ac 可变形为c b 2=a ,再用正弦定理可求c Bb sin 的值.解法一:∵ b 2=ac,又a 2-c 2=ac -bc ,∴ b 2+c 2-a 2=bc.在△ABC 中,由余弦定理得cos A=bc a c b 2222-+=bc bc 2=21,∴ A=60°.在△ABC 中,由正弦定理得sin B=aAb sin .∵ b 2=ac ,A=60°,∴ acb c B b ︒=60sin sin 2=sin 60°=23. 解法二:在△ABC 中,由面积公式得21bc sin A=21ac sin B. ∵ b 2=ac ,A=60°,∴ bc sin A=b 2sin B.∴cBb sin =sin A=23.点评:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理.17.解:由余弦定理=+-2accos B =+-2accos =++ac =-ac.又∵ a +c =4,b =,∴ ac =3.联立解得a =1或a =3.18.解:在△ADC 中,∠DAC = 30°, ∠ADC = 60°-∠DAC=30°, 所以CD = AC = 0.1 km .又∠BCD = 180°-60°-60° = 60°,故CB 是△CAD 底边AD 的中垂线,所以BD = BA. 在△ABC 中,∠ABC=75°-60°=15°,,ABC ACBCA AB ∠=∠sin sin即.2062315sin 60sin +==︒︒AC AB 因此,BD =≈0.33(km).故B ,D 的距离约为0.33 km.19.解:方案一:①需要测量的数据有:A 点到M ,N 点的俯角1α,1β;B 点到M , N 点的俯角22,αβ;A ,B 间的距离 d (如图所示) . ②第一步:计算AM ,由正弦定理得212sin sin()d AM ααα=+ ;第二步:计算AN ,由正弦定理得221sin sin()d AN βββ=- ;第三步:计算MN ,由余弦定理得22112cos()MN AM AN AM AN αβ=+-⨯-.方案二:①需要测量的数据有:A 点到M ,N 点的俯角1α,1β;B 点到M ,N 点的府角2α,2β;A ,B 的距离 d (如图所示). ②第一步:计算BM ,由正弦定理得112sin sin()d BM ααα=+ ;第二步:计算BN , 由正弦定理得121sin sin()d BN βββ=- ;第三步:计算MN , 由余弦定理得22222cos()MN BM BN BM BN βα++⨯⨯+。
北师大高中数学必修5综合测试卷及答案
必修五综合测试卷姓名: 学号: 得分:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1.已知等差数列{}n a 的首项为3,公差为2,则7a 的值等于( ) A .1B .14C .15D .162.∆ABC 中,AB45A =︒,C =75︒则BC=( ) A .3-BC .2D .3.已知等差数列{}n a 中,前n 项和为S n ,若3a +9a =6,则S 11=( )A .12B .33C .66D .994.对于任意实数a ,b ,c ,d ,以下四个命题中①ac 2>bc 2,则a >b ;②若a >b ,c >d , 则a c b d +>+;③若a >b ,c >d ,则ac bd >;④a >b ,则1a >1b其中正确的有( ) A .1个 B .2个 C .3个 D .4个5.某船开始看见灯塔在南偏东30︒方向,后来船沿南偏东60︒的方向航行45km 后,看见灯塔在正西方向,则这时船与灯塔的距离是( ) A .15kmB .30kmC .15D .km6.已知等比数列{}n a ,若1a +2a =20,3a +4a =80,则5a +6a 等于( ) A .480B .320C .240D .1207.在∆ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若()cos cos sin a C c A B +=,则角B 的值为( ) A .6πB .3πC .6π或56π D .3π或23π8.数列{}n a 满足a 1=1,()1122n n n a a n a --=≥+,则使得12009k a >的最大正整数k 为( )A .5B .7C .8D .109.f x ax ax ()=+-21在R 上满足f x ()<0,则a 的取值范围是 ( )A .a ≤0B .a <-4C .-<<40aD .-<≤40a10.设S n 是等差数列{}n a 的前n 项和,若5359a a =,则95S S 的值为A .1B .-1C .2D .21二、填空题(本大题共5个小题,每小题5分,共25分,将答案填在题后的横线上) 11.在钝角三角形ABC ∆中a=1,b=2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(新课标)最新北师大版高中数学必修五必修五模块测试卷(150分,120分钟)一、选择题(每题5分,共60分)1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos 22A =ccb 2+,则△ABC 是( )A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰直角三角形2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8等于( ) A.135 B.100 C.95 D.803.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(3b -c)cos A =acos C ,则cos A 的值等于( ) A.23 B. 33 C. 43 D. 63 4.〈日照模拟〉已知等比数列{a n }的前n 项和S n =t 25-⋅n -51,则实数t 的值为( ) A.4 B.5 C. 54 D. 515.某人向正东方向走x km 后,向右转150°,然后朝新方向走3 km ,结果他离出发点恰好是3 km ,那么x 的值为( )A.3B.23C.3或23D.3 6.设{a n }为各项均是正数的等比数列,S n 为{a n }的前n 项和,则( ) A.44S a =66S a B. 44S a >66S a C. 44S a <66S a D. 44S a≤66S a 7.已知数列{a n }的首项为1,并且对任意n ∈N +都有a n >0.设其前n 项和为S n ,若以(a n ,S n )(n ∈N +)为坐标的点在曲线y =21x(x +1)上运动,则数列{a n }的通项公式为( ) A.a n =n 2+1 B.a n =n 2C.a n =n +1D.a n =n8.设函数f(x)=⎪⎪⎩⎪⎪⎨⎧≥-.0,1,0,132<x xx x 若f(a)<a ,则实数a 的取值范围为( )A.(-1,+∞)B.(-∞,-1)C.(3,+∞)D.(0,1)9.已知a>0,b>0,则a 1+b1+2ab 的最小值是( ) A.2 B.22 C.4 D.510.已知目标函数z=2x+y 中变量x,y 满足条件⎪⎩⎪⎨⎧≥+-≤-,1,2553,34x y x y x <则( )A.z max =12,z min =3B.z max =12,无最小值C.z min =3,无最大值D.z 无最大值,也无最小值 11.如果函数f(x)对任意a ,b 满足f(a +b)=f(a)·f(b),且f(1)=2,则)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =( )A.4 018B.1 006C.2 010D.2 014 12.已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且log c (ab)>1,则c 的取值范围是( ) A.0<c<1 B.1<c<8 C.c>8 D.0<c<1或c>8 二、填空题(每题4分,共16分)13.〈泉州质检〉△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且acosC ,bcosB ,ccosA 成等差数列,则角B=.14.已知两正数x ,y 满足x +y =1,则z =⎪⎪⎭⎫⎝⎛+⋅⎪⎭⎫ ⎝⎛+y y x x 11的最小值为. 15.两个等差数列的前n 项和之比为12105-+n n ,则它们的第7项之比为.16.在数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=31S n (n ≥1),则a n =.三、解答题(解答应写出文字说明,证明过程或演算步骤)(17~20题每题12分,21~22题每题13分,共74分)17.已知向量m =⎪⎭⎫ ⎝⎛21,sin A 与n =(3,sin A +3cos A)共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC =2,求△ABC 的面积S 的最大值,并判断S 取得最大值时△ABC 的形状.18.已知数列{a n }满足a 1=1,a n+1=2a n +1(n ∈N*) (1)求数列{a n }的通项公式; (2)若数列{b n }满足11144421---n b b b Λ=n b n a )1(+ (n ∈N*),证明:{b n }是等差数列;19.如图1,A,B是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?20.解关于x的不等式ax2-2≥2x-ax(a∈R).21.已知等差数列{a n}的首项a1=4,且a2+a7+a12=-6.(1)求数列{a n}的通项公式a n与前n项和S n;(2)将数列{a n}的前四项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n}的前三项,记{b n}的前n项和为T n,若存在m∈N+,使对任意n∈N+总有T n<S m+λ恒成立,求实数λ的最小值.22.某食品厂定期购买面粉,已知该厂每天需用面粉6 t,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,每次购买面粉需支付运费900元.(1)该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)若提供面粉的公司规定:当一次性购买面粉不少于210 t时,其价格可享受9折优惠(即原价的90%),该厂是否应考虑接受此优惠条件?请说明理由.参考答案及点拨一、1.A 点拨:因为cos 22A =c c b 2+及2cos 22A -1=cos A ,所以cos A =cb .而cos A=bca cb 2222-+,∴b 2+a 2=c 2,则△ABC 是直角三角形.故选A.2.A 点拨:由等比数列的性质知a 1+a 2,a 3+a 4,…,a 7+a 8仍然成等比数列,公比q =2143a a a a ++=4060=23,∴a 7+a 8=(a 1+a 2)14-q =40×323⎪⎭⎫ ⎝⎛=135. 3.B 点拨:(3b -c)cos A =acos C ,由正弦定理得3sin Bcos A =sin Ccos A +cos Csin A⇒3sin Bcos A =sin(C +A)=sin B ,又sin B ≠0,所以cos A =33.故选B. 4.B 点拨:∵a 1=S 1=51t -51,a 2=S 2-S 1=54t ,a 3=S 3-S 2=4t ,∴由{a n }是等比数列.知254⎪⎭⎫⎝⎛t =⎪⎭⎫ ⎝⎛-5151t ×4t ,显然t ≠0,∴t =5.5.C 点拨:根据题意,由余弦定理得(3)2=x 2+32-2x ·3·cos 30°,整理得x 2-33x +6=0,解得x =3或23.6.B 点拨:由题意得公比q>0,当q =1时,有44S a -66S a =41-61>0,即44S a >66S a ; 当q ≠1时,有44S a -66S a =()41311)1(q a q q a ---()61511)1(q a q q a --=q 3(1-q)()()642111q q q ---⋅=231q q +611q q --⋅>0,所以44S a >66S a .综上所述,应选B. 7.D 点拨:由题意,得S n =21a n (a n +1),∴S n -1=21a n -1(a n -1+1)(n ≥2). 作差,得a n =21()1212---+-n n n n a a a a , 即(a n +a n -1)(a n -a n -1-1)=0.∵a n >0(n ∈N +),∴a n -a n -1-1=0,即a n -a n -1=1(n ≥2).∴数列{a n }为首项a 1=1,公差为1的等差数列. ∴a n =n(n ∈N +).8.A 点拨:不等式f(a)<a 等价于⎪⎩⎪⎨⎧≥-0,132a a a <或⎪⎩⎪⎨⎧,1,0a aa <<解得a ≥0或-1<a<0,即不等式f(a)<a的解集为(-1,+∞). 9.C 点拨:依题意得a 1+b 1+2ab ≥2ab 1+2ab ≥4ab ab ⋅1=4,当且仅当a 1=b1,且ab1=ab 时,取等号,故应选C. 10.C11.D 点拨:由f(a +b)=f(a)·f(b),可得f(n +1)=f(n)·f(1),)()1(n f n f +=f(1)=2,所以)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =2×1 007=2 014. 12.B 点拨:因为a ,b ,a +b 成等差数列,所以2b =a +(a +b),即b =2a.又因为a ,b ,ab成等比数列,所以b 2=a ×ab ,即b =a 2.所以a =2,b =4,因此log c (ab)=log c 8>1=log c c ,有1<c<8,故选B. 二、13.60° 点拨:依题意得acos C +ccos A =2bcos B ,根据正弦定理得sin Acos C +sin Ccos A =2sin Bcos B ,则sin(A +C)=2sin Bcos B ,即sin B =2sin Bcos B ,所以cos B =21,又0°<B<180°,所以B =60°,14. 425 点拨:z =⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x 11=xy +xy 1+x y +y x =xy +xy 1+xy xy y x 2)(2-+=xy 2+xy -2,令t =xy ,则0<t =xy ≤22⎪⎭⎫ ⎝⎛+y x =41.设f(t)=t +t 2,t ∈⎥⎦⎤ ⎝⎛41,0,设41≥t 2>t 1>0,则f(t 1)-f(t 2)=⎪⎪⎭⎫ ⎝⎛+112t t -⎪⎪⎭⎫ ⎝⎛+222t t =212121)2)((t t t t t t --. 因为41≥t 2>t 1>0, 所以t 2-t 1>0,t 1·t 2<161.则t 1·t 2-2<0. 所以f(t 1)-f(t 2)>0.即f(t 1)>f(t 2).∴f(t)=t +t 2在⎥⎦⎤ ⎝⎛41,0上单调递减,故当t =41时f(t)=t +t2有最小值433,所以当x =y =21时,z 有最小值425. 15.3∶1 点拨:设两个等差数列{a n },{b n }的前n 项和为S n ,T n ,则n n T S =12105-+n n ,而77b a=131131b b a a ++=1313T S =113210135-⨯+⨯=3. 16.21,114,233n n n -=⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩ 点拨:∵3a n +1=S n (n ≥1),∴3a n =S n -1(n ≥2). 两式相减,得3(a n +1-a n )=S n -S n -1=a n (n ≥2)⇒n n a a 1+=34(n ≥2) ⇒n ≥2时,数列{a n }是以34为公比,以a 2为首项的等比数列, ∴n ≥2时,a n =a 2234-⎪⎭⎫ ⎝⎛⋅n .令n =1,由3a n +1=S n ,得3a 2=a 1,又a 1=1⇒a 2=31,∴a n =31234-⎪⎭⎫⎝⎛⋅n (n ≥2).故⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛⋅=-.2,3431,112n n n , 三、17.解:(1)因为m ∥n , 所以sinA ·(sinA +3cosA)-23=0. 所以22cos 1A -+23sin2A -23=0.即23sin2A -21cos2A =1,即sin ⎪⎭⎫ ⎝⎛-62πA =1. 因为A ∈(0,π),所以2A -6π∈⎪⎭⎫ ⎝⎛-611,6ππ, 故2A -6π=2π,即A =3π. (2)由余弦定理,得4=b 2+c 2-bc ,又S △ABC =21bcsinA =43bc ,而b 2+c 2≥2bc ,bc +4≥2bc ,bc ≤4(当且仅当b =c 时等号成立), 所以S △ABC =21bcsinA =43bc ≤43×4=3.当△ABC 的面积最大时,b =c ,又A =3π,故此时△ABC 为等边三角形. 18.(1)解:∵a n+1=2a n +1(n ∈N *),∴a n+1+1=2(a n +1).∴{a n +1}是以a 1+1=2为首项,2为公比的等比数列.∴a n +1=2n.即a n =2n -1(n ∈N *). (2)证明:∵114-b 124-b …14-n b =()n bn a 1+.∴nb b b n -+++)(214Λ=nnb 2.∴2[(b 1+b 2+…+b n )-n ]=nb n ,①2[(b 1+b 2+…+b n +b n+1)-(n+1)]=(n+1)b n+1.②②-①,得2(b n+1-1)=(n+1)b n+1-nb n ,即(n -1)b n+1-nb n +2=0,③ ∴nb n+2-(n+1)b n+1+2=0.④④-③,得nb n+2-2nb n+1+nb n =0,即b n+2-2b n+1+b n =0,∴b n+2-b n+1=b n+1-b n (n ∈N *).∴{b n }是等差数列. 19.解:由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理得,DAB DB ∠sin =ADBAB∠sin .∴DB =ADBDAB AB ∠∠⋅sin sin =︒︒⋅+105sin 45sin )33(5=︒⋅︒+︒⋅︒︒⋅+45cos 60sin 60sin 45sin 45sin )33(5=213)13(35++=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203海里,在△DBC 中,由余弦定理得CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC =300+1 200-2×103×203×21=900, ∴CD =30海里.则需要的时间t =3030=1(小时). 答:救援船到达D 点需要1小时.20.解:原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. (1)当a =0时,原不等式化为x +1≤0⇒x ≤-1.(2)当a >0时, 原不等式化为⎪⎭⎫ ⎝⎛-a x 2 (x +1)≥0⇒x ≥a2或x ≤-1; (3)当a <0时,原不等式化为⎪⎭⎫⎝⎛-a x 2 (x +1)≤0. ①当a 2>-1,即a <-2时,原不等式的解集为-1≤x ≤a 2; ②当a 2=-1,即a =-2时,原不等式的解集为x =-1;③当a 2<-1,即-2<a <0时,原不等式的解集为a2≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎥⎦⎤⎢⎣⎡-a2,1;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎥⎦⎤⎢⎣⎡-1,2a ; 当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎪⎭⎫⎢⎣⎡+∞,2a . 21.解:(1)由a 2+a 7+a 12=-6得a 7=-2,又a 1=4,所以公差d =-1,所以a n =5-n , 从而S n =2)9(n n -. (2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列的公比为q ,则q =12b b =21, 所以T n =2112114-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n =8⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n 211.令f(n)=n⎪⎭⎫ ⎝⎛21.因为f(n)=n⎪⎭⎫⎝⎛21是关于自然数n 的减函数,所以{T n }是递增数列,得4≤T n <8.又S m =2)9(m m -=-22921⎪⎭⎫⎝⎛-m +881,当m =4或m =5时,S m 取得最大值, 即(S m )max =S 4=S 5=10,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立, 则8≤10+λ,得λ≥-2, 所以λ的最小值为-2.22.解:(1)设该厂应每x 天购买一次面粉,则其购买量为6x t.由题意知,面粉的保管等其他费用为3[6x +6(x -1)+…+6×2+6×1]=9x(x +1)元. 设每天所支付的总费用为y 1元,则 y 1=x 1[9x(x +1)+900]+6×1 800=x900+9x +10 809≥2x x 9900⋅+10 809=10 989, 当且仅当9x =x900,即x =10时取等号. 所以该厂每10天购买一次面粉,才能使平均每天所支付的总费用最少.(2)若该厂接受此优惠条件,则至少每35天购买一次面粉.设该厂接受此优惠条件后,每x(x ≥35)天购买一次面粉,平均每天支付的总费用为y 2元,则y 2=x 1[9x(x +1)+900]+6×1 800×0.90=x900+9x +9 729(x ≥35). 令f(x)=x +x100(x ≥35),x 2>x 1≥35,则f(x 1)-f(x 2)=⎪⎪⎭⎫ ⎝⎛+11100x x -⎪⎪⎭⎫ ⎝⎛+22100x x =212121)100)((x x x x x x --. 因为x 2>x 1≥35,所以x 1-x 2<0,x 1·x 2>100.所以x 1x 2-100>0. 所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2). 所以f(x)=x +x100在[35,+∞)内为增函数. 所以当x =35时,y 2有最小值,约为10 069.7. 此时y 2<10 989,所以该厂应该接受此优惠条件.。