浅显易懂逻辑回归分析PPT课件

合集下载

回归分析实例PPT课件

回归分析实例PPT课件
通过各种统计检验来评估 模型的拟合效果,如残差 分析、R方检验、F检验等。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值

解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。

logistic回归分析PPT优秀课件

logistic回归分析PPT优秀课件
(2)线性回归分析:由于因变量是分类变量,不能满足 其正态性要求;有些自变量对因变量的影响并非线性。
2
logistic回归:不仅适用于病因学分析,也可用于其他方面的研究,研 究某个二分类(或无序及有序多分类)目标变量与有关因素的关 系。
logistic回归的分类: (1)二分类资料logistic回归: 因变量为两分类变量的资料,可用
非条件logistic回归和条件logistic回归进行分析。非条件logistic回 归多用于非配比病例-对照研究或队列研究资料,条件logistic回归 多用于配对或配比资料。 (2)多分类资料logistic回归: 因变量为多项分类的资料,可用多 项分类logistic回归模型或有序分类logistic回归模型进行分析。
比较
调查方向:收集回顾性资料
人数 暴露
疾病
a/(a+b) c/(c+d)
a
+
b
-
病例
c
病例对照原理示意图
6
是否暴露 暴露组 未暴露组 合计
病例 a c a+c
对照 b d b+d
合计 a+b(n1) c+d(n2) n
比数比(odds ratio、OR):病例对照研究中表示疾病与暴露间
联系强度的指标,也称比值比。
相对危险度RR的本质是暴露组与非暴露组发病率之比或发病概率 之比。但病例对照研究不能计算发病率,只能计算比值比OR值。 OR与RR的含义是相同的,也是指暴露组的疾病危险性为非暴露组 的多少倍。当疾病发病率小于5%时,OR是RR的极好近似值。
OR>1,说明 该因素使疾病的危险性增加,为危险因素;
OR<1,说明 该因素使疾病的危险性减小,为保护因素;

浅显易懂逻辑回归分析报告PPT文档24页

浅显易懂逻辑回归分析报告PPT文档24页

66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
浅显易懂逻辑回归分析报告
26、机遇对于有准备的头脑Байду номын сангаас特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。

应用统计学:回归分析PPT课件

应用统计学:回归分析PPT课件

03
使用方法
通过菜单和对话框选择分析方法,导入数据,设置参数,运行分析并查
看结果。
Stata软件介绍
适用范围
Stata(Statistical Data Analysis) 是一款适用于各种统计分析和数 据管理的软件,尤其适用于回归 分析。
特点
功能强大、命令语言简洁,支持多 种数据管理操作,提供多种统计分 析方法,结果输出详细且可视化效 果好。
使用方法
通过命令行输入分析命令,导入数 据,设置参数,运行分析并查看结 果。
R软件介绍
适用范围
R(Software for Statistical Computing)是一款开源的统 计软件,适用于各种统计分析,
包括回归分析。
特点
功能强大、社区活跃、可扩展性 强,支持多种编程语言和数据可 视化工具,提供丰富的统计函数
分层回归分析的基本思想是将多个自变量分为若干个层次,每个层次内 部的自变量之间存在较强的相关性,而不同层次的自变量之间相关性较
弱。
分层回归分析在生态学、社会学、医学等领域有广泛应用,例如研究不 同层次的人口特征对健康状况的影响、研究不同层次的社会经济因素对 犯罪率的影响等。
主成分回归分析
主成分回归分析的基本思想是将多个自变量进行主成 分分析,得到少数几个主成分,这些主成分能够反映 原始数据的大部分变异,然后利用这些主成分进行回 归分析。
线性回归模型
线性回归模型是回归分析中最常用的一种模型,其形式为 (Y = beta_0 + beta_1X_1 + beta_2X_2 + ldots + beta_pX_p + epsilon)。
其中 (Y) 是因变量,(X_1, X_2, ldots, X_p) 是自变量,(beta_0, beta_1, ldots, beta_p) 是回归系数,(epsilon) 是误差项。

logistic回归分析PPT精品课程课件讲义

logistic回归分析PPT精品课程课件讲义

问题的提出(续)
• 但在医学研究中常碰到因变量的取值仅有两个, 如是否发病、死亡或痊愈等;
• 分析“母亲怀孕期间体重增加”对“新生儿出 生低体重”的影响
二、概念的引入
• 如按线性回归思想建立模型: P=α +βX • P的意义是发生出生低体重的概率
• 在线性回归模型中,X的取值是任意的,P值可能大 于1或小于0,无法从医学意义进行解释, 显然不适 宜用线性回归建立预测模型。
表明ECG异常者CHD发病是正常者的2.056倍。 (3) 比较各变量对方程贡献的大小: 根据标化的值大小,确定各因素对CHD发病影响的 大小。在此项研究中,危险因素中吸烟对方程贡献最大 ,其他依次为相对体重、年龄、 胆固醇、ECG和BP。
4) 用于预测发病率: 可根据该公式预测某人在不同因素暴露条件下 CHD的发病率。如某受试者A暴露于因素xi的情况 为: X=(45, 210, 130, 100, 120, 0, 0) 利用该模型计算该受试者A在暴露上述各种研究因 素的条件下,12年间CHD的发病率为: PA1 = 1/{1+exp[-(-13.2573 + 0.1216 x 45 + 0.0070 x 210 + +0.7206 x 0)]} = 1/[1+exp(-2.9813)] = 0.048
小 结
• (1)logistic回归分析要求因变量是二分变量,或任何取值
为0或1的属性数据。
• (2)logistic回归分析中对自变量的正态性、方差齐性不作
要求,对自变量类型也不作要求;
• (3)自变量与因变量(y)之间是非线性关系,但是与logit y之
间应符合线性关系。
1. 定群研究资料分析…弗明汉心脏研究 742 名居住在弗明汉年龄为 40-49 岁的男性,在各自暴露不 同水平的影响因素(详见下表中的7种因素),经 12年追踪观察 CHD发病情况。根据此742名受试者每人暴露各项因素的水平 和 CHD 发病与否的资料,采用多因素 LOGISTIC 回归模型进

《logistic回归》课件

《logistic回归》课件
03
易于理解和实现: 由于基于逻辑函数,模型输出结 果易于解释,且实现简单。
Logistic回归的优势与不足
• 稳定性好: 在数据量较小或特征维度较高 时,Logistic回归的预测结果相对稳定。
Logistic回归的优势与不足
01
不足:
02
对数据预处理要求高: 需要对输入数据进行标准化或归一化处理,以 避免特征间的尺度差异对模型的影响。
模型假设
01
线性关系
因变量与自变量之间存在线性关系 。
无自相关
因变量与自变量之间不存在自相关 。
03
02
无多重共线性
自变量之间不存在多重共线性,即 自变量之间相互独立。
随机误差项
误差项是独立的,且服从二项分布 。
04
模型参数求解
最大似然估计法
通过最大化似然函数来求解模型参数。
梯度下降法
通过最小化损失函数来求解模型参数。
特征选择与降维
在处理大数据集时,特征选择和降维是提高模 型性能和可解释性的重要手段。
通过使用诸如逐步回归、LASSO回归等方法, 可以自动选择对模型贡献最大的特征,从而减 少特征数量并提高模型的泛化能力。
降维技术如主成分分析(PCA)可以将高维特 征转换为低维特征,简化数据结构并揭示数据 中的潜在模式。
迭代法
通过迭代的方式逐步逼近最优解。
牛顿法
利用牛顿迭代公式求解模型参数。
模型评估指标
准确率
正确预测的样本数占总样本数的比例 。
精度
预测为正例的样本中实际为正例的比 例。
召回率
实际为正例的样本中被预测为正例的 比例。
F1分数
精度和召回率的调和平均数,用于综 合评估模型性能。

回归分析 ppt课件

回归分析 ppt课件
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”4Fra bibliotek回归分析
•按照经验公式的函数类型: 线性回归和非线性回归;
•按自变量的个数: 一元回归和多元回归;
•按自变量和因变量的类型: 一般的回归分析、含有哑变量的回归分
析、Logistic回归分析
5
回归分析
6
回归分析
•对数据进行预处理,选择合适的变量进行回归分析; •做散点图,观察变量间的趋势,初步选取回归分析方法; •进行回归分析,拟合自变量与因变量之间的经验公式; •拟合完毕之后检验模型是否恰当; •利用拟合结果进行预测控制。
通过以上的简单线性回归分析,可知通货膨胀和失业 的替代关系在我国并不存在。
13
回归分析
我们经常会遇到变量之间的关系为非线性的情况,这时 一般的线性回归分析就无法准确的刻画变量之间的因果关系, 需要用其他的回归分析方法来拟合模型。曲线回归分析是一 种简便的处理非线性问题的分析方法。适用于模型只有一个 自变量且可以化为线性形式的情形,基本过程是先将因变量 或自变量进行变量转换,然后对新变量进行直线回归分析, 最后将新变量还原为原变量,得出变量之间的非线性关系。
8
回归分析
9
回归分析
1.模型拟合情况: 模型的拟合情况反映了模型对数据的解释能力。修正
的可决系数(调整R方)越大,模型的解释能力越强。
观察结果1,模型的拟合优度也就是对数据的解释能力一般,修正的 决定系数为0.326;

逻辑回归分析课件

逻辑回归分析课件

7.8.2 SPSS中实现过程
研究问题 在一次关于某城镇居民上下班使用交通工 具的社会调查中,因变量y =1表示居民主要乘 坐公共汽车上下班;y =0表示主要骑自行车 上下班;自变量x1表示被调查者的年龄;x2表 示被调查者的月收入;x3表示被调查者的性别 (x3=1为男性,x3=0为女性)x3在这里是一个 虚拟变量。 试建立y与自变量间的Logistic回归,数据如 表7-7所示。
如果该p值小于给定的显著性水平(如 =0.05),则拒绝因变量的观测值与模型预测 值不存在差异的零假设,表明模型的预测值与 观测值存在显著差异。如果值大于,我们没有 充分的理由拒绝零假设,表明在可接受的水平 上模型的估计拟合了数据。
7.Wald统计量(回归系数的非零检 验)
Wald统计量用于判断一个变量是否应该包 含在模型中,其检验步骤如下。 (1)提出假设。 (2)构造Wald统计量。 (3)作出统计判断。
然而,在许多实际问题中,我们需要研究的响 应变量不是区间变量而是顺序变量或名义变量 这样的属性变量。
比如在致癌因素的研究中,我们收集了若干 人的健康记录,包括年龄、性别、抽烟史、 日常饮食以及家庭病史等变量的数据。响应 变量在这里是一个两点(0-1)分布变量, Y=1(一个人得了癌症),Y=0(没得癌症)。 如果我们按照(1)建立一般线性模型:
同时,经过变换得到的模型也解决了(2)中, 概率的预测值可能是[0,1]之外的数的缺陷。
(3)式建立的模型,我们称为logistic模型 (逻辑回归模型)。
我们在学习交叉列联表的相关知识的时候,提 到过优势或发生比(odds )和优势比或发生 比率(odds ratio)的概念 是事件发生于不发生的概率之比 那么逻辑模型就可以写成
ln p logit( p) 0 1 X 1 2 X 2 k X k .......( 3) 1 p

Logistic回归分析(共53张PPT)

Logistic回归分析(共53张PPT)
数值。
• 优势比
• 常把出现某种结果的概率与不出现的概率 之比称为比值(odds),即odds=p/1-p。两个
比值之比称为比值比(Odds Ratio),简称 OR。
• Logistic回归中的常数项(b0)表示,在不
接触任何潜在危险/保护因素条件下,效 应指标发生与不发生事件的概率之比的对 数值。

Forward: LR ( 向前逐步法:似然比 法 likelihood ratio,LR)→ 再击下 方的 Save 钮,将 Predicted values 、 Influence 与 Residuls 窗口中的 预选项全勾选 → Continue → 再击 下方的 Options 钮,将 Statistics and Plot 小窗口中的选项全勾选 → Continue → OK 。
三、参数检验
• 似然比检验(likehood ratio test)
通过比较包含与不包含某一个或几 个待检验观察因素的两个模型的对数似 然函数变化来进行,其统计量为G (又 称Deviance)。
G=-2(ln Lp-ln Lk) 样本量较大时, G近似服从自由度
为待检验因素个数的2分布。
• 比分检验(score test)
, Logistic回归系数的解释变得更为复杂 ,应特别小心。
根据Wald检验,可知Logistic回归系
数bi服从u分布。因此其可信区间为
病例与对照匹配---条件logistic回归 其中, 为常数项, 为偏回归系数。 应变量水平数大于2,且水平之间不存在等级递减或递增的关系时,对这种多分类变量通过拟合一种广义Logit模型方法。
u= bi s bi
u服从正态分布,即为标准正态离差。

回归分析学习课件PPT课件

回归分析学习课件PPT课件
03 网格搜索
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调

《logistic回归分析》PPT课件

《logistic回归分析》PPT课件
3
第一节 非条件logistic回归
一、logistic 回归模型:
设因变量 Y 是一个二分类变量,其取值为 Y =1 和Y =0。 影响 Y 取值的 m 个自变量分别为 X1, X 2 ,, X m 。在 m 个自变量(即暴露因素)作用下阳性结果发生的条件
概率为 P P(Y 1 X1, X 2 ,, X m ) ,则 logistic 回归模
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
9
表 1 调查数据
y
x
1
0
1
a
b
0
c
d
合计 a+c b+d
表 2 对应概率
y
x
1
0
1 0 合计
p1 1- p1
1
p2 1- p2
1
Logistic
模型为:
p1

p( y
1|
(2)多分类资料Logistic回归: 因变量为多项分类的资料,可 用多项分类Logistic回归模型或有序分类Logistic回归模型进 行分析。
2
非条件Logistic回归分析 条件Logistic回归分析 无序分类反应变量Logistic回归分析 有序多分类反应变量Logistic回归分析 Logistic回归分析应用及注意事项
21
对所拟合模型的假设检验:
概率p值均小 于0.05,说明 方程有意义。

逻辑回归分析ppt课件

逻辑回归分析ppt课件

Binary Logistic回归模型中因变量只能 取两个值1和0(虚拟因变量),而 Multinomial Logistic回归模型中因变量可 以取多个值。本节将只讨论Binary Logistic 回归,并简称Logistic回归(与7.5节曲线估 计中介绍的Logistic曲线模型相区别)。 Logistic函数的形式为
如果该p值小于给定的显著性水平(如 =0.05),则拒绝因变量的观测值与模型预测 值不存在差异的零假设,表明模型的预测值与 观测值存在显著差异。如果值大于,我们没有 充分的理由拒绝零假设,表明在可接受的水平 上模型的估计拟合了数据。
7.Wald统计量
Wald统计量用于判断一个变量是否应该包 含在模型中,其检验步骤如下。 (1)提出假设。 (2)构造Wald统计量。 (3)作出统计判断。
4.Nagelkerke的R 2(N agelkerke’s R-Square)
5.伪R 2(Psedo-R-square)
伪R2与线性回归模型的R2相对应,其意义 相似,但它小于1。
6.Hosmer和Lemeshow的拟合优度检验 统计量(Hosmer and Lemeshow's Goodness of Fit Test Statistic)
7.8.2 SPSS中实现过程
研究问题 在一次关于某城镇居民上下班使用交通工 具的社会调查中,因变量y =1表示居民主要乘 坐公共汽车上下班;y =0表示主要骑自行车上 下班;自变量x1表示被调查者的年龄;x2表示 被调查者的月收入;x3表示被调查者的性别 (x3=1为男性,x3=0为女性)。 试建立y与自变量间的Logistic回归,数据如 表7-7所示。
1.-2对数似然值(-2 log likelihood,-2LL)

logistic回归(共36张PPT)

logistic回归(共36张PPT)
二分类自变量 系数为比数比的对数值,由此比数比=eb
多分类自变量 以第i类作参照,比较相邻或相隔的两个类别。
连续型自变量 当自变量改变一个单位时,比数比为eb
2022/11/3
27
输出结果的解释
模型拟合的优劣
自变量与结果变量(因变量)有无关系
确认因变量与自变量的编码 模型包含的各个自变量的临床意义 由模型回归系数计算得到的各个自变 量的比数比的临床意义
3
一般直线回归难以解决的问题
医学数据的复杂、多样
连续型和离散型数据
医学研究中疾病的复杂性
一种疾病可能有多种致病因素或与多种危 险因素有关
疾病转归的影响因素也可能多种多样 临床治疗结局的综合性
2022/11/3
4
简单的解决方法
固定其他因素,研究有影响的一两个因 素; 分层分析:按1~2个因素组成的层进行 层内分析和综合。 统计模型
2022/11/3
28
输出结果的解释
模型的预测结果的评价
敏感度、特异度和阳性预测值
正确选择预测概率界值,简单地以0.5为 界值,但并不是最好的。
C指数
预测结果与观察结果的一致性的度量。 C值越大(最大为1),模型预测结果的
能力越强。
2022/11/3
29
非条件logistic回归
研究对象之间是否发生某事件是 独立的。 适用于:
放入所有变量,再逐个筛选
理论上看,前进法选择变量的经验公式缺乏总体概念,当用于因
素分析时,建议用后退法。当变量间有完全相关性时,后退法无 法使用,可用前进法。
2022/11/3
21
5.交互作用的引入
交互作用的定义
当自变量和因变量的关系随第三个变量 的变化而改变时,则存在交互作用

统计学-logistic回归分析ppt课件

统计学-logistic回归分析ppt课件

最新版整理ppt
38
九、logistic回归的应用举例
• 输精管切除术与动脉粥样硬化疾病的研究
• 1.问题的描述
(1)输精管切除术是否与动脉粥样硬化疾病 有关?
(2)如果存在联系,与其他已知的危险因素 相比,输精管切除术的相对重要性有多大?
(3)哪些男性亚群在输精管切除术以后发生 动脉粥样硬化疾病的可能性特别大?
• 条件Logistic回归的回归系数检验与分 析,和非条件Logistic回归完全相同。
最新版整理ppt
36
八、logistic回归的应用
1.疾病(某结果)的危险因素分析和筛选
用回归模型中的回归系数(βi)和OR说明 危险因素与疾病的关系。
适用的资料:
前瞻性研究设计、病例对照研究设计、 横断面研究设计的资料。

p (y 1 /x 1 ,x 2 x k) 1 e (0 1 1 x k ....kx k)
最新版整理ppt
10
2.模型中参数的意义
ln1PP=01X1
Β0(常数项):暴露因素Xi=0时,个体发病 概率与不发病概率之比的自然对数比值。
ln1PP (y(y 1/0x/x 0)0)=0
最新版整理ppt
调查员审阅每日住院病人情况如果诊断适合研究的范围将病例转给心脏病主任医师作评估由他做出病例诊断是否合格的决定调查人员核对病人背景资料是否合格如果病人满足诊断标椎和背景资料合格调查人员开始询问并填写调查表每完成5个病例和10个配对对照以后请研究中心的工作人员对调查表进行评估重复以上步骤
第十六章 logistic回归分析
最新版整理ppt
28
• 分析因素xi为等级变量时,如果每个等级的 作用相同,可按计量资料处理:如以最小或

第十七章 Logistic回归 ppt课件

第十七章 Logistic回归 ppt课件

一、基本思想
一、基本思想
一、基本思想
一、基本思想
一、基本思想
等级资料Logistic回归SPSS软件实现
等级资料Logistic回归SPSS软件实现
等级资料Logistic回归SPSS软件实现结果
等级资料Logistic回归SPSS软件实现结果拟
合模型
等级资料Logistic回归SPSS软件实现结果解释
lnORj lnPP01 //((11PP10)) logitP1 logitP0
m
m
(0 jc1 t Xt )(0 jc0 t Xt )
t j
tj
j (c1 c0)
(三) Logistic回归模型参数估计
n
L
P Yi i
(1
Pi )1 Yi
i 1
n
ln L [Y i ln Pi (1 Y i ) ln (1 Pi )]
计算公式为:
ORj
P1 P0
/(1 P1) /(1 P0 )
式中 P1 和 P0 分别表示在 X j 取值为 c1 及 c0 时 的发病概率, OR j 称作多变量调整后的优势比, 表示扣除了其他自变量影响后危险因素的作用。
与 logisticP 的关系:
对 比 某 一 危 险 因 素 两 个 不 同 暴 露 水 平 Xj c1与 Xj c0的 发 病 情 况 ( 假 定 其 它 因 素 的 水 平 相 同 ) , 其 优 势 比 的 自 然 对 数 为 :
0P1
1
P 1 e x p [ (01 X 12 X 2m X m )]
若令:
回Байду номын сангаас
Z 0 1 X 1 2 X 2 m X m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二个表为分类表, 它表示了每一步的预测情 况汇总,展示了对疾病结 局是否死亡进行判别分类 ,以预测概率0.5为判别 分界点(cut value), 可见准确率由“块 0”的 61.4%上升到了91%,效果 不错。
1对于死亡有显著影响 的变量(p<0.05)有“ 肿瘤、CR、昏迷”。
2 B为偏回归系数。 3 SE为偏回归系数的标 准误。 4 wald统计量用于检验 总体偏回归系数与0的差 别有无统计学意义。 5 Exp(B)为优势比,或 比数比(OR) 其中,肿瘤、昏迷是危 险因素。
Logistic 回归分析
1 Logistic回归分析的用途
2 Logistic回归分析的意义
3
SPSS操作实例
4
结果分析
1.逻辑回归(logistic regression)是用来 做什么?
• ① 估计某事物的可能性 例:比如某一套衣服今天能否卖出去?或者某一个广告能否
被用户点击? 我们希望得到这个数值来帮助决策衣服上不 上架,以及广告展不展示。 • ② 适用于流行病学资料的危险因素分析 例:比如吸烟、年龄、性别是否为肺癌的危险因素或是保护 因素?
比如哪些因素导致了人群中有的人患胃癌而有的人不患 胃癌?
2.什么是逻辑回归(logistic regression)?
简单的来说它是线性回归的一种,事实上它是一个被logistic 方程归一化后的线性回归。在许多实际问题中,比如流行病学常研 究的二分类因变量(患病与未患病、阳性与阴性等)与一组( x1x2….xn)自变量的关系这类问题时,我们需要回归产生一个类似 概率值( 0-1 )之间的数值来进行预测。这种情况下这个数值必 须是0~1之间,而线性回归就显得无能为力了,因此人们引入了 Logistic 方程来做归一化。使得因变量的取值框定在了0~1之间。 这种变换方法我们就称之为逻辑回归。
3. SPSS实例
本次以广泛使用的二分类logistic回归为例为大家介 绍 SPSS的操作过程。
例:为研究急性肾功能衰退(ARF)患者的危险因素 , 获得了422名住院患者的临床资料,本资料共涉及29个变量 分别为:sex、age、社会支持、慢性病、手术、糖尿病、瘤 黄疸、透析方式、死亡等,其中透析方式为多分类变量,有 4个水平。 (逻辑回归方程运算具体是怎么做的并不重要,对使用者来 说,我们就把它当成一条程序命令就好。逻辑回归方程推 导,求解方法可详见卫生统计学)。
左表为在块 0处尚 未纳入分析方程的侯选变 量,所作的检验,表示如 果分别将他们纳入方程, 则方程的改变是否会有显 著意义可见如果将“age, 社会支持、手术、糖尿病 等(sig.<0.05)变量” 纳入方程,则方程的改变 是有显著意义的。
块 1: 方法 = 输入
第一个表为全局检验 的最后一步,作的步骤、 块和模型的检验,可见3 个检验都是有意义的。
判别分类图:
对死亡(“N”(未死亡);“Y”(死亡))进行判别分类, 以预测概率0.5为判别分界点,每个符号代表5例。横轴表示对死亡 的预测概率,纵轴表示频数。当预测的概率值大于0.5时,则预测 结果为Y,反之为N,由上图可见,该模型预测的是比较好的。
Thanks!
SUCCESS
THANK YOU
如果有必要,可用里面的选择按 钮进行详细的定义,如以哪个取 值作为基础水平各水平间比较的 方法是什么等。当然,如果你弄 不明白,不改也可以,默认的是 以最大取值为基础水平,用“指 示符”(每一类与参照类进行比 较)做比较。
“保存”钮:起到将中间结 果存储起来供后续分析的作 用,如右图所示,共有预测 值、影响强度因子和残差三 大类。
(1)操作过程如下(见数据文件“logistics-1.sav” ) )
一般过程 • 菜单选择 • 分析 • 回归 • 二元logistic • 弹出逻辑回
归主对话框
逻辑回归主对话框如下图所示
有进入法、前进法和后退法三大 类,三类之下又有细分。
“分类”钮:如果你的自变量 是多分类的(如血型等), 你必须要将它用哑变量的方 式来分析,那么就要用该按 钮将该变量指定为分类变量
二分类变量,本例为变量 “死亡”,有两个水平,变量标记 为:0=“N”(未死亡); 1=“Y”(死亡)。
块 0: 起始块
此处已经开始了拟合,块0拟合的是只有常数的无效 模型,上表为分类预测表,可见在259例观察值为N的记录 中,共有259例被预测为N,163例Y也都被预测为N,总预 测准确率为61.4%,这是不纳入任何解释变量时的预测准 确率,相当于比较基线。
“选项”框:这一部分我们可以 对模型作精确定义,还可以选择 模型预测情况的描述方式。 “输出”框:系统默认为输出每 一步骤的统计图、统计表及统计 量。 “步进概率”是逐步筛选变量的 概率水准
SUCCESS
THANK YOU
2019分析==》回归==》二元logistics... 2.因变量框:选入“死亡” 3.协变量框:选入sex/age/…/感染 4.方法:进入 5.“分类”钮:
》分类协变量:透析方式(指示符(第一))
6.“保存”钮:
》预测值:概率、组成员
7.“选项”钮:
》统计量和图:分类图、迭代记录、优势比(OR)的95%可信区间 》输出:在最后一个步骤中 》在模型中包括常数
8. “确定”钮:单击
4.结果分析
主要结果解释
左表为记录处理情 况汇总,即有多少例记录 被纳入了下面的分析,可 见此处因不存在缺失值, 422条记录均纳入了分析。
2019/7/5
相关文档
最新文档