中考锐角三角函数复习教案
初中锐角三角函数教案
初中锐角三角函数教案教学目标:1. 了解锐角三角函数的定义和意义。
2. 掌握30°、45°、60°角的正弦、余弦和正切值。
3. 能够运用锐角三角函数解决实际问题。
教学重点:1. 锐角三角函数的定义和意义。
2. 30°、45°、60°角的正弦、余弦和正切值。
教学难点:1. 理解锐角三角函数的概念。
2. 运用锐角三角函数解决实际问题。
教学准备:1. 教师准备PPT课件。
2. 学生准备笔记本和文具。
教学过程:一、导入(5分钟)1. 教师通过引入直角三角形中的边角关系,引导学生思考锐角三角函数的定义和意义。
2. 学生分享对锐角三角函数的理解,教师总结并板书。
二、新课讲解(15分钟)1. 教师讲解锐角三角函数的定义,引导学生理解锐角三角函数的概念。
2. 教师讲解30°、45°、60°角的正弦、余弦和正切值,引导学生掌握锐角三角函数的数值。
3. 教师通过例题讲解,引导学生运用锐角三角函数解决实际问题。
三、课堂练习(10分钟)1. 学生独立完成课堂练习题,巩固所学知识。
2. 教师巡回指导,解答学生疑问。
四、总结与反思(5分钟)1. 教师引导学生总结本节课所学内容,巩固知识点。
2. 学生分享学习心得,教师给予鼓励和指导。
五、课后作业(课后自主完成)1. 学生根据课堂所学,完成课后作业,巩固知识点。
教学反思:本节课通过引入直角三角形中的边角关系,引导学生思考锐角三角函数的定义和意义。
在讲解过程中,注意引导学生理解锐角三角函数的概念,并通过例题讲解让学生掌握锐角三角函数的数值和运用方法。
在课堂练习环节,学生能够独立完成练习题,巩固所学知识。
总体来说,本节课达到了预期的教学目标。
在今后的教学中,要继续加强对学生的引导和鼓励,提高学生的参与度和积极性。
同时,注重课后作业的布置和批改,及时了解学生掌握情况,为下一步教学提供参考。
中考锐角三角函数复习教案
中考锐角三角函数复习教案教案标题:中考锐角三角函数复习一、教学目标:1.复习三角函数的定义及性质;2.复习与锐角三角函数相关的公式和计算方法;3.提高学生的综合应用能力。
二、教学重点:1.锐角三角函数的定义;2.锐角三角函数的性质;3.锐角三角函数的计算。
三、教学难点:1.锐角三角函数的综合应用;2.解决与锐角三角函数相关的实际问题。
四、教学流程:1.复习预习:复习三角函数的定义及性质;2.引入新知识:引入锐角三角函数的定义;3.讲解锐角三角函数的性质;4.讲解与锐角三角函数相关的公式和计算方法;5.练习锐角三角函数的计算;6.进行综合应用练习;7.提问与解答;8.作业布置。
五、教学内容详细说明:1.复习预习:复习三角函数的定义及性质,包括正弦函数、余弦函数和正切函数的定义及其周期性、奇偶性、增减性等性质。
2.引入新知识:介绍锐角三角函数的定义,包括正弦定理、余弦定理和正切函数的定义。
通过几何图形的展示和实例的计算,让学生感受到锐角三角函数在实际问题中的应用。
3.讲解锐角三角函数的性质:详细讲解正弦、余弦和正切函数的周期性、奇偶性、增减性等性质。
通过图形展示和实例计算,让学生理解和掌握这些性质。
4.讲解与锐角三角函数相关的公式和计算方法:讲解正弦、余弦和正切函数之间的关系及计算方法,包括倍角、半角、和差等公式。
通过实例计算,让学生掌握这些公式和计算方法。
5.练习锐角三角函数的计算:提供一些锐角三角函数的计算题目,让学生进行练习和巩固。
教师可以给予指导和解答,让学生通过练习提高计算能力。
6.进行综合应用练习:提供一些与锐角三角函数相关的实际问题,让学生进行综合应用练习。
学生可以通过解决这些问题来巩固所学的知识,并培养解决实际问题的能力。
7.提问与解答:教师可以进行提问,引导学生回顾和总结所学内容,回答问题和解决疑惑。
8.作业布置:布置一些与锐角三角函数相关的作业,让学生巩固所学的知识。
作业可以包括计算题目、应用题目和综合问题。
九年级数学《锐角三角函数》复习教学设计
一、教学目标
1.认识锐角三角函数(认识正弦、余弦、正切函数的基本性质);
2.理解如何计算锐角三角函数值(借助定义,遍历图表);
3.应用锐角三角函数解决实际问题(求函数值,求三角形高度等)。
二、教学重点
1.正弦、余弦、正切函数的定义;
2.正弦、余弦、正切函数的性质;
3.求正弦、余弦、正切函数值的方法;
4.正弦、余弦、正切函数在实际应用中的应用。
三、教学过程
一、预习检测
1.教师介绍正弦、余弦、正切函数的基本性质,并询问学生相关问题;
2.教师说明定义正弦、余弦、正切函数值、求函数值的方法,让学生
自己回答;
3.教师结合实际问题提出正弦、余弦、正切函数的应用,询问学生如
何解决。
二、新课呈现
1.教师说明正弦、余弦、正切函数的定义,并带领学生画出图表;
2.教师引导学生求函数值,结合实际问题解决;
3.教师归纳正弦、余弦、正切函数的性质,询问学生是否清楚;
4.教师安排趣味性习题,让学生认真思考,完成习题。
三、巩固训练
1.教师安排学生分组思考,引导学生求函数值;
2.教师让学生讨论,解决包含正弦、余弦、正切函数的有关问题;
3.教师说明正弦、余弦、正切函数在实际应用中的运用;。
【新课标】中考专题强化复习教案:《锐角三角函数》
第一轮复习教案:《锐角三角函数》(第15课时)【课标要求】1、认识锐角三角函数(sinA ,cosA ,tanA)30。
,45。
,60。
角的三角函数值 2、使用计算器已知锐角求它的三角函数值,已知三角函数值求它对应的锐角 3、运用三角函数解决与直角三角形有关的简单实际问题 【知识要点】1.sin α,cos α,tan α定义 sin α=____,cos α=_______, tan α=______ . 2.特殊角三角函数值3.解直角三角形的概念:在直角三角形中已知一些_____________叫做解直角三角形. 4.解直角三角形的类型:已知____________;已知___________________. 5.如图(1)解直角三角形的公式:(1)三边关系:__________________. (2)角关系:∠A+∠B=_____,(3)边角关系:sinA=___,sinB=____,cosA=_______. cosB=____,tanA=_____ ,tanB=_____.6.如图(2)仰角是____________,俯角是____________.7.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 8.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tan α=i =____.αab c【典型例题】【例1】 在Rt△ABC 中,a =5,c =13,求sinA ,cosA ,tanA .【例2】矩形ABCD 中AB =10,BC =8, E 为AD 边上一点,沿BE 将△BDE 对折,点D 正好落在AB 边上,求 tan∠AFE.【课堂检测】1.太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(结果保留根号) 2. 某坡面的坡度为1_______度.3.(07山东)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( ) A .150m B .350m C .100 m D .3100m4.每周一学校都要举行庄严的升国旗仪式,让我们体会到了国旗的神圣.某同学产生了用所学知识测量旗杆高度的想法.在地面距杆脚5m 远的地方, 他用测倾器测得杆顶的仰角为a,FA BCDE则tana=3,则杆高(不计测倾器高度)为( ).A.10mB.12mC.15mD.20m5.如图,测量人员在山脚A处测得山顶B的仰角为45°, 沿着倾角为30°的山坡前进1 000m到达D处,在D处测得山顶B的仰角为60°, 则山的高BC大约是(精确到0.01)( ).A.1 366.00m;B.1 482.12m;C.1 295.93m;D.1 508.21m6.铁路路基的横断面为等腰梯形,其腰的坡度为2:3,顶宽6m, 路基高4m,则路基的下底宽( ).A.18mB.15mC.12mD.10m7.已知:Rt△ABC中,∠C=90°,cosA=35,AB=15,则AC的长是( ).A.3B.6C.9D.128.如图,测量队为了测量某地区山顶P的海拔高度,选M点作为观测点,从M点测量山顶P的仰角(视线在水平线上方,与水平线所夹的角)为30°, 在比例尺为1:50 000的该地区等高线地形图上,量得这两点的图上距离为6cm, 则山顶P的海拔高度为( )A.1 732m;B.1 982m;C.3 000m;D.3 250m10.(08十堰) 海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.11.(07云南)已知:如图,在△ABC中,∠B = 45°,∠C = 60°,AB = 6.求BC的长. 60︒30︒E DCBAM(结果保留根号)【课后作业】1.某山路的路面坡度沿此 山路向上前进200m, 升高了____m.2.某落地钟钟摆的摆长为0.5m,来回摆动的最大夹角为20°. 已知在钟摆的摆动过程中,摆锤离地面的最低高度为am,最大高度为bm,则b-a= ____m(不取近似值).3.如图,△ABC 中,∠C=90°,点D 在BC 上,BD=6,AD=BC,cos ∠ADC=35,则DC 的长为______.4.Rt A B C ∆的斜边AB =5, 3co s 5A =,求ABC ∆中的其他量.5.(06哈尔滨)如图,在测量塔高AB 时,选择与塔底在同一水平面的同一直线上的C 、D两点,用测角仪器测得塔顶A 的仰角分别是30°和60°.已知测角仪器高CE=1.5米,CD=30米,求塔高AB .(保留根号)6.我市某区为提高某段海堤的防海潮能力,计划将长96m 的一堤段(原海堤的横断面如图中DCBA的梯形ABCD)的堤面加宽1.6m, 背水坡度由原来的1:1改成1:2,已知原背水坡长AD=8.0m,求完成这一工程所需的土方, 要求保留两个有效数字.(注:坡度=坡面与水平面夹角的正切值;提供数据2.24≈≈≈)i=1:2i=1:11.6mEDCB。
九年级-数学锐角三角函数复习教案
师生活动
设计意图
基础知识之
自我回顾
教师提前一天布置学生对本章知识进行复习整理,本课进行成果展示,比一比,谁更优秀。
提前告知学生本节课要求,让其早作准备,让学生“有备而来”,有利于提高复习效果。让学生以比赛选手身份展示自己复习成果——本节课复习效果。有效地明确其身份——你是本课的主人,一定要参与其中,为提高课堂效益打下基础。
基础知识之
灵活运用
教师控制好投影换页速度,让学生有充分思考时间,学生讲解过程,核对答案,教师点评.
1. 中, ,则 值是()
A. B. C. D.
2.Rt 中,斜边AB的长为m, ,则BC边长是()
A. B.
C. D.
3. 中, ,则 的值是()
A. B. C. D.
4. _________
4道小题,不难不易,具有典型性、示范性,再次检查学生掌握基本知识情况。其中不乏有陷阱题,看学生审题习惯如何,不错最好,错了不是坏事,其他同学的纠正,教师点评有助于其加深印象。
难点突破之
思维激活
投影试题,学生分析,学生板演,学生纠错,教师点评.
1.中学有一块三角形形状的花园ABC,现可直接测得 ,AC=40米,BC=25米,请你求出这块花园的面积。
2.据报道,204国道某地段事故不断,据交通管理部门调查发现,很多事故发生的最直接原因就是司机对限速60km/h的警示视而不见,超速行驶.于是交通管理部门准备在该地段路边离公路100m处设置一个速度监测点A,在如图所示的直角坐标系中,点A位于 轴上,测速路段BC在 轴上,点B在点A的北偏西52°方向上,点C在点A的北偏东60°方向上.(参考数据: )
(参考数据: )
本题接近学生实际生活,设计新颖,考查解直角三角形的实际应用。同时,充分体现了方程思想在解直角三角形问题中的应用,是中考命题的热点,中考题并不可怕,师生互动后也能顺利解决,让学生产生“不过如此”的感觉。
九年级数学下册 第28章锐角三角函数复习教案 人教新课标版 教案
第28章 锐角三角函数复习教案锐角三角函数(第一课时) 教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。
三.情感目标:提高学生对几何图形美的认识。
教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。
4.学生练习P21练习1,2,3 二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60° 归纳结果2. 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)004530cos sia +ta60°-tan30°三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=23,AC=23,求AB 四.小结 五.作业课本解直角三角形应用(一) 一.教学三维目标 (一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系 sinA=c a cosA=c b tanA=ba(2)三边之间关系a 2+b 2=c 2(勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题评析例 1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 2 a=6,解这个三角形.例2在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 20 B ∠=350,解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例 3在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. (三) 巩固练习在△ABC 中,∠C 为直角,AC=6,BAC ∠的平分线AD=43,解此直角三角形。
九年级锐角三角函数全章教案
通过具体例题,演示如何运用锐角三角函数解决实际问题。
03 教学重点与难点
教学重点
锐角三角函数的定义
01
学生需要掌握锐角三角函数的定义,包括正弦、余弦和正切的
定义。
锐角三角函数的性质
02
学生需要理解并掌握锐角三角函数的性质,如正弦、余弦和正
切的取值范围、周期性、奇偶性等。
锐角三角函数的应用
教学方法是否得当
在锐角三角函数的教学过程中,是否采用了多种教学方法,如讲解、 演示、练习等,是否能够帮助学生更好地理解和掌握知识。
学生参与度如何
在教学过程中,学生的参与度如何,是否能够积极思考和回答问题, 是否能够主动参与到课堂讨论中。
教学效果如何
通过本章节的教学,学生是否能够掌握锐角三角函数的基本概念和性 质,是否能够运用所学知识解决实际问题。
03
学生需要能够运用锐角三角函数解决实际问题,如测量问题、
几何问题等。
教学难点
01
锐角三角函数的图像
学生需要理解并掌握锐角三角函数的图像,包括正弦、余弦和正切的图
像。
02
锐角三角函数的变换
学生需要理解并掌握锐角三角函数的变换,如平移、伸缩等。
03
锐角三角函数与其他知识的综合应用
学生需要能够将锐角三角函数与其他知识进行综合应用,如与几何、代
过程与方法
通过实际操作和观察,掌握锐 角三角函数的计算方法。
通过小组合作和交流,理解锐 角三角函数的意义和应用。
通过实例分析和练习,提高解 决实际问题的能力。
情感、态度与价值观
培养对数学的兴趣和热爱。 培养自主探究和合作学习的精神。
培养解决实际问题的意识和能力。
锐角三角函数复习教案
锐角三角函数复习教案(总6页) -本页仅作为预览文档封面,使用时请删除本页-锐角三角函数复习教案锐角三角函数复习教案一、案例实施背景本节课是九年级解直角三角形讲完后的一节复习课二、本章的课标要求:1、通过实例锐角三角函数(sinA、cosA、tanA)2、知道特殊角的三角函数值3、会使用计算器由已知锐角求它的三角函数值,已知三角函数值求它对应的锐角4、能运用三角函数解决与直角三角形有关的简单实际问题此外,理解直角三角形中边、角之间的关系会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形,进一步感受数形结合的数学思想方法,通过对实际问题的思考、探索,提高解决实际问题的能力和应用数学的意识。
三、课时安排:1课时四、学情分析:本节是在学完本章的前提之下进行的总复习,因此本节选取三个知识回顾和四个例题,使学生将有关锐角三角函数基础知识条理化,系统化,进一步培养学生总结归纳的能力和运用知识的能力.因此,本节的重点是通过复习,使学生进一步体会知识之间的相互联系,能够很好地运用知识.进一步体会三角函数在解决实际问题中的作用,从而发展数学的应用意识和解决问题的能力.五、教学目标:知识与技能目标1、通过复习使学生将有关锐角三角函数基础知识条理化,系统化.2、通过复习培养学生总结归纳的能力和运用知识的能力.过程与方法:1、通过本节课的复习,使学生进一步体会知识之间的相互联系,能够很好地运用知识.2、通过复习锐角三角函数,进一步体会它在解决实际问题中的作用.情感、态度、价值观充分发挥学生的积极性,让学生从实际运用中得到锻炼和发展.六、重点难点:1.重点:锐角三角函数的定义;直角三角形中五个元素之间的相互联系.2.难点:知识的深化与运用.七、教学过程:知识回顾一:(1)在Rt△ABC中,C=90,AB=6,AC=3,则BC=_________,sinA=_________,cosA=______,tanA=______,A=_______,B=________.知识回顾二:(2)比较大小:sin50______sin70cos50______cos70tan50______tan70.知识回顾三:(3)若A为锐角,且cos(A+15)=,则A=________.本环节的设计意图:通过三个小题目回顾:1、锐角三角函数的定义:在Rt△ABC中,C=90锐角A的正弦、余弦、和正切统称A的锐角三角函数。
中考锐角三角函数复习教案
锐角三角函数复习教案一、【教材分析】二、【教学流程】运用第2题图3.式子2cos30°-tan45°-〔1-tan60°〕2的值是 ( )A.2 3-2B.0C.2 3D.24.在△ABC中,假设|cos A-12|+(1-tan B)2=0,那么∠C的度数是( )A.45°B.60°C.75°D.105°【组内交流】学生根据问题解决的思路和解题中所呈现的问题进行组内交流,归纳出方法、规律、技巧.【成果展示】教师要有意识引导学生体会锐角三角函数在题目解决中所表达的解题规律.给学生充足的时间思考分析通过学生思考梳理锐角三角函数的知识运用.一生展示,其它小组补充完善,展示问题解决的方法,注重一题多解及解题过程中的共性问题,教师注意总结问题的深度和广度.直击1.(威海中考)如图,在以下网格中,小正方形的边长均为1,点A,B,O都在格点上,那么∠AOB的正弦值是( )3101110A B C D102310....第1题图2.(重庆中考)计算6tan 45°-2cos 60°的结果是( )A. B.4 C. D.5教师展示问题,学生有针对性独立思考解答,3435三、【板书设计】锐角三角函数复习作 业必做题1.(重庆中考)如图,△ABC 中,AD ⊥BC ,垂足为点D ,假设BC =14,AD =12,tan ∠BAD =求sin C 的值.1题图 2.(苏州中考)如图,在△ABC ,AB =AC =5,BC =8.假设∠BPC = ∠BAC ,那么tan ∠BPC = .选做题 2题图 3.的值,求为锐角,若αααααcos sin 34cos sin -=+第一,二题学生课下独立完成,延续课堂.第三题课下交流讨论有选择性完成.以生为本,正视学生学习能力、认知水平等个体差异,让不同的学生都能学有所得,学有所成,体验学习带来的成功与快乐.34,12锐角三角函数1、锐角三角函数的定义⑴、正弦⑵、余弦⑶、正切2、30°、45°、60°特殊角的三角函数值3、各锐角三角函数间的函数关系式⑴、互余关系;⑵、平方关系;⑶、相除关系四、【教后反思】。
中考数学【锐角三角函数】考点专项复习教案(含例题、习题、答案)
8.
cos 60°= 1 ,tan 30°=
2
,∴cos 60°-tan 30°≠0,
∴(cos 60°-tan 30°)0=1, 解:原式= 例7 分析
2 +1
3
十+2
2 =3 2 +1.
1 32
1 计算 2
-(π -3.14)0-|1-tan 60°|-
3. 3 +1+ 3 +2=10.
第二十八章
本章小结 小结 1 本章概述
锐角三角函数
锐角三角函数、解直角三角形,它们既是相似三角形及函数的继 续,也是继续学习三角形的基础.本章知识首先从工作和生活中经常 遇到的问题人手, 研究直角三角形的边角关系、 锐角三角函数等知识, 进而学习解直角三角形,进一步解决一些简单的实际问题.只有掌握 锐角三角函数和直角三角形的解法, 才能继续学习任意角的三角函数 和解斜三角形等知识, 同时解直角三角形的知识有利于培养数形结合 思想,应牢固掌握. 小结 2 本章学习重难点 【本章重点】 通过实例认识直角三角形的边角关系,即锐角三 角函数(sin A,cos A,tan A),知道 30°,45°,60°角的三角函数 值,会运用三角函数知识解决与直角三角形有关的简单的实际问题. 【本章难点】 综合运用直角三角形的边边关系、边角关系来解 决实际问题. 【学习本章应注意的问题】 在本章的学习中,应正确掌握四种三角函数的定义,熟记特殊角 的三角函数值,要善于运用方程思想求直角三角形的某些未知元素, 会运用转化思想通过添加辅助线把不规则的图形转化为规则的图形 来求解, 会用数学建模思想和转化思想把一些实际问题转化为数学模 型,从而提高分析问题和解决问题的能力.
.
tan 60°=
解:原式=8-1-
专题 3 锐角三角函数与相关知识的综合运用 【专题解读】 锐角三角函数常与其他知识综合起来运用,考查 综合运用知识解决问题的能力. 例 8 如图 28-124 所示,在△ABC 中,AD 是 BC 边上的高,E 为 AC 边的中点,BC=14,AD=12,sin B =4.
九年级数学上册《锐角三角函数》教案、教学设计
4.作业完成后,请学生认真检查,确保答案的正确性。
4.利用信息技术手段,如动态课件、网络资源等,丰富教学手段,提高学生的学习兴趣和积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情,提高学生的自主学习能力。
2.通过解决实际问题,使学生认识到数学知识在实际生活中的重要作用,增强学生的应用意识。
3.培养学生勇于探索、克服困难的精神,提高学生的自信心和自尊心。
九年级数学上册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.使学生掌握锐角三角函数的定义,理解正弦、余弦、正切函数的概念,并能够运用这些概念进行简单的计算。
2.培养学生运用三角函数解决实际问题的能力,如测量物体的高度、计算角度等。
3.使学生掌握特殊角的三角函数值,并能熟练运用到实际问题中。
(2)运用三角函数解决实际问题,尤其是将实际问题抽象为数学模型,并运用三角函数进行求解;
(3)掌握特殊角的三角函数值,并能灵活运用到实际问题中。
(二)教学设想
1.教学策略:
(1)采用情境教学法,创设实际问题情境,引导学生主动探究锐角三角函数的定义和性质;
(2)运用任务驱动法,设计具有挑战性的任务,让学生在实践中掌握三角函数的计算方法和应用;
(3)了解三角函数在其他学科领域的应用,如物理、工程等。
4.小组合作题:
(1)分组讨论:如何利用三角函数解决实际问题?举例说明;
(2)小组合作完成一份关于锐角三角函数在实际问题中应用的报告。
作业要求:
1.学生需独立完成基础题,提高题和拓展题可根据个人能力选择完成;
2.作业过程中,要求学生注重解题思路和方法的总结,养成良好的学习习惯;
锐角三角函数复习课件九年级中考复习
误的是( A )
A.sin B=
1
3
1
C.tan B=
2
B.sin C=
2 5
5
D.sin2B+sin2C=1
3
8.如图,点 A(x,4)在第一象限,OA 与 x 轴所夹的锐角为 α,cos α= ,
5
则 tan α 的值为( A
A.
4
3
B.
3
4
C.
5
4
)
D.
4
5
3
9.在 Rt△ABC 中,∠C=90°,若 sin A= ,则 cos B 的值是( B )
B
2- 3
2+ 3 2-
=23.类比这种方法,计算
tan
22.5°的
3
)
B. 2-1
C. 2
1
D.
2
14.在如图所示的网格中,小正方形的边长为1,点A,B,C,D都在
格点上,
AB与CD相交于点O,则∠AOC的正切值是( A )
A.
C.
2
3
3
5
3
B.
2
5
D.
3
(1)cos260°+sin260°=
1 ;
cos45°
(2)
-
tan 45°= 0 ;
sin45°
3
(3)1-2sin 30°cos 30°= 1- 2
.
练习题
1.在△ABC 中,∠A=105°,∠B=45°,tan C 的值是
3
3
.
2.在Rt△ABC中,∠C=90°,若△ABC的三边都缩小5倍,则sin
是( D )
中考锐角三角函数复习教案
中考锐角三角函数复习教案【教案内容】一、教学目标1.知识与技能(1)复习锐角三角函数的定义;(2)掌握常见锐角三角函数的计算方法;2.过程与方法(1)通过讲解、分析和解题等学习方法,帮助学生全面复习锐角三角函数的相关知识;(2)通过练习题,巩固学生的计算能力和应用能力;3.情感态度价值观通过学习锐角三角函数,培养学生的数学思维能力,提高学生的逻辑思维和分析问题的能力,培养学生的合作意识和团队精神。
二、教学重点1.锐角三角函数的定义;2.常见锐角三角函数的计算方法。
三、教学难点1.锐角三角函数的综合运用;2.有关锐角三角函数的实际问题。
四、教学过程1.复习(1)复习锐角三角函数的定义;(2)回顾与锐角三角函数相关的练习题。
2.讲授(1)解析定义法解析定义法是指通过三角形的几何关系来定义锐角三角函数的方法。
其基本定义如下:- 正弦函数sinA:在一个锐角三角形中,对于任意锐角A,a/b就是其正弦函数。
- 余弦函数cosA:在一个锐角三角形中,对于任意锐角A,b/c就是其余弦函数。
- 正切函数tanA:在一个锐角三角形中,对于任意锐角A,a/c就是其正切函数。
(2)练习题演练通过一些具体的练习题,帮助学生巩固解析定义法的运用。
3.拓展(1)锐角三角函数的性质-在锐角三角形中,锐角的对边是锐角三角函数的对边,锐角的邻边是锐角三角函数的邻边。
-在锐角三角形中,正弦函数的值总是小于等于1,余弦函数的值总是小于等于1,正切函数的值没有上界。
(2)常用锐角三角函数的计算- 根据锐角的大小和所在象限,计算sinA、cosA和tanA的值。
- 根据锐角的大小和所在象限,计算cscA、secA和cotA的值。
(3)练习题演练通过一些具体的练习题,帮助学生巩固常用锐角三角函数的计算方法。
4.整合与应用(1)综合运用通过一些综合的锐角三角函数计算题,帮助学生综合应用所学知识解答问题。
(2)实际问题通过一些与现实生活相关的锐角三角函数问题,帮助学生发现锐角三角函数在实际应用中的重要性和作用。
锐角三角函数中考复习教学设计
基本信息 课题:《锐角三角函数中考复习》 课型:复习课 教材:苏科版·数学(九年级下册) 课时:1课时教学目标1.通过复习进一步理解锐角三角形函数的概念,能熟练应用sinA ,cosA ,tanA 表示直角三角形中两边的比,熟记特殊角30°,45°,60°的三角函数值;2.理解直角三角形中边角之间的关系,会运用勾股定理,锐角三角函数的有关知识来解某些简单的实际问题,从而进一步把数和形结合起来,培养应用数学知识的意识;3.通过回顾与总结,培养并提高学生归纳、对比及分析问题和解决问题的能力。
教学重点 会用锐角三角函数的有关知识来解决某些简单的实际问题 教学难点 勾股定理及锐角三角形函数的综合运用教学方法利用多媒体课件,启发、谈论、互动式探究并讲练结合。
教学手段 多媒体辅助教学教学过程教 学 内 容教师活动内容、方式学生活动方式设计意图一、 考点聚焦、夯实基础 考点一:锐角三角函数的概念正弦:把锐角A 的__________的比叫做∠A 的正弦,记作 ;余弦:把锐角A 的__________的比叫做∠A 的余弦,记作 ; 正切:把锐角A 的__________的比叫做∠A 的正切,记作 .夯实基础1.如图,在Rt △ABC 中,∠C=90,AB=5,BC=4, 则sinA= ; cosA = ; tanA = .2.如图,直径为5的⊙A 经过点C(0,3)和点O(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为_______。
3.在正方形网格中,△ABC 的位置如图所示,则cos ∠ABC 的值为________。
师总结:求锐角三角函数值关键是构造直角三角形,圆中可以借助直角所对圆周角是直角得到直角三角形,网格纸中的直角三角形等,当然必要时需要转化角使得问题变得简单。
师补充:如何求sin ∠BAC ? 考点2 特殊角的三角函数值三角函数 30° 45° 60°sin αcos αtan α师生共同回忆锐角三角函数概念进入本节课主题给学生思考的时间: 1.指明个别学生口述 2.学生举手回答,在教师的引导下突出构造直角三角形以及角的转化思想;3.学生个别回答,构造直角三角形ABD4.学生A 回答,过点C 作CE ⊥AB ,构造直角三角形ACE;学生B 补充利用等积法计算CE 学生快速口答,全班纠错课堂以师生互动的方式拉开本节复习课的序幕给整节课铺垫了良好的情感基础针对锐角三角函数基本概念设计练习及时巩固学生对概念的掌握情况,并渗透转化的数学思想熟记特殊角三角函数值,并培养学生观察和总结能力ab c C BA CA Bx y OC A B C B A师提问:思考:锐角的三角函数值有何变化规律? 补充:若∠A+∠B=90°,那么:sinA = ;cosA = ;tanA = ;夯实基础1.已知角,求值:(1)2sin30°+3tan30°+tan45° (2)cos245°+ tan60°cos30° 2.已知值,求角:(1)已知 sin A = ,求锐角A .(2)已知 tan (∠A+20°)= ,求锐角A . (3)在△ABC 中, ∠A 、 ∠ B 均为锐角,且 ,求∠C 的度数。
锐角三角函数复习教案
第二十八章锐角三角函数(复习)一、教学目标::1、掌握锐角三角函数的概念,利用锐角三角函数的意义及直角三角形的边角关系解决一些数学问题。
2、通过运用勾股定理,直角三角形的边角关系以及锐角三角函数知识,培养学生分析问题、解决问题的能力。
3、渗透数形结合思想,培养学生良好的学习习惯。
二、教学重点:锐角三角函数及直角三角形有关知识的综合运用三、教学难点:实际问题转化成数学模型。
四、教学过程:(一)师生共同复习本章知识结构(1)锐角三角函数及特殊角的三角函数值:①如图所示,在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.那么∠A的正弦:sin A=∠A的余弦:cos A=∠A的正切:tan A=∠B的正弦:sin A=∠B的余弦:cos B=∠B的正切:tan B=思考:通过边角关系,你发现了什么规律?②特殊角的三角函数值:③三角函数的增减性:当0°< α < 90°时对于sinα与tanα,角度越大,函数值越;对于cosα,角度越大,函数值越 .(2). 解直角三角形①在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.三边关系:三角关系:边角关系:(3). 三角函数的应用 ①仰角和俯角在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角. ② 坡度,坡角如图:坡面的铅垂高度(h )和水平长度(l ) 的比叫做坡面坡度.记作i ,即i= h l.坡面与水平面的夹角叫做坡角,记作α,有 i = tan α. 坡度通常写成1∶m 的形式,如i =1∶6.显然,坡度越大,坡角α就越大,坡面就越陡. ③ 方位角:以正南或正北方向为准,正南或正北方向线与目标方向线构成的小于900的角,叫做方位角. 如图所示 (二)、双基练习1、若∠A 为锐角,sinA=13,则:cosA=_____,tanA=______2、比较大小:sin530_____ sin540 sin270______ cos7203、(2014·凉山州)在△ABC 中,若|cos A -12|+(1-tan B)2=0,则∠C 的度数是( )A .45°B .60°C .75°D .105°4、(2015·兰州)如图,△ABC 中,∠B =90°,BC =2AB ,则cos A =( )A .52B .12C .255D .555、如图,在菱形ABCD 中,DE ⊥AB ,cos A =35,BE =2,则tan ∠DBE的值是_ __. (三)、能力提升练习 6、(2015·巴中)计算:|2-3|-(2015-π)0+2sin 60°+(13)-1.7、(2015·丽水)如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos ∠α的值,错误的是( )A .BD BCB .BC AB C .AD AC D .CD AC8、(2015·太原)如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2 B.255 C .55 D .129、如图在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD=8,tan ∠BDC=34,则线段AB 的长为( ) A 、 4 B 、5 C 、6 D 、1010、如图,在□ABCD 中,对角线AC ,BD 相交所成的锐角为α,若AC=a ,BD=b ,则:S □ABCD=( )A 、12absinaB 、absinaC 、abcosaD 、 12abcosa11、如图,直径为10的⊙A 经过点C(0,5)和点O(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( )A .12B .34C .32D .4512、(2014·临沂)如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B ,C 之间的距离为( )A .20海里B .10 3 海里C .20 2 海里D .30海里13、(2015·曲靖)如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则cos D =____. 14、(2015·宁波)如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度.站在教学楼的C 处测得旗杆底端B 的俯角为45°,测得旗杆顶端A 的俯角为30°.若旗杆与教学楼的距离为9 m ,则旗杆AB 的高度是__________m (结果保留根号)15、(2015·牡丹江)在△ABC 中,AB =122,AC =13,cos B =22,求BC 的长。
初中数学九年级《锐角三角函数中考复习教案》公开课教学设计
一.诊断练习:
1.1.如图1,在Rt△ABC中,∠C=90°,则sinA=,cosA=,tanA=.
2.cos60°的值等于;sin45°的值等于。
3.计算2sin30°-2cos60°+tan45°的结果是().
A.2 B. C. D.1
4.若∠A为锐角,且tanA=1,则∠A=。
4.会用解直角三角形的有关知识解决简单的实际问题.
学习重点:
考查重点与常见题型:
1.求三角函数值,常以填空题或选择题形式出现;
2.求特殊角三角函数值的混合运算,常以中档解答题(6分)或填空题出现.
3.解直角三角形的应用问题,常以中档解答题(7分)的形式出现。
学习难点:三角函数在解直角三角形中的灵活运用.
三、考题解析:
题型1锐角三角函数的定义
例1.
题型2特殊角的计算
例2.例2.计算2sin30 °+tan45 ° ×cos60°
题型3解直角三角形
例4.在Rt△ABC中,∠C=90°,∠A=30°,a=5,求∠B、b、c的大小.
四、达标测评:
五、课堂小结:
锐角三角函数,在近几年的中考中一般占8分左右,常见题型为:特殊角三角函数值有关的混合运算,用解直角三角形的有关知识解决简单的实际问题。
5.如图,为测楼房BC的高,在距楼房30米的A处测得楼顶的仰角为α,则楼高BC为米.
6.在△ABC中,已知∠C=90°,sinB=,则tanA的值是()
二、知识疏理:
1、锐角三角函数的概念
如右图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):
定义
表达式
正弦
中考锐角三角函数复习教案
综
合
运
用
【自主探究】
1如图,A,B,C三点在正方形网格线的格点上,若将△ACB绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()
A. B. C. D.
第1题图
2.如图所示,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于()
A. B. C. D.
第2题图
教师展现问题,学生独立思考完成,要求学生做题时注意知识点和方法的运用,做每一道题进行反思总结.
解题过程中要求学生仔细观察图形,教师要有意识引导学生体会锐角三角函数在题目解决中所体现的解题规律.
给学生充足的时间思考分析
通过学生思考梳
理锐角三角函数
的知识运用.
一生展示,其它小组补充完善,展示问题解决的方法,注重一题多解及解题过程中的共性问题,教师注意总结问题的深度和广度.
以生为本,正视学生学习能力、认知水平等个体差异,让不同的学生都能学有所得,学有所成,体验学习带来的成功与快乐.
三、【板书设计】
锐角三角函数复习
四、【教后反思】
锐角三角函数首先是放在直角三角形中研究的,显示的是边角之间的关系。锐角三角函数值是边与边之间的比值,锐角三角函数沟通了边与角之间的联系,它是解直角三角形最有力的工具之一。??
教学
重点
锐角三角函数的定义,记忆特殊角的三角函数值.
教学
难点
能够具有合情推理和初步的演绎推理能力.
二、【教学流程】
教学环节
教学问题设计
师生活动
二次备课
知
识
回
顾
1.在Rt△ABC中,∠C=90°,CD是斜边AB上的中线,已知CD=5,AC=6,则tanB的值是()
人教版初中九年级下册数学教案 第二十八章 锐角三角函数 章末复习
章末复习1.进一步理解并掌握锐角三角形函数的意义,能用定义进行相关的计算;2.熟记特殊角的三角函数值,能用计算器求任意锐角的三角函数值或利用锐角的三角函数值求相应角的度数;3.能用解直角三角形知识解决实际应用问题.4.进一步增强学生分析问题、解决问题的能力,掌握数形结合的思想方法.5.进一步增强学生的数学应用意识,感受数学的转化思想方法,增强学生对数学学习的热情.【教学重点】通过对本章知识的回顾,巩固所学知识,能熟练运用所学知识解决具体问题.【教学难点】运用锐角三角函数解决实际应用问题.一、知识框图,整体把握【教学说明】教学前,教师应根据本章知识内容设计一个适合要求的知识结构框图,教学时,与学生一道回顾本章知识,按自己的设计思路展示出结构图,让学生加深对本章知识的系统理解.二、释疑解惑,加深理解问题 1 请用计算器探索出锐角函数的函数值随自变量锐角从小到大的变化而变化的情况,你有什么发现?【教学说明】教师可引导学生利用计算器求出0°〜10°,10°〜20°,20°〜30°,……,80°〜90° 之间的某一锐角的三角函数值,通过分析得到的函数值,可获得锐角三角函数的一些简单性质.【归纳结论】对于锐角A,它的正弦函数 (sinA)的函数值随自变量锐角A的增大而增大,且sinA必满足0< sinA<1;它的余弦函数(cosA)的函数值随锐角A的增大而减小,且 cosA必满足0<COSA<1;它的正切函数(tanA) 的函数值随锐角A的增大而增大,且tanA满足tanA >0.试一试若锐角A的余弦值cosA = 3,则锐角A的取值范围是()A. 60°<A<90°B. 45°<A<60°C. 30°<A<45°D. 0°<A<30°分析与解由于cos30°=≈0. 866,cos45°= ≈0.707 ,cos60° =12,且 cosA = 34= 0.75,知 cos45°<cosA<cos30°,结合余弦函数的性质,其函数值随角度的增大而减小,从而可知 30°<A <;45°,故应选 C.问题 2 利用锐角三角函数定义及勾股定理,你能证明sin2A + cos2A = 1吗?你有何发现?问题3 若∠A + ∠B =90,你能探索出 tanA与tanB之间有什么关系吗?与同伴交流.【教学说明】教师应引导学生构建直角三角形,利用直角三角形的边角关系及相应锐角的三角函数的意义不难得出结论.经历由问题1的感性认识到问题2、3的理性思考可进一步开拓学生的思维能力,增强解题技能.【结论】 1.对于任意锐角A ,总有sin 2A + cos 2A = 1 ;2.若两个锐角∠A ,∠B 满足∠A + ∠B = 90°, 则必有 tanA • tanB = 1.试一试 化简 22sin 232sin 231cos 23︒-︒+-︒-tan1°·tan11°· tan21°·tan31°·tan89°·tan79°·tan69°·tan59°.分析与解 由2sin 232sin 23︒-︒ = 2sin 231︒-()= |sin 231︒-| = 1 - sin23°,21cos 23-︒ = 2sin 23︒ = sin23°,及tan1°·tan89°=1 等可得到原式 = 1 - sin23°+ sin23°- 1 = 0.三、典例精析,复习新知例1 在Rt △ABC 中,∠C=90°,已知cosA=13,求cosB 和tanA的值.分析与解 结合图形及已知条件,由cosA= 13 =AC AB ,故不妨设AC=m ,则AB=3m ,由勾股定理易得BC=22m ,从而cosB =BC AB= 223m m = 223, tanA =BC AC = 22m m = 22.例2 如图,四边形ABCD 是平行四边形,以AB 为直径的⊙O经过点C ,E 是⊙O 上一点,且∠BEC=45°.(1)试判断CD与⊙O的位置关系,并说明理由.(2)若BE=8 cm,sin∠BCE = 45,求⊙O的半径.分析与解本例是一道圆、平行四边形、锐角三角函数的小综合问题,在(1)中可直接由∠BEC=45°得到∠BOC=90°(添加辅助线OC),再利用平行四边形性质,可得到∠OCD=∠BOC=90°,从而CD是⊙O的切线;在(2)中,应先连AE,利用圆的性质可得∠BAE=∠BCE,又AB为⊙O直径,故△ABC为直角三角形,这样由sin∠BCE= 45,得到sin∠BAE=4 5 = BEAB,又BE=8,从而得AB=10,故⊙O的半径为5.通过上面的分析可以发现,对于不是直角三角形中的锐角三角函数问题,常常需通过添加辅助线,将这一锐角三角函数转化为直角三角形中某个角的三角函数来解决问题.例3 小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形,已知吊车吊臂的支点O距离地面的高OO'=2米,当吊臂顶端由A点抬升至点A'(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B'处,紧绷着的吊缆A B''=AB.AB垂直地面O'B于点B,A B''垂直地面O'B于点C,吊臂长度O A'=OA=10 m,且cosA = 35,sin A' = 12.(1)求此重物在水平方向移动的距离BC;(2)求此重物在竖直方向移动的距离B'C.(结果保留根号)分析与解过O作OF⊥AB于F,交A B''于点E(如图),这样可在Rt△AOF中,利用OA=10, cosA= 35,求出AF=6,从而得OF=8,在Rt△A'OE中,由O A'=10,sin A'=12,得OE=5,从而BC=EF=OF-OE=8-5=3 m,即重物在水平方向移动的距离为3 m;同样,可求出AB=AF+BF=AF+OO' =6+2=8,在Rt△A'OE中,可得A'E=53.故A'C=A'E+EC =53+2,这样B'C= A'C-A B''=A'C-AB=53+2-8=53-6,即此重物在竖直方向移动的距离为(53-6) m.例 4 某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A 点的高度AB 为2 m ,台阶AC 的坡度为1∶3 (即AB ∶BC=1∶3,且B 、C 、E 三点在同一直线上,请根据以上条件求出树DE 的高度(测倾器的高度忽略不计).分析与解 如图,过点A 作AF ⊥DE 于F ,则四边形ABEF 为矩形.∴AF=BE ,EF=AB=2.设DE=x ,在Rt △CDE 中,CE=tan DCE DE ∠ = tan 60?DE = 33x . 在Rt △AFD 中,DF = DE - EF = x - 2,∴AE=tan DAF DF ∠ = 2tan 30?x - = 3(x 2)-. ∵AF = BE = BC + CE ,∴3(x 2)- = 23 + 33x .解得.例5 图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形,当点O 到BC (或DE )的距离大于或等于⊙O 的半径时(⊙O 是桶口所在圆,半径为OA ),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F ,C-D 是CD 〖T ,AB=FE=5 cm ,∠ABC=∠FED=149°.请通过计算判断这个水桶提手是否合格.(参考数据:314≈17.72,tan73.6°≈3.40,sin75.4°≈0.97,)分析与解要判断图丙中所示提手是否合格,可过O作OM⊥BC 于M,只须比较OM与OA的大小即可.这时再连OB,在Rt△ABO中,由tan ∠ABO = OAOB= 3.4及tan73.6°=3.4可知∠ABO=73.6°,又∠ABC=149°,从而= 175∠MBO=75.4°,又OB = 22+ =314≈17.72,且sin+ = 25289AB OA,∴OM=OB·sin∠MBO=17.72×sin75.4°=17.72×0.97≈17.2,∠MBO=OMOB由OM>OA知,这个提手是合格的.【教学说明】上述所选四道题中的例1,例2可由学生自主探究,独立完成,然后相互交流,互相检查.例3、例4文字叙述较长,教师应作好引导,帮助学生分析,找出解决问题的突破口,让学生在理解的基础上探寻结论,进一步体验用锐角三角函数知识解决实际问题的过程、方法,加深对本章知识的理解.四、师生互动,课堂小结通过这节课的学习,你有哪些收获?【教学说明】师生相互交流,让学生谈谈自己的想法,提出来与大家分享,也可帮助学生进行知识、方法的提炼,形成完整的知识结构.1.布置作业:从教材P84~85复习题28中选取.2.完成创优作业中本课时的练习.本课时为复习课,首先要让学生了解本章的知识体系,教学的展开以问题的解决为中心,指导学生自主理清由实际问题转化为三角函数模型的思路,增强学生数学问题的转化意识.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考锐角三角函数复习
教案
公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-
锐角三角函数复习教案一、【教材分析】
二、【教学流程】
A. 3
4 B.
4
3 C.
3
5 D.
4
5
第2题图
3.式子2cos30°-tan45°-
(1-tan60°)2的值是 ( )
A.2 3-2B.0C.2 3 D.2
4.在△ABC中,若|cos A-1
2|+(1-
tan B)2=0,则∠C的度数是( )
A.45°B.60°C.75°D.105°
【组内交流】
学生根据问题解决的思路和解题中所呈现的问题进行组内交流,归纳出方法、规律、技巧.
【成果展示】学生体会锐角三角函数在题目解决中所体现的解题规律.给学生充足的时间思考分析通过学生思考梳理锐角三角函数的知识运用.
一生展示,其它小组补充完善,展示问题解决的方法,注重一题多解及解题过程中的共性问题,教师注意总结问题的深度和广度.
直击中考1.(威海中考)如图,在下
列网格中,小正方形的边
长均为1,点A,B,O都
在格点上,则∠AOB的正弦值是( )
第1题图
2.(重庆中考)计算6tan 45°-2cos
教师展示问
题,学生有针
对性独立思考
解答,
完成后师生间
展评.
3
5
60°的结果是( )
A. C.
3.(白银中考)△ABC中,∠A,∠B都是锐角,若sin A= cos B= 则∠C=_____.
4.(齐齐哈尔中考)请运用你喜欢的方法求tan 75°=_____.
完善整合一、本章知识结构梳理
二.你收获了什么
师生梳理
本课的知识点
及及注意问—
—归结本节课
所复习的内
容,梳理知
识,构建思维
导图,凸显数
学思想方法.
生反思总结本
课中的难点、
重点及易错
点,并在错题
中整理所产生
的问题.针对性
问题师板书.
对内容
的升华
理解认
识
作业必做题
1.(重庆中考)如图,△ABC中,AD⊥
BC,垂足为点D,若BC=14,AD=12,
tan∠BAD =
第一,二题学生
课下独立完
成,延续课堂.
第三题课下交
以生为
本,正
视学生
学习能3
4
2
3
2
1
锐角三角函数1、锐角三角函数的
⑴、正
弦
⑵、余
2、30°、45°、60°特殊角的
3、各锐角三角函数间的函数
⑴、互余
关系;
3
4
,
三、【板书设计】
锐角三角函数复习
四、【教后反思】 锐角三角函数首先是放在直角三角形中研究的,显示的是边角之间的关
系。
锐角三角函数值是边与边之间的比值,锐角三角函数沟通了边与角之
间的联系,它是解直角三角形最有力的工具之一。
本节复习课的重、难点在于锐角三角函数的再理解再认识,我是从以下几方面做的:
(1)认识锐角的任意性(由特殊到一般),
(2)突破直角三角形大小(相似三角形性质的运用)的任意性,使学生逐步认识到:在直角三角形中,对于固定的30度(45度、60度、一般任意锐角)的角,无论这个直角三角形大小如何,其对边与斜边的比值始终
求sin C 的值. 1题图 2.(苏州中考)如图,在△ABC ,AB =AC =5,
BC =8.若∠BPC = ∠BAC ,
则tan ∠BPC = .
选做题 2题图 3.
流讨论有选择性完成. 力、认知水平等个体差异,让不同的学生都能学
有所得,学有所成,体验学习带来的成功与
快乐.
12
锐角三角函数
1、锐角三角函数的⑴、正
弦 ⑵、余2、30°、45°、60°特殊角的3、各锐角三角函数间的函数
⑴、互余
关系;。