15定积分的概念

合集下载

定积分的概念 课件

定积分的概念 课件

a
f(x)dx等于由直线x=a,x=b,y=0与
曲线y=f(x)围成曲边梯形的面积,这是定积分的几何意义.
b
(2)计算
a
f(x)dx时,先明确积分区间[a,b],从而确定曲
边梯形的三条直边x=a,x=b,y=0,再明确被积函数f(x),
从而确定曲边梯形的曲边,这样就可以通过求曲边梯形的面积
S而得到定积分的值:
c
f(x)dx
(其中a<c<b).
[点睛] 性质(1)的等式左边是一个定积分,等式右边是常数与 一个定积分的乘积. 性质(2)对于有限个函数(两个以上)也成立. 性质(3)对于把区间[a,b]分成有限个(两个以上)区间也 成立.
利用定义求定积分
3
[典例] 利用定义求定积分0x2dx. [解] 令f(x)=x2,
n
(3)求和:
i=1Leabharlann f(ξi)·b-n a;
b
(4)取极限:a
n
f(x)=lim n i=1
b-a f(ξi)· n .
用定积分的性质求定积分
[典例]
(1)f(x)=x2+ x2,1,1≤0≤x≤x<21.,
2

f(x)dx=(
0
)
2
A. (x+1)dx 0
2
B. 2x2dx 0
1
2
C. (x+1)dx+ 2x2dx
(1)如果被积函数是几个简单函数的和的形式,利用定 积分的线性性质进行计算,可以简化计算.
(2)如果被积函数含有绝对值或被积函数为分段函数, 一般利用积分区间的连续可加性计算.
用定积分的几何意义求定积分
[典例] 根据定积分的几何意义,求下列定积分的值.

定积分知识点总结数学

定积分知识点总结数学

定积分知识点总结数学一、定积分的定义1. 定积分的概念定积分是微积分中的一个重要概念,它是对函数在一个区间上的积分进行定义的一种方法。

定积分可以表示函数在一个区间上的“累积效果”,即函数在该区间上的总体积或总面积。

2. 定积分的符号表示定积分可以用符号∫ 来表示,即∫f(x)dx,其中f(x)是要积分的函数,dx表示自变量x的微元。

3. 定积分的定义设函数f(x)在区间[a, b]上连续,将区间[a, b]等分成n个小区间,每个小区间的长度为Δx,取每个小区间上任意一点ξi,计算出函数在每个小区间上的面积,然后将所有小区间上的面积相加,得到一个近似值。

当n趋于无穷大时,这个近似值趋于一个确定的值,称为定积分,记作∫a到b f(x)dx。

4. 定积分的几何意义定积分的几何意义是函数f(x)在区间[a, b]上的图像和坐标轴之间的面积,当函数为正值时,定积分表示曲线下面积;当函数为负值时,定积分表示曲线上面积减去曲线下面积。

二、定积分的性质1. 定积分的存在性定积分的存在性是指对于一个函数在一个区间上的定积分是否存在,存在的充分必要条件是函数在该区间上连续。

2. 定积分的线性性定积分具有线性性质,即若f(x)和g(x)在区间[a, b]上可积,c和d为常数,则有∫a到b(c*f(x)+d*g(x))dx=c*∫a到b f(x)dx+d*∫a到b g(x)dx。

3. 定积分的区间可加性若函数f(x)在区间[a, b]、[b, c]上都可积,则有∫a到c f(x)dx=∫a到b f(x)dx+∫b到c f(x)dx。

4. 定积分的不变性对于函数f(x)在区间[a, b]上的定积分,若将区间[a, b]内的点重新排列,定积分的结果不会受到影响。

5. 定积分的估值通过使用上下和左右长方形法、梯形法等方法,可以对定积分进行估值,获得定积分的近似值。

三、定积分的计算1. 定积分的基本计算方法定积分的基本计算方法是使用定积分的定义进行计算,即按照定义对函数在区间内每个小区间上的面积进行求和,并计算出极限值。

定积分的概念、性质

定积分的概念、性质
*
三、定积分的性质
§5.1 定积分的概念与性质
一、定积分问题举例
演讲人姓名
二、定积分定义
一、定积分问题举例
曲边梯形 设函数yf(x)在区间[a, b]上非负、连续. 由直线xa、xb、y0及曲线yf (x)所围成的图形称为 曲边梯形, 其中曲线弧称为曲边.
曲边梯形的面积
*
观察与思考
定积分的定义
*
二、定积分定义
例1 用定积分表示极限 解 定积分的定义
*
二、定积分定义
定积分的定义
注: 设f (x)在[0, 1]上连续, 则有
*
定积分的几何意义
这是因为 曲边梯形面积 曲边梯形面积的负值
*
定积分的几何意义
各部分面积的代数和 曲边梯形面积 曲边梯形面积的负值
*
例2
在曲边梯形内摆满小的矩形, 当小矩形的宽度减少时, 小矩形面积之和与曲边梯形面积之间的误差将如何变化? 怎样求曲边梯形的面积?
*
(2)近似代替:
求曲边梯形的面积
(1)分割:
ax0< x1< x2< < xn1< xn b, Dxi=xi-xi1;
小曲边梯形的面积近似为f(xi)Dxi (xi1<xi<xi);
如果在区间[a b]上 f (x)g(x) 则
如果在区间[a b]上 f (x)0 则
性质5
推论2
性质6
设M及m分别是函数f(x)在区间[a b]上的最大值及最小值 则
例4 试证:
证明 设 则在 上, 有 即 故 即
*
性质7(定积分中值定理)
如果函数f(x)在闭区间[a b]上连 续 则在积分区间[a b]上至少存在一个点x 使下式成立 这是因为, 由性质6 ——积分中值公式 由介值定理, 至少存在一点x[a, b], 使 两端乘以ba即得积分中值公式.

高中数学定积分的概念及相关题目解析

高中数学定积分的概念及相关题目解析

高中数学定积分的概念及相关题目解析在高中数学中,定积分是一个重要的概念,它在数学和实际问题中都有广泛的应用。

本文将介绍定积分的概念,并通过具体的题目解析来说明其考点和解题技巧,帮助高中学生更好地理解和应用定积分。

一、定积分的概念定积分是微积分中的一个重要概念,它是对函数在一个区间上的积分结果的确定值。

定积分的符号表示为∫,下面是定积分的定义:设函数f(x)在区间[a, b]上有定义,将[a, b]分成n个小区间,每个小区间的长度为Δx,选取每个小区间中的一个点ξi,作为f(x)在该小区间上的取值点。

那么,定积分的近似值可以表示为:∫[a, b]f(x)dx ≈ Σf(ξi)Δx当n趋向于无穷大时,定积分的近似值趋向于定积分的准确值,即:∫[a, b]f(x)dx = lim(n→∞)Σf(ξi)Δx这个准确值就是函数f(x)在区间[a, b]上的定积分。

二、定积分的考点和解题技巧1. 计算定积分的基本方法对于一些简单的函数,可以直接使用定积分的定义进行计算。

例如,计算函数f(x) = x²在区间[0, 1]上的定积分:∫[0, 1]x²dx = lim(n→∞)Σf(ξi)Δx = lim(n→∞)Σ(ξi)²Δx在这个例子中,可以将区间[0, 1]等分成n个小区间,每个小区间的长度为Δx = 1/n。

然后,选取每个小区间中的一个点ξi,可以选择ξi = i/n。

这样,定积分的近似值可以表示为:∫[0, 1]x²dx ≈ Σ(ξi)²Δx = Σ(i/n)²(1/n)当n趋向于无穷大时,可以求出定积分的准确值。

在这个例子中,计算过程如下:∫[0, 1]x²dx = lim(n→∞)Σ(i/n)²(1/n)= lim(n→∞)(1/n³)Σi²= lim(n→∞)(1/n³)(1² + 2² + ... + n²)= lim(n→∞)(1/n³)(n(n+1)(2n+1)/6)= 1/3因此,函数f(x) = x²在区间[0, 1]上的定积分的值为1/3。

1.5定积分的概念

1.5定积分的概念

1.5 定积分的概念三维目标:知识与技能:⒈通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;⒉借助于几何直观体会定积分的基本思想,了解定积分的概念,能用定积分法求简单的定积分. 3.理解掌握定积分的几何意义和性质;过程与方法:通过问题的探究体会逼近、以直代曲的数学思想方法。

情感态度与价值观:通过分割、逼近的观点体会定积分的来历,使学生从本质上理解定积分的几何意义,从而激发学生学习数学的兴趣。

教学重点:定积分的概念、用定义求简单的定积分、定积分的几何意义. 教学难点:定积分的概念、定积分的几何意义. 教学过程: 一.创设情景问题:我们在小学、初中就学习过求平面图形面积的问题。

有的是规则的平面图形,但现实生活中更多的是不规则的平面图形。

对于不规则的图形我们该如何求面积?比如浙江 省的国土面积。

此问题在学生九年级中已有涉及,在九 年级时学生了解过以下求不规则面积的方法:方法1 将图形放在坐标纸上,也即将图形分割,看它有多少个“单位面积”。

方法2 将图形从内外两个方面用规则图形(或规则图形的组合)逼近。

方法3 将这块图形用一个正方形围住,然后随机地向正方形内扔“点”(如小石子等小颗粒),当点数P 足够大时,统计落入不规则图形中的点 数A ,则图形的面积与正方形面积的比约为。

方法4“称量”面积:在正方形区域内均匀铺满一层细沙,分别称得重量是P(正方形区域内细沙重)、A(所求图形内细沙重),则所求图形的面积与正方形面积的比是重量之比。

二.合作探究问题一 曲边梯形的面积如图,阴影部分类似于一个梯形,但有一边是曲线()y f x =的一段,我们把由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的图形称为曲边梯形.如何计算这个曲边梯形的面积?探究1:分割,怎样分割?分割成多少个?分成怎样的形状?有几种方案? (分割) 提出自己的看法,同伴之间进行交流。

探究2:采用哪种好?把分割的几何图形变为代数的式子。

1.5定积分概念

1.5定积分概念

i
点的取法无关。 3.定积分的值与积分变量用什么字母表示无关,即有

b
a
f ( x)dx f (t )dt f (u)du
a 定理1 若函数 f ( x ) 在区间[a , b]上连续,
则 f ( x ) 在区间[a , b]上可积.
定理2 设函数 f ( x ) 在区间[a , b]上有界,
0
i 1 n
2.被积函数,积分区间,积分变量; 3.介于曲线 y f ( x ) , x 轴 ,直线 x a , x b 之间 各部分面积的代数和; 4. dx .
a b
1 二、 (b 3 a 3 ) b a . 3 1 三、 (b 2 a 2 ) . 2
x
用矩形面积近似取代曲边梯形面积
y
y
o
a
(四个小矩形)
b
x o
a
(九个小矩形)
b
x
显然,小矩形越多,矩形面积和越接近 曲边梯形面积.
曲边梯形如图所示, 在区间 [a, b] 内插入若干
个分点, a x 0 < x1 < x 2 < L < x n 1 < x n b,
把区间 [a , b] 分成 n 个小区间 [ xi 1 , xi ], 长度为 xi xi xi 1 ;
如果不论对[a , b] 怎样的分法,也不论在小区间[ xi 1 , xi ] 上
点 i 怎样的取法, 和 S 总趋于 确定的极限I , 如果当n∞时,
我们称这个极限 I 为函数 f ( x )在区间[a , b]上的定积分, 记为

b
a
ba f ( x)dx lim f (i ) n n i 1

定积分的概念 课件

定积分的概念 课件

从几何上看,如果在区间[a,b]上函数f(x)连续且恒有 f(x)≥0 ,那么定积 分 ʃbaf(x)dx 表示由 直线x=a,x=b,y=0和曲线y=f(x) 所围成的曲边梯形 的面积.这就是定积分ʃbaf(x)dx 的几何意义.
知识点三 定积分的性质
思考 你能根据定积分的几何意义解释ʃbaf(x)dx=ʃcaf(x)dx+ʃbcf(x)dx(其中 a<c<b)吗? 答 直线x=c把一个大的曲边梯形分成了两个小曲边梯形,因此大曲边 梯形的面积S是两个小曲边梯形的面积S1,S2之和,即S=S1+S2. (1)ʃbakf(x)dx=_k_ʃ_ba_f(_x_)d_x__(k 为常数). (2)ʃba[f1(x)±f2(x)]dx=_ʃ_baf_1(_x_)_d_x_±_ʃba_f_2(_x_)d_x_. (3)ʃbaf(x)dx=__ʃ_caf_(_x)_d_x_+__ʃ_bc_f(_x_)d_x___(其中 a<c<b).
解 ʃ20 4-x-22dx 表示圆心在(2,0),半径等于 2 的圆的面积的14, 即ʃ20 4-x-22dx=14×π×22=π.
类型三 定积分的性质 例 3 计算ʃ3-3( 9-x2-x3)dx 的值. 解 如图, 由定积分的几何意义得 ʃ3-3 9-x2dx=π×232=92π,ʃ3-3x3dx=0, 由定积分性质得 ʃ3-3( 9-x2-x3)dx=ʃ3-3 9-x2dx-ʃ3-3x3dx=92π.
定积分的概念
知识点一 定积分的概念
思考 分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共 同点. 答 两个问题均可以通过“分割、近似代替、求和、取极限”解决,都 可以归结为一个特定形式和的极限.
知识点二 定积分的几何意义

定积分的概念和基本思想

定积分的概念和基本思想

定积分的概念和基本思想一、定积分的概念和基本思想1、定积分的概念一般地,如果函数$f(x)$在区间$[a,b]$上连续,用分点$a=x_0<x_l<$$\cdots<$$x_{i-l}<x_i<$S\cdots<$$x_n=b$将区间$ la, b] S等分成$n$ 个小区间,在每个小区间$[x_{iT},x_i]$上任取一点$ C _i (i=l, 2, \cdots, n)$,作和式$\underset{i=l}{\overset{n}{\sum}}f(4 _i)Ax=$$\underset{i=l}{\overset {n} {\sum ))\frac(b-a} {n}f(C_i)$,当Sn-8$时,上述和式无限接近某个常数,这个常数叫做函数$f (x) $在区间$[a,b]$上的定积分,记作$\int_{a} * (b}f (x) (\rm d}x$,即$\int_{a}*{b}f(x){\rmd}x=$$\underset(n~* °°}{\lim}\underset{i=l}{\overset{n}{\sum}}\frac{b_ a}{n}f(g_i)$,这里,$a$与$b$分别叫做积分下限与积分上限,区间$[a,b]$叫做积分区间,函数$f(x)$叫做被积函数,$x$叫做积分变量,$f(x) {\rm d}x$叫做被积式。

(1)定积分$\int_{a}*{b}f(x) {\rm d}x$不是一个函数式,而是一个数值(极限值),它只与被积函数以及积分区间有关,而与积分变量无关,即$\int_{a}*{b}f(x){\rm d}x=$S\int_{a}*{b}f(t)(\rm d}t=$$\int_{a}*{b}f(u){\rm d}u$o(2)定义中区间的分法和$ g _i$的取法是任意的。

2、定积分的基本思想定积分的基本思想就是以直代曲,即求曲边梯形的而积时,将曲边梯形分割成一系列的小曲边梯形,用小矩形近似代替,利用矩形面积和逼近的思想方法求出曲边梯形的面积。

定积分的基本概念

定积分的基本概念

定积分的基本概念
一、定积分的基本概念
1.定积分的定义
定积分是指在区间[a,b]中,用函数f(x)的值在x处取的积分,其中x取值于a到b之间的某个点,f(x)的积分称为定积分。

也可以表示为
∫a, bf(x)dx=∫f(x)dx
即:将函数f(x)从x=a到x=b的定积分。

2.定积分的性质
(1)定积分是一种积分的形式,它是在定的一段区间内对某个函数f(x)求积分的形式。

(2)定积分可以表示为:∫f(x)dx=F(b)-F(a),其中F(x)是f(x)的积分函数。

(3)定积分可以表示为:∫a, bf(x)dx=∑[f(x1)+f(x2)+…
+f(xn)],其中x1,x2,…,xn为积分区间[a, b]的各个各点。

(4)定积分是一种表示曲线与坐标轴围成的面积的一种数学工具。

二、定积分的计算
1.定积分的数值计算
数值计算定积分,即把范围[a,b]离散成一定的小段,在每个小段上求f(x)的值,再用这些值进行总和,来求出定积分的近似值。

2.定积分的解析计算
解析计算此类定积分,即首先求出f(x)的积分方程,在范围[a,b]内,求得它的解后,再把范围[a,b]的定积分解析成积分函数F(x)的量对应的差值F(b)-F(a)。

三、定积分的应用
定积分的应用主要是用于求出曲线与坐标轴围成的面积,也可以用于求求解线性微分方程,求解有关动力学问题的时候,还有一些物理的和化学的问题,这些问题用的都是定积分的知识。

1.5 定积分的概念

1.5 定积分的概念

第一章 导数及其应用1.5 定积分的概念 1.5.1 曲边梯形的面积 1.5.2 汽车行驶的路程 1.5.3 定积分的概念基础过关练题组一 曲边梯形的面积与变速直线运动的路程1.把区间[1,3]n 等分,所得n 个小区间中每个小区间的长度为( ) A.1n B.2n C.3n D.12n2.在“近似代替”中,函数f(x)在区间[x i ,x i +1]上的近似值 ( )A.只能是区间左端点处的函数值f(x i )B.只能是区间右端点处的函数值f(x i +1)C.可以是该区间内任一点处的函数值f(ξi )(ξi ∈[x i ,x i +1])D.不能确定3.在求由直线x=a 、x=b(a<b)、y=0及曲线y=f(x)(f(x)≥0)围成的曲边梯形的面积S 时,在区间[a,b]上等间隔地插入(n-1)个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列说法中,正确的是( ) A.n 个小曲边梯形的面积和等于S B.n 个小曲边梯形的面积和小于S C.n 个小曲边梯形的面积和大于SD.n 个小曲边梯形的面积和与S 之间的大小关系无法确定4.已知某物体运动的速度v 与时间t 的关系为v=t,t ∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程的近似值为 .题组二 定积分的概念5.定积分∫f b a (x )dx =lim n →∞∑i=1nb -anf(ξi),则∫ b a f(x)dx 的大小 ( )A.与f(x)和积分区间[a,b]有关,与ξi 的取法无关B.与f(x)有关,与积分区间[a,b]以及ξi 的取法无关C.与f(x)以及ξi 的取法有关,与积分区间[a,b]无关D.与f(x)、积分区间[a,b]和ξi 的取法都有关 6.关于定积分m=∫ 20(-13)dx,下列说法正确的是( ) A.被积函数为y=-13x B.被积函数为y=-13 C.被积函数为y=-13x+c(c 是常数) D.被积函数为y=-13x 3题组三 定积分的性质及几何意义7.图中阴影部分的面积用定积分表示为( )A.102d x x ⎰B.10(21)d x x -⎰C.10(21)d x x +⎰D.10(12)d x x -⎰8.(2019吉林榆树一中高二下期中)∫41√1-x 2dx =( ) A.π B.π2 C.π3 D.π49.(2019山西原平范亭中学高二月考)ax -⎰= .10.曲线y=2cos x 在x ∈[0,π3]内与直线x=π3及坐标轴围成的图形的面积为 (用定积分的形式表示). 11.已知ed x x⎰= e 22,e30d x x ⎰=e 44,则(1)e3(2)d x x x +⎰= ; (2)e30(21)d x x x -+⎰= .答案全解全析 基础过关练1.B 区间长度为2,n 等分后每个小区间的长度都是2n ,故选B.2.C 作近似计算时,Δx=x i +1-x i 很小,误差可忽略,所以f(x)可以是[x i ,x i +1]上任一点处的函数值f(ξi ),故选C.3.A ∵n 个小曲边梯形是所给曲边梯形等距离分割得到的,∴n 个小曲边梯形的面积和为S,故选A.4.答案 55解析 ∵把区间[0,10]10等分后,第n 个小区间右端点处的函数值为n(n=1,2,…,10),每个小区间的长度为1,∴物体运动的路程的近似值为1×(1+2+…+10)=55.5.A 由定积分的定义可知A 正确.6.B 由定积分的定义知,被积函数为y=-13.7.B 根据定积分的几何意义,阴影部分的面积为102d x x ⎰-∫11dx =10(21)d xx -⎰. 8.A 结合定积分的几何意义知∫ 1√1-x 2dx 表示的是以原点为圆心,1为半径的圆的面积的14,则∫410√1-x 2dx =40x ⎰=4×14×π×12=π. 故选A. 9.答案πa 22解析 因为y=22表示的是以原点为圆心,a 为半径的上半圆的面积, 所以根据定积分的几何意义可得ax -⎰=12πa 2.10.答案 ∫2π3cosxdx解析 ∵x ∈[0,π3],∴2cos x>0,∴曲线y=2cos x 在x ∈[0,π3]内与坐标轴围成的图形的面积为∫2π3cosxdx . 11.答案 (1)e 2+e 44(2)e 42-e 22+e解析 (1)e30(2)d x x x +⎰=2e0d x x ⎰+e30d x x ⎰=e 2+e 44.(2)e30(21)d x x x -+⎰=2e 3d x x ⎰-e0d x x ⎰+e1 d x ⎰=e 42-e 22+e.。

定积分的概念课件

定积分的概念课件

区间可加性
总结词
定积分的区间可加性是指定积分在区间上的 值等于该区间内各小区间的定积分之和。
详细描述
定积分的区间可加性表明,对于任意两个不 相交的区间$[a, b]$和$[c, d]$,有
$int_{a}^{b}f(x)dx+int_{c}^{d}f(x)dx=int_ {a}^{d}f(x)dx$。这意味着可以将一个大区 间分割成若干个小区间,然后求各小区间的 定积分,再将它们相加,得到整个大区间的
体积计算
规则体积
对于规则的立体图形,如长方体、圆柱体、圆锥体等 ,可以直接利用定积分的值来计算其体积。例如,对 于圆柱体,其体积可以通过定积分$int_{a}^{b} 2pi r(h) dr$来计算。
曲顶体积
对于曲顶的立体图形,如球、球缺等,也可以利用定 积分来计算其体积。通过将曲顶立体分割成若干小锥 体,然后求和这些小锥体的体积,最后利用极限思想 得到整个曲顶立体的体积。
定积分的性质
02
线性性质
总结词
定积分的线性性质是指定积分具有与加法和数乘运算类似的性质。
详细描述
定积分的线性性质允许我们将一个被积函数与常数相加或相乘,其结果等于将相应的常数加到或乘到 该函数的定积分上。即,对于两个函数的定积分,有$int (k_1f+k_2g) dx = k_1int f dx + k_2int g dx$,其中$k_1$和$k_2$是常数。
应用
无穷区间上的积分在解决一些实际问题时非常有用,例如 求某些物理量(如质量、面积等)的无穷累加和。
一致收敛性
定义
01
一致收敛性是函数序列的一种收敛性质,它描述了函数序列在
某个区间上的一致收敛性。

( 人教A版)高中数学选修22:1.5.3定积分的概念课件 (共35张PPT)

( 人教A版)高中数学选修22:1.5.3定积分的概念课件 (共35张PPT)
)dx=1,
a
a
所以c2f(x)dx+b2f(x)dx
a
c
=2(cf(x)dx+bf(x)dx)
a
c
=2bf(x)dx=4. a
答案:4
3.计算定积分3(2x+1)dx=________. 0
解析:3(2x+1)dx 表示直线 f(x)=2x+1,x=0,x=3 围成的直角梯形 OABC 的 0
a
=b,y=0,再明确被积函数 f(x),从而确定曲边梯形的曲边,这样就可以通过求 曲边梯形的面积 S 而得到定积分的值: 当 f(x)≥0 时,bf(x)dx=S;
a
当 f(x)<0 时,bf(x)dx=-S. a
2.利用定积分的几何意义,求:
3
9-x2dx.
-3
解析:(1)在平面上 y= 9-x2表示的几何图形为以原点为圆心以 3 为半径的上半圆如
2
3552-x2dx=21×2×1=1,
∴5f(x)dx=2xdx+3(4-x)dx+
0
0
2
3552-x2dx=2+23+1=29.
利用定积分的性质计算定积分的步骤: (1)如果被积函数是几个简单函数的和的形式,可以利用定积分的线性性质计 算,可以简化计算. (2)如果被积函数含有绝对值或被积函数为分段函数,一般利用积分区间的连 续可加性质计算.
dx
1
1
=32.
(3)
1
1-x2dx 表示的是图(3)中阴影所示半径为 1 的半圆的面积,其值为π2,
-1
所以1
1-x2dx=π2.
-1
由定积分的几何意义求定积分的步骤: (1)当 f(x)≥0 时,bf(x)dx 等于由直线 x=a,x=b,y=0 与曲线 y=f(x)围 成曲边

定积分的概念 课件

定积分的概念  课件

被积函数的曲线是圆心在原点,半径为2的半圆,
由定积分的几何意义知,此定积分为半圆的面积,
所以
2 4 x2 dx 22 2 .
2
2
例3:利用定积分的几何意义,求下列各式的值.
(2)
2
sinxdx;
2
y
解:在右图中,被积函数f (x) sin x
f(x)=sinx
在[ , ]上连续,且在[ ,0]上
y
y
f(x)=x2
f(x)=x2
y
f(x)=(x-1)2-1
y
f(x)=1
0a
x -1 0 2
xa 0
b x -1 0
2x




解:(1)在图①中,被积函数f (x) x2在[0,a]
上连续,且f (x) 0,根据定积分的几何意
义,可得阴影部分的面积为 A
a 0
x2dx
y
f(x)=x2
y
2
sin xdx 0
2).
sin xdx 2
2 sin xdx
0
0
0
3.试用定积分表示下列各图中影阴部分的面积。
y
y=x2
y y=f(x)
0 12 x
y=g(x)
0a
bx
练习4(2):
计算积分 1 1 x2 dx 0
解:由定积分的几何意义知,该积分值等于
曲线y 1 x 2 , x轴,x 0及x 1所围
f(x)dx —叫做被积表达式,
x ———叫做积分变量, a ———叫做积分下限, O a
bx
b ———叫做积分上限,
[a, b] —叫做积分区间。
定积分的定义:

定积分的概念

定积分的概念

如果当
max{x
1 i n
i
}
0

总有 f ( i ) x i I , 那么称极限 I 为函数 f (x)
i 1
b
在[a, b]上的定积分,记为 f ( x)dx,即 a
b
n
a
f ( x)dx lim 0 i 1
f ( i )xi
19
定积分的定义
积分上限
b a
f ( x)dx
8
引例:求面积
用矩形面积近似取代曲边梯形面积
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
伯 鹃 讹 辣 霖 囤 肯 府 撬 腹 咳 未 剁 胰 然 尖
引例:求面积
步骤
Step1 大化小(分割)
在 a, b 之间任意插入 n -1个分点
a x0 x1 x2 xn1 xn b,
b
a
f
(
x
)
d
x
在几何上表示相应曲边梯形面
积的相反数,即
b
a
f
(x)dx
=
A

y f ( x)
a
b
定积分的几何意义
当 f (x) 在区间[a, b] 上有正有负时,
b
a
f
(x)dx
在几何上表示 的
x
轴上方图形
面积减去 x 轴下方图形的面积.如图所
示,有
b f (x)dx A1 A2 A3 A4 . a
b f (x)dx =
b f (u)du ,例如:
1 x 2dx

定积分的概念和性质公式

定积分的概念和性质公式

定积分的概念和性质公式定积分是微积分的重要概念之一,用于计算曲线下面的面积或者曲线围成的面积,以及求解一些几何体的体积。

本文将介绍定积分的概念、性质以及相关的公式。

一、定积分的概念在数学中,定积分可以看作是无穷小量的累加,它的计算结果是一个数值。

定积分的概念可以通过求解函数和坐标轴之间的面积来解释。

设对于连续函数y=f(x)在区间[a,b]上,我们将它与x轴围成的平面区域分割成多个无穷小的矩形,其宽度为Δx。

我们分别计算每个矩形的面积,将这些面积相加,然后取极限得到的结果就是函数f(x)在区间[a,b]上的定积分。

表示为:∫[a,b]f(x) dx = limΔx→0 Σf(x_i)Δx其中,Σ表示求和,f(x_i)表示在每个小矩形的高度,Δx表示每个小矩形的宽度。

二、定积分的性质1.线性性质:设函数f(x)和g(x)在区间[a,b]上可积,k为常数,则有:∫[a,b](f(x)+g(x))dx = ∫[a,b]f(x)dx + ∫[a,b]g(x)dx∫[a,b]k*f(x)dx = k*∫[a,b]f(x)dx2.区间可加性质:设函数f(x)在区间[a,b]和[b,c]上可积,则:∫[a,c]f(x)dx = ∫[a,b]f(x)dx + ∫[b,c]f(x)dx3.估值性质:设f(x)在区间[a,b]上非负可积,c是[a,b]上的任意一点,则有:f(c)*(b-a) ≤ ∫[a,b]f(x)dx ≤ M*(b-a)其中,M为f(x)在[a,b]上的最大值。

4.小于等于零性质:设函数f(x)在区间[a,b]上非负可积并且在[a,b]上恒大于等于0,则有:∫[a,b]f(x)dx ≤ 0 当且仅当f(x)恒为零。

5.平均值定理:设函数f(x)在区间[a,b]上可积,则存在一个点c使得:∫[a,b]f(x)dx = f(c)*(b-a)三、定积分的计算公式1.基本积分法则:∫k dx = kx + C (k为常数)∫x^n dx = (x^(n+1))/(n+1) + C (n≠-1)2.叠加性质:∫[a,b]f(x)dx = ∫[a,c]f(x)dx + ∫[c,b]f(x)dx3.替换法则:设F(x)在区间[a,b]上可导,f(g(x))g'(x)在区间[g(a),g(b)]上连续,则有:∫[a,b]f(g(x))g'(x)dx = ∫[g(a),g(b)]f(u)du ,其中u=g(x)4.分部积分法则:设u(x)和v(x)是具有连续导数的函数,则有:∫u(x)v'(x)dx = u(x)v(x) - ∫u'(x)v(x)dx5.换元法则:设F(x)在区间[a,b]上可导,f(u)u'(x)在区间[u(a),u(b)]上连续,则有:∫[a,b]f(u(x))u'(x)dx = ∫[u(a),u(b)]f(u)du6.常用积分表:∫sin(x)dx = -cos(x) + C∫cos(x)dx = sin(x) + C∫1/(1+x^2)dx = arctan(x) + C∫1/√(1-x^2)dx = arcsin(x) + C∫e^x dx = e^x + C∫ln(x) dx = xln(x)-x + C总结:定积分是微积分的关键概念之一,通过对函数和坐标轴之间的面积进行累加,计算结果为一个数值。

1.5定积分的概念

1.5定积分的概念

在时间区间[0,1]上等间隔地插入 n-1个分点,将它等分成n个小区间:
0,
1 n
,
1 n
,
2 n
,
,
n -1 n
, 1
记第i个区间为
i
-1 n
,
i n
i
=,1其, 2,长,度n为:
Δt = i - i - 1 = 1 nn n
y
把汽车在时间段
0,
1 n
,
1 n
,
2 n
,
上,行 n驶n- 1的,1路
1f n
i -1 n
=
lim
n →∞
1 3
1
-
1 n
1
-
1 2n
=
1 3
分割
以直代曲
作和
逼近
小结
求由连续曲线yf(x)围成的曲边梯形
面积的方法 (1)分割
(2)近似代替 (3)求和
n (4)取极限
探究!
在“近似代替”中,如果认为函数 f x = x2
在右出S区 端的间 点值ni吗i n-处1?,的ni若函i能=数1求,值2出,f,,nin上,这的用个值这值近种也似 方是地 法13 等 能吗于 求?
1.5 定积分的概念
课本38-42页→《名师》18页→草稿纸、笔
1.5 定积分的概念
y
y
y
0
直线
x0
xo
几条线段连成的 折线
x
曲线
求曲边梯形的面积
曲边梯形:在直角坐标系中,由连续曲线y=f(x), 直线x=a、x=b及x轴所围成的图形叫做曲边梯形。
y
y=f (x)
x=a
x=b

定积分的概念 课件

定积分的概念 课件

按定义中包含的几个步骤来求1x3dx. 0
[解析] (1)分割[0,1]: 0<1n<2n<…<n-n 1<nn=1. (2)近似代替:作和 1n3·1n+2n3·1n+…+nn3·1n.
n

i=1
ni 3·1n.
(因为 x3 连续,所以 ξi 可随意取而不影响极限,故我们 此处将 ξi 取为[xi,xi+1]的右端点也无妨)
(1)y=0,y= x,x=2;(2)y=x-2,x=y2. [分析] 由题目可获取以下主要信息: ①y= x图象为抛物线的一部分; ②x=y2 为一条抛物线; ③y=x-2,y=0,x=2 均为直线. 解答本题可先准确作出函数图象,再根据图象及几何 意义进行表示.
[解析] (1)曲线所围成的区域如图(1)所示,设此面积
(3)取极限:
n
i=1
ni 3·1n=n14i=n1i3=n14n(n+ 2 1)2
=141+2n+n12,
∴1x3dx=linm→∞ 0
141+2n+n12=14.
(此处用到了求和公式 13+23+…+n3=(1++…+n)2
=n(n2+1)2)
因此1x3dx=14. 0
[例4] 利用定积分的性质和定义表示下列曲线围成的 平面区域的面积.
为 S,则 S=2( x-0)dx=2 xdx
0
0
(2)曲线所围成的平面区域如图(2)所示,
S=A1+A2,A1 由 y= x,y=- x,x=1 围成;
A2 由 y= x,y=x-2,x=1 和 x=4 围成.
∴A1=1[ x-(- x)]dx, 0
A2=4[ x-(x-2)]dx, 1
∴S=12 xdx+4( x-x+2)dx.
定积分的概念
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
放大
P
再放大
P
因此,我们可以用这条直线L来代替点P附近的曲线, 也就是说:在点P附近,曲线可以看作直线(即在很小范围 内以直代曲).
y = f(x) y
A1
Oa
b
x
用一个矩形的面积A1近似代替曲边梯形的面积A,
得 A A1.
y = f(x) y
A1 Oa
A2
b
x
用两个矩形的面积 近似代替曲边梯形的面积A, 得 A A1+ A2
成的曲边梯形的面积.
作业:P47练习,P50练习,2
教学后记:
定积分的重点在于掌握计算,会求简单应 用,(面积,路程,功)。其中面积的计算,有 很多都是需要分割成几个面积之和(或差)。学 生的计算通常会出问题。
合作愉快
MARKETING
18
y x2
k n
nx
n
y x2
k n
nx
n
小结:求由连续曲线yf(x)对应的曲边梯形面积的方法
(1)分 (2)求面积的和 (3)取极限n
割 把这些矩形面积相加
y
作为整个曲边形面积S
的近似值。 有理由相信,分点
越来越密时,即分割 越来越细时,矩形面 积和的极限即为曲边 形的面积。
o
x
1.5.2汽车行驶的路程
v
S1 S2
2
vt () S 3 S4
Sj
Sn
t2 2
O
1
t
123 j n 1
nnn n n
v
S1 S2
2
S 3 v(t)
t2 2
s0
1 n
Sj
s1
1 n
s3
1 n
Sn 1
sn 1
1 n
s3
1 n
O
1
t
1 2 3 jn 1n
nnn n n n
上图中:所有小矩形的面积之和,其极限就
是由直线x=0,x=1和曲线v(t)=-t2+2所围
解把底边[0,1]分成n等份,然后在每个分点作底边的垂线, 这 样曲边三角形被分成n个窄条, 用矩形来近似代替,然后把这些 小矩形的面积加起来, 得到一个近似值:
因此, 我们有理由相
信, 这个曲边三角形
y
的面积为:
S
lim
n
Sn
lim
n
1 6
1
1 n
2
1 n
1.
3
y x2
O 12
k
nn
y = f(x) y
A1
A2
A3
A4
Oa
b
x
用四个矩形的面积 近似代替曲边梯形的面积A, 得 A A1+ A2+ A3+ A4
y = f(x) y
A1
Ai
An
Oa
bx
将曲边梯形分成 n个小曲边梯形,并用小矩阵形的面积代替
小曲边梯形的面积, 于是曲边梯形的面积A近似为
A A1+ A2 + + An
—— 以直代曲,无限逼近
2.曲边梯形的面积
求曲边梯形的面积即
求 y f(x) 下的面积 f (x)0
若“梯形” 很窄, 可近似地用矩形面积代替 在不很窄时怎么办?
y
—— 分成很窄的小曲边梯形, 然后用矩形面积代后求和。
y f (x)
y
x
O ab
y f(x)
—— 以直代曲
Oa
bx
例1.求抛物线y=x2、直线x=1和x轴所围成的曲边梯形的面积。
n
S n
n i1
S
' i
n i1
f (i 1)x n
n (i 1)2 i1 n
1 n
0
1 n
1 n
2
1 n
2 n
2
1 n
பைடு நூலகம்
n
n
1
2
1 n
1 n3
(1 2
22
(n 1)2 )
1 n3
(n
1)n(2n 6
1)
1 6
1
1 n
2
1 n
.
nx
n
y
y
O 12 nn
O 12 nn
相关文档
最新文档